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On a transmission problem for the time-harmonic

Maxwell equations

C. ATHANASIADIS – I.G. STRATIS

Riassunto: In questo lavoro si considera il problema di trasmissione per le equa-
zioni di Maxwell armoniche nel tempo, per un diffusore a infiniti strati omogenei, co-
stituiti da materiali diversi. Si dimostra l’esistenza e l’unicità della soluzione. Inoltre
si costruisce una rappresentazione integrale del campo esterno totale e si esamina il
comportamento asintotico dell’onda diffusa nella regione di radiazione.

Abstract: The transmission for the time-harmonic Maxwell equations is studied
for the case of an infinitely stratified, nested, bonded scatterer, whose homogeneous lay-
ers consist of different materials. The existence and uniqueness of solutions is proved.
Moreover, an integral representation of the total exterior field is constructed, and the
asymptotic behaviour of the scattered wave in the radiation region is studied.

1 – Introduction

In this work we are studying the transmission problem for the time-

harmonic Maxwell equations, in the case where a plane electromagnetic

wave is incident upon a nested body consisting of an infinite number of

homogeneous layers. On the surface that describe this tesselation are im-

posed appropriate (transmission) conditions, that express the continuity

of the medium.
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For the mathematical electromagnetic theory, we refer to the books

by Colton-Kress [7], and Fournet [11].

In Section 2, we, first, state the necessary elements of the electromag-

netic theory, and formulate the transmission problem. Then we prove that

the associated homogeneous transmission problem has as its only classical

solution the trivial one. Next, we show that the initial non-homogeneous

transmission problem has a generalized solution, which, by a regularity

argument, turns to be classical. Such an approach has been used by the

authors in [4], for transmission problems in acoustics. As far as the study

of the transmission problem for the vector Helmholtz equation is con-

cerned we refer to Wilde [17], while the conductive boundary problem

for the Maxwell equations, has been studied by Angell and Kirsch [1].

In the Section 3, we construct an integral representation of the total

exterior field; this representation incorporates all the information about

the transmission and the radiation conditions. In addition, we study the

asymptotic behaviour of the scattered wave in the radiation region (far-

field pattern). The scattered electric and magnetic fields are expressed in

terms of the electric far-field pattern, and the magnetic far-field pattern,

respectively, in a form analogous to that of Colton-Paivarinta [8], for

the case of a non-homogeneous scatterer.

For the proof of the existence and uniqueness of solutions of the trans-

mission problem, we use a generalized solutions approach. In the case

where the scatterer is not tesselated, but consist of a non-homogeneous

material, such an approach has been used by Bihovski [6], for the inte-

rior problem of the time-dependent Maxwell equations. For the exterior

problem of these equations, we refer to Barucq and Hanouzet [5]. One

can consult, as well, the books by Dautray and Lions [9], and by Du-

vaut and Lions [10]. The standard approach, i.e. the implementation

of potential theory, leads —in the case of our stratified scattered— to an

infinite system of integral equations. Even in the case of a finite number

of layers, the generalized solutions method does not present disadvan-

tages as far as the length of the proof is concerned, in comparison to

the standard method. For the standard method we refer to the work of

Stevenson [15], Gray and Kleinman [12], Knauff and Kress [13],

and Werner [16].

For the quantitative study, at low-frequencies, of the transmission

problem, for a multi-layered scatterer, we refer to [2] and [3].



[3] On a transmission problem for the time-harmonic etc. 673

2 – Statement and solvability of the transmission problem

Consider electromagnetic wave propagation in an isotropic medium

in IR3, with space independent electric permittivity ε ∈ IR, magnetic

permeability µ ∈ IR, and electric conductivity σ ∈ IR. The electromag-

netic wave is described by the electric field IE, and the magnetic field IH,

satisfying the Maxwell equations

curl IE + µ
∂IH

∂t
= 0 ,(2.1)

curl IH − ε
∂IE

∂t
= σIE .(2.2)

For time-harmonic electromagnetic waves of the form

IE(x, t) = Re

{(
ε + i

σ

ω

)− 1
2

E(x)e−iωt

}
,(2.3)

IH(x, t) = Re
{
µ− 1

2 H(x)e−iωt
}

,(2.4)

with frequency ω > 0, we deduce that the complex valued space depen-

dent parts E and H, satisfy the reduced Maxwell equations:

curlE − ikH = 0 ,(2.5)

curlH + ikE = 0 ,(2.6)

where the wave number k is a constant given by

(2.7) k2 =

(
ε + i

σ

ω

)
µω2 ,

where the sign of k chosen such that

(2.8) Im k ≥ 0

Remark 2.1. Any solution {E, H} of (2.5), (2.6) is divergence free,

i.e. divE = divH = 0. This follows immediately, with the use of the

vector identity div curlF = 0.
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Let Ω̃ be a bounded, convex subset of IR3, containing the origin,

and having a C2-boundary S0. The exterior, Ω0, of Ω̃ is a homogeneous

isotropic medium, with vanishing conductivity σ0 = 0, and wave number

k0 given by k2
0 = ε0µ0ω

2 ∈ IR. A core Ωc, within which lies the origin,

is contained in Ω̃. We actually work in Ω = Ω̃ − Ωc; we suppose that

the boundary, Sc, of Ωc is a C2-surface. Ω is considered to be a bonded,

nested, piecewise homogeneous body, consisting of annuli-like regions Ωj,

divided by C2-surface Sj, j = 1, 2, . . . Each surface Sj surrounds Sj+1

and Sc for all j. We assume that dist(Sj−1, Sj) > 0 for j = 1, 2, . . . , and

that limj→∞ Sj = Sc. Let εj, µj, σj ∈ IR, be the electric permittivity,

magnetic permeability, and electric conductivity, respectively, in Ωj, i.e.

Ω is a scatterer with piecewise constant electric permittivity, magnetic

permeability, and electric conductivity; for the use of such scatterers, we

refer to Fournet [11].

By the adjective “bonded” it is meant that the tangential components

of the time independent electric and magnetic fields are continuous across

each Sj, j = 1, 2, . . . . Moreover, we assume that
∑∞

j=1 |Sj| < +∞, where

|Sj| is the measure of Sj. Such an Ω will be referred to as an infinitely

stratified scattered.

We shall consider the scattering for time-harmonic waves by an in-

finitely stratified scatterer. Let Einc, H inc be the set of incident fields of

the form

H inc(x) = b̂ exp{ik0k̂ · x} , Einc(x) = − 1

ik0

curlH inc(x) ,

where k̂ is the propagation unit vector, b̂ is the polarization unit vector;

b̂ · k̂ = 0.

The incoming wave Einc, H inc is scattered by Ω, resulting to the

emanation of a scattered wave E0, H0. The total wave Etot, Htot in Ω0

is given by

(2.9) Etot = Einc + E0, Htot = H inc + H0 .

The pairs Etot, Htot and E0, H0 satisfy the reduced Maxwell equations

in Ω0.

Moreover, E0, H0 must satisfy the Silver-Muller radiation conditions

(2.10) lim
r→∞

(H0 × x − rE0) = 0 ,
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or

(2.11) lim
r→∞

(E0 × x − rH0) = 0 ,

where r = |x|, and the limit is assumed to hold uniformly in all directions.

Let kj be the wave number in Ωj, j = 1, 2, . . . , given by

k2
j =

(
εj +

σj

ω

)
µjω, Im kj ≥ 0 .

The mathematical description of the diffraction of an incident time-

harmonic wave, as considered above, by an infinitely stratified scattered,

leads to a transmission problem of the following form:

Find E, H satisfying

(2.12)





curlEj − ikjHj = 0

curlHj + ikjEj = 0

}
in Ωj, j = 0, 1, 2, . . .

(i)

(ii)

n × (E0 + Einc) = n × E1

n × (H0 + H inc) = n × H1

}
on S0

(iii)

(iv)

n × Ej = n × Ej+1

n × Hj = n × Hj+1

}
on Sj, j = 0, 1, 2, . . .

(v)

(vi)

E0 , H0 satisfy (2.10) (vii)

where Ej, Hj denote the restriction of E, H in Ωj, j = 1, 2, . . . . Moreover,

the boundary behaviour, on the surface of the core, of the desired solution

must be specified. We assume that

(2.13) n × E = n × H = 0, on Sc .

In the remaining of this section, we shall study the following non-homoge-

neous model mathematical transmission problem: Find vector fields Ej,

Hj ∈ C1,a(Ωj) ∩ C(Ω̄j), j = 0, 1, 2, . . . where a ∈ (0, 1), satisfying the
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equations

{
curlEj − iλjHj = 0

curlHj + iλjEj = 0
in Ωj, j = 0, 1, 2, . . .(2.14)

{
p0n × E0 = p1n × E1 + f

q0n × H0 = q1n × H1 + g
on S0(2.15)

{
pjn × Ej = pj+1n × Ej+1

qjn × Hj = qj+1n × Hj+1

on Sj, j = 1, 2, . . .(2.16)

(2.10) and (2.13)





(NHTP )

where λj, pj, qj ∈ C − {0}, j = 0, 1, 2, . . . , and f, g ∈ T 0,a
d (S0); for the

definition of T 0,a
d we refer to [7].

The corresponding homogeneous transmission problem (i.e. when

f = g ≡ 0 on S0) will be denoted by (HTP ).

We are now in a position to prove

Theorem 2.1. Suppose that the following conditions hold:

(2.17) sup
j

∣∣∣∣
pj q̄j

p0q̄0

λj

∣∣∣∣ < +∞

and

(2.18)

∣∣∣∣Im
(

pj q̄j

p0q̄0

)
Re λj

∣∣∣∣ ≤ Re

(
pj q̄j

p0q̄0

)
Im λj, j = 0, 1, 2, . . .

Then (HTP ) has only the trivial solution.

Proof. We consider a ball BR, with boundary SR, centered at the

origin with radius R, large enough to include Ω̄ in its interior. We denote

by Ω0,R the set Ω0 ∩ BR. By the radiation condition (2.10) we have

(2.19)

∫

SR

{|H0 × n|2 + |E0|2}ds − 2 Re

∫

SR

(n × E0) · H̄0 ds =

=

∫

SR

|H0 × n − E0|2ds = o(1), as R −→∞ .



[7] On a transmission problem for the time-harmonic etc. 677

Applying the divergence theorem on the vector field E0 ×H̄0 in Ω0,R with

∂Ω0,R = SR∪S0, using that E0, H0 are solutions of the Maxwell equations

in Ω0, and introducing the boundary conditions on S0, we get

(2.20)

∫

SR

(n × E0) · H̄0 ds =
p1q̄1

p0q̄0

∫

S0

(n × E1) · H̄1 ds+

+

∫

Ω0,R

{iλ0|H0|2 − iλ̄0|E0|2}dx

Repeating the above procedure successively on each region Ωj, j =

1, 2, . . . and taking into account (2.13) we obtain

(2.21)

∫

SR

(n × E0) · H̄0 ds = iλ0

∫

Ω0,R

|H0|2dx − iλ̄0

∫

Ω0,R

|E0|2 dx+

+
∞∑

j=1

i
pj q̄j

p0q̄0

λj

∫

Ωj

|H1|2dx −
∞∑

j=1

i
pj q̄j

p0q̄0

λj

∫

Ωj

|Ej|2dx .

By the structure of Ω, we have that

(2.22)
∞∑

j=1

∫

Ωj

|Hj|2dx = ‖H‖2
(L2(Ω))3 ,

∞∑

j=1

∫

Ωj

|Ej|2dx = ‖E‖2
(L2(Ω))3 .

Hence, from (2.17) and (2.22) we conclude that the two series appearing

in the RHS of (2.21) are (uniformly) convergent. We now insert the real

part of (2.21) into (2.19) to get

(2.23)

1

2

∫

SR

{|H0 × n|2 + |E0|2}ds + o(1) =

= Im(λ̄0)

∫

Ω0,R

|E0|2dx − Im(λ0)

∫

Ω0,R

|H0|2dx+

+
∞∑

j=1

Im

(
pj q̄j

p0q̄0

λ̄j

) ∫

Ωj

|Ej|2dx −
∞∑

j=1

Im

(
pj q̄j

p0q̄0

λj

) ∫

Ωj

|Hj|2dx



678 C. ATHANASIADIS – I.G. STRATIS [8]

From (2.18) we take

(2.24) Im

(
pj q̄j

p0q̄0

λj

)
≥ 0 and Im

(
p̄jqj

p̄0q0

λj

)
≥ 0 j = 0, 1, 2, . . .

which, in view of (2.23) yield

(2.25) (Im λ0)

∫

Ω0,R

|E0|2dx = (Im λ0)

∫

Ω0,R

|H0|2dx = 0, R → ∞ .

If Im λ0 > 0, it follows that

(2.26) E0 = H0 = 0, in Ω0 .

On the other hand, if Imλ0 = 0, (2.21) and (2.24) yield

(2.27) Re

(∫

SR

(n × E0) · H̄0 ds

)
≤ 0 ,

whereby, implementing Theorem 6.10 of [7], we obtain again (2.26).

We proceed to showing that E1 = H1 = 0 in Ω1.

By (2.26) and the transmission conditions on S0, we obtain that

(2.28) n × E1 = n × H1 = 0, on S0 .

Rewriting the Maxwell equations in Ω1 as a first order system of six

equations (via the components of E1 and H1), and doing the same with

the initial data (2.28), we are led to a Cauchy problem for the referred

to system. By Holmgren’s uniqueness theorem [14], which is easily seen

to apply in this case, we conclude that E1 = H1 = 0 in Ω1 ∩ V , where V

is a neighborhood of any point of S0. Now, by the unique continuation

principle for the Maxwell equations, ([7], Theorem 9.3), we obtain that

E1 = H1 = 0 in Ω1, as desired. By the same argument, E2 and H2 are

shown to be vanishing in Ω2, etc. We thus conclude that (HTP) has only

the trivial solution.
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We now proceed to consider the solvability of (NHTP ). We need

the following function spaces:

X0(Ω) = (L2(Ω))3

X1(Ω) = {h ∈ X0(Ω) : curlh ∈ X0(Ω)}

Rm(Ω0) =

{ [
u

w

]
: u, w ∈ Xm

loc(Ω0) : w(x) × x

|x| − u(x) = 0

(
x

|x|

)
,

uniformly in all directions
x

|x|

}
, m = 0, 1

Y 0
T (S0) = {h ∈ X0(S0) : n · h = 0 on S0}

Y 0
d (S0) = {h ∈ Y 0

T (S0) : Divh ∈ H−1/2(S0)}
Y

1/2
T (S0) = {h ∈ (H1/2(S0))

3 : n · h = 0 on S0}
Y

1/2
d (S0) = {h ∈ (Y 1/2(S0) : Divh ∈ L2(S)} ,

where Divh is the surface divergence of h; for a definition [7].

We may rewrite (2.14) in the following unified way:

(2.29)
curlE(x) = iλ(x)H(x)

curlH(x) = −iλ(x)E(x)

where

(2.30)
E(x) = Ej(x), H(x) = Hj(x),

λ(x) = λj, x ∈ Ωj, j = 0, 1, 2, . . .

Let, moreover,

(2.31) p(x) = pj, q(x) = qj, x ∈ Ωj, j = 0, 1, 2 . . .

(2.32) F (x) =

{
f(x) x ∈ S0

0 x ∈ Sj

, G(x) =

{
g(x) x ∈ S0

0 x ∈ Sj

, j = 1, 2, . . .

The transmission condition (2.15), (2.16) may, also, be rewritten as

[p(x)n × E(x)]
+

− = F (x)
x ∈ Sj ,(2.33)

[q(x)n × H(x)]
+

− = G(x)
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where [u(x)]+− := u+(x) − u−(x) and u+(x)(u−(x)) denotes the limit of u

on Sj from Ωj(Ωj+1).

Definition 2.1. A function

[
E

H

]
∈ (X0)2 ∩ R0(Ω0) is called a

generalized solution of (2.29), (2.33) for F , G ∈ Y 0
T (S0), iff

(2.34)

∫

IR3−Ωc

[
q(x) 0

0 p(x)

] [
0 − curlϕ(x)

curlψ(x) 0

]
·
[

E(x)

H(x)

]
dx+

− i

∫

IR3−Ωc

λ(x)

[
q(x) 0

0 p(x)

] [
ϕ(x) 0

0 ψ(x)

]
·
[

E(x)

H(x)

]
dx =

=

∫

S0

[
ϕ(s) 0

0 ψ(s)

]
·
[
F (s)

G(s)

]
ds ,

for every ϕ, ψ∈{h ∈ X1
loc(IR

3) : n×h=0 on Sc, and h(x) = o( 1
|x| , |x|→∞}.

In relation to {(2.29), (2.33)} we have the following regularity result;

its proof is omitted for the sake of brevity, and may be performed by

standard regularity arguments. See [4], [5], [6].

Theorem 2.2. Let

[
E

H

]
be a generalized solution of {(2.29), (2.33)}.

(i) Assume that F , G ∈ Y
1/2

T (S0). Then

[
E

H

]
∈ (

X1(Ω̄)
)2 ∩ R1(Ω0).

(ii) Assume that F , G ∈ T 0,a
d (S0). Then

[
E

H

]
∈ (

C1,a(Ωj) ∩ C(Ω̄j)
)2

,

j = 1, 2, . . . , and E, H satisfy the radiation condition (2.10).

Remark 2.3. If

[
E

H

]
satisfies (2.34), and has the regularity prop-

erties of the conclusions of either Theorem 2.2. (i), or Theorem 2.2. (ii),

then (2.33) is satisfied.

We may now state and prove the existence result for (NHTP ).

Theorem 2.4. Consider (NHTP ) with its parameters satisfy-

ing (2.17) and (2.18). Let, moreover,

(2.35)
∞∑

j=0

pjλj '= 0 and
∞∑

j=0

qjλj '= 0 .

Then (NHTP ) has a unique solution.
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Proof. Setting u =

[
E

H

]
, IF to be the extension of

[
F

G

]
into

X0(IR3), and introducing as in [9] the Maxwell operator

(2.36) A :=

[
0 − curl

curl 0

]

we see that (2.29) may be written as

(2.37) Au − iλ(x)u = IF ,

while the corresponding homogeneous equation is

(2.38) Au − iλ(x)u = 0 .

Employing a line of argumentation analogous to that of [9], chapter IV

(see also [6]), we may see that provided (2.35) is satisfied, the Fredholm

alternative may be implemented for (2.37), (2.38). By the uniqueness

of the trivial solution for (2.38) we conclude that (2.27) has a unique

generalized solution, which —by Theorem 2.2 (ii)— is classical, obtaining

thus the solvability of (NHTP ).

Remark 2.4. We note that the transmission problem {(2.12), (2.13)},

arising from the diffraction of an incident plane time-harmonic electro-

magnetic wave, by an infinitely stratified scatterer is a special case of

(NHTP ) for λj = kj, pj = qj = 1, j = 0, 1, 2, . . . , and f = Einc × n,

g = H inc × n. The conditions (2.17), (2.18) take in this case the form

sup
j

|kj| < +∞, j = 0, 1, 2, . . . ,(2.39)

Im kj ≥ 0, j = 0, 1, 2, . . . ,(2.40)

while the conditions (2.35) become

(2.41)
∞∑

j=0

kj '= 0 .

Let us note that (2.40) has been assumed already (in the definition of

the kj, after (2.11)), and that, provided the series in (2.41) converges, its
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sum cannot be zero since the kj are wave numbers. As for (2.39), it is

physically meaningfull.

Remark 2.5. In the case that there is no core Ωc inside Ω, and Ω

is not supposed to be stratified (i.e. it consists of only one layer), then

conditions (2.17), (2.18), (2.35) are slightly more general (as to that p0

and p1 are not equal to 1) of those appearing in [1] for the non-conductive

case, and in [17].

3 – Integral representations of the exterior fields

In this section we shall construct integral representations, which con-

tain all the information about the transmission and radiation conditions.

One representation will be evaluated for the near exterior field and an-

other for the far scattered field, which is known as the scattering ampli-

tude, or far field pattern.

The total exterior field Etot, Htot, is the superposition of the incident

and the scattered field, cf. (2.9). As it is well known, [7], [15], the scattered

field E0, H0 has the following Stratton-Chu representation:

E0(x) = curl

∫

S0

n′ × E0(x
′)φ(x, x′)ds′+

− 1

ik0

curl curl

∫

S0

n′ × H0(x
′)φ(x, x′)ds′, x ∈ Ω0 ,(3.1)

H0(x) = curl

∫

S0

n′ × H0(x
′)φ(x, x′)ds′+

+
1

ik0

curl curl

∫

S0

n′ × E0(x
′)φ(x, x′)ds′, x ∈ Ω0 ,(3.2)

where n′ denotes the unit normal vector to the surface S0 directed into

the exterior of Ω, and

(3.3) φ(x, x′) =
1

4π

eik0|x−x′|

|x − x′| , x '= x′

is the fundamental solution to the Helmholtz equation. As always, the

observation vector x is assumed to have measure |x| greater than the

characteristic dimension of the scatterer, that is the radius of the smallest
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circumscribable sphere around the scatterer. Hence, there exists θ > 0

such that |x − x′| ≥ θ−1 and consequently

(3.4) |φ(x, x′)| ≤ θ

4π

Lemma 3.1. The series

∞∑

j=1

∫

Ωj

curlx′(Ej(x
′)φ(x, x′))dx′(3.5)

∞∑

j=1

∫

Ωj

curlx′(Hj(x
′)φ(x, x′))dx′(3.6)

converge uniformly.

Proof. For the solutions to the Maxwell equations Ej, Hj ∈ C1,a(Ωj)

∩ C(Ω̄j), there exists M > 0 such that

(3.7) |Ej(x
′)| ≤ M, |Hj(x

′)| ≤ M, x ∈ Ωj, j = 1, 2, . . .

From a known vector formula we take

(3.8)
curlx′(Ej(x

′)φ(x, x′)) =

= gradx′ φ(x, x′) × Ej(x
′) + φ(x, x′) curlx′ Ej(x

′) .

Also we have

gradx′ φ(x, x′) =

(
1

|x − x′| − ik0

)
eik0|x−x′|

|x − x′|
x − x′

|x − x′| ,(3.9)

| gradx′ φ(x, x′)| ≤ (θ + |k0|)
θ

4π
.(3.10)

From the Maxwell equations we take

(3.11) | curlEj(x
′)| ≤ |kj|M ≤ k∗M ,

where k∗ = supj |kj|.
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Using (3.4), (3.7)-(3.11) we get the following estimate

| curlx′(Ej(x
′)φ(x, x′))| ≤ θM

4π
(θ + |k0| + k∗) ,(3.12)

∣∣∣∣∣

∫

Ωj

curlx′(Ej(x
′)φ(x, x′))dx′

∣∣∣∣∣ ≤ θM

4π
(θ + |k0| + k∗)|Ωj| ,(3.13)

where |Ωj| is the measure of the volume of Ωj. Since, by the structure

of the scatterer, we have
∑∞

j=1 |Ωj| = |Ω|, the series (3.5) converges uni-

formly. It is clear that also the series (3.6) converges uniformly.

We denote by ψE(x) and ψH(x) the series (3.5) and (3.6) respectively.

Then we can prove the following theorem.

Theorem 3.1. The total exterior field of the transmission problem

(NHTP ) has the integral representation

Etot(x) = Einc(x) + curlψE(x) − 1

ik0

curl curlψH(x) ,(3.14)

Htot(x) = H inc(x) + curlψH(x) − 1

ik0

curl curlψE(x) .(3.15)

Proof. We shall work with Etot; the same argument is applied for

Htot, as well. From (2.9) and (3.1) taking into account that Einc, H inc is

a solution to the Maxwell equations, we conclude that

(3.16)

Etot(x) = Einc(x) + curl

∫

S0

n′ × Etot(x′)φ(x, x′)ds′+

− 1

ik0

curl curl

∫

S0

n′ × Htot(x′)φ(x, x′)ds′

Inserting the transmission conditions on the surface S0, given by (2.12,

(iii), (iv)), to (3.16) we obtain

(3.17)

Etot(x) = Einc(x) + curl

∫

S0

n′ × E1(x
′)φ(x, x′)ds′+

− 1

ik0

curl curl

∫

S0

n′ × H1(x
′)φ(x, x′)ds′ .
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Applying successively the divergence theorem on the vector field Ej(x
′)

φ(x, x′) in Ωj, with ∂Ωj = Sj−1 − Sj, and using the transmission condi-

tions (2.12, (v), (iv)), we get, fro j = 1, 2, . . . , N

(3.18)

Etot(x) = Einc(x) + curl

∫

SN

n′ × EN(x′)φ(x, x′)ds′+

+ curl
N∑

j=1

∫

Ωj

curlx′(Ej(x
′)φ(x, x′)dx′+

− 1

ik0

curl curl

∫

SN

n′ × HN(x′)φ(x, x′)ds′+

− 1

ik0

curl curl
N∑

j=1

∫

Ωj

curlx′(Hj(x
′)φ(x, x′))ds′ .

Now, letting N → ∞ and taking into account the boundary conditions on

the core (2.13), and the convergence of the series (3.5), (3.6), we complete

the proof.

In the sequel, we study the far field patterns. Using the asymptotic

form

(3.19) |x − x′| = |x| − x̂ · x′ + O

(
1

|x|

)
, |x| → ∞ ,

where x̂ = x
|x| , we derive

(3.20)

φ(x, x′) =
1

4π

eik0|x−x′|

|x − x′| =

=
1

4π

eik0|x|

|x|

[
e−ik0x̂·x′

+ O

(
1

|x|

)]
, |x| → ∞ .

Inserting (3.20) to (3.5) and (3.6), we obtain, for |x| → ∞

ψE(x) =
1

4π

eik0|x|

|x| ψE
∞(x̂) ,(3.21)

ψH(x) =
1

4π

eik0|x|

|x| ψH
∞(x̂) ,(3.22)
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where the vector fields ψE
∞ and ψH

∞ are defined on the sphere and are

given by the uniformly convergent series

ψE
∞(x̂) =

∞∑

j=1

∫

Ωj

curl(Ej(x
′)e−ik0x̂·x′

)dx′ + O

(
1

|x|

)
,(3.23)

ψH
∞(x̂) =

∞∑

j=1

∫

Ωj

curl(Hj(x
′)e−ik0x̂·x′

)dx′ + O

(
1

|x|

)
.(3.24)

Substituting (3.21) and (3.22) into (3.14) and (3.15), the scattered field

admits the following form, as |x| → ∞.

E0 =
eik0|x|

|x|
[ ik0

4π
x̂ × (ψE

∞(x̂) − x̂ × ψH
∞(x̂))+

+
1

4π
(curlψE

∞(x̂) − x̂ × curlψH
∞(x̂)+

− curl(x̂ × ψH
∞(x̂) − 1

ik0

curl curlψH
∞(x̂)) + O

(
1

|x|

) ]
,(3.25)

H0(x) =
eik0|x|

|x|
[ ik0

4π
x̂ × (ψH

∞(x̂) + x̂ × ψE
∞(x̂))+

+
1

4π
(curlψH

∞(x̂) + x̂ × curlψE
∞(x̂)+

+ curl(x̂ × ψE
∞(x̂) +

1

ik0

curl curlψE
∞(x̂)) + O

(
1

|x|

) ]
.(3.26)

After lengthy calculations we obtain

E0(x) =
eik0|x|

|x|

[
E∞(x̂) + O

(
1

|x|

)]
, |x| → ∞ ,(3.27)

H0(x) =
eik0|x|

|x|

[
H∞(x̂) + O

(
1

|x|

)]
, |x| → ∞ ,(3.28)

where

E∞(x̂) =
ik0

4π
x̂ × (ψE

∞(x̂) − x̂ × ψH
∞(x̂)) ,(3.29)

H∞(x̂) =
ik0

4π
x̂ × (ψH

∞(x̂) + x̂ × ψE
∞(x̂)) ,(3.30)
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are the electric far field pattern and the magnetic far field pattern, re-

spectively, [7]. Also, if n is the unit outward normal on the unit sphere,

then (3.29) and (3.30) imply that

(3.31) H∞ = n × E∞, n · E∞ = n · H∞ = 0 .

The above may be summarized in the following

Theorem 3.2. The asymptotic form, as |x| → ∞, of the scattering

field of the transmission problem (NHTP ) is given by (3.27), (3.28) and

satisfies the relations (3.31).

REFERENCES

[1] T.S. Angell – A. Kirsch: The conductive boundary condition for Maxwell’s
equations, SIAM J. Appl. Math. 52(6) (1992), 1597-1610.

[2] C. Athanasiadis: Low-frequency electromagnetic scattering theory for a multi-
layered scatterer , Quart. J. Mech. Appl. Math. 44(1) (1991), 55-67.

[3] C. Athanasiadis – I.G. Stratis: On an infinitely stratified scatterer in the
presence of a low-frequency electromagnetic plane wave, Arabian J. Sci. Engrg.
18(1) (1993), 41-47.

[4] C. Athanasiadis – I.G. Stratis: Low-frequency acoustic scattering by an in-
finitely scattered , Rend. Mat. Appl. 15 (1995), 133-152.

[5] H. Barucq – B. Hanouzet: Étude asymptotique du système de Maxwell avec la
condition aux limites absorbante de Silver-Müller II , C.R. Acad. Sci. Paris Sér. I
Math. 316 (1993), 1019-1024.

[6] E.B. Bihovski: Solution of the mixed problem for the Maxwell equations system
in the case of an ideal conductive boundary , Vestnik Leningrad Univ. Math. 13
(1957), 50-66, in Russian.

[7] D. Colton – R. Kress: Inverse Acoustic and Electromagnetic Scattering Theory ,
Springer, Berlin, 1992.

[8] D. Colton – L. Paivarinta: Far-field patterns for electromagnetic waves in an
inhomogeneous medium, SIAM J. Math. Anal. 21(6) (1990), 1537-1549.

[9] R. Dautray – J.L. Lions: Mathematical Analysis and Numerical Methods for
Science and Technology , vol. 3, Spectral Theory and Applications, Springer,
Berlin, 1990.

[10] G. Duvaut – J.L. Lions: Inequalities in Mechanics and Physics, Springer, Berlin,
1976.



688 C. ATHANASIADIS – I.G. STRATIS [18]
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