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Objective: Obesity is a significant risk factor for adverse outcomes following
coronavirus infection (COVID-19). However, BMI fails to capture differences in the
body fat distribution, the critical driver ofmetabolic health. Conventional statistical
methodologies lack functionality to investigate the causality between fat
distribution and disease outcomes.

Methods: We applied Bayesian network (BN) modelling to explore the
mechanistic link between body fat deposition and hospitalisation risk in
459 participants with COVID-19 (395 non-hospitalised and 64 hospitalised).
MRI-derived measures of visceral adipose tissue (VAT), subcutaneous adipose
tissue (SAT), and liver fat were included. Conditional probability queries were
performed to estimate the probability of hospitalisation after fixing the value of
specific network variables.

Results: The probability of hospitalisation was 18% higher in people living with
obesity than those with normal weight, with elevated VAT being the primary
determinant of obesity-related risk. Across all BMI categories, elevated VAT and
liver fat (>10%) were associated with a 39% mean increase in the probability of
hospitalisation. Among those with normal weight, reducing liver fat content
from >10% to <5% reduced hospitalisation risk by 29%.

Conclusion: Body fat distribution is a critical determinant of COVID-19
hospitalisation risk. BN modelling and probabilistic inferences assist our
understanding of the mechanistic associations between imaging-derived
phenotypes and COVID-19 hospitalisation risk.
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Introduction

Obesity is currently one of the leading global causes of poor
health, with 28% and 41% of adults in the United Kingdom and US,
respectively, being classified as living with obesity (Powell-Wiley
et al., 2021; NHS Digital, 2019). Global obesity prevalence has
increased by 5% since 2010, and by 2030 more than one billion
people will be living with obesity (Lobstein et al., 2022). The obesity
healthcare crisis has been further exacerbated with the spread of the
SARS-CoV-2 virus, the coronavirus pandemic (COVID-19), and the
interaction between obesity and COVID-19. Specifically, obesity has
been repeatedly highlighted as a significant risk factor for adverse
outcomes following COVID-19, including the need for mechanical
ventilation, hospitalisation, and mortality (Sattar et al., 2020;
Soeroto et al., 2020; Freuer et al., 2021; Sawadogo et al., 2022).

Additionally, people living with obesity are known to be at a
significantly greater risk of type-2 diabetes (T2D), cardiovascular
disease, and non-alcoholic fatty liver disease (NAFLD) (Holman
et al., 2011), each of which is associated with worse COVID-19
outcomes, particularly when these conditions are co-prevalent
(O’hearn et al., 2021; Ando et al., 2021; Hebbard et al., 2021;
Roca-Fernández et al., 2021).

Although widely used as an objective measure of obesity, BMI
poorly reflects the body fat distribution; indeed, some have
suggested that the waist circumference may better reflect the
body composition (Ross et al., 2020). The BMI confounds all
body components (e.g., visceral fat and skeletal muscle) into a
single measure (weight/height2). Independent of BMI, an elevated
visceral adipose tissue (VAT)/subcutaneous adipose tissue (SAT)
ratio is a significant predictor of poorer COVID-19 prognosis
(Bunnell et al., 2021; Ogata et al., 2021), and people with
“metabolically healthy obesity” have a lower risk of T2D than
those with “metabolically unhealthy obesity” (Hinnouho et al.,
2015). Furthermore, in BMI-matched people, those with T2D
have demonstrated significantly elevated VAT and liver fat
deposition (Waddell et al., 2022; Levelt et al., 2016). Ectopic fat
deposition is a critical factor in metabolic health and adverse
COVID-19 outcomes. Fundamentally, the biological
heterogeneity of obesity sub-phenotypes is not sufficiently
captured by the BMI alone.

Bayesian networks (BNs) are a powerful tool for visualising
complex systems, modelling uncertainty, and, under certain
assumptions, specifying causal relationships. BNs, combined with
probabilistic reasoning, can be used to estimate the probability of an
event (for example, hospitalisation caused by COVID) after fixing
the values of specific network variables (e.g., obesity, visceral, or liver
fat (high vs. low for each)) and performing conditional probability
queries. For example, Li et al. (2020) estimated acute kidney injury
risk in patients with concurrent gastrointestinal cancers, while Xie
et al. (2017) and Fuster-Parra et al. (2016) predicted the onset of
T2D and cardiovascular disease, respectively. While BNs have been
applied tomodel the COVID-19 risk with great success (Butcher and
Fenton, 2020; Neil et al., 2020; Fenton et al., 2021), they are yet to be
applied for studying the body fat distribution and risk of COVID-19
hospitalisation.

We describe how MRI-derived phenotypes assess volumes of
different fat deposits, including liver fat and body composition,
combined with BN modelling to capture conditional dependencies,

and enable the phenotypic characterisation of the highest risk of
metabolic phenotypes to be hospitalised following COVID-19. We
also compare the predictive performance of BNs against traditional
classification algorithms.

Materials and methods

Data collection and preparation

Anthropometric, demographic, and imaging data were extracted
from the COVERSCAN study (NCT04369807) that recruited
participants with confirmed COVID-19 between April 2020 and
October 2021. All participants underwent an abdominal MRI
assessment that included liver and body composition. In total,
data from 466 participants with the necessary imaging data
available at the time of analysis were collected; after removing
missing data entries, 459 were selected for further analysis
(395 non-hospitalised and 64 hospitalised). See Supplementary
Figure S5 for a full cohort flow diagram containing further details.

Bayesian network construction

BNs are a class of graphical models that encode probabilistic
relationships in the form of a directed acyclic graph (DAG).
Formally, a DAG is expressed as G = (V, E), where V = {X1, X2,
. . ., Xn} denotes the random variables of interest (in the present case,
participant biomarkers) and E is a set of directed edges relating pairs
of variables in V. The directionality of an edge from Xi to Xj

captures the flow of information between those two variables, where
the value of Xj is conditionally dependent on the value of Xi.
Concretely, the structure of a DAG is comprised of three types of
connections between variables: chains, forks, and colliders.
Together, these allow the reader to conveniently (and visually)
detect interdependencies within the data. See Supplementary
Section S1 for explanations of BNs and probabilistic inference.

The following variables were selected for constructing the BN:
smoking status (never smoked, current smoker, and past smoker),
hospitalisation status (1 [hospitalised]/0 [non-hospitalised]), liver
fat (proton density fat fraction [PDFF] %), visceral adipose tissue
(cm2), subcutaneous adipose tissue (SAT) (cm2), skeletal muscle
(cm2), gender (male/female), BMI (kg/m2), and age (yrs). Body
composition was examined from a 2D MR slice positioned at the
third lumbar (L3) vertebra, and VAT, SAT, and skeletal muscle were
measured based on manual delineations by trained analysts, see
Supplementary Figure S4. The measures of skeletal muscles were
then indexed to the participant’s height to produce a measure of the
skeletal muscle index (SMI) (cm2/m2). All continuous variables were
discretised based on pre-defined clinical thresholds; for example, the
BMI was discretised into obesity categories: normal weight
(BMI <25 kg/m2), overweight (BMI 25–30 kg/m2), and obese
(BMI >30 kg/m2). See Supplementary Table S1 for a full overview
of discretisation thresholds.

BN construction and inference were completed using the
“bnlearn” package (Scutari, 2010) and visualised using “graphviz”
within the R software platform (version 3.6.1). The score-based hill-
climbing structure learning algorithmwith the Bayesian information
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criterion (BIC) provided the initial network construction. The
network was then adjusted by removing or reversing nonsensical
edges and inserting edges based on domain knowledge in
collaboration with medical experts, rendering what is referred to
as a “semantic” network. Figure 1 shows the final network. Crucially,
the incorporation of clinical knowledge in the network enables the
modelling of causality between variables, for the presence and
direction of edges being not simply bias dependencies within the
dataset.

Probabilistic inference

Probabilistic inference allows the user to pose counterfactual
“what if” questions by intervening in the network. This is
performed by “fixing” the value(s) of specific variables (evidence)
and then estimating the probability of an “event,” given the evidence.
Specifically, in our work, this included estimating the probability of
hospitalisation, given an “evidence list” containing the fixed values of
network variables such as liver fat or VAT. For example, the
probability of hospitalisation was estimated after fixing the values
of “liver fat” to normal liver fat (<5%), mild steatosis (5%–10%), and
severe steatosis (>10%), allowing the direct effect of elevated liver fat
on hospitalisation risk to be inferred. Conditional probability queries
were performed using the “cpquery” function in bnlearn and
estimated using likelihood weighting algorithm, a Monte Carlo
approximation technique that uses importance sampling from the
“mutilated network.” This algorithm was selected due to the relatively
low sample size and confirmed hospitalisations.

Prediction of the hospitalisation status

The following statistical and machine learning (ML)
classification algorithms were used as a comparison for
predicting the hospitalisation status: logistic regression, Naïve
Bayes, and decision tree. These were implemented within R using
“brglm2,” “klaR,” and “tree” packages, respectively. The dataset was
split into train (internal) [n = 46 (six hospitalised and 40 non-
hospitalised)] and test (validation) (n = 413 [58 hospitalised and
355 non-hospitalised]) validation cohorts, adopting a 10:90 split
while retaining equal proportions of hospitalised participants in
each cohort. Given the relatively low number of hospitalisations, this
data split was selected to avoid overfitting the prediction models and
to minimise variance in prediction results. The area under the
receiver operating characteristic curves (AUC) was reported to
measure model performance, see Supplementary Table S2 for
additional performance measures.

Statistical analyses

All statistical analyses used the R software platform (version
3.6.1). Descriptive statistics, showing median [inter-quartile range],
were reported to summarise population characteristics. Adopting a
significance threshold at p < 0.05, Wilcoxon and X2 tests revealed
that hospitalised participants were significantly older (p < 0.001) and
had significantly elevated measures of BMI (p = 0.042), liver fat (p =
0.0028), and VAT (p < 0.001). See Table 1.

Results

Model prediction

ROC curves indicating model performance are shown in
Figure 2. Overall, the performance of the validation cohort was
the highest within the BNmodel [AUC (95%CI)] [0.84 (0.79–0.89)],
followed by logistic regression [0.68 (0.60–0.77)], Naïve Bayes [0.66
(0.58–0.74)], and decision tree [0.57 (0.51–0.64)].

Estimation of hospitalisation using
probabilistic reasoning

The baseline probability of hospitalisation caused by acute
COVID-19 was 15%. “Intervening” on a variable within the BN
means that we assign it a specific value. For example, the variable
“Obesity” can be assigned the values normal weight, overweight, or
obese. The effect of such an intervention is then propagated
throughout the network, where the variables conditionally
dependent on the intervened variable(s) are updated to reflect the
specified evidence.

We first intervened on the variable “Obesity” only, observing an
11%, 13%, and 29% probability of hospitalisation when the value was
set, respectively, to normal weight, overweight, and obese. This
equates to an 18% greater probability of hospitalisation when
“Obesity” was set to obese than normal weight.

FIGURE 1
Semantic Bayesian network with corresponding conditional
probability tables. Edge directionality makes the direction of
conditional dependence explicit. VAT, visceral adipose tissue; SMI,
skeletal muscle index; SAT, subcutaneous adipose tissue.
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To ascertain what component of the body composition was
driving the elevated obesity risk, we examined the probability of
living with obesity given varying measures of body composition. We
observed that elevated VAT doubled the probability of living with
obesity compared to elevated SAT (50% vs. 24%), identifying
elevated VAT as the primary determinant of obesity. We then
intervened on the variables “Liver fat” and “VAT” without fixing
the value of “Obesity.” Elevated VAT resulted in a 31% probability of

hospitalisation; this was reduced by 20% when specifying non-
elevated VAT, which elicited an 11% probability of
hospitalisation. We observed a “Liver fat” value of <5% (normal),
5%–10% (mild steatosis), and >10% (severe steatosis) that resulted
in a 12%, 25%, and 30% probability of hospitalisation, respectively.

We then examined the influence of VAT and liver fat on
hospitalisation risk across each BMI-based category. We first
estimated the probability of hospitalisation with normal measures

TABLE 1 Population characteristics between hospitalised and non-hospitalised participants. Data are represented asmedian [IQR] and significant p-values in bold.

Participant variable Hospitalised (n = 64) Non-hospitalised (n = 395) p-value

Age (yrs) 50 [43–57] 43 [37–51] 0.00035

Gender (% M) 35% 33% 0.8

BMI (kg/m2) 27 [23–32] 25 [22–28] 0.042

Liver fat (% PDFF) 3 [2.2–6.7] 2.4 [1.9–3.9] 0.0028

VAT (cm2) 120 [66–203] 85 [47–131] 0.00077

SAT (cm2) 237 [141–315] 205 [136–305] 0.19

SMI (cm2/m2) 45 [39–49] 43 [38–49] 0.31

bold values denotes significance (p <0.05).

FIGURE 2
ROC plots indicating the performance of classification models in predicting the hospitalisation status AUC [95% CI].
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of liver fat (<5%) and VAT, here referred to as our “baseline”
measurement. Next, the value of the variables “VAT” and “Liver fat”
was individually fixed to ascertain the direct effect of each variable
state on hospitalisation risk, see Table 2.

Discussion

Obesity is a significant risk factor of hospitalisation following
COVID-19; however, the use of BMI as a measure of body fat
distribution is intrinsically limited. We show how applying BN
modelling and probabilistic reasoning to MRI-derived measures of
liver fat and body composition enables the associations between
obesity and hospitalisation risk to be unravelled.

We first demonstrate an 18% greater probability of
hospitalisation in people with obesity vs. people with normal
weight, with elevated VAT being the primary determinant of
obesity. We postulate that the association between obesity and
hospitalisation following COVID-19 is primarily driven by VAT
deposition rather than SAT. This is consistent with (14) who
reported a higher VAT/SAT ratio being significantly predictive of
adverse outcomes following COVID-19, independent of the BMI
status.

Except for the case when “Obesity” was set to overweight, we
demonstrate that liver fat measures of 5%–10% and >10%
consistently increased the probability of hospitalisation by an
average of 29% and 25%, respectively. Similar work on data from
the UK Biobank by (12) reported a fivefold greater risk of
hospitalisation in people with obesity with concurrent NAFLD vs.
those with obesity but without NAFLD. Furthermore, across all
obesity categories, both elevated VAT and liver fat together caused
an average increase in the probability of hospitalisation of 39%.
Taken together, these results emphasise the role of ectopic fat
deposition in driving hospitalisation risk, which is not captured
through the use of the BMI alone. Postulated mechanisms between
elevated VAT and poorer COVID-19 prognosis include an
overexpression of proinflammatory cytokines and increased
lipolysis, leading to epithelial injury (Cartin-Ceba et al., 2022;
Colleluori et al., 2022).

Probabilistic inference can be used to estimate patient outcomes
based on changes in clinical variables following treatment. For
example, we show that even under normal weight settings,
reducing liver fat content from >10% to <5% reduced the
probability of hospitalisation by 29%. Therefore, in this
population, therapies known to elicit favourable changes in liver
health without requiring significant changes in body weight, such as

the Mediterranean diet or exercise training, should be considered a
viable therapeutic option (Chakravarthy et al., 2020). A >10%
to <5% reduction in liver fat has been demonstrated in people
with obesity following bariatric surgery (Luo et al., 2018), while
treatment with GLP-1 receptor agonists has shown to reduce liver
fat, VAT, and associated metabolic markers such as hyperglycaemia
(Flint et al., 2021; Gadde and Heymsfield, 2021). Most significantly,
while not directly explored here, our work highlights BNs as
promising tools for modelling and estimating a variety of
different treatment outcomes, allowing personalised treatment
strategies and expectations to be formulated.

We acknowledge the limitations of the present analysis. First,
MRI-derived measures of body composition were derived from a 2D
slice positioned at the third lumbar vertebra, which although being
an established technique for measuring body composition (Zaffina
et al., 2022), leaves total body fat distribution open to generalisation.
Second, hospitalisation risk following COVID-19 is notably complex
and involves many factors, such as biochemical pathways, that were
not investigated here. Future works will seek to incorporate
biochemical pathways and circulating biomarkers into the
network, providing a more comprehensive assessment of
metabolic health and hospitalisation risk.

In conclusion, we applied BN modelling and probabilistic
inference to study the association between body composition,
liver fat deposition, and hospitalisation risk following COVID-19.
We show that elevated VAT and liver fat both increase the
probability of hospitalisation and illustrate how BNs can be
applied to estimate counterfactual patient outcomes in the
context of biological systems. Future works could incorporate
treatment outcome data into the Bayesian network to predict
optimal therapeutic options for patients to reduce the risk of
hospitalisation caused by acute COVID-19.
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TABLE 2 Probability of hospitalisation (%) and probability change (+/− %) across obesity categories. The probability of hospitalisation was estimated, given the
fixed values of the network variables as set in the column headings.

Liver fat <5 (%) normal VAT
(baseline)

Liver fat
5%–10%

Liver
fat >10%

Elevated
VAT

Elevated VAT and liver
fat >10%

Normal weight
(n = 210)

10 26% (+16%) 39% (+29%) 27% (+17%) 45% (+35%)

Overweight (n = 148) 8 2% (−6%) 9% (+1%) 31% (+23%) 41% (+33%)

Obesity (n = 101) 14 55% (+41%) 35 (+21%) 25% (+11%) 31% (+17%)
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