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Reactive oxygen species
formation and its effect on CD4+

T cell-mediated inflammation

Panyin Shu †, Hantian Liang †, Jianan Zhang, Yubin Lin,
Wenjing Chen and Dunfang Zhang*

Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative
Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
Reactive oxygen species (ROS) are produced both enzymatically and non-

enzymatically in vivo. Physiological concentrations of ROS act as signaling

molecules that participate in various physiological and pathophysiological

activities and play an important role in basic metabolic functions. Diseases

related to metabolic disorders may be affected by changes in redox balance.

This review details the common generation pathways of intracellular ROS and

discusses the damage to physiological functions when the ROS concentration is

too high to reach an oxidative stress state. We also summarize the main features

and energy metabolism of CD4+ T-cell activation and differentiation and the

effects of ROS produced during the oxidative metabolism of CD4+ T cells.

Because the current treatment for autoimmune diseases damages other

immune responses and functional cells in the body, inhibiting the activation

and differentiation of autoreactive T cells by targeting oxidative metabolism or

ROS production without damaging systemic immune function is a promising

treatment option. Therefore, exploring the relationship between T-cell energy

metabolism and ROS and the T-cell differentiation process provides theoretical

support for discovering effective treatments for T cell-mediated

autoimmune diseases.

KEYWORDS

reactive oxygen species, CD4+ T cells, inflammation, Treg cells, effector T cells (Teffs),
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Introduction

Reactive oxygen species (ROS) are oxidants produced during intracellular or

extracellular aerobic energy metabolism, and enzymatic reactions have attracted

extensive attention from researchers since their discovery (1, 2). The variety of ROS

molecules is a collective term for several related molecules. ROS molecules that play

physiological roles in the body include H2O2, O
−
2 , and OH-, and different single entities can

be converted into one another through interconversion reactions (3–5). Initially, ROS were
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considered “toxic” molecules that destroy cellular components

through oxidation, participate in the pathogenesis of various

diseases, and lead to aging (6). Further research has shown that

ROS have a dual function. The physiological concentration of ROS

plays an important role as a regulatory medium in the signal

transduction process, and metabolism-related diseases may be

affected by the redox balance; however, when the concentration of

ROS is uncontrolled, oxidative stress results in a disturbance in the

normal redox state of the cell and/or oxidative damage (7–10).

There are several processes through which ROS are generated in

vivo, including those within the mitochondria (11), cytoplasm (12,

13), endoplasmic reticulum (ER) (14, 15), and peroxisomes (16, 17).

Enzyme complexes can produce ROS, including NADPH oxidases

and cytochrome P450-dependent oxygenases (18, 19).

T cell-mediated immune responses are essential for resisting

multiple pathogenic microbial infections and antitumor immune

responses (20). The core of the T cells activation process is metabolic

reprogramming, in which oxidative phosphorylation is transformed

into aerobic glycolysis (21–23). Because different CD4+ T-cell

subtypes depend on different energy metabolism methods, T

helper 1 (Th1), Th2, and Th17 cells rely on aerobic glycolysis to

reduce lipid oxidation. Whereas regulatory T cells (Tregs) mainly

depend on lipid oxidation as the main source of metabolism, ROS

produced during oxidative metabolism affect the differentiation of

CD4+ T cells through various mechanisms (24–30). In this study,

we describe ROS, the ROS generation pathway in vivo, oxidative

stress, and the harmful effects of oxidative stress on physiological

functions. The main immune functions of different helper T cells,

the energy source on which they depend for differentiation,

and the effect of ROS produced during oxidative metabolism

on the differentiation of CD4+ T cells are described. This

study provides techniques for exploring new methods to treat

autoimmune diseases.
ROS and oxidative stress

ROS are byproducts of the redox reactions of oxygen molecules

during biological oxidation. Because the ground-state oxygen molecule

contains two unpaired electrons, it is readily reduced in redox reactions,

and the product after reduction by a single electron can be used as a

precursor to producing other ROS molecules. The term “reactive

oxygen species” does not refer to a specific chemical molecule; it is a

collective term that includes several related molecules with high

chemical reactivity because of their unpaired electrons. This broad

term ignores the fact that the biology of individual types of ROS is

highly diverse, and their chemical reactivity and second-order rate vary

significantly (3, 4, 31–33). The abundance of ROS in the body and the

inherent duality of their functions have attracted the interest of

numerous researchers over the past 50 years. Physiological ROS

levels usually act as biological signals that regulate the physiological

activities of organisms. However, supraphysiological concentrations of

ROS lead to non-specific toxic effects on DNA, proteins, and lipids,

causing damage to cellular and genetic structures (1, 2). Additionally,

reactive nitrogen species (RNS), another common product of

metabolism, have dual physiological functions similar to those of
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ROS (34). The commonly seen RNS is mainly the less reactive nitric

oxide (NO), which can react with O−
2 to form the highly oxidative

peroxynitrite (ONOO-) (35, 36). As the major primary ROS species,

H2O2, O
−
2 , and OH- play important roles in the redox regulation of

biological activities (18, 37–51). Although each molecule in the ROS

species can function biologically as a single entity, molecules can

transform into others under certain reaction conditions. O−
2 is

decomposed to H2O2 by the action of superoxide dismutase (SOD),

which can be further reduced to H2O or OH-. The process of OH-

formation is accompanied by the oxidation of the [4Fe–4S] cluster. The

generated iron is repeatedly reduced, allowing this process to continue

(5, 52).

“Oxidative stress,” also known as oxidative adversity, describes

a series of adaptive responses caused by the inability of the

antioxidant system to remove excess oxidants promptly, causing

alterations in the intracellular redox status, interfering with normal

signaling, and mediating oxidative damage (2, 3). Oxidative stress is

an embodiment of the dual functions of ROS (7, 8). When the

steady-state concentrations of major ROS molecules, such as H2O2

and O−
2 , are at a certain threshold, ROS can be used as versatile

pleiotropic physiological signaling agents during the physiological

activity of higher organisms (9, 38, 42). Oxidative modification of

target proteins by ROS alters protein activity and localization, which

regulates processes, such as signal transduction and metabolic

metabolism, between cells and organs (10). Oxidation of nuclear

factor-kB (NF-kB) by H2O2 can lead to its activation, but if T cells

are exposed to H2O2 in vitro for a prolonged period, their DNA-

binding capacity will be inhibited (53). Therefore, uncontrolled

increases in the concentrations of these oxidants may lead to

indiscriminate oxidative damage and altered response patterns in

proteins, lipids, polysaccharides, and DNA, resulting in growth

stagnation and death (8, 54–56). Research has shown that the

pathogenesis of many diseases is linked to high concentrations of

local ROS and oxidative damage, including cancer, diabetes, and

neurodegenerative diseases (9, 10).

The duality of the roles of ROS is also evident in the

physiological activity of T cells. Evidence shows that medium or

low concentrations of ROS in T cells act as intracellular signaling

molecules during homeostasis and antigen recognition. ROS levels

and localization can alter the redox status of effector proteins and

transcription factors (TFs), which could affect T-cell responses

(45). However, high physiological concentrations of ROS can

cause reversible and irreversible damage to cellular molecules

and participate in the pathogenesis of numerous diseases. For

example, physiological concentrations of ROS can participate in

the activation and proliferation of T cells by activating TFs, such

as NFAT, NF-kB, and AP-1 (57); however, if T cells are exposed to

H2O2 for a long time in vitro, the DNA-binding ability of NFAT

and NF-kB is selectively inhibited, resulting in the downregulation

of IL-2 transcription (53). Long-term or chronic ROS

upregulation can also lead to T-cell homeostasis disorders,

mitochondrial membrane polarization, and T-cell failure and

non-response (58, 59). Therefore, maintaining a stable

physiological concentration of ROS in T cells or maintaining the

redox balance is essential for the metabolism and function of T

cells. Cells express a variety of antioxidant enzymes, such as SODs,
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catalase, peroxidase reductase, thioredoxin system (Trx),

glutathione (GSH), and other small-molecule antioxidants to

remove excess ROS, thereby maintaining the redox balance in

cells (60–62). The same occurs in T cells. When the T-cell receptor

(TCR) is stimulated, it is accompanied by the rapid production of

a large amount of ROS. Simultaneously, antigen-presenting cells

can secrete cysteine, which is absorbed by T cells to generate GSH,

thereby avoiding the oxidative stress caused by the excessive

production of ROS over a short period (63, 64). In the body, the

main producers of ROS include localized and compartmentalized

organelles and related enzymes, and the sources of ROS

production in vivo can be divided into enzymatic and non-

enzymatic pathways (9, 10, 38) (Figure 1). Mitochondria are the

main source of aerobic energy in eukaryotes. The electron

transport chain (ETC) is a continuous reaction system

consisting of four membrane protein complexes and lipid-

soluble electron carriers in a certain order, used to convert the

reduction potential into a proton gradient across the membrane,

accompanied by electron transfer to bind to oxygen molecules and

produce water and generate adenosine triphosphate (ATP) for

energy. ROS are produced by the electrons that “leak” from

respiratory chain complexes (11). In addition to the

mitochondria, ROS are byproducts of other cell compartments,

including the cytoplasm, cell membrane, ER, and peroxisomes.

Enzymatic sources include NADPH oxidases (nicotinamide

adenine dinucleotide phosphate, NOX), located on the cell

membrane of polymorphonuclear cel ls , macrophages ,

endothelial cells (ECs) (47, 48, 65, 66); cytochrome P450-

dependent oxygenases (18, 19); monoaminoxidase (MAO) (67,

68); a-glycerophosphate dehydrogenase (69, 70); electron transfer

flavoprotein (ETF), and ETF quinone oxidoreductase (ETF
Frontiers in Immunology 03
dehydrogenase) (71, 72) (Figure 1). Several major ROS

production mechanisms are described in the following section.
Generation pathway of ROS in cells

Mitochondria-derived ROS are mainly generated by membrane

protein Complexes I and III and lipid-soluble electron carriers

through various complex mechanisms in the mitochondria. The

electrons used to generate ROS enter the respiratory chain, starting

with Complex I (NADH-ubiquinone oxidoreductase) to produce a

large amount of O−
2 . Complex I mainly depends on two

mechanisms: when the matrix NADH/NAD+ ratio is high, the

flavin mononucleotide (FMN) site on Complex I is reduced, and

when the ubiquinone pool is over-reduced, the reduction potential

of the ubiquinone/ubiquinol redox pair favors the reduction of

Complex I at the Q binding site (site IQ) (73, 74). Complex II and

mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH;

GPD2) have been shown to drive RET and produce

mitochondrial ROS from Complex I (75–78). O2 interacts with

reduced FMN to generate O−
2 and O

−
2 produced in Complex I, which

is released into the mitochondrial matrix and converted to H2O2 by

manganese superoxide dismutase (MnSOD). As a major

component in the production of mitochondrial-derived ROS, the

impaired function of Complex I leads to excessive superoxide

production and is involved in the pathogenesis of Parkinson’s

disease (PD) and various neurodegenerative diseases. Parkinson-

related mutations lead to increased production of mitochondrial

superoxide and other ROS, in addition to localized high ROS

concentrations in this region because of a lack of GSH in the

substantia nigra, making it vulnerable to oxidative damage (79–82).
FIGURE 1

Generation pathway models of ROS production throughout the cell. Mitochondrial ROS are generated by numerous mechanisms, including
Complexes I to III. Cytoplasmic ROS production mainly relies on the NADPH oxidase (NOX) family, and NOX proteins produce O−

2 through NADPH
electron exchange. The ER produces H2O2 by transferring acquired electrons through a flavin adenine dinucleotide cofactor to molecular oxygen.
The membrane-associated monooxygenase system also produces ROS through cytochrome P450. Peroxisomes produce H2O2 from O−

2 through
oxidases, including ACOX and d-amino acid oxidase.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1199233
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shu et al. 10.3389/fimmu.2023.1199233
The reducing equivalents formed in Complexes I, II, and GPD2 are

passed to the Q-cycle of Complex III (ubiquinone-cytochrome c

oxidoreductase) for further processing, where GPD2 catalyzes the

unidirectional conversion of glycerol-3-phosphate (G-3-P) to

dihydroxyacetone phosphate (DHAP) (78) (Figure 1). Complex

III emits O−
2 into the matrix and intermembrane space. The

formation of O−
2 in Complex III can enter the cell membrane

from the intermembrane space through voltage-dependent anion

channels without prior conversion to H2O2, unlike Complex I,

which requires converting O−
2 to H2O2 before release into the

mitochondrial matrix. Studies have shown that the production of

O−
2 in Complex III is much lower than that in Complex I and is

therefore negligible under physiological conditions (11, 83, 84).

Complex II, often referred to as succinate-coenzyme Q reductase,

uses succinate to reduce coenzyme Q to QH2 using covalently

bound FAD as a coenzyme to produce reduced flavin adenine

nucleotides (FADH2) (Figure 1). In addition to mitochondrial ROS

from Complexes I, II, and III, enzymes, such as the a-ketoglutarate
dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDC)

complexes, involved in mitochondrial metabolism also produce

ROS through forward electron transfer, and both act as important

sources of ROS in the mitochondria (85–87) (Figure 1).

Cytoplasmic ROS regulates the pentose phosphate pathway

(PPP), glycolytic pathways, and other physiological activities. The

NADPH oxidase (NOXes) family is a major source of cytoplasmic

ROS, and NOX-dependent ROS production is involved in many

physiological and metabolic activities and disease pathogeneses (12,

13). ROS produced by NOX are essential for the oxidative burst, in

which several innate immune cells kill engulfed pathogens (44).

NOX2 and DUOX1 are likely the major NOX isoforms in T cells,

and once TCR is stimulated, NOX 2 transfers electrons to oxygen to
Frontiers in Immunology 04
produce O−
2 (88) (Figure 2). In the ER, protein folding is highly

sensitive to changes in redox homeostasis and is one of the main

sources of H2O2 production. H2O2 is the main ROS molecule

produced by the ER. In the ER, ER oxidoreductin 1 (ERO1)

accepts electrons from peptide substrates via protein disulfide

isomerases (PDI) and transfers them for molecular oxygen

generation to produce H2O2 (14, 15, 89, 90). A large proportion

of aerobic metabolism in the body is conducted with the

involvement of the peroxisome, which transfers hydrogen from

substrates to O2 to produce H2O2 through a variety of oxidases. The

types of oxidases that function in different tissues vary markedly

(16, 17, 91) (Figure 1).
Role of ROS in activation of
CD4+ T cells

T cells are central to immune system function. They mediate

adaptive immune responses, complement the humoral immune

response, and develop immune tolerance to autoantigens. T cells are

also essential for specific defense against pathogenic

microorganisms. Quiescent lymphocytes and monocytes require

minimal energy compared to their activated counterparts, and these

demands are met primarily by oxidative phosphorylation. When

resting naïve T cells are stimulated by antigens to meet the energy

required for T-cell activation, they undergo metabolic

reprogramming to enhance activity, biosynthesize intermediates,

and construct signaling molecules to spread anabolism, thereby

initiating the rapid proliferation and differentiation of CD4+ T cells

(92). When an antigen stimulates TCR, it binds to the co-

stimulatory molecule CD28 and secretes cytokines, such as IL-2,
FIGURE 2

ROS generated during T-cell activation affects TCR signaling and CD4+ T-cell differentiation through distinct mechanisms. Antigen-stimulated TCR
induces mitochondria and NOX2 to produce ROS, which promotes T-cell activation and proliferation by further activating signaling molecules in the
TCR signaling pathway. Th1 cells contribute to type 1 diabetes (T1D); Th17 cells contribute to pathogenesis, including multiple sclerosis (MS), RA, and
systemic lupus erythematosus (SLE); Th2 cells participate in the development of asthma; and Treg cells exert suppressive immune regulation. ROS
produced during aerobic glycolysis affects the activation and differentiation of CD4+ T cells through various mechanisms, thus affecting the process
of autoimmune diseases mediated by different T-cell subsets.
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which induce the activation of TF Akt. Activated Akt initiates the

mammalian rapamycin (mTOR) pathway, reprogramming energy

metabolism from oxidative phosphorylation to glycolysis. These

changes increase nutrient uptake and glucose metabolism rates,

promoting the activation and proliferation of naïve T cells (21, 22,

93). Additionally, Myc participates in upregulating aerobic

glycolytic metabolism in T cells to meet energy demands for

activation and proliferation (93). Therefore, the energy source for

CD4+ T-cell differentiation mainly relies on aerobic glycolysis;

however, energy sources for differentiating different CD4+ T-cell

subsets are also distinct. T helper cells depend on aerobic glycolysis

and reduce lipid oxidation, whereas Tregs mainly depend on fatty

acid oxidation (FAO) as the main source of energy for metabolism

(23–30, 93–99) (Figure 2).

ROS are the byproducts of oxidative metabolism. Owing to the

increased demand for energy metabolism during T-cell activation,

the local concentration of ROS increases rapidly within a short

period (100). ROS produced during T-cell activation have two main

physiological sources: mitochondria and the NADPH oxidase

complex (88, 101). As a major source of ROS, the mitochondrial

ETC transfers electrons from NADH and FADH2 to Complex IV to

generate water. During the electron transfer process, a small portion

of the “leaked” electrons can react non-enzymatically with O2 to

generate O−
2 (102, 103) (Figure 1). Studies have shown that when the

functional activity of the respiratory chain Complex III is

specifically inhibited in T cells, the energy generated by

mitochondrial respiration is insufficient for the activation of T

cells and the secretion of sufficient cytokines IL-2 and IL-4 (100,

104–108). Continuous treatment of pre-activated primary human T

cells with ciprofloxacin inhibited TCR-induced ROS production

and IL-2 and IL-4 expression, and this inhibitory effect was

significantly correlated with the dose of ciprofloxacin. Studies

have shown that ROS production in Complex I in resting and

pre-activated human T cells is essential for activation-induced IL-2

and IL-4 expression and secretion when TCR is stimulated (109).

Studies have shown that the production of mROS is significantly

limited when T cells lacking Complexes I and III are activated,

resulting in the decreased expression and proliferation of IL-2 and

IL-4, which affects the activation process (109). Therefore, the

results show that mitochondrial metabolism, especially the

production of ROS in mitochondrial Complexes I and III, is

important for T-cell activation. In addition to the mitochondria,

the NOX protein family is a major ROS producer during CD4+ T-

cell activation (88). The NOX enzyme family consists of seven

members (NOX 1–5 and two dioxygenases [DUOX], namely 1 and

2). In T cells, TCR-induced ROS production increases mainly

depend on two major NOX subtypes: the phagocyte subtype

NOX2 and the non-phagocyte subtype DUOX1 (88, 110). The

mROS produced by TCR upon antigen stimulation can activate

NOX2, which maintains intracellular ROS levels, thereby

promoting T-cell activation and proliferation (102). Studies have

shown that the lack of NOX2 leads to a significant decrease in O−
2

and H2O2 in T cells; however, the reduction in NOX2-derived ROS

has little effect on T-cell activation and proliferation. Therefore,
Frontiers in Immunology 05
whether the ROS generated from NOX2 play a crucial role in T-cell

activation requires further investigation (111) (Figure 2). DUOX1 is

also a component of the redox signal after TCR stimulation, and

inhibition of DUOX1 expression significantly reduces anti-CD3-

mediated H2-DCFDA oxidation (112, 113).

When stimulated by antigens, TCR signaling is triggered in the

plasma membrane, leading to IL-2 production, which further drives

the activation and proliferation of T cells. ROS produced during this

process, in turn, act as key signaling molecules that regulate the

activation of T cells (107, 108, 114). The immunoreceptor tyrosine-

based activation motifs (ITAMs) in the cytoplasmic region of the

TCR contain two core tyrosines. Tyrosine lymphocyte-specific

protein tyrosine kinase (Lck) phosphorylation in ITAM is

activated after antigen stimulation (115). Studies have shown that

T-cell development is notably blocked in Lck-specific knockout

mice (116). Simultaneously, phosphorylated ITAM is further

activated by recruiting ZAP-70, and the lack of ZAP-70 can

significantly affect signal transduction downstream of the TCR

(117, 118). The binding of ZAP-70 to ITAM also activates ZAP-

70. Activated ZAP-70 forms a complex signal skeleton by

phosphorylating LAT and SLP-76 for signal diversification (119).

The formation of the LAT signaling complex activates PLCg-1 to

produce the second messengers diacylglycerol (DAG) and inositol

3,4,5-triphosphate (IP3). DAG activates NF-kB and initiates the

Ras-ERK signaling cascade pathway, activating AP-1 (120, 121).

Activation of the receptor of the second messenger IP3 leads to the

storage of Ca2+ entry (SOCE) in the ERmembrane, and the influx of

Ca2+ signal transduction activates the TF NFAT (122, 123). At the

transcriptional level, the activities of TFs NFAT, AP-1, and NF-kB
induce the expression of IL-2 mRNA, which promote T-cell

activation and proliferation (124) (Figure 2). Various signaling

molecules in the TCR signal transduction pathway contain

cysteine residues sensitive to oxidation. Therefore, ROS generated

during activation affects TCR signal transduction after antigen

stimulation. ROS inducers can promote the formation of lipid

rafts on the plasma membrane, which contain important

molecules involved in TCR signaling, such as LAT, PLCg1, and
PKCq (125) (Figure 2). The activation of AP-1 requires the

regulation of MAPK members, whereas the phosphorylation of

Erk, JNK, and P38, which are important components of the MAPK

pathway, depends on H2O2 (126, 127) (Figure 2). Because tyrosine

kinases can regulate IkB (an NF-kB inhibitor) (128), H2O2 can

indirectly regulate the TF NF-kB activation via tyrosine kinase Lck

and ZAP-70, thereby activating gene transcription (129, 130)

(Figure 2). In addition, research has shown that ROS produced in

the mitochondria during T-cell activation affects Ca2+ homeostasis

in a concentration-dependent manner, activating the TF NFAT

(107, 131). Therefore, ROS production upon antigen stimulation of

TCR promotes TCR signaling and transcriptional activation of IL-

2 (Figure 2).

Because CD4+ T cells have different subtypes, the energy

metabolism for the proliferation and differentiation of different

subtypes also varies. Next, we describe the effects of mitochondrial

ROS production on differentiating CD4+ T cells.
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Role of ROS in CD4+

T-cell differentiation

Within the CD4+ T-cell subpopulation, Th1 cells were among the

first cells identified to be involved in the immune response against

foreign antigens, such as microbes. They play an important role in

mediating cellular immunity through the secretion of IL-2, TNF-a, and
other cytokines and in clearing intracellular pathogens through the

secretion of IFN-g and lymphotoxins. Additionally, Thl cells are

involved in the pathogenesis of many autoimmune diseases in vivo,

with T1D being the most notable (132). Th1 cells induction begins with

antigen-presenting cells (APCs) secreting IL-12, and the IL-12 induces

natural killer cells (NK) to produce cytokine IFN-g. The differentiation
process of Th1 cells is tightly regulated by a feedback loop, with Th1

differentiationmainly regulated by TF T-bet, which can promote IFN-g
secretion by upregulating IL-12Rb2 receptor expression and T-bet

expression regulated by signal transducer and activator of transcription

1 (STAT1), which is in turn activated by IFN-g secreted by TH1 cells

(133).When the feedback loop in activated T cells is disrupted, reduced

IL-12 secretion decreases that of IFN-g and T-bet, thereby affecting the
Th1 cell-mediated immune response (134–140).

Insulin is a key hormone secreted by B cells that can promote

glucose uptake and glycolysis in the liver and muscle cells by

converting glucose into glycogen, thereby reducing blood glucose

concentration in response to high glucose. A decrease in insulin

levels causes excessive blood glucose concentrations, leading to the

occurrence and development of diabetes (141). It was demonstrated

that Th1 cells with the specific diabetic TCR could induce T1D in

NOD mice, and the Th1 cells marker IFN-g is directly involved in the

process of T1D diseases (142). Research shows that IFN-g can

participate in the progress of T1D diseases through several

pathways, which include mediating beta cell death by stimulating

the cytotoxic CD8 T cells response (142). Therefore, constraining IFN-

g responses (e.g., enhancing Treg function and/or inhibiting Th1 cells

differentiation/function) may prevent the onset of diabetes (143–147).

Differentiation of Th1 cells primarily relies on aerobic glycolysis

to promote the secretion of T-bet and IFN-g. Research has shown

that in Glut1-deficient Teff cells, owing to their decreased glucose

transport capacity, the resulting Th1 cells decreased and showed

less pronounced colitis symptoms in mouse models. As a necessary

regulator that promotes the differentiation of Th1 cells, studies have

revealed that lactate dehydrogenase A (LDHA) is a key factor

supporting aerobic glycolysis and promoting IFN-g expression,

driving naïve T cells to differentiate into Th1 cells. In this study,

the elimination of LDHA in T cells resulted in the inhibition of IFN-

g overexpression in mice, restoration of normal Treg cell function,

and reduction in immunopathological damage (148–150). Another

relevant study showed that H2O2 enhances IL-4 production,

downregulates IFN-g production, and promotes the naïve T cells

into the Th2 lineage without altering cell proliferation (151, 152).

Therefore, reducing autoreactive Th1-type CD4+ T-cell glycolysis

and/or inhibiting antioxidant activity could be potential strategies

to prevent the development of T1D (Figure 2).

In contrast to the two classical lineages, Th1 and Th2 cells, IL-

17-producing T helper 17 (Th17) cells have been classified as an
Frontiers in Immunology 06
important emerging inflammatory effector CD4+ T-cell subset.

Th17 cells cause chronic tissue inflammation and organ failure

(153–156). The differentiation of Th17 cells is mainly accomplished

by the involvement of IL-6, IL-23, IL-21, and transforming growth

factor-b (TGF-b), with TGF-b being the critical cytokine for Th17

differentiation (157–160). Th17 cells stimulate tissue cells to secrete

antimicrobial peptides, enhance the immune barrier function of

epithelial tissue, and stimulate the local production of cytokines,

such as chemokines, which induce an inflammatory response

dominated by neutrophils and monocytes (161, 162). In addition,

many studies have shown that pro-inflammatory (pathogenic)

Th17 cells are involved in the pathogenesis of a variety of

inflammatory and autoimmune diseases, such as multiple

sclerosis (MS), RA, psoriasis, and inflammatory bowel disease

(IBD). Stimulated neoplastic T cells destroy myelin sheaths and

axons by generating a pro-inflammatory response, thereby inducing

experimental autoimmune encephalomyelitis (EAE), a common

experimental model used to study MS (163–166).

Similar to that in Th1 cells, aerobic glycolysis is the energy

source for Th17 cell differentiation. The increase in aerobic

glycolysis during T-cell activation results in a significant increase

in the transport of glucose and amino acids for biosynthesis and

energy supply, thus highlighting the importance of Glut 1. Studies

have shown that Glut 1 deficiency reduces the efficiency of

glycolysis, which in turn affects T-cell activation and proliferation,

and a significant number of cells undergo apoptosis (150). IEX-1

affects the proliferation, differentiation, and survival of these cells by

accelerating ATP hydrolysis, which in turn impedes ROS

production. It has been shown that IEX-1 deficiency promotes the

differentiation of Th17 cells. This process is mediated by increased

mitochondrial ROS production (167). In addition, research has

shown that the upregulation of ROS produced by oxidative

metabolism during T-cell activation promotes the differentiation

of Th17 cells by activating TF TGF-b. In this study, high glucose-

induced upregulation of mitochondrial ROS drives Th17 cell

differentiation by activating TGF-b and exacerbating

autoimmunity in a mouse model of colitis and EAE (168).

Therefore, targeting the immune metabolism to treat Th17 cell-

mediated autoimmune diseases has broad application prospects

(169) (Figure 2).

Th2 cells, another traditional genealogy in the subset of CD4+ T

cells, are naïve T cells that differentiate into Th2 cells by producing

IL-4 by inducing the expression of the key TF Gata3. Th2 cells can

express lineage-defining TFs, GATA3 and STAT6. GATA3

contributes to the Th2 phenotype by inducing IL-4 to form a

positive feedback loop (170–173). However, no known Th2-

mediated autoimmune diseases involving Th1 or Th17 cells exist.

Th2 cells assist in the proliferation and differentiation of B cells into

plasma cells by secreting cytokines, such as IL-4, IL-5, and IL-13,

inducing the transformation of macrophages into the M2

phenotype and the recruitment of eosinophils, thereby protecting

against worms, poisons, and certain bacteria, and stimulating tissue

healing (174–179). In addition, Th2 cells are involved in the

immune response and pathogenesis of allergic diseases, including

asthma and atopic dermatitis. Disease progression in animal models

of RA can be influenced by modulation of the balance between Th1
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and Th2 cells. Therefore, the Role of Th2 cells in autoimmune

diseases has received increasing attention (180–183).

Differentiation into Th2 cells is dependent on mTOR activity,

which is reduced when mTOR activity is inhibited by rapamycin (184,

185). Moreover, the anti-CD3 antibody can reduce ROS production by

mitochondrial Complex I and inhibit the expression of IL-2 and IL-4,

thereby inhibiting Th2 cell differentiation (109). Research has

confirmed that by downregulating the synthesis of superoxide anions

and nitric oxide, IL-4 and IL-13 can be reduced, and IL-1b production

increased, transforming Th2 into a Th1 response (Figure 2 ). Thus,

avoiding airway hyperresponsiveness (AHR) in an asthma model

effectively improves the symptoms of patients with asthma (186, 187).

Th1, Th2, and Th17 cells directly or indirectly mediate

autoimmune diseases and elicit immune responses against foreign

fungi, parasites, and other infections. Tregs are key regulators of

inflammation and autoimmunity. They can exert negative immune

regulation through various mechanisms important for maintaining

self-tolerance and immune homeostasis in multiple tissues, thereby

avoiding excessive damage to the body from immune responses.

Unlike other CD4+ T-cell subsets, the energy source for Treg cells

differentiation rely mainly on FAO rather than aerobic glycolysis

(28–30, 188). The differentiation conditions for Treg cells were

similar to those for Th17 cells. TGF-b is required for the

differentiation of both Th17 and Treg cells. Treg cells can be

induced when only TGF-b is present in the culture conditions,

while TGF-b and IL-6 preferentially induce Th17 cells. Studies have

shown that IL-6 can increase glucose metabolism by promoting

glucose and glycogen binding and glucose oxidation in skeletal

muscles, whereas the differentiation of Tregs mainly relies on FAO

(28–30, 189–193). Foxp3 is a key lineage-defining TF for Treg cells

that inhibits the differentiation of naïve T cells toward Th17 cells by

limiting RORgt activity and, together with other regulators,

maintains the development and function of Treg cells (194–198).

Although Tregs are not directly involved in the immune response to

foreign antigens, they are necessary for maintaining immune

tolerance to autoantigens and immune homeostasis in vivo. The

exhaustion of Treg cells in the body can lead to severe autoimmune

diseases, and the lack of CTLA-4 is the key molecule causing this

problem (199–202). Tregs exert suppressive immune regulation

through multiple mechanisms, including the secretion of IL-35, IL-

10, and other soluble suppressive immune molecules, to suppress

effector signals directly. Tregs can produce high-affinity IL-2

receptors that bind IL-2 competitively with T cells, inhibiting the

proliferation and apoptosis of activated T cells. Tregs can also

induce apoptosis in a perforin-dependent manner via granzymes A

and B (201, 203–207).

Unlike Teffs, which depend on aerobic glycolysis for

differentiation, Tregs rely on FAO as their energy source (28–30).

Foxp3 expressed by Treg cells can bind to the Myc promoter and

suppress Myc gene expression to inhibit glycolysis, thereby

stabilizing function and activity of Treg cells (93). Therefore,

inhibiting the activity of aerobic glycolysis, such as inhibiting the

activity of the glucose transporter Glu1, will seriously impact the

differentiation of Teffs but will not affect the activity and function of

Treg cells. Tregs can also use this feature to treat autoimmune

diseases (208, 209). Studies have shown that inhibiting ROS
Frontiers in Immunology 07
production during oxidative metabolism reduces the suppressive

effect of ROS on Treg cells, thereby regulating Th17/Treg cells and

effectively improving psoriasis symptoms in mice (210) (Figure 2).
Conclusion

ROS are byproducts of aerobic metabolism. Studies related to

immune metabolism have shown that T cell-derived ROS and

immune metabolic reprogramming further affect the outcome of

the activation and differentiation of naïve T cells. Studies have shown

that the pathogenesis of numerous autoimmune diseases is strongly

correlated with CD4+ T cells and mitochondrial dysfunction, which

leads to oxidative stress and may affect disease progression by altering

CD4+ T-cell status, thereby interfering with normal therapeutic

strategies and causing unexpected suffering in patients. Therefore,

studying the specific effects of ROS in autoimmune diseases has

significant implications for exploring more effective treatments.

Current treatment options include global immunosuppression,

immune-depleting antibodies, and anti-cytokine therapies.

Although these treatments primarily target immune cells involved

in pathogenesis, they inevitably damage normal functional cells in the

body, leading to increased susceptibility to other diseases and

complications. Because CD4+ T-cell activation and T helper cells

differentiation are highly dependent on aerobic glycolysis, inhibition

of autoreactive T-cell activation and T helper cells differentiation by

targeting glycolysis or ROS generation without damaging systemic

immune function is a promising direction for solving the problems of

current treatment options. Many studies have been conducted using

optimized in vitro cell culture media; however, it remains unknown

how the metabolic microenvironment in healthy or disease-affected

organs affects ROS production in vivo and, consequently, T-cell

activation and differentiation. The Role of ROS in the effector

function of T cells in vivo needs to be fully explored to exploit this

property for better disease treatment. Antioxidants, such as GSH and

SOD, can specifically remove oxidants, such as ROS, and maintain

the redox balance in the body, thereby effectively preventing the

damage caused by oxidative stress. Therefore, using antioxidants as a

breakthrough in treating autoimmune diseases by targeting ROS has

received extensive attention. However, because GSH cannot cross the

blood-brain barrier and has a short half-life, oral administration of

GSH does not significantly improve disease progression. Therefore, if

the key issue of efficiently using antioxidants can be addressed, it will

provide a new immunotherapeutic approach to suppress T cell-

mediated autoimmune diseases. Improving self-tolerance by

promoting Treg differentiation is an alternative therapy for

autoimmune diseases.
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