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Abstract

Heart failure is an end stage cardiac disease that has been associated with high mortality and rehospitalization rates 
in previous decades, in spite of standard anti-heart failure therapy, thus posing a major social and economic burden 
on public health. Several studies have demonstrated that sodium-glucose cotransporter 2 inhibitors (SGLT2i), anti-
hyperglycemic drugs whose function is independent of islet function, have significant positive effects on prognosis and 
quality of life, by decreasing mortality and readmission rates in patients with heart failure. To increase general clini-
cians’ understanding and facilitate the practical application of SGLT2i in the treatment of heart failure, the mechanisms 
through which SGLT2i alleviate heart failure is reviewed herein.
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Introduction

Heart failure (HF) is a clinical state caused by ana-
tomical or functional abnormalities in ventricular 
filling or ejection [1]; the most common causes 
include myocardial ischemia, hypertension, cardio-
myopathy, valve injury, pulmonary hypertension, 
and congenital heart disease. More than 50 million 
people are believed to be affected by HF worldwide, 
thus resulting in substantial negative effects on soci-
ety and the economy [2]. Therefore, the quest for 
new affordable ways to treat HF warrants attention. 
Numerous clinical trials [3–6] in recent years have 
demonstrated that sodium-glucose cotransporter 2 
inhibitors (SGLT2i) have cardioprotective effects, 

and confer advantages in improving prognosis and 
quality of life in patients with HF. These drugs have 
achieved consistent cardiovascular benefits in the 
treatment of patients with HF with or without dia-
betes. Moreover, they have been found to reduce 
readmission rates and mortality in patients with 
HF [7]. The outcomes of various sizable clinical tri-
als including patients with HFpEF and HFrEF, with 
and without diabetes, are shown in Table 1. Some 
drugs have been found to control blood glucose 
or blood pressure, but without conferring the ben-
eficial cardiovascular effects of SGLT2i. Exactly 
how SGLT2i decrease cardiovascular risk factors 
remains unclear; however, the hypoglycemic effect 
appears unlikely to explain the full extent of ben-
efits of SGLT2i. Here, the mechanisms underlying 
the amelioration of HF through SGLT2i treatment 
are reviewed.
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Glucose-lowering Mechanisms of 
SGLT2i

SGLT1/2 are enriched primarily in the kidneys, 
SGLT2 is a member of the SLC5 family and is 
expressed in the S1 section of the proximal tubule, 
where approximately 90% of renal glucose reab-
sorption is performed by SGLT2 [14]. SGLT2i 
are anti-diabetic medications that decrease blood 
glucose levels through direct binding to SGLT2 
receptors and subsequent prevention of the kidney’s 
proximal tubules from absorbing glucose (Figure 1). 

This mechanism is unlikely to result in hypoglyce-
mia, because it does not affect endogenous insulin 
or the insulin pathway [15, 16].

Potential Mechanisms Underlying the 
Benefits of SGLT2i in Patients with HF

Natriuretic and Antihypertensive Effects

Blood pressure and body blood volume are closely 
linked. Peripheral vascular afterload and resistance 

Figure 1  Hypoglycemic Mechanism of SGLT2i.
(A) To maintain glucose homeostasis, glucose and Na+ can be reabsorbed at proximal tubule sites under normal circumstances. 
(B) SGLT2i inhibit glucose reabsorption in proximal tubules by binding SGLT2 receptors, thus decreasing blood glucose.
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increase as a result of hypertension and subsequently 
trigger left ventricular remodeling. Left ventricular 
remodeling worsens over time, and decompensation 
ultimately results in HF. Therefore, lowering blood 
pressure ameliorates HF. Because SGLT2i decrease 
glucose reabsorption, more glucose and the Na+ that 
is associated with it are excreted from the body, 
thereby decreasing blood volume, circulation blood 
pressure, and extracellular fluid osmolality [17]. 
However, SGLT2i administration does not signifi-
cantly lower blood pressure in the presence of vol-
ume changes or urinary salt excretion [18], thus indi-
cating that additional processes may be involved in 
the antihypertensive response. Natriuresis decreases 
blood volume through a mechanism similar to that 
of thiazide diuretics. However, these diuretics have 
not been demonstrated to benefit the course of 
HF. Therefore, the antihypertensive mechanism of 
SGLT2i may involve a decrease in arterial stiffness 
and suppression of sympathetic activity [19]. The 
precise pathophysiological mechanisms underlying 
the antihypertensive effects of SGLT2i have not yet 
been fully elucidated. This level of blood pressure 
decrease, although advantageous in the context of 
cardiovascular disease, is unlikely to have substan-
tial benefits in decreasing cardiovascular morbidity 
and mortality.

Weight Loss and Regulation of Adipokines 
and Epicardial Adipose Tissue

HF can result from coronary heart disease, which 
can develop as a result of hyperglycemia. In addi-
tion, adipose-induced inflammation has a wide range 
of adverse effects, including coronary and systemic 
microvascular endothelial dysfunction, thus mak-
ing excess adipose tissue crucial for the emergence 
and development of HF [20]. Therefore, weight loss 
and glycemic control are essential to ameliorate 
HF. SGLT2i therapy is believed to decrease mor-
tality in HF at least partly through the weight loss 
that results from an increased ratio of glucagon to 
insulin, which consequently increases lipid mobili-
zation [21]. In addition, in response to the loss of 
calories from glucose excretion, fat stores in adipose 
tissue are mobilized [22], thereby leading to weight 
loss of approximately 1–4 kg, according to various 
experiments [23–25]. Moreover, SGLT2i improve 
insulin responsiveness in the hypothalamus [26], 

thus decreasing total fat mass, subcutaneous fat, vis-
ceral fat, and liver fat content [27–31]. However, the 
benefit of weight loss is not permanent but reaches 
a plateau between 24 and 52 weeks, thus prompting 
questions regarding the involvement of weight loss 
in decreasing HF mortality [32]. In patients with HF 
without diabetes, no evidence indicates that SGLT2i 
decrease weight. Furthermore, conclusive evidence 
is lacking regarding how weight loss affects car-
diac function, quality of life, and exercise toler-
ance in people with HF, despite the high prevalence 
of obesity among people with this condition [33]. 
Therefore, the advantages of SGLT2i in patients 
with HF cannot be attributed only to weight loss.

Epicardial adipose tissue concentration is asso-
ciated with the risk of cardiovascular events [34]. 
Adipose tissue secretes a variety of bioactive mole-
cules known as adipokines, including leptin and 
adiponectin [35, 36]. In contrast to lipocalin, which 
inhibits the development of myocardial inflamma-
tion [37], elevated serum leptin concentrations in 
people with HF are associated with cardiac fibrosis 
and inflammation-induced cardiac remodeling [38, 
39]. Elevated serum leptin stimulates inflammatory 
responses and upregulates pro-inflammatory factors, 
such as TNF-α and IL-6 [40]. SGLT2i play crucial 
roles in maintaining the dynamic balance of pro- and 
anti-inflammatory adipokines, and also decrease 
serum leptin levels while increasing lipocalin con-
centrations; the above processes have vasoprotective 
effects on the heart and slow the onset of HF [41, 
42]. In addition, SGLT2i benefit patients with HF by 
decreasing the amount of pericardial adipose tissue 
[43]. However, some researchers have questioned 
this finding, given that type 2 diabetic mice develop 
cardiac dysfunction even in the absence of leptin 
[44]; empagliflozin decreases hepatic steatosis in 
mice and humans, but has no direct effect on cardiac 
fat [27]; and SGLT2i antagonism of leptin action is 
only speculative, according to indirect associations 
reported in studies citing different models [45].

Improved Myocardial Energy Metabolism

The heart requires sufficient energy to support its 
ongoing contraction. In physiological conditions, the 
oxidation of glucose and fatty acids produces approx-
imately 90% of the ATP, whereas the remaining 10% 
is derived from lactate, ketones, and amino acids 
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[46]. In HF, mitochondrial dysfunction, cell death, or 
apoptosis results from impaired cardiac energy meta-
bolism and increased glucose uptake, primarily from 
anaerobic oxidation, which decreases glucose supply 
and consequently increases the production of reactive 
oxygen species in cardiomyocytes, thereby causing 
cardiac dysfunction and ventricular remodeling [47]. 
SGLT2i lessen the harmful effects of excess glucose 
on cardiomyocytes and decrease glucose overload in 
these cells [48]. In addition, because cardiomyocytes 
use less glucose, they become more dependent on the 
ketone bodies created through the oxidation of free 
fatty acids for energy. Among these compounds, beta-
hydroxybutyric acid is considered a "super fuel" that 
boosts the effectiveness of cardiac metabolism [49]. 
Beta-hydroxybutyric acid has been shown to provide 
a direct energy source for cardiomyocytes in HF, and 
animal trials have demonstrated that steady infusion 
of beta-hydroxybutyric acid enhances cardiac func-
tion and metabolic efficiency [50]. The hepatic mobi-
lization and oxidation of fatty acids by SGLT2i can 
raise blood levels of beta-hydroxybutyric acid [51], 
and the increases in intracellular ATP content, mito-
chondrial function, and reactive oxygen species pro-
duction can all be significantly improved, together 
with cardiac energy metabolism and cardiac dysfunc-
tion [52, 53]. Treatment with empagliflozin improves 
left ventricular function; increases the utilization of 
free fatty acids, ketone bodies, and branched-chain 
amino acids as myocardial metabolic substrates; and 
increases myocardial energy use [47]. The cardio-
vascular advantages of treatment with SGLT2i have 
been proposed to be associated with changes in car-
diac metabolism from the utilization of more oxygen-
efficient ketone bodies to the glucose present at high 
levels, thus resulting in toxicity to cardiomyocytes. 
However, the need for beta-hydroxybutyric acid as a 
super fuel in failing hearts has been questioned [54]. 
In addition, studies in mice have shown that the oxi-
dative efficiency of ketone bodies remains nearly 
unchanged after the application of SGLT2i, thereby 
suggesting that the increase in ATP production may 
not be dependent on ketone utilization [55], whereas 
elevated ketone bodies may cause diabetic ketosis.

Alleviation of Inflammation

Interleukin-1 (IL-1), interleukin-6 (IL-6), tumor 
necrosis factor (TNF), galectin-3, and other 

pro-inflammatory biomarkers are elevated in patients 
with HF [56], and the magnitude of the elevation 
correlates with the severity of the disease. This asso-
ciation is significant in patients with decreased or 
preserved ejection fraction [57, 58]. By decreasing 
myocardial macrophage infiltration and inflamma-
tory factors, and enhancing anti-inflammatory fac-
tors, animal studies have demonstrated that SGLT2i 
decrease cardiac inflammation in models of dia-
betic cardiomyopathy, myocardial ischemia, and 
HF [59, 60]. Furthermore, SGLT2i have been found 
to decrease the inflammatory response in human 
patients [61, 62]. Inflammatory vesicles associated 
with Nucleotide-Binding Domain-Like Receptor 
Protein 3 (NLRP3) have been discovered to contrib-
ute to persistent inflammation in HF and to facilitate 
the progression of HF [63]. In patients with diabetes 
mellitus and coronary artery disease, empagliflozin 
dramatically decreases IL-1 release in macrophages 
and blocks the activation of NLRP3 inflamma-
tory vesicles. Moreover, empagliflozin markedly 
decreases cell-mediated extracellular matrix collagen 
remodeling in individuals with coronary artery dis-
ease and diabetes mellitus; inhibits NLRP3 inflam-
masome activation; and decreases IL-1 release in 
human macrophages [64, 65]. In addition, SGLT2i 
increase levels of circulating -hydroxybutyric acid, 
which in turn inhibits the inflammatory processes 
caused by NLRP3 inflammasomes. Moreover, the 
AMPK pathway prevents the growth of inflam-
matory cells [66], and SGLT2i have been found to 
increase AMPK phosphorylation in lipopolysaccha-
ride-treated cardiac fibroblasts, thereby preventing 
an increase in inflammation [67]. Numerous studies 
have shown that insulin decreases the release of pro-
inflammatory cytokines, thus lessening the inflamma-
tory response. Insulin is a crucial hormone regulating  
glucose through a physiological response [68, 69]. 
Insulin resistance is closely associated with pro-
inflammatory and inflammatory states [70]. Studies  
have shown that SGLT2i decrease insulin resist-
ance, and thus assist in preventing the progression of 
inflammation and increased inflammation [71].

Anti-fibrotic Effects and Improved 
Ventricular Remodeling

The pathogenesis of HF is closely associated with 
cardiac remodeling, and ventricular remodeling 
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can result in irreversible cardiac remodeling via 
pathological myocardial hypertrophy, extracellu-
lar matrix changes with fibrosis, fibroblast prolif-
eration, increased myocardial extracellular matrix  
degradation, and apoptosis. By decreasing extracel-
lular matrix synthesis and myocardial fibrosis in HF, 
SGLT2i can avoid unfavorable cardiac remodeling 
[72]. By preventing extracellular matrix remodeling 
and the development of pro-fibrotic markers, empa-
gliflozin has a direct anti-fibrotic action on myofibro-
blasts, thereby preventing ventricular remodeling and 
slowing the progression of HF [73]. Dapagliflozin 
has been discovered to significantly decrease colla-
gen synthesis, inhibit myofibroblast infiltration, and 
increase macrophage polarization in a rat model of 
myocardial infarction, by activating transcriptional 
activator 3 signaling pathways and reactive oxygen/
nitrogen-dependent signaling [74]. SGLT2i suppress 
NLRP3 inflammasome activity after myocardial 
ischemia and help the heart recover after ischemia; 
none of these actions rely on hyperglycemia [75]. 
Empagliflozin also enhances ventricular remodeling 
in early stages of myocardial infarction, decreases 
the extent of myocardial infarction, attenuates inter-
stitial fibrosis, and prevents cardiomyocyte death 
in non-diabetic animals [76]. Furthermore, Na+/H+ 
exchanger 1 (NHE-1) increases intracellular Ca2+ 
concentrations during HF, thereby resulting in car-
diac hypertrophy and fibrosis in cardiac fibroblasts. 
Intracellular Ca2+ levels in cardiac myocytes are 
directly associated with cardiac hypertrophy [77]. 
NHE-1’s abilities to decrease ventricular hypertro-
phy and myocardial fibrosis, and improve ventricu-
lar remodeling, are inhibited by SGLT2i. In addition, 
SGLT2i lessen cardiac remodeling by decreasing the 
expression or transcription of genes associated with 
cardiac hypertrophy and fibrosis [78].

Autophagy

Autophagy, an adaptive response to diverse metabolic 
and stressful situations, is a lysosome-dependent intra-
cellular degradation mechanism that preserves cellu-
lar physiological homeostasis by eliminating poten-
tially harmful components and circulating cellular 
components [79]. Autophagy activation decreases the 
heart remodeling and dysfunction caused by myocar-
dial infarction [80]. Activation of sirtuin-1 (SIRT1), 
adenosine monophosphate-activated protein kinase 

(AMPK), and hypoxia-inducible factors (HIF-1α 
and HIF-2α) is the principal mechanism initiating 
the autophagic response. The expression of AMPK, 
SIRT1, and HIF-1α can also be elevated by SGLT2 
inhibitors. Furthermore, deactivation of inflamma-
tory vesicles results from the autophagy-mediated 
clearance of damaged organelles – a response that 
may partially account for the anti-inflammatory and 
antioxidant effects of SGLT2i [67, 81]. The cardio-
vascular advantages of SGLT2i may be explained by 
the aforementioned mode of action, which modulates 
autophagy phenomena.

Decreased Sympathetic Hyperexcitability

Overactivation of the sympathetic nervous sys-
tem (SNS) is a key factor in the emergence of 
HF. Norepinephrine – which has myocardial toxic 
effects after long-term exposure to high concen-
trations, and can cause apoptosis and fibrosis – is 
secreted in large amounts by cardiac sympathetic 
nerve endings in people with HF [82]. Plasma cat-
echolamine levels are markedly elevated in HF, thus 
negatively affecting cardiac function by increasing 
heart rate and altering heart rhythm, among other 
effects [83]. The ability of SGLT2i to decrease 
blood pressure without raising the heart rate sug-
gests their potential to prevent cardiac SNS activa-
tion and hence confer cardioprotective effects [84, 
85]. In a pig HF model, dapagliflozin therapy has 
been demonstrated to decrease serum norepineph-
rine concentrations and SNS tone, thus delaying 
cardiac remodeling [86]. In addition, dapagliflozin 
has been reported to dramatically enhance endothe-
lial function and blood pressure in mice by lowering 
IL-6 and sympathetic nervous system excitability 
[87]. Moreover, SGLT2i indirectly decrease sym-
pathetic excitement by preventing renal afferent 
sympathetic neurons from becoming activated [88]. 
Future research will focus on identifying the mech-
anism through which SGLT2 decreases SNS activ-
ity, given that little is known about how SGLT2i 
affect the sympathetic nervous system, and clinical 
evidence is notably lacking.

Direct Action on the Myocardium

Although SGLT2 expression in the heart is mini-
mal, SGLT2 inhibition is closely associated with 
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cardiac sodium homeostasis, because of its pro-
found effects on ion transporters. NHE1 plays an 
important role in myocardial ischemia and HF [89, 
90]. The intracellular pH decreases in HF increase 
myocardial NHE1 activity in patients, and addition-
ally increase Na+ concentrations in the cytoplasm 
of cardiomyocytes, thus further activating Na+/Ca2+ 
reverse transport and leading to intracellular Ca2+ 
overload in cardiomyocytes, accelerating HF, and 
increasing the risk of arrhythmias [91]. In stud-
ies in rabbits and rats [92, 93], SGLT2i have been 
shown to downregulate myocardial NHE1 activity 
and restore Na+/Ca2+ homeostasis in the cytoplasm 
of cardiomyocytes, and to result in elevated con-
centrations of Ca2+ in mitochondria. These effects 
improve cardiac contractile activity and mitochon-
drial function; decrease oxidative stress; and might 
possibly decrease cardiac hypertrophy, fibrosis, and 
cardiac remodeling [94]. These responses may be 
direct regulatory effects of SGLT2i on cardiac myo-
cytes. However, at therapeutic doses, empagliflozin 
has not been found to affect myocardial NHE1 activ-
ity, and the effects of SGLT2i in HF should not be 
interpreted as being mediated by myocardial NHE1 
or intracellular Na+ [95]. In addition, the effects of 
SGLT2i on NHE1 are controversial and must be 

confirmed by additional evidence, because SGLT2 
receptors are minimally expressed in the heart, and 
NHE inhibitors have not shown a benefit in HF.

In addition, the expression and activity of Ca2+/
Calmodulin-Dependent Protein Kinase II (CaMKII) 
are upregulated in patients with HF; moreover, 
activation of CaMKII promotes myocardial necro-
sis, apoptosis, and fibroblast proliferation, which 
are associated with the development of arrhyth-
mias and unfavorable myocardial remodeling [96]. 
Empagliflozin has been shown to decrease CaMKII 
activity in mouse ventricular myocytes, as well as 
to decrease CaMKII-dependent phosphorylation of 
RyR2 in murine and human ventricular myocytes, 
thereby significantly diminishing sarcoplasmic 
Ca2+ leakage and improving myocardial contractil-
ity [97]. However, the mechanism underlying the 
decrease in CaMKII activity is unclear.

Conclusion

SGLT2i have potent and cardioprotective effects, 
and have led to advancements in the treatment 
of cardiovascular disease. SGLT2i significantly 
decrease rehospitalization rates and mortality in HF 

Figure 2  Cardioprotective Effects of SGLT2i in Patients with Heart Failure.
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well beyond their initial glucose-lowering effects, 
on the basis of evidence from numerous large ran-
domized controlled trials over the past few years. 
Many guidelines now recommend SGLT2i for the 
treatment of HF. Thus, the applications of these 
drugs have expanded from lowering blood glu-
cose to treating HF. However, the exact mechanism 
through which SGLT2i ameliorate HF is unclear. 
This article has discussed several pathways through 
which SGLT2i help patients with HF (Figure 2), 
but many more paths of action must be thoroughly 
researched. In addition, any possible negative 
effects of these drugs must be explored in future 
trials.
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