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Introduction: Cadmium (Cd) is a highly toxic heavy metal that can be found

everywhere in the environment and can have harmful e�ects on both human

and animal health. Pinostrobin (PSB) is a bioactive natural flavonoid isolated

from Boesenbergia rotunda with several pharmacological properties, such as

antiinflammatory, anticancer, antioxidant, and antiviral. This investigation was

intended to assess the therapeutic potential of PSB against Cd-induced kidney

damage in rats.

Methods: In total, 48 SpragueDawley rats were divided into four groups: a control,

a Cd (5mg/kg), a Cd+ PSB group (5mg/kgCd and 10mg/kg PSB), and a PSB group

(10 mg/kg) that received supplementation for 30 days.

Results: Exposure to Cd led to a decrease in the activities of catalase

(CAT), glutathione reductase (GSR), superoxide dismutase (SOD), and glutathione

peroxidase (GSH-PX), whereas levels of reactive oxygen species (ROS) and

malondialdehyde (MDA) increased. Cd exposure also caused a substantial increase

in urea, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated

lipocalin (NGAL), and creatinine levels. Moreover, a noticeable decline was noticed

in creatinine clearance. Moreover, Cd exposure considerably increased the levels

of inflammatory indices, including interleukin-1b (IL-1b), tumor necrosis factor-

a (TNF-a), interleukin-6 (IL-6), nuclear factor kappa-B (NF-kB), inducible nitric

oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) activity. Cd treatment

decreased the expression of the antiapoptotic markers (Bcl-2) while increasing the

expression of apoptotic markers (Bax and Caspase-3). Furthermore, Cd treatment

substantially reduced the TCA cycle enzyme activity, such as alpha-ketoglutarate

dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and isocitrate

dehydrogenase. Moreover, mitochondrial electron transport chain enzymes,

succinatedehydrogenase, NADH dehydrogenase, cytochrome c-oxidase, and

coenzyme Q-cytochrome reductase activities were also decreased following Cd

exposure. PSB administration substantially reduced the mitochondrial membrane

potential while inducing significant histological damage. However, PSB treatment

significantly reduced Cd-mediated renal damage in rats.
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Conclusion: Thus, the present investigation discovered that PSB has ameliorative

potential against Cd-induced renal dysfunction in rats.
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Introduction

Cadmium (Cd) is a ubiquitous environmental toxin that is

extensively used in industrial and agricultural products (1). Cd

is one of the major heavy metals that pollute the ecosystem and

has damaging effects on different biological processes in both

humans and animals (2). Exposure to Cd can occur through various

sources, such as plant-based foods, fertilizers, contaminated water,

plastic toys, ceramics, batteries, paints, air, soil, and cigarette smoke

(3, 4). The accumulation of Cd in plants mainly occurs through

anthropogenic activities such as the application of phosphate

fertilizers, wastewater, sewage sludge, and manures. Moreover, the

high mobility of soils makes the accumulation of Cd easy in

plants. Industries involved in the production of batteries, pigments,

coatings, electroplating, and plastic stabilizers are often associated

with occupational exposure to Cd.

Moreover, these industries are the sources that make the

water contaminated. However, the major Cd occupational exposure

occurs through fume inhalation in the cadmium-nickel battery

industry. Currently, Cd pollution poses a serious environmental

problem. Cd accumulation in the body can affect health, and

its exposure may cause hazardous effects such as hepatotoxicity,

ototoxicity, carcinogenesis, and nephrotoxicity (5). In living

organisms, heavy metals, including Cd, can damage cellular

organelles along with components such as lysosomes, cell

membranes, endoplasmic reticulum, and mitochondria, as well

as some enzymes involved in damage repair, metabolism, and

detoxification (6).

The kidneys are the primary target site of Cd exposure in

the body. Approximately 50% of the Cd accumulates in the

kidney, particularly in the proximal convoluted tubules, which

leads to renal dysfunction and chronic kidney disorders (7–10).

According to previous research, up to 7% of the world’s population

suffers from chronic kidney disorders due to Cd exposure (11).

Cd induces nephrotoxicity via inflammation, apoptosis, and the

generation of ROS in renal tissues (12, 13). Cd exposure generates

proinflammatory cytokines such as interleukin IL-1 and TNF-α

that trigger inflammation by recruiting innate immune cells (14).

These proinflammatory cytokines contribute to inflammation by

inducing the expression of adhesion molecules on endothelial cells,

causing leukocytes in circulation to adhere to the endothelium.

Long-term exposure to Cd significantly decreases the glomerular

filtration rate, which can lead to renal failure (15), increased

creatinine, blood urea nitrogen (BUN), hydropic swelling, and

proximal tubular cells’ hypertrophy (12). Mitochondria have long

been recognized as a major site for the production of reactive

nitrogen species and ROS (16). Furthermore, it has been stated that

Cd exposure can cause mitochondrial dysfunction, which may lead

to renal failure (17).

Pinostrobin (PSB), or 5-hydroxy-7-methoxy flavanone, is

a dietary flavonoid isolated from Boesenbergia rotunda. This

plant was originally characterized as a medicinal plant due to

its potential therapeutical properties such as antiinflammatory

(18), antileukemia (19), anticancer (20), antioxidant (21, 22),

antimicrobial (23), anti-Alzheimer’s (24), and antiviral (25).

Cd-induced renal dysfunction occurs due to oxidative stress,

inflammation, and apoptosis, as the kidney is the primary

target site of Cd-induced toxicity. Therefore, by considering the

aforementioned pharmacological activities of PSB, the present

investigation was intended to evaluate the potential of PSB to

alleviate Cd-induced renal damage in Sprague-Dawley rats.

Materials and methods

Chemicals

Cd and PSB were purchased from Sigma-Aldrich (Germany).

Animals

Mature male Sprague-Dawley rats with an average weight of

185 ± 15 g. The rats were housed at the animal research station

of the University of Agriculture, Faisalabad, with a temperature

of 25 ± 1◦C and a 12-h light/dark cycle maintained throughout

the experiments. Furthermore, the rats were given standard feed

and water ad libitum throughout the whole trial. The rats were

acclimatized to the laboratory environment for 7 days before

the start of the trial. All animal procedures were conducted in

accordance with the approved protocol of the European Union for

Animal Care and Experimentation (CEE Council 86/609).

Experimental layout

A total of 48 male Sprague-Dawley rats were divided into four

different groups, 12 in each group, and stored in separate cages.

The trial was conducted for 30 days. Group 1 was designated as

the control group. Group 2 was given Cd (5 mg/kg) orally. Group

3 was administered Cd (5 mg/kg) and PSB (10 mg/kg) orally until

the completion of the experiment (30 days). The rats in group 4

were supplemented with PSB (10 mg/kg). Cd at a dose of 5 mg/kg

was given according to a previous investigation [26]. The rats were

anesthetized with 60 mg/kg of ketamine and 6 mg/kg of xylazine

and dissected after 28 days of treatment. The blood was drawn to

analyze the serum profile. Following dissection, the kidneys were

removed; one kidney was packaged in a zipper bag and preserved
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at−80◦C for biochemical examination. For histological evaluation,

the other kidney was stored in a 10% formalin solution.

Separation of kidney mitochondria

Mingatto et al.’s approach was used to isolate mitochondria

from renal cells (26). The renal tissue was mixed with medium-

I (70mM sucrose, 250mM mannitol, 50mM Tris-HCl, 10mM

HEPES, 1mM EDTA, 120mM KCl, and pH 7.4). Homogenate

was centrifuged for 5min at 755 × g. The pellets were rinsed in

medium-II (250mM mannitol, 50mM Tris-HCl, 70mM sucrose,

10mM HEPES, and pH 7.4) before being rinsed two times

with the same buffer and centrifuged at 13,300 × g for 15min.

Mitochondrial pellets were resuspended in the same medium and

utilized for additional investigation.

Estimation of biochemical markers

CAT activity was evaluated by following the methodology of

Aebi (27). The activity of SOD was estimated via the method

popularized by Sun et al. (29). Carlberg and Mannervik’s (28)

technique was used to measure GSR content. GSH-PX activity

was estimated by following the method of Lawrence and Burk

(29). The MDA level was determined in accordance with the

method of Ohkawa et al. (30). ROS level was measured by ELISA

kits (Shanghai Enzyme-Linked Biotechnology Co. Ltd., Shanghai,

China) as per the manufacturer’s instructions.

Estimation of kidney function markers

Urea, creatinine, and creatinine clearance were determined

using standard diagnostic kits (MediScreen kit, France). Urinary

KIM-1 and NGAL levels were measured using the KIM-1

Quantikine ELISA Kit and the NGAL Quantikine ELISA Kit,

respectively, following the manufacturer’s guidelines.

Estimation of inflammatory indices

By using a tissue lyser device (Tissue Lyser II, Oiagen), renal

tissues were homogenized in a cold phosphate buffer (pH 7.4)

(31). The commercial kits were used for the measurement of

inflammatory indices, i.e., interleukin-6 (IL-6), tumor necrosis

factor-α (TNF-α), inducible nitric oxide synthase (iNOS),

interleukin-1β (IL-1β), nuclear factor kappa B (NFκB), and

cyclooxygenase-2 (COX-2) in renal tissues.

Estimation of apoptosis markers

RT-qPCR was used to evaluate Bax, Bcl-2, and Caspase-3

expressions. Total RNA isolation was performed using the TRIzol

reagent, which was then reverse-transcribed into complementary

TABLE 1 Primers sequences of real-time quantitative reverse

transcription-polymerase (RT-qPCR).

Gene Primers 5′->3′ Accession
number

Bax Forward: GGCCTTTTTGCTACAGGGTT NM_017059.2

Reverse: AGCTCCATGTTGTTGTCCAG

Bcl-2 Forward: ACAACATCGCTCTGTGGAT NM_016993.1

Reverse: TCAGAGACAGCCAGGAGAA

Caspase-3 Forward: ATCCATGGAAGCAAGTCGAT NM_012922.2

Reverse: CCTTTTGCTGTGATCTTCCT

β-actin Forward: TACAGCTTCACCACCACAGC NM_031144

Reverse: GGAACCGCTCATTGCCGATA

RT-qPCR, reverse transcription-polymerase chain reaction; 3β-HSD, 3β-hydroxysteroid

dehydrogenase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; and StAR, steroidogenic acute

regulatory protein.

DNA. Variations in apoptotic markers’ expression were observed

by 2−11CT using β-actin as the internal control (32). Sequences

(primers) of β-actin and target genes are displayed in Table 1, as

reported previously (33).

Assessment of TCA cycle enzymes

Isocitrate dehydrogenase (ICdH) activity was evaluated

according to the practice of Bernt and Bergmeyer (34).

Succinate dehydrogenase (SDH) activity was determined

according to the protocol of Slater and Borner (35). Malate

dehydrogenase (MDH) activity was assessed by following

the technique of Mehler et al. (36). α-KGDH activity was

determined in accordance with the procedure of Reed and

Mukherjee (37).

Analysis of the activity of respiratory chain
complexes in the renal mitochondria

Mitochondrial respiratory-chain complex test kits (Suzhou-

Comin Biotechnology Ltd., China) were used to evaluate the

activity of respiratory chain complexes in renal mitochondria.

Assessment of mitochondrial membrane
potential

Mitochondrial membrane potential (MMP) was

determined by measuring the absorption of a cationic

fluorescent dye by the mitochondria (38). To incubate

the mitochondrial suspension (0.5mg protein ml-1)

with Rh 123 (1.5M), the tubes were gently shaken

for 10min at 37◦C. The Elmer LS-50B luminescence

fluorescence spectrophotometer was used to determine

fluorescence at emission (490 nm) and excitation (535 nm)

wavelengths (38).
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Tissue histology

The renal tissues were fixed in a 10% formalin solution for 48 h.

The samples were then desiccated in increasing degrees of alcohol

before being embedded in paraffin wax. A rotatory microtome

was used to cut 4–5 µm-thick slices, which were then stained

with the hematoxylin-eosin stain. In the end, the slides were

examined using a light microscope (Nikon, 187842, Japan) at 400X.

Microphotography was performed with a Leica LB microscope

linked to Olympus Optical Co., Ltd., Japan.

Statistical analysis

Data were displayed as mean ± SEM. The interpretation of the

data was conducted usingMinitab software. The data were analyzed

using a one-way ANOVA followed by Tukey’s test. The significance

level was set at a P-value of < 0.05.

Results

E�ect of Cd and PSB on antioxidant
enzymes and oxidative markers

Cd exposure considerably (P < 0.05) decreased the enzymatic

activities of SOD, GSR, and CAT, as well as GSH-PXwhilemarkedly

(P < 0.05) increasing the levels of MDA and ROS compared to

the control group. Co-administration of PSB with Cd resulted in

a noticeable (P < 0.05) increase in the activities of SOD, GSR,

and CAT enzymes, as well as GSH-PX while significantly (P <

0.05) decreasing MDA and ROS levels compared to the Cd-treated

group. The PSB-treated group demonstrated antioxidant enzyme

activities, ROS, and MDA levels that were similar to those of the

control rats (Table 2).

E�ect of Cd and PSB on kidney function
markers

Cd treatment showed remarkable (P < 0.05) escalation in urea,

KIM-1, and NGAL, as well as creatinine levels, and a noticeable

(P < 0.05) downregulation in creatinine clearance compared to

the control rats. The co-administration of Cd with PSB showed

a considerable (P < 0.05) reduction in urea, KIM-1, NGAL, and

creatinine levels, whereas a substantial increase was noticed in

the creatinine clearance when compared to the CD-administrated

group. Only the administration of PSB showed levels of renal

function markers that were similar to those of the control rats

(Table 3).

E�ect of Cd and PSB on inflammatory
cytokines

Cd exposure resulted in a significant (P < 0.05) increase in the

levels of IL-1β, NF-κB, IL-6, TNF-α, and the activity of iNOS and

COX-2 compared to the control group. The co-administration of

Cd with PSB led to a noticeable (P < 0.05) decline in the levels of

these indices compared to the Cd-exposed rats. PSB administration

alone demonstrated the same levels of these markers as those

observed in the control rats (Table 4).

E�ect of Cd and PSB on apoptotic markers

Cd exposure led to a significant (P < 0.05) decrease in

the expression of the antiapoptotic marker (Bcl-2) while

the expression of the apoptotic marker (caspase-3 & Bax)

was upregulated in PSB-administrated rats when compared

to the control group. However, co-treatment with Cd and

PSB resulted in a significant (P < 0.05) reversal of these

antiapoptotic and apoptotic marker expressions compared

to the Cd-treated group. Administration of PSB alone

demonstrated normal expressions of these markers that

were comparable to those observed in the control rats (see

Figure 1).

E�ect of Cd and PSB on TCA cycle enzymes

Cd intoxication markedly (P < 0.05) lowered the TCA

cycle enzymes (MDH, ICdH, α-KGDH, and SDH) activities in

comparison to the control group. However, co-administration

of PSB and Cd led to a significant increase in TCA cycle

enzyme activities compared with Cd-administrated rats.

The PSB-administrated group showed TCA cycle enzyme

activities that were similar to those of the control rats

(Table 5).

E�ect of Cd and PSB on mitochondrial
respiratory chain complexes

The co-administration of PSB and Cd substantially

restored the activities of mitochondrial respiratory chain

complexes when compared to the Cd-treated group.

PSB-administrated rats exhibited activities in these

complexes that were similar to those of the control rats

(Table 6).

E�ect of Cd and PSB on mitochondrial
membrane potential

The rats exposed to Cd presented a noticeable (P <

0.05) depolarization in mitochondrial membrane potential

(1Ψm) when compared to the control rats. However, the co-

administration of PSB and Cd partially mitigated the loss of

1Ψm when compared to the Cd-administrated group. Only

PSB-administrated rats exhibited mitochondrial membrane

potential, which was similar to that observed in the control rats

(Table 6).
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TABLE 2 Mean ± SEM of biochemical markers in the kidney of control, cadmium, cadmium + pinostrobin, and pinostrobin-supplemented rats.

Groups CAT (U/g
protein)

SOD (U/g
protein)

GSR (Nm NADPH
oxidized/min/mg

tissues)

GSH-PX (U/g
protein)

ROS MDA (nmol/g
tissues)

Control 8.74± 0.22a 6.81± 0.21a 5.86± 0.14a 23.35± 0.68a 0.75± 0.11a 0.44± 0.05a

Cd 4.24± 0.16c 2.91± 0.13c 2.63± 0.18c 11.42± 0.53c 7.55± 0.19c 2.27± 0.09c

Cd+ PSB 6.98± 0.12b 5.37± 0.13b 4.92± 0.07b 18.45± 0.61b 2.22± 0.09b 1.26± 0.06b

PSB 8.65± 0.25a 6.62± 0.22a 5.95± 0.11a 24.18± 0.61a 0.73± 0.08a 0.52± 0.08a

There is a significant difference between means that do not have the same letters.

TABLE 3 Mean ± SEM of renal function markers in control, cadmium-administrated, co-administrated, and pinostrobin-supplemented rats.

Groups Urea (mg/dl) Creatinine
(mg/dl)

Creatinine
clearance (ml/min)

KIM-1 (ng/ml) NGAL (ng/ml)

Control 15.92± 0.45a 1.64± 0.05a 1.56± 0.08a 0.54± 0.07a 0.64± 0.04a

Cd 34.11± 0.78c 4.47± 0.17c 0.72± 0.32c 8.51± 0.42c 6.14± 0.23c

Cd+ PSB 21.48± 0.61b 2.06± 0.08b 1.15± 0.06b 4.48± 0.19b 2.21± 0.08b

PSB 16.48± 0.63a 1.66± 0.06a 1.62± 0.08a 0.65± 0.06a 0.82± 0.06a

There is a significant difference between means that do not have the same letters.

TABLE 4 Mean ± SEM of inflammatory indices in the renal tissues of control, cadmium-administrated, co-administrated, and pinostrobin-supplemented

rats.

Groups NF-κB (ng/g
tissue)

TNF-α (ng/g
tissue)

IL-1β (ng/g
tissue)

IL-6 (ng/g
tissue)

iNOS (ng/g
tissues)

COX-2 (ng/g
tissues)

Control 11.46± 0.81a 9.28± 0.33a 35.63± 1.24a 4.61± 0.08a 160.07± 11.86a 27.84± 2.78a

Cd 49.65± 1.53c 42.62± 1.68c 114.41± 3.34c 19.74± 0.49c 322.63± 12.51c 74.01± 1.22c

Cd+ PSB 26.06± 0.91b 21.59± 0.63b 60.37± 1.41b 9.51± 0.64b 226.07± 9.66b 44.12± 1.93b

PSB 12.29± 0.67a 9.43± 0.67a 40.75± 2.23a 4.95± 0.22a 169.04± 13.51a 23.07± 1.22a

There is a significant difference between means that do not have the same letters.

FIGURE 1

E�ect of Cd and PSB on the renal (A, B) pro (Bax) and anti-apoptotic (Bcl-2) markers and (C) Caspease-3. First bar represents control; Second bar

represents Cd treated group; Third bar represents Cd+PSB treated group; Fourth bar represents PSB treated group. Values are expressed as Mean ±

SEM (12 rats per group). Values having di�erent superscripts are significantly p < 0.05 di�erent from each other.

E�ect of Cd and PSB on histopathology

The kidneys of the rats in the control group showed normal

renal tubules and glomeruli. Most of the renal glomeruli appeared

regular, without evidence of mesangial cell proliferation or

vascular congestion. The shape of the renal tubules ranged from

round to oval ducts lined with cuboidal epithelial or polygonal

cells. However, kidneys in the Cd-exposed group exhibited a

distorted structure, with atrophied glomerular tufts, disruption

of Bowman’s capsule, and vacuolation in the epithelium of renal

tubules. However, the co-treated group displayed mild to moderate

vacuolation in the epithelium of the tubules, while the glomeruli

were normal in size with a mild level of tuft and distortion in

the capillaries. Only administration of PSB showed normal renal

tubules and a regular histological profile similar to that observed in

the control group (Figure 2 and Table 7).
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TABLE 5 Mean ± SEM of tricarboxylic acid cycle enzymes in the renal tissues of control, cadmium-administrated, co-administrated, and

pinostrobin-supplemented rats.

Groups Isocitrate
dehydrogenase
(units/min/mg of

protein)

Alpha-ketoglutarate
dehydrogenase
(units/min/mg of

protein)

Succinate
dehydrogenase
(units/min/mg of

protein)

Malate
dehydrogenase
(units/min/mg of

protein)

Control 720.30± 22.50a 177.98± 9.73a 62.47± 6.39a 566.63± 14.93a

Cd 299.51± 12.50c 56.55± 4.80c 19.94± 3.22c 158.61± 8.21c

Cd+ PSB 623.70± 31.00b 113.28± 10.65b 51.76± 1.84b 383.76± 11.72b

PSB 728.70± 24.70a 182.84± 13.19a 63.52± 6.21a 573.25± 11.11a

There is a significant difference between means that do not have the same letters.

TABLE 6 Mean ± SEM of renal mitochondrial respiratory chain complexes along with 1Ψm in control, cadmium-administrated, co-administrated, and

pinostrobin-supplemented rats.

Groups Complex-I
(NADH

dehydrogenase)

Complex-II
(succinate-

dehydrogenase)

Complex-III (coenzyme
Q-cytochrome reductase)

Complex-IV
(cytochrome
c oxidase)

1Ψm %

Control 29.72± 1.49a 68.88± 2.27a 1.04± 0.04a 248.07± 13.52a 82.55± 0.62a

Cd 8.78± 0.55c 25.96± 2.08c 0.26± 0.03c 130.91± 10.45c 28.71± 1.73c

Cd+ PSB 20.93± 0.97b 36.13± 1.97b 0.68± 0.02b 200.11± 11.86b 64.64± 3.78b

PSB 28.18± 1.41a 71.61± 3.52a 1.08± 0.06a 237.81± 12.38a 84.80± 4.75a

There is a significant difference between means that do not have the same letters.

FIGURE 2

(A) control group; displaying normal histological structure (H and E, 400X). (B) Cd treated group; showing dilation, vacuolation, degeneration, and

widened Bowman’s capsule necrosis in the kidney tissues. (C) Cd + PSB treated group showing improved histoarchitecture with reduce degenerative

architecture in renal epithelium and renal tubules. (D) PSB treated group showing normal renal histoarchitecture. Cd, Cadmium; PSB, Pinostrobin.
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TABLE 7 Mean ± SEM of renal histology in control, cadmium-administrated, co-administrated, and pinostrobin-supplemented rats.

Groups Epithelial cell
degeneration)

Tubular
atrophy

Glomerular
atrophy

Leucocytes
infiltration

Widen Bowman’s
capsule

Control 8.77± 1.82a 4.82± 1.93a 7.43± 1.30a 5.95± 1.81a 6.80± 2.01a

Cd 76.26± 3.77c 58.97± 3.56c 77.34± 5.42c 64.19± 3.60c 74.29± 1.87c

Cd+ PSB 16.17± 2.21b 13.83± 2.68b 19.86± 1.95b 15.58± 2.21b 13.60± 1.75b

PSB 8.29± 1.37a 4.74± 1.93a 7.41± 1.37a 5.91± 1.80a 6.55± 2.11a

There is a significant difference between means that do not have the same letters.

Discussion

In underdeveloped nations, Cd is believed to be the

most prevalent environmental and accidental contaminant that

frequently poses a major threat to both humans and animals

(39). Cd is a widely present hazardous industrial pollutant that

can accumulate in tissues such as the testis, hepatic tissue, lungs,

bones, and renal tissue and cause acute injuries (40). One can

become exposed to Cd through various sources, such as plant-

based food, fertilizers, contaminated water, ceramics, batteries,

and cigarette smoke (3, 4). Cd accumulates in the body and

can have various detrimental effects, such as hepatotoxicity,

ototoxicity, carcinogenesis, and nephrotoxicity (5). When Cd is

released into the cytoplasm, it can induce the production of

reactive oxygen species (ROS), lipid peroxidation, depletion of

glutathione (GH), cross-linking of proteins, and inflammation.

As a result, proinflammatory cytokines accumulate, and kidney

cells die, resulting in kidney damage (13, 41). ROS production

is the major mechanism of Cd-induced kidney toxicity as it may

change cell redox balance (42). However, PSB is well-recognized for

its wide variety of pharmaceutical potentials, including analgesic,

antioxidant, and antiinflammatory properties (43). PSB has benzo-

γ-pyrone in its structure, possibly imparting ROS scavenging

potential to PSB and reducing oxidative stress and inflammation

(44). Keeping this evidence under consideration, we aimed to assess

the therapeutic role of PSB against Cd-induced kidney damage.

Cd exposure led to a significant decrease in the activities

of antioxidant enzymes and an increase in the levels of MDA

and ROS. This imbalance between ROS and antioxidant enzymes

resulted in oxidative stress (45). GPx, CAT, and SOD are critical

enzymes involved in the removal of ROS (46). SOD is the

primary antioxidant enzyme that converts O−2 into hydrogen

peroxide (45). Both CAT and GPx then convert hydrogen

peroxide into oxygen and H2O (47). Previous studies have

shown that Cd induces damage in renal cells by producing

ROS (48). In earlier investigations, it has been stated that

Cd exposure can increase ROS levels, which, as a result,

can decrease antioxidant enzyme activities and increase LPO

(49). However, the administration of PSB has the potential to

reverse these Cd-induced effects on antioxidant enzymes by

reducing ROS production. The ability of PSB to protect against

oxidative stress may be due to the presence of benzo-γ-pyrone

in its structure, which may impart antioxidant potential to

PSB (50).

The removal of creatinine and urea from the body is based

on the glomerular filtration rate (51). Increased levels of urea

can lead to kidney dysfunction, abnormal excretion, and tissue

damage (52). A substantial increase in creatinine concentration

can be due to the loss of glomerular function and tubular

damage in renal tissues (53). KIM-1 and NGAL are promising

markers for the assessment of acute renal failure (54). KIM-1

is a type 1 membrane glycoprotein that is highly expressed in

proximal tubule cells after exposure to nephrotoxic agents (54).

Furthermore, NGAL is a cytoplasmic protein that can be detected

in the blood, urine, renal, and proximal-distal tubules following

renal damage (55). Therefore, elevated levels of these markers

indicate kidney damage. These findings are further supported

by the study conducted by Kamel et al. (56), who reported

that Cd administration increased the levels of KIM-1, NGAL,

creatinine, and urea in rat kidneys. However, PSB treatment

normalized these markers and restored KIM-1, NGAL, creatinine,

urea, and creatinine clearance. These findings demonstrate the

nephroprotective properties of PSB.

NF-κB is a key regulator of the immune response and various

inflammatory ailments. It also plays a major role in the activation

of inflammatory cytokines such as COX-2, IL-6, TNF-α, IL-1β,

and iNOS (57). Previous investigations have proven that heavy

metals can directly increase the production of proinflammatory

cytokines (58). Moreover, COX-2 and iNOS enzymes modulate

the inflammatory response by producing prostaglandin E2 and

nitric oxide, respectively (59). Nitric oxide can make the cell more

vulnerable to ROS by reducing intracellular glutathione content

(60). Several previous studies have indicated that Cd exposure in

kidney tissues can activate NF- κB, which increases IL-1, IL-6, and

TNF-α while decreasing IL-10 (61–63). Conversely, PSB treatment

downregulated NF-κB expression and significantly reduced the

levels of IL-6, TNF-α, and IL-1β. PSB significantly suppressed

iNOS and COX-2 activities, which might be attributed to its

ring structure, as confirmed by the earlier study that reported

the antiinflammatory potential of flavonoids to be attributed to

the non-methoxylation of the 3
′

-hydroxyl groups on the B-ring

or methoxylation of the 5- or 7-hydroxyl groups on the A-

ring (64).

Apoptosis occurs due to an imbalance in apoptotic and

antiapoptotic proteins through mitochondrial-independent

and dependent pathways (65). Downregulation of Bcl-2

and upregulation of Bax severely change the stability of the

mitochondrial membrane (66). Bax and Bcl-2 facilitate the

discharge of cytochrome c from mitochondria, which initiates

the basic apoptotic pathway (67, 68). Caspase-3 is identified as a

crucial apoptosis mediator, as it starts the apoptotic mechanism by

stimulating other caspase enzymes (69). A previous investigation
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supports our results that Cd exposure significantly increased

the expression of Caspase-3 and Bax while decreasing the level

of Bcl-2 in the renal tissues of rats (70, 71). Cd treatment led

to a substantial increase in Bax and Caspase-3 expression while

reducing the levels of Bcl-2. However, PSB treatment prevented

Cd-induced renal apoptosis by suppressing the activation of

Caspase-3 and downregulating Bax, leading to an upregulation

of Bcl-2. The outcomes of our investigation indicate that PSB

possesses antiapoptotic potential against Cd exposure.

Mitochondria are known as the powerhouse of the cell

due to their ability to produce ATP through the process

of oxidative phosphorylation (OP) (72). Mitochondria are the

most critical organelles and play a central role in maintaining

cellular homeostasis. Therefore, mitochondrial dysfunction may

lead to tissue or cellular damage (73). Through the TCA cycle,

mitochondrial enzymes catalyze the oxidation of various substrates,

reducing their equivalents. These electrons are transferred across

the respiratory chain to generate ATP through OP (74, 75). The

study conducted by Ijaz et al. (17) demonstrated that Cd exposure

decreased TCA cycle enzyme activities, which eventually caused

mitochondrial impairment in the kidneys of rats. Conversely,

co-administration of PSB with Cd reversed TCA cycle enzyme

activities, possibly by downregulating OS.

In mitochondria, the electron transport chain (ETC) is

responsible for oxidative phosphorylation, which uses fatty acids

and pyruvate to produce ATP. Under physiological conditions,

ETC is supposed to be the primary cause of ROS generation

(76). According to earlier studies, the accumulation of intracellular

ROS is a major cause of mitochondrial ETC damage (77, 78).

Mitochondrial ETC can be damaged, which is usually indicated

by OS and reduced ATP generation (79). When the mitochondrial

electron transport chain’s transmission is interrupted, ATP

production is affected, which results in mitochondrial damage

(80). In an earlier study, Belyaeva et al. (81) stated that both

membrane permeability and mitochondrial ETC are the major

targets of Cd-induced mitochondrial damage. However, PSB

treatment probably diminished mitochondrial dysfunction by

increasing complex (I-V) activities to their normal ranges due to

its mitigative effects.

Cd exposure resulted in mitochondrial membrane potential

collapse (1Ψm). 1Ψm produced via mitochondrial complexes

during oxidative phosphorylation is important in energy storage.

1Ψm also plays a critical role in maintaining mitochondrial

homeostasis (82). Overproduction of ROS can interrupt multiple

mitochondrial processes, i.e., mitochondrial swelling, MMP

collapse, and reduced dehydrogenase activity (83).

The maintenance of1Ψm is also essential for the movement of

mitochondria (84). According to a previous study, the anterograde

mobility of mitochondria is crucial for their proper functioning

(85). According to previous research, the downregulation of

ETC reduces proton efflux through the inner membrane of

mitochondria, which disrupts the depolarization of 1Ψm (86).

Our findings suggested that PSB has the potential to restore Cd-

induced1Ψm loss by upregulating the activities of ETC complexes.

Moreover, PSB administration significantly restored Cd-mediated

1Ψm. This normalization is possibly due to an increase in the

activity of the ETC complex.

Cd exposure resulted in degeneration of tubular cells

and epithelial cells, glomerular atrophy, leucocyte infiltration,

and disruption of Bowman’s capsule in the proximal renal

tubules. These histomorphological changes could reflect direct

impairment in renal tissues. Our findings are further supported

by the investigation of Kamel et al. (56), who reported that

Cd administration led to histomorphological changes in renal

tissues, such as tubular and glomerular atrophy. It is speculated

that histomorphological changes may be due to the excessive

production of ROS caused by Cd exposure (87), which resulted

in oxidative impairment (88) and morphological changes in renal

tissue. However, the PSB-co-treated group displayed mild to

moderate vacuolation in the epithelium of tubules. Furthermore,

Cd co-administration with PSB significantly mitigated the above-

mentioned histopathological damage. This may be attributed to

the antioxidant capability of PSB, which significantly decreased

oxidative stress, leading to a decrease in pathological alterations.

Conclusion

In conclusion, our research demonstrated that PSB

supplementation potentially attenuated the Cd-induced hazardous

effects on respiratory chain complexes, urea, creatinine, antioxidant

enzymes, creatinine clearance, TCA cycle enzymes, and 1Ψm.

Furthermore, PSB administration considerably reduced Cd-

induced renal dysfunction by mitigating renal oxidative stress,

apoptosis, and inflammatory reactions. PSB regulates renal

functions by restoring TCA cycle enzyme activities and ETC

complexes. These nephroprotective effects of PSB against Cd-

mediated nephrotoxicity may be attributed to its antiinflammatory,

antiapoptotic, and antioxidant nature. Taken together, it can be

concluded that PSB may have some clinical applications in the

future to cure Cd-induced renal dysfunctions in humans.

Limitation

The limitation of the study is that it was conducted on animal

models, and it is necessary to conduct clinical trials in the future to

determine the effectiveness and safety of PSB in humans.
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