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Introduction: Automatic nuclear segmentation in digital microscopic tissue

images can aid pathologists to extract high-quality features for nuclear

morphometrics and other analyses. However, image segmentation is a

challenging task in medical image processing and analysis. This study aimed to

develop a deep learning-based method for nuclei segmentation of histological

images for computational pathology.

Methods: The original U-Net model sometime has a caveat in exploring

significant features. Herein, we present the Densely Convolutional Spatial

Attention Network (DCSA-Net) model based on U-Net to perform the

segmentation task. Furthermore, the developed model was tested on external

multi-tissue dataset – MoNuSeg. To develop deep learning algorithms for well-

segmenting nuclei, a large quantity of data are mandatory, which is expensive

and less feasible. We collected hematoxylin and eosin–stained image data sets

from two hospitals to train the model with a variety of nuclear appearances.

Because of the limited number of annotated pathology images, we introduced a

small publicly accessible data set of prostate cancer (PCa) with more than 16,000

labeled nuclei. Nevertheless, to construct our proposed model, we developed

the DCSA module, an attention mechanism for capturing useful information

from raw images. We also used several other artificial intelligence-based

segmentation methods and tools to compare their results to our proposed

technique.

Results: To prioritize the performance of nuclei segmentation, we evaluated the

model’s outputs based on the Accuracy, Dice coefficient (DC), and Jaccard

coefficient (JC) scores. The proposed technique outperformed the other

methods and achieved superior nuclei segmentation with accuracy, DC, and
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JC of 96.4% (95% confidence interval [CI]: 96.2 – 96.6), 81.8 (95% CI: 80.8 – 83.0),

and 69.3 (95% CI: 68.2 – 70.0), respectively, on the internal test data set.

Conclusion: Our proposed method demonstrates superior performance in

segmenting cell nuclei of histological images from internal and external datasets,

and outperforms many standard segmentation algorithms used for comparative

analysis.
KEYWORDS

computational pathology, nuclei segmentation, histological image, attentionmechanism,
deep learning
1 Introduction

The segmentation of cell nuclei from a histopathological image

has been a focus of clinical practice and scientific research for more

than half a century (1). Histopathology images obtained from a

biopsy may help to determine the stage of cancer, based on the

morphology of cell nuclei, and provide critical clues to healthcare

providers (2). Histopathological images permit early detection of

tumors, but manually analyzing these images is difficult. Current

developments in digital pathology have the potential to reduce the

workload of pathologists by overcoming the mass segmentation and

low inter-rater agreement (3). Image segmentation is typically used

to discover objects and boundaries (lines, curves, etc.) in images and

distinguish between foreground and background. The purpose of

segmentation is to simplify or change the visualization of an image

into something that is more meaningful and easier to analyze.

Manually recognizing and annotating medical images is a time-

and labor-intensive task. Research into computer-aided medical

image segmentation has flourished in recent years; this is a great

benefit of the expanding collaboration between artificial intelligence

and medical image analysis. Computer-assisted segmentation

allows clinicians to quickly and easily create image markers

relevant to the illness treatment process, which allows them to

discover malignant tissue affected in an early stage. Pathologists can

swiftly extract significant morphological features from the

histological image, in particular with automatic segmentation of

images of tissue stained with hematoxylin and eosin (H&E). This

approach enables pathologists to serve a larger number of patients

while maintaining diagnostic accuracy. It can, to some extent,

alleviate the problems of unequal distribution of medical

resources and a scarcity of skilled pathologists. In addition, nuclei

segmentation can yield information about the shape of the gland,

which is important for grading cancer (4).

Nuclear segmentation provides both logical and pivotal starting

points for histopathological image analysis, feature extraction,

detection, and classification via computer algorithms. However,

accurate segmentation is important for identifying abnormalities in

the histological sections. In addition, it is a challenging task to

segment the nuclei in an H&E-stained image because of chromatic

stain variability, nuclear overlap and occlusion, variability in optical
02
image quality, stain density, and differences in nuclear and

cytoplasmic morphology (5–8). The distribution and shape of cell

nuclei in the histological sections determine the stage of cancer and

the prognosis (9). Moreover, layers of epithelium on the interior

and exterior of an organ can be identified from nuclear presence or

absence, morphology, and distribution (5). Traditional automatic

nuclei segmentation approaches (e.g., clustering, intensity

thresholding, active contour, region growing, level set) fail with

noisy images and clumped nuclei and are computationally

expensive (7, 8, 10, 13, 14). Therefore, these techniques are not

very robust compared to machine learning, in particular a

convolutional neural network (CNN), which can learn to identify

variations in nuclear morphology and staining patterns (8, 15, 16).

Deep CNN has received great attention and is the dominant

technique for biological object detection and segmentation in

medical imaging (17–19). Deep-learning (DL) algorithms assist

pathologists in interpreting whole-slide images (WSIs) to detect

tumor regions (20, 21). The major challenge of nuclei segmentation

is arranging the annotation data, which is required for neural

network models that involve training. However, nuclei

segmentation data sets consisting of H&E-stained images from

multiple organs with nuclear annotations are publicly available

online. The data sets are released for research and participation in

segmentation challenges (15, 16, 22–27).

In this paper, we propose a CNN model named Densely

Convolutional Spatial Attention Network (DCSA-Net) based on U-

Net to perform the nuclei segmentation of histological images of PCa.

Our primary goal is to accurately segment the cell nuclei in images of

PCa tissue and validate our model on the public dataset –MoNuSeg,

which includes liver, breast, kidney, bladder, prostate, and stomach

images. In addition, we are releasing the source code of our proposed

model to aid in its use, evaluation, and improvement. In the proposed

model, two attention modules are connected to enhance local related

features and reuse them at spatial and channel levels. Inspired by the

existing work, we have also introduced and released a data set that

contains 75 PCa pathology images of size 512 × 512 pixels, with more

than 16,000 hand-annotated nuclei, sourced from two different

hospitals. The PCa images were annotated using Apeer Web

Application tool and we ensure that the nuclei were correctly

annotated. In the remainder of this paper, we briefly review the
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research on nuclei segmentation, then describe the data set

arrangement and its pre- and post-processing along with details of

the proposed model. The output results of various CNN models are

then compared with our proposed DCSA-Net. Finally, we discuss the

results of nuclei segmentation and present our conclusions.
2 Related work

Depending on the image intensity, each pixel is classified as a

nucleus or background. This method is susceptible to disturbances,

uneven backgrounds, and intensity heterogeneity within the images,

yet it delivers effective segmentation performance for tissue images

that contain uniform backgrounds. For example, the size, shape,

and texture of cell nuclei differ in images of the breast and cervical

tissue. Nuclei segmentation in cytology and histology sections

frequently revolves around thresholding, clustering, and active

contouring. However, because of a variety of nuclear appearances

in the histological sections, traditional methods do not perform

equally well for all kinds of tissue images.

Traditional image segmentation algorithms work by dividing an

image into sections that contain comparable features, such as color

and texture (28). Wu et al. (29) presented a region-growing

algorithm for the segmentation of human intestinal glands. Their

method performs well for most images of normal and abnormal

intestinal glands, and the segmentation results are sensitive to both

the number of clusters and region initialization. Bhattacharjee et al.

(30) used K-means and watershed algorithms, respectively, to

segment tissue components and separate overlapping cell nuclei.

This method performs well for images of PCa tissue that exhibit

Gleason pattern (GP) 3 and 4 but not GP 5 because of the high

abnormality and heterogeneity of the cell nuclei. Yi et al. (31)

proposed an automated approach to cell nuclei segmentation that

works with H&E-stained images. They used a color deconvolution

algorithm to get the hematoxylin channel and used a morphological

operation and thresholding technique to detect nuclei and

background regions. Moreover, the detected regions were used as

markers for a marker-controlled watershed segmentation

algorithm. The proposed method shows promising results in

terms of segmentation accuracy and separation of touching nuclei.

In recent years, DL algorithms have become more popular than

traditional methods of cell nuclei segmentation. Many researchers

have used different CNN-based models that can automatically learn

advanced features from the image for classification, detection, and

segmentation. Long et al. (32) performed semantic segmentation

using the classification networks AlexNet, VGGNet, and GoogleNet

by transferring their learned representations and fine-tuning them.

These were the first methods to be used for image-semantic

segmentation using end-to-end deep neural networks. The

methods of medical image segmentation have progressed from

manual to semi-automated and finally to fully automatic

segmentation (33, 34). Ronneberger et al. (35) proposed a

network (i.e., U-Net) for microscopy image segmentation and

won the International Symposium on Biomedical Imaging

Challenge in 2015. Their architecture achieved promising
Frontiers in Oncology 03
performance on a variety of biomedical segmentation

applications. Several modifications have since been suggested in

the architecture of U-Net to improve its accuracy. Badrinarayanan

et al. (36) presented a novel CNN architecture for semantic pixel-

wise segmentation called SegNet. In this architecture, the encoder

network is topologically identical to the VGG-16 layers (37). SegNet

is designed to be efficient in terms of both memory and

computational cost during inference. Similarly, different CNN

models have been proposed as the backbone (i.e., encoder

network) of U-Net and LinkNet (38, 39) for semantic

segmentation. Furthermore, the U-Net architecture has been

improved in many ways to give rise to Residual-UNet (40),

Dense-UNet (41), Inception-UNet (42), and so forth. Among the

many networks developed, multi-scale and stacked networks have

garnered great attention from the research community. The

presence of skip connection based on concatenation or addition

functions in residual, dense, and inception units makes information

flow easier for the entire network, alleviates the vanishing-gradient

problem, strengthens feature propagation, encourages feature reuse,

and substantially reduces the number of parameters.

In another bid to improve the performance of semantic

segmentation, researchers have developed an attention unit that

can be used as a plug-and-play module in the existing CNN

architecture. With the help of this attention module, the model

automatically focuses to learn the target structures of varying shapes

and sizes. Oktay et al. (43) proposed a network called Attention U-

Net for medical imaging that is controlled by an attention gate

(AG). Because of the AGs, the prediction performance of U-Net

consistently improved while computational efficiency was

preserved. Cheng et al. (44) proposed an attention block that can

capture feature dependencies in channel and space dimensions.

Using this block, they obtained a new ResNet variant called

ResGANet. Its success with a variety of medical image

classification tasks shows that the proposed ResGANet is superior

to the backbone model. He et al. (45) proposed a hybrid-attention

nested U-Net for nuclei segmentation. The model contains two

modules: a hybrid nested U-shaped network and an attention block.

Their model extracts feature that effectively segment the boundaries

of diverse, small, and dense nuclei. Zhao et al. (46) introduced a

semantic segmentation network called Spatial-Channel Attention

U-Net (SCAU-Net) based on the current research status of medical

images. The key point of this model is to enhance local features and

restrain irrelevant details at the spatial and channel layers. They

performed experiments on the gland data set, and the model

showed superior results in an image segmentation task compared

to the classic U-Net. The stardist model (47) was proposed to

localize cell nuclei via star-convex polygon performed well as

compared to other models with better shape representation and

thus do not need shape refinement.
3 Materials and methods

The workflow of nuclei segmentation was divided into three

phases, as shown in Figure 1: pre-processing, segmentation, and
frontiersin.or
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post-processing. First, we pre-processed raw image patches (512 ×

512 pixels) using the stain normalization technique (Figure 1A).

Then we broke the patch images up into small sizes (128 × 128

pixels), to carry out segmentation more efficiently (Figure 1B).

Next, we used our proposed state-of-the-art model for nuclei

segmentation and compared our results to those of other methods

(Figure 1C). Finally, we post-processed the segmented patch images

to reconstruct the original shape for better visualization of the

segmentation (Figure 1D).
Frontiers in Oncology 04
3.1 Dataset

Several nuclei segmentation data sets with complete nuclei

annotation and multi-organ histopathology images are publicly

available. However, in this study, to perform the nuclei

segmentation, we cropped sub-images of size 512 × 512 pixels

from both Radboud University Medical Center (RUMC) and

Yonsei University Severance Hospital (YUHS) PCa WSIs and

selected 75 samples (45 from RUMC and 30 from YUHS) for
B

C

D

A

FIGURE 1

(A) Hematoxylin and eosin–stained samples from Radboud University Medical Center and Yonsei University Severance Hospital were stain
normalized during pre-processing of the images. (B) Normalized and ground truth sample images were broken up into smaller sizes (“patches”)
during pre-processing. (C) Nuclei segmentation using the proposed encoding and decoding technique was performed. (D) During post-processing,
the segmentation patches were merged to reconstruct the original shape, and the cell nuclei were color-mapped for visualization.
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nuclei annotation. However, the dataset of 75 samples was created

using 10 different patients (RUMC - 6 and YUHS - 4). After

obtaining 512 × 512 sub-images, we annotated more than 16,000

nuclei using the Apeer Web Application, which is publicly

accessible at https://www.apeer.com/home/. The annotators were

engineering students working as research assistants and were

trained by co-authors to identify nuclei in histological sections of

PCa. Nonetheless, the sub-images were uploaded to the Apeer Web

Platform to perform nuclei annotation. The annotations included

only foreground pixels (i.e., cell nuclei), and overlapping nuclei are

separated into multi-nuclear pixels for better segmentation.

Furthermore, the quality of annotated images was evaluated by

the co-authors before preprocessing and training steps. The

generated annotation files are binary images containing 0 and 255

intensities. Supplementary Figure S1 shows a few example samples

from RUMC and YUHS datasets. A total of 3,675 patches (2205

from RUMC and 1470 from YUHS) of size 128 × 128 pixels from 75

images (512 × 512 pixels) were extracted to carry out patch-based

nuclei segmentation. A detailed explanation of RUMC and YUHS

datasets can be found in Supplementary Material.

A public dataset, Multi-organ Nucleus Segmentation

(MoNuSeg), was obtained for external validation which is

publicly available at https://monuseg.grand-challenge.org/Data/

(accessed on September 15, 2021). Kumar et al. (16) were the first

to use the MonuSeg data set for generalized nuclear segmentation

for computational pathology. They downloaded WSIs of digitized

tissue samples of seven different organs, namely the liver, breast,

kidney, bladder, prostate, colon, and stomach from 30 different

patients. After obtaining 1000 × 1000 sub-images, they annotated

more than 21,000 nuclear boundaries in Aperio ImageScope.

However, to perform external validation, we included 6 images of

size 512 × 512 pixels in our experiment. Supplementary Figure S2

shows six different tissue samples from the MonuSeg dataset.
Frontiers in Oncology 05
3.2 Stain normalization

In tissue engineering, stain normalization is an important part of

pre-processing before the analysis is performed. Because of differences in

image acquisition, tissue processing, staining protocols, and the response

function of digital scanners, histopathological images vary greatly (e.g.,

in illumination, color, and quality of stain) (48). This variation is amajor

issue for CNN-based computational pathology methods. Several CNN

models with different mechanisms perform detection, classification, and

segmentation based on color and texture. In the case of tumor

segmentation, if stain normalization is performed at the pre-

processing step, the CNN algorithm demonstrates stable performance

(49). Vahadane et al. (50) proposed a color normalization technique that

preserves the structure in the source image while adapting the color to

the target domain. This approach is very important for subsequent

image analysis. Their method showed superior performance of stain

normalization, validated both qualitatively and quantitatively. However,

for our nuclei segmentation, we used a stain normalization method

proposed by (51), which provides two mechanisms for overcoming

many of the known inconsistencies in the staining process, thereby

improving quantitative analysis.
3.3 Patch extraction and merging

To perform CNN-based nuclei segmentation, a patch

generation method was developed to accurately segment the cell

nuclei in a microscopic biopsy image. After the images were stain

normalized, patches with a target size of 128 × 128 pixels were

generated from a single image of size 512 × 512 pixels. From the top

left corner of the image (px, py), shifting of the sliding window (ix,

jy) from left to right and top to bottom was performed with grid

spacing ix = jy = 64 along both row and column. This shifting
B

A

FIGURE 2

Structure of Densely Convolutional Spatial Attention Network. The entire structure is divided into four parts: (A) encoder, decoder, Densely
Convolutional Spatial Attention Module, and (B) parallel convolutional blocks. Given an input feature map of size D × H × W, the output size is H × W
× C, where W is the width, H is the height of the feature map, D is the input channel number, and C is the output channel number. The skip
connection links the corresponding down- and up-sampling feature maps.
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method is shown in Supplementary Figure S3A. After training the

model with the patch images, we merged the predicted segmented

patches to reconstruct the original shape (i.e., 512 × 512 pixels), as

shown in Supplementary Figure S3B.
3.4 Network architecture

In this study, we propose a segmentation model (Figure 2A)

inspired by the original U-Net (35), where we define a parallel

block, which executes 5 × 5 and 3 × 3 2D convolutions in a parallel

manner, followed by batch normalization and activation of a

rectified linear unit (ReLU). The output of the parallel block

(Figure 2B) is computed by concatenating two convolutional

layers. Nonetheless, the purpose of using parallel-block in this

network is to extract more diverse features from raw inputs. To

improve the segmentation results, we introduce this parallel

convolutional block, which is included in the encoder and

decoder part of the network.

The entire architecture combines an encoding path with

traditional convolutions (marked in yellow) and a decoding

path with 2D-Upsampling (marked in green) to extract

multilevel features from the input image. A segmented map is
Frontiers in Oncology 06
executed by gradually restoring the details and spatial dimensions

of the image according to the learning features. In the encoder

block, the image dimension is reduced because of the 2 × 2 max-

pooling operation, while the number of feature channels is

doubled during each down-sampling. The decoder is the

opposite of the encoder block, where the image dimension is

increased because of 2D-Upsampling, while the number of

feature channels is reduced during each up-sampling.

Moreover, we used a channel-wise attention block (marked in

green) to concatenate the input image with the output of decoder

parallel block. In the channel-wise attention block, global max-

pooling was used to compute the feature maps from the output of

decoder parallel block and passed to the dense layer to generate

attention weight using the sigmoid activation function. Then the

attention weight is multiplied with the output of the decoder

parallel block and finally concatenated with the input. In the final

stage, a 1 × 1 2D-convolution layer with C = 1 is applied to predict

the class of each pixel, followed by a sigmoid activation function,

where C is the class for binary segmentation.

During image segmentation, “attention” refers to a strategy of

highlighting just the relevant activations. This saves computing

resources by lowering the number of irrelevant activations,

allowing the network to generalize more effectively. In essence,
FIGURE 3

Structure of the Densely Convolutional Spatial Attention Module (DCSAM).
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the network pays attention to a specific area of the image. Soft

attention works by assigning varying weights to different parts of

the image. High-importance areas are given a greater weight,

whereas low-importance parts are given a lower weight. As the

model is trained, the weighted regions receive more attention.

Inspired by the work of attention (43, 45, 46), we propose a DCSA

module (DCSAM), which is used in the encoder and decoder part

of the network, shown in Figure 3. However, this module is

designed simply by stacking convolutional blocks with 1 × 1 and 3

× 3 filters followed by soft attention.

3.4.1 Densely Convolutional Spatial Attention
Module

The DCSAM introduces a building block for our proposed

CNNmodel that improves channel interdependencies. This module

consists of regular convolution (i.e., kernel size = 3 × 3) and squeeze

blocks (i.e., kernel size = 1 × 1) with different parameters and fully

connected (FC) layers. However, we produce a very simple spatial

attention module (SAM) based on three different techniques: 1) The

input feature map F ∈ RH�W�C is passed through 3 × 3 and 1 × 1

convolutional layers, separately. 2) The dilation rate (D) is used

during the down-sampling convolution operations to increase the

effective receptive field of the network. 3) Finally, F ∈ RH�W�C is

passed separately through the FC layer with the ReLU activation

function to multiply the dense features, and the concatenated

output of the convolutional blocks is passed through another FC

layer with the Sigmoid activation function. To save the parameter, a

1 × 1 attention convolutional layer is processed by reducing the

channel dimensions to RC=r�1�1), where r is the reduction ratio

(e.g., if 256 is the channel vector and r is 8, then the number of

neurons in the hidden layer is 32). In short, the DCSAM-1 can be

computed as follows:

conv1 = R½BN(f 3�3(Conv(FInMap),  D))�

conv2 = R½BN(f 3�3(Conv(conv1),  D))�

squeeze  = R½BN(f 1�1(Conv(FInMap)))�

concatenate = ½FInMap ⊕   conv1 ⊕   conv2 ⊕   squeeze �

fully connected1 = R½(FC(FInMap))�

fully connected2 = s½FC(concatenate)�

FOutMap = fully connected1⊗ fully connected2 (1)

where FInMap is the input; Conv is the convolution; f
3�3 and f 1�1

are the filter kernel sizes of the convolution blocks; BN is Batch

Normalization; R and s are the ReLU and Sigmoid activation

functions, respectively; ⊕ and ⊗ denote the concatenation and

elementwise multiplication functions, respectively; and FOutMap is the

output of the DCSAM.
Frontiers in Oncology 07
3.5 Training details

The model training was performed with patch images of size 128

× 128 pixels obtained from the original extracted images of size 512 ×

512 pixels to reduce the computational cost and to achieve accurate

segmentation results. All networks were trained for 100 epochs, and

the ReduceLROnPlateau function was used to monitor the loss of

validation during training. A factor of 0.8 and patience of 5 were set;

thus, if there was no improvement in validation loss for five

consecutive epochs, the learning rate was reduced by a factor of

0.8. The training data were shuffled at the beginning of each epoch,

and the batch size was set to 8. We used the Adam optimizer (52) to

change the attributes of the neural network, such as weights and

learning rate, to reduce loss and solve optimization problems by

minimizing the objective function. The training duration was

approximately 240 min on an NVIDIA RTX 3060 GPU. The

experiments were performed on a Windows 10 operating system,

and the model was implemented with the Tensorflow DL framework.
3.6 Machine-learning approach

Nuclei segmentation was also performed based on the

traditional machine-learning approach, in which we used seven

different types of filters (i.e., Gabor, Canny Edge, Sobel, Scharr,

Robert, Prewitt, Gaussian, Median) (53–56) to extract the

meaningful features from the annotation area of the cell nuclei

images for semantic segmentation using a random forest (RF)

classifier (57, 58). These filters extract texture- and edge-based

features, which are useful for the suitable segmentation of images

because of optimal localization properties covering both the spatial

and frequency domains (56). We used an RF algorithm for nuclei

segmentation, as it is capable of handling complex problems by

ensembling multiple classifiers together and it performs well

compared to other methods in terms of overfitting and precision.
3.7 Statistical evaluation

The performance was evaluated with quality measures

commonly used in segmentation tasks to calculate the similarity

between the ground truth and model prediction. “Metric” refers to a

semantic division of binary values in which nuclei are considered to

be in the foreground and everything else is background. For our

quantitative study, we used three evaluation metrics, namely,

accuracy, Dice coefficient (DC) (59), and Jaccard coefficient (JC)

(60). Of these, DC and JC are the most important metrics which

provide a similarity measure between the segmentation results and

ground truth combining both object- and pixel-level performance.

The loss functions used during the training of the models were

binary cross-entropy loss, Dice loss, and Jaccard loss. Thus Dice loss

and Jaccard loss can be used by computing 1 − Dicescore and 1 −

Jaccardscore, respectively.
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Accuracyscore =
TP + TN

TP + TN + FP + FN
(2)

Dicescore =
2oN

i ½Mw(Xi)*Yi�
oN

i ½Mw(Xi) + Yi�
(3)

Jaccardscore =
oN

i ½Yi*Mw(Xi)�
oN

i ½Yi +Mw(Xi) –Yi*Mw(Xi)�
(4)

Binaryloss = –
1
No

N

i=1
½Yi* log (Mw(Xi))

+ (1 –Yi)* log (1 –Mw(Xi))� (5)

where N is the number of output classes, Xi is the input sample,

Yi is the ground truth of each pixel, Mw is the model with network

weight (w), and Mw (Xi) is the model prediction.
4 Ablation experiments

In this section, we show the effectiveness of different models and

compared them with our proposed approach. However, to perform

this experiment, a total of 3,675 128×128 color images were drawn

from RUMC and YUHS datasets (512×512 pixels) which belong to

three classes (i.e., GP 3, 4, and 5). Of these, 80% (i.e., 2,940 images)

were used for training and 20% (i.e., 735 images) for validation.

Therefore, the quality check was carried out for the trained models,

especially for parallel CNN blocks (Figure 2B) and DCSAM

(Figure 3) using the validation dataset . As shown in

Supplementary Table S1, we analyze the trainable parameters,

memory usage, validation error, and time per inference step

(GPU) to demonstrate the effectiveness and performance of each

model. From Supplementary Table S1, we can observe that the error

percent is reduced when UNet was modified with parallel block and

DCSAM. Therefore, we combined both methods to develop our
Frontiers in Oncology 08
final proposed model which performed well and showed promising

results by reducing the validation loss to 3.38% which is much lower

than other architectures.
5 Experimental results and discussion

To perform the nuclei segmentation, we used data sourced from

two different hospitals. The model was evaluated on an independent

data set (the data were not used for training) that contained images

of PCa with GP 3, 4, and 5. Table 1 summarizes the experimental

results of using the three different metrics (i.e., Eq. 2-4). We used

several CNN models, namely U-Net, VGG16-UNet, ResNet50-

UNet, DenseNet121-UNet, InceptionV3-UNet, Attention U-Net,

and Residual Attention U-Net (61) for nuclei segmentation and

compared the results to those from our proposed method using an

identical test data set. These CNN models are the standard

segmentation architectures used widely by other researchers for

various segmentation tasks (62, 63). We also compared the

segmentation results with the traditional machine-learning

approach using an RF classifier and other tools (i.e., Stardist and

ImageJ). The model evaluation was performed on 294 patches

extracted from independent six images (three from RUMC and

three from YUHS) that were unknown to the trained model. On the

other hand, for external validation, we obtained the MoNuSeg

dataset and extracted 294 128×128 color images from six multi-

organ images, namely liver, breast, kidney, bladder, prostate,

and stomach.

From the comparative analyses (Table 1), it is evident that the

proposed CNNmodel DCSA-Net outperformed all others with overall

accuracy, DC, and JC of 96.4%, 81.8%, and 69.3%, respectively. Similar

to the internal datasets (i.e., RUMC and YUHS), our proposed model

performed well and produced promising results for accuracy (87.2%),

DC (73.2%), and JC (58.0%) on the MoNuSeg dataset, as shown in

Table 2. However, for the external dataset, ImageJ achieved the best
TABLE 1 Comparison results on the RUMC and YUHS test datasets.

Value (95% confidence interval) Average
Accuracy (%)

Average
Dice Coefficient (%)

Average
Jaccard Index (%)

U-Net 95.9 (95.7 – 96.1) 76.8 (75.5 – 78.1) 63.5 (62.0 – 65.1)

Attention U-Net 96.1 (95.9 – 96.4) 78.2 (77.1 – 79.4) 65.5 (64.0 – 66.7)

Residual Attention U-Net 96.2 (96.0 – 96.4) 79.0 (77.9 – 80.2) 66.3 (65.0 – 67.7)

VGG16-UNet 96.2 (96.0 – 96.4) 78.5 (77.3 – 79.7) 65.7 (64.3 – 67.1)

ResNet50-UNet 96.1 (96.0 – 96.4) 77.9 (76.6 – 79.4) 65.2 (63.7 – 66.8)

DenseNet121-UNet 96.1 (95.9 – 96.3) 78.2 (77.1 – 79.2) 64.9 (63.7 – 66.2)

InceptionV3-UNet 95.8 (95.6 – 96.1) 76.5 (75.2 – 77.7) 62.9 (61.5 – 64.3)

Random Forest 95.2 (95.0 – 95.4) 76.8 (75.4 – 78.2) 63.7 (62.2 – 65.2)

StarDist 95.3 (95.1 – 95.4) 81.2 (80.9 – 81.4) 65.5 (63.9 – 67.2)

ImageJ 94.9 (94.8 – 95.0) 73.4 (72.8 – 74.1) 58.3 (57.5 – 59.2)

Proposed Model 96.4 (96.2 – 96.6) 81.8 (80.8 – 83.0) 69.3 (68.2 – 70.0)
The performance metrics for each method were computed based on 294 patches (128 × 128 pixels) extracted from six (i.e., 3 from RUMC and 3 from YUHS) images (512 × 512 pixels).
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B

C

A

FIGURE 4

Comparison of validation (A) accuracy, (B) Dice coefficients, and (C) Jaccard coefficients of various convolution neural networks: VGG16-UNet
(blue), ResNet50-UNet (orange), DenseNet121-UNet (green), InceptionV3-UNet (red), U-Net (violet), Attention U-Net (brown), Residual Attention U-
Net (pink), and our proposed model (gray).
TABLE 2 Comparison results on MoNuSeg dataset.

Value (95% confidence interval) Average
Accuracy (%)

Average
Dice Coefficient (%)

Average
Jaccard Index (%)

U-Net 82.1 (81.7 – 82.6) 69.9 (69.0 – 70.9) 54.4 (53.4 – 55.5)

Attention U-Net 86.9 (86.7 – 87.2) 70.6 (69.8 – 71.5) 55.0 (54.1 – 56.1)

Residual Attention U-Net 87.6 (87.3 – 87.9) 73.1 (72.3 – 73.9) 58.0 (57.0 – 59.0)

VGG16-UNet 84.9 (84.6 – 85.2) 64.4 (63.6 – 65.3) 47.8 (47.0 – 48.8)

ResNet50-UNet 86.2 (85.9 – 86.5) 69.2 (68.6 – 69.8) 53.1 (52.4 – 53.9)

DenseNet121-UNet 85.7 (85.4 – 86.0) 67.7 (66.9 – 68.3) 51.3 (50.5 – 52.2)

InceptionV3-UNet 85.9 (85.6 – 86.3) 68.8 (68.4 – 69.3) 52.6 (52.1 – 53.2)

Random Forest 85.5 (84.8 – 85.9) 65.4 (64.0 – 66.8) 50.7 (49.2 – 52.2)

StarDist 83.9 (83.2 – 84.6) 67.5 (64.6 – 67.6) 51.0 (49.4 – 52.6)

ImageJ 87.0 (86.9 – 87.2) 77.1 (76.8 – 77.6) 62.9 (62.4 – 63.5)

Proposed Model 87.2 (86.9 – 87.5) 73.2 (71.3 – 72.9) 58.0 (57.0 – 59.0)
F
rontiers in Oncology
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The performance metrics for each method were computed based on 294 patches (128 × 128 pixels) extracted from seven multi-organ (i.e., Liver, Breast, Kidney, Bladder, Prostate, and Stomach)
images (512 × 512 pixels).
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results with overall DC and JC of 77.1% and 62.9%, respectively.

Therefore, from Tables 1, 2, we can say that our designed model is

superior compared to the existing methods like U-Net, Attention U-

Net, VGG16-UNet, DenseNet121-UNet, InceptionV3-UNet, and

Random Forest. Supplementary Figure S4 shows the learning graph

for each model, where we plotted the learning process and compared

the accuracy, DC, and JC to analyze the performance based on each

metric. From the learning graph (Figure 4), it is apparent that our

proposed model DCSA-Net (gray plot) achieved the highest accuracy

(Figure 4A), DC (Figure 4B), and JC (Figure 4C) values of the

validation sets, whereas Attention U-Net (brown plot) achieved the
Frontiers in Oncology 10
lowest scores. Moreover, our proposed model showed an improvement

in accuracy, DC, and JC after only the 22nd epoch and continued

improving up to the maximum of 100 epochs.

Figure 5 shows the results of the proposed segmentation model for

the internal test dataset that was not included in the training data. We

cropped the original, ground truth, and predicted images (512×512

pixels) from the center portion (256×256 pixels) for better visualization

of the segmented results. The first and second rows of Figures 5A, B

show the normalized and annotation samples from which we analyzed

how accurately the models segmented the cell nuclei. Rows 3, 4, 5, 6,

and 7 of Figure 5A show the predicted results of pre-trained VGG16-
BA

FIGURE 6

Qualitative segmentation results of different AI models on the external test dataset. The resulting images of each model are shown in their respective
row. (A) Results of the pre-trained U-Net. (B) Results of the customized U-Net and machine learning algorithm (i.e., Random Forest), and ImageJ.
H&E: hematoxylin and eosin.
BA

FIGURE 5

Results of nuclei segmentation based on a variety of artificial intelligence algorithms. Examples of the test, annotation, and predicted images were
taken from the center portion of the original images for clear visualization. The annotated samples were used for evaluation. The resulting images of
each model are shown in their respective row. (A) Results of the pre-trained U-Net. (B) Results of the customized U-Net, machine learning
algorithm (i.e., Random Forest), and ImageJ. H&E: hematoxylin and eosin.
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UNet, ResNet50-UNet, DenseNet121-UNet, InceptionV3-UNet, and

StarDist models, respectively. Rows 3, 4, 5, 6, 7, and 8 of Figure 5B show

the predicted results of U-Net, Attention U-Net, Residual Attention U-

Net, RF, ImageJ, and our proposedmethod, respectively. From row 8 of

Figure 5B, it is evident that the proposed method outperformed the

other models. The nuclei are clearly segmented with high accuracy,

according to the annotation samples, and the results are free of noise.

On the contrary, we also obtained an external dataset (i.e., MoNuSeg)

to perform testing on the trained models and determine their

performance for the unknown dataset that contains multi-tissue

images. Figure 6 shows segmentation results for the external dataset.

Similar to Figure 5, the 512×512 images were cropped from the center

portion for better visualization of the results. From row 7 of Figure 6B,

it is evident that the ImageJ software tool outperformed the other

models in terms of DC and JC. However, when comparing the

visualization results in Figures 5, 6, it is evident that the StarDist

model performed excellently with no background noise and better

shape representations compared to other models.

Nuclei segmentation is useful for a variety of biological

purposes, including making quantitative assessments of tissue

cellular composition. Yet because of variation in shape,

inadequate slide digitization, and the presence of overlapping or

contact zones, nuclei segmentation is a difficult challenge. In this

experiment, we used two distinct datasets with different ethnic

origins. We performed stain normalization to standardize the tissue

appearance and ensure the robustness of our comparison samples.

It should be noted that very poor sample preparation or poor

digitization can adversely affect segmentation. However, these

problems rarely occur and can be remedied with stricter quality

control during tissue preparation and slide scanning. In this study,

we introduced a small data set of H&E-stained histopathology

images of PCa with more than 16,000 nuclei annotations.

Moreover, we enhanced an encoder-decoder CNN architecture to

accomplish effective nuclei segmentation. We designed a DCSA

network based on U-Net. Our proposed customized model achieved

the best and most promising results against an internal test data set,

with accuracy, DC and JC scores of 96.4% (95% confidence interval

[CI]: 96.2 – 96.6), 81.8% (95% CI: 80.8 – 83.0), and 69.3% (95% CI:

68.2 – 70.0), respectively. Also, the proposed model performed well

on an external dataset by giving accuracy, DC, and JC scores of

87.2% (95% CI: 86.9 – 87.5), 73.2% (95% CI: 71.3 – 72.9), and 58.0%

(95% CI: 57.0 – 59.0), respectively. However, for the external

dataset, ImageJ achieved the highest DC and JC scores of 77.1%

(95% CI: 76.8 – 77.6) and 62.9% (95% CI: 62.4 – 63.5), respectively.

The reason ImageJ tool achieved better results on the external

dataset is that it has been extensively tested and validated over many

years and designed to be highly adaptable to a wide range of image

analysis tasks, including nuclei segmentation.

Several researchers have developed segmentation models using

publicly accessible cell nuclei data sets from multiple organs and
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performed comparative analyses. However, in this study, we

performed the training of CNN models based on single-organ nuclei

segmentation and tested with multi-organs data set to analyze the

generalizability of the proposed model. StarDist is one of the promising

models which performed excellently segmenting the overlapped nuclei

compared to other methods thus do not need shape refinement.

Nevertheless, the disadvantage is that it can only perform better

segmentation with the large size nucleus. Our proposed model can

better perform segmentationwith high precision than StarDist on small-

size nuclei because our training was done with histopathological images

of small-size nuclei, whereas, StarDist was trained with larger-size of

nuclei. Most CNN networks fail to segment all nuclei, in particular

overlapped nuclei, and the watershed algorithm is commonly used in

post-processing to partly overcome this weakness. We did not use this

technique in our study to separate overlapping nuclei; we only carried

out nuclei segmentation and removed the small noisy pixels from the

background with an area of less than 30 to improve the overall quality of

the segmented image. Moreover, we noticed some image annotation

errors in both internal and external datasets, and the inconsistent

annotations can introduce noise into the training data which can

make it more difficult for the model to accurately segment the

images. Therefore, the use of inconsistent ground truth samples with

annotation errors for training and validation can leak into the

segmentation performance of a DL model. As a pre-processing step,

stain normalization improves the performance of nuclei segmentation

by reducing variability in the color characteristics of tissue (16, 49, 64,

65). By contrast, many top segmentation techniques depend heavily on

data pre-processing, including image smoothing, gamma correction,

affine transformations, color deconvolution, and image reconstruction

using a generative adversarial network.
6 Conclusions

Our method demonstrated superior performance in terms of

segmenting nuclei from two different image data sets. It

outperformed all standard segmentation algorithms that we

tested, and it provided state-of-the-art segmentation of cell nuclei.

In the future, we will introduce a large data set of images of prostate

and breast cancer tissue from a diverse set of patients. We will

perform region-based segmentation of cancerous areas to analyze

the tumor-to-stroma ratio of invasive breast cancer. Future work

will also involve exploring a segmentation technique based on a

convolutional long short-term memory attention network.

Although the method reported here is a significant improvement

over existing segmentation models, further exploration is needed

for better segmentation of touching nuclei using a multi-channel

encoder-decoder network based on U-Net. Finally, our

experimental results demonstrate that our proposed segmentation

technique can achieve better performance through certain
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improvements to DCSA-Net. Our model can be used in

computational pathology for more effective treatment planning

via a real-time system. Further research will cover nuclei

segmentation using both large and small-size nuclei from

multiscale images for training purposes to perform optimal

segmentation of diverse sizes of the nucleus.
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