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Some existence results of semilinear elliptic equations

H. SOTO – C. S. YARUR

Riassunto: Il lavoro tratta il problema dell’esistenza di soluzioni positive della
equazione (1) con la funzione incognita u definita in IRNed in IRN−{0}. Si espone
una trattazione generale che comprende come casi particolari i problemi studiati in
precedenza da altri autori.

Abstract: We are concerned with the existence of positive solutions for equations
of the form (1), defined in IRNand in IRN−{0}. We give a unified treatment of the
problems studied before by others authors.

1 – Introduction

In this article we study the problem of existence of positive solutions

for equations of the form

(1) −∆u + V (x)u + g(x, u) = 0 in IRN ,

and in IRN - {0}. In recent years this problem was studied separately

for different potentials V (x). For V ≡ 0 and g(x, u) = K(x)uq with

|K(x)| ≤ c(1 + |x|)−2−ε, for some positive constants c, ε, Ni [7] proved

the existence of infinitely many bounded solutions in IRNwith positive

lower bounds. Naito [6] improved this result for the case V ≡ 0 and
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g(x, u) = a(x)f(u) with conditions on the functions a(x), f(u). Kusano

and Swanson [5] proved analogous results for the equation

∆u − m2u + K(x)uq = 0,

in IRN .

In this article, we give a general method in such form that most of the

above problems can be studied jointly. This method can be also applied

for nonexistence results. Essentially, we transform a radial equation into

another and we apply the known results for the last one.

We point out that we are able to prove the existence of positive

singular ground states for equation (1) by making use of the obtained

results.

In section 1, we generalize existence results given by Ni [7], Naito

[6], Kusano and Swanson [5] and others.

In section 2, we give existence results of positive solutions of the

equation (1) in all IRNwith the potential V and the function g(x, .) not

necessarily defined at the origin. In addition we give some examples of

the above theorems. Finally, in the last section we prove the existence of

positive singular ground states for equation (1).

2 – Existence results

In this section, we begin with the problem of existence of positive so-

lutions of equation (1), defined on the whole space, and with the potential

V assumed to be radially symmetric .

We give our main existence result for equation (1) in this section.

First, we need some hypotheses on V (x) and g(x, u).

For the potential V (x) we assume that it is radially symmetric, locally

Hölder continuous on [0,∞) and such that the radial linear equation

associated to (1), i.e.,

(2) u′′(r) +
N − 1

r
u′(r) − V (r)u(r) = 0 ,

has two linearly independent solutions h0 and h1 which are positive on
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(0,∞) and such that

(3) lim
r→∞

h0(r)

h1(r)
= 0 ,

(4) lim
r→0

h1(r)

h0(r)
= 0 .

Let us call

(5) rN−1(h′
1h0 − h′

0h1) = α .

Since h0, h1 are two linearly independent solutions of equation (2),

then α is a positive constant. For V ≡ 0 we can take h0 ≡ r2−N and

h1 = 1. Then we get α = N − 2.

As for the function g(x, u) we assume that it is a locally Hölder

continuous function which is locally Lipschitz on u. Also we assume the

existence of a function g1(|x|, u) such that |g(x, u)| ≤ g1(|x|, u) for all

x and for all u nonnegative. The function g1(|x|, u) is assumed to be

nondecreasing on u.

We define

p(a) =

∞∫

0

g1(r, ah1(r))h0(r)r
N−1d r

and the following set

(6) P =
{
a ∈ IR+ : p(a) < aα and p

(
a − p(a)

α

)
< αa − p(a)

}
.

The next theorem is the main result of this section. The method

follows ideas of Naito [6].

Theorem 1. With the above hypotheses suppose that there exists

an a ∈ P .

Then there exists a positive solution u of equation (1) such that

lim
|x|→∞

u(x)

h1(|x|) = a − p(a)

α
.
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Remark 1. Before get into the proof, let us analyse the case g1(r,u)=

K1(r)u
q, on the above theorem.

If q = 1 and

∞∫

0

K1(r)h
q
1(r)h0(r)r

N−1 dr < α, then P = IR+ and

hence for all c > 0 there exists a positive solution u of (1) such that

lim
|x|→∞

u(x)/h1(|x|) = c.

If q > 1, we define M =

∞∫

0

K1(r)h
q
1(r)h0(r)r

N−1 dr. In this case

P =
{
a ∈ IR+ : a <

α

M

1
q−1

}
, then for all c ∈

(
0, (1 − q−1)

( α

Mq

) 1
q−1

)

there exists a positive solution as in case q=1.

If 0 < q < 1, Theorem 1 remains valid for all c >
(M

α

) 1
1−q

.

Proof of Theorem 1. Let us first prove Theorem 1 for the case

V ≡ 0, because the method is similar in both cases.

In this case we can take h0(r) = r2−N and h1(r) = 1. We are going

to construct a solution by using the method of sub and super solutions.

The idea for constructing super and sub solutions consists on the

following, if f is a function such that:

∫ ∞

0

|f(s)| ds < ∞ and B =:

∫ ∞

0

f(s) ds ,

then we can take for any constant A, the solution v(s) of the equation

v̈(s) = f(s),

v(0) = 0, v̇(0) = A.

Then

lim
s→∞

v̇(s) = A + B.

It follows that if u(r) = v(s)/s, where s = rN−2, is a solution of

u′′(r) +
N − 1

r
u′(r) = F (r),

with u B A + B as r → ∞ and

F (r) = (N − 2)2rN−4f(s).
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We will see that with an appropiate choice of f and A we can obtain sub

and super solutions of

−∆u + g(x, u) = 0.

Let us first construct the super solution. Choose v1(s) as the solution of

(7) v̈1 = −s(4−N)/(N−2)

(N − 2)2
g1(r(s), a) ,

with v1(0) = 0, v̇1(0) = a. In this case

∞∫

0

s(4−N)/(N−2)g1(r(s), a)ds = (N − 2)

∞∫

0

rg1(r, a)dr < ∞.

The function v is positive concave and

c ≤ v̇1(s) ≤ a,

where c := a − p(a)

α
Moreover we easily get that lim

s→∞
v1(s)/s = c. and

(8) cs ≤ v1 ≤ as .

If we call u1(r) = v1(s)/s, where s = rN−2, then u1 satisfies

∆u1 = −g1(|x|, a) ≤ −g1(|x|, u1) ≤ g(x, u1).

Therefore, u1 is a super solution. Now for the construction of the subso-

lution we proceed as follows.

Let v2 be such that

v̈2 =
s(4−N)/(N−2)

(N − 2)2
g1(r(s), c)

with v2(0) = 0, v̇2(0) = β, where β is giving by

β +
1

(N − 2)

∞∫

0

rg1(r, c)dr = c.
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Then, from the definition of β we get that β is positive and

lim
s→∞

v2(s)

s
= lim

s→∞
v̇2(s) = c

and v2 ≤ cs.

Let us now define u2(r) = v2(s)/s. Then we get that u2 satisfies

∆u2 = g1(|x|, c) ≥ g1(|x|, u2) ≥ g(x, u2).

Then u2 is a subsolution, u1 is a supersolution, and u2 ≤ u1, from (8).

We can then use the method of Ni [7] for constructing a solution u

of

∆u = g(x, u)

such that u2 ≤ u ≤ u1, and thus

lim
|x|→∞

u(x) = c.

Now we prove Theorem 1 for a general radially symmetric potential

V . The method is the same as above but now we introduce the following

equation instead of (7)

ẅ1 = −g1(r(s), ah1)

h0s′2 , s =
h1

h0

with w1(0) = 0 and ẇ1(0) = a, where a ∈ P.

Let us define

u1(r) = h0(r)w1(s),

then u1(r) is a positive super solution of (1) such that if c := a− p(a)

α
we

have

ch1 ≤ u1 ≤ ah1

and

lim
r→∞

u1(r)

h1(r)
= c.

A subsolution u2 with the appropiate properties can be constructed in

the same way, such that

u2 ≤ u1
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and

lim
r→∞

u2(r)

h1(r)
= c.

Then, as in the previous case V ≡ 0, we get the existence of a solution u

of equation (1) such that

u2 ≤ u ≤ u1

lim
|x|→∞

u(x)

h1(|x|) = c.

We end this section with a result concerning a non radial potential V .

Theorem 2. Let g(x, u) be a locally Hölder continuous function,

locally Lipschitz in u, and V (x) a locally Hölder continuous potential such

that

V1(|x|) ≤ V (x) ≤ V2(|x|),
for some locally Hölder continuous radial potentials V1 and V2 with V1

verifying the same properties of V as in the introduction. Let h0 and h1

two solutions of

h′′(r) +
N − 1

r
h′(r) = V1(r)h(r),

satisfying (3) and (4). Assume that

∞∫

0

(V2(r) − V1(r))h0(r)h1(r)r
N−1dr < ∞,

|g(x, u)| ≤ K1(r)u
q,

for some q > 1 and

∞∫

0

rN−1K1(r)h
q
1(r)h0(r)dr < ∞.

Then there exists infinitely many positive solutions of equation (1). More-

over, each of these divided by h1 goes to a positive constant at infinity.
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Before proving this result we need the following lemma

Lemma 1. Let V1 and V2 be as above. Then there exist y0 and y1

two linearly independent positive solutions of

y′′(r) +
N − 1

r
y′(r) = V2(r)y(r),

defined for all r > 0 such that

lim
r→∞

hi(r)

yi(r)
= 1, i = 0, 1,

rN−1y′
i

yi

=
rN−1h′

i

hi

+ o(
1

h0h1

),

for i = 0, 1, as r tends to infinity. This is also true as r → 0 but in the

origin the above limits are, in general, a constant different from 1. Also

y1 ≤ h1 and h0 ≤ y0.

The proof of this lemma is a consequence of [2] Corollary 6.5 and

Theorem 9.1. Next we give the proof of Theorem 2.

Proof. We can use the method of Theorem 1 to get the existence

of a positive supersolution u1 of

−∆u1 + V1u1 + g(x, u1) ≥ 0,

moreover ch1 ≤ u1 and lim
r→∞

u1(r)/h1(r) = c for some positive constant c.

From the above lemma and using the hypothesis on h1 and h0 we have
∞∫

0

rN−1K1(r)y
q
1(r)y0(r)dr < ∞. Then, we construct a subsolution u2 of

−∆u2 + V2u2 + g(x, u2) ≤ 0,

such that u2 ≤ cy1 and lim
r→∞

u2(r)/y1(r) = c. Then u1, u2 are super and

sub solutions respectively of equation (1) and u2 ≤ u1. Therefore, there

exists a positive solution u of equation (1) such that

lim
|x|→∞

u(x)

h1(|x|) = c.
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3 – Existence results with V(x) and g(x,u) singular at the origin.

Let us consider the problem of existence of positive solutions of the

equation (1) with V and g having a possible singularity at the origin.

In this section the function g(x, u) is a locally Hölder continuous

function on (x, u) with x in IRN - {0} and u nonnegative, and the potential

V (x) is a locally Hölder continuous function on IRN - {0} and g(x, u) is

locally Lipschitz in u. Let P be given as in (6). Then we have

Theorem 3. Suppose that there exists a nonnegative function

g1(r, u) such that |g(x, u)| ≤ g1(|x|, u) for all x ∈ IRN − {0}, and u

nonnegative. Assume that h1 ∈ L
N/(N−2)
loc (IRN), V h1 and g1(x, dh1(|x|))

are functions in L1
loc(IR

N), for all constant d positive.

Assume also the existence of a constant a ∈ P , where P is given

by (6).

Then, the conclusion of Theorem 1 remains valid.

Remark 2. We are going to use these results in two ways:

1. The potential V and the function g(x, u) could have a singularity at

the origin and we can get existence of positive solutions, as we are going

to see in section 3. With the above result, we get existence of positive

solutions with a prescribed behaviour at infinity.

2. The method used to study the problem of existence of positive solutions

of the equation (1) in IRN - {0} consists in changing the problem to all

IRN , by means of the Kelvin transform. With this transformation the

new potential V and function g(x, u) could have a singularity at 0.

Proof of Theorem 3. Let n ∈ N and consider

Gn =
{
x ∈ IRN :

1

n + 1
< |x| < n + 1

}
.

It is not difficult to see that in this case we can also define the super-

solution u1 and the subsolution u2 given on the proof of Theorem 1, by

u1(r) = h0(r)w1(s), u2(r) = h0(r)w2(s) where

ẅ1 = −g1(r(s), ah1)

h0s′2 , s =
h1

h0
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w1(0) = 0 and ẇ1(0) = a,

ẅ2 =
g1(r(s), ch1)

h0s′2 ,

w2(0) = 0 and ẇ2(0) = β, where a ∈ P , c = a−p(a)/α and β = c−p(c)/α.

Observe that they are respectively a supersolution and subsolution of

equation (2) in Gn for all n.

Let f(x, u) = V (x)u + g(x, u). We can apply Theorem 3.3 of [10] to

get the existence of a solution wn of

− ∆u + f(x, u) = 0 in Gn,

and such that

u2 ≤ wn ≤ u1 in Gn.

Now, because |g(x, wn)| ≤ g1(|x|, u1), |V wn| ≤ |V |u1 and g1(|x|, u1) and

|V |u1 are two functions in L1(IRN), we obtain that {wn} has a subse-

quence {w1
n} which converges weakly in W 1,p(G1), with 1 < p <

N

N − 1
,

to a function w1. Also {wn} strongly converges to w1 in Lq for some q.

Let {wi
n} be a subsequence of {wi−1

n } which converges in W 1,p(Gi) to a

function wi, i = 1, 2, . . . . Define u in Gi by u(x) = wi. This definition

is consistent since wi = wi+1 on Gi. Then we can easily get that u is a

solution of equation (3) in D′(IRN − {0}) and satisfies

u2 ≤ u ≤ u1 in IRN .

Also u is in L
N

N−2
loc (IRN) and f(x, u) ∈ L1

loc(IR
N) , hence u is a solution of

(1) in D′(IRN), and the proof is complete.

Examples. Now we give some examples of potential V ′s. For sim-

plicity we assume that |g(x, u)| ≤ K1(|x|)uq for some q ≥ 1.

1. V (x) = 0 and

∞∫

0

rK1(r)dr < ∞ for q *= 1,

∞∫

0

rK1(r)dr < N − 2 for q = 1,
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In this case Kawano [3] proves the existence of positive entire solutions

which converge to positive constants as |x| → ∞.

2. V (x) = d/r2.

Assume that d > −(N − 2)2/4. Then, h0 = rθ0 and h1 = rθ1 with

θ0,1 = (2 − N ∓
√

(N − 2)2 + 4d)/2. In this case V (x)hq
1(x) ∈ L1

loc(IR
N)

which follows from the condition on d.

We can similarly study the above case to get existence of positive

solutions of the equation

∆u − d

r2
u + g(x, u) = 0,

In this case, there exist positive solutions if

∞∫

0

r(qθ1+θ0+N−1)K1(r)dr < ∞ for q *= 1,

∞∫

0

r(θ1+θ0+N−1)K1(r)dr < θ1 − θ0 for q = 1,

3. V (x) = −z/|x| + m2,with z ≥ 0, m > 0.

Let us assume that m > z/(N − 1). Then it can be proved (see [1],

proof of Theorem 3) the existence of h0 and h1 two linearly independent

positive solutions of

h′′(r) +
N − 1

r
h′(r) +

z

r
h(r) − m2h(r) = 0,

on (0,∞) and such that

h0(r) B e−rmr−k as r → ∞,

h0(r) B r2−N as r → 0,

and

h1(r) B ermrk+1−N as r → ∞,

h1(r) B c as r → 0,
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where k =
1

2
((N − 1) − z/m) and c is a positive constant which depends

on V .

In this case and assuming that q *= 1, all of the hypotheses of Theo-

rem 5 are satisfied iff

∞∫
K1(r)r

(q−1)(k+1−N)e(q−1)rmdr < ∞,

and ∫

0

K1(r)rdr < ∞.

If z = 0 the above result was proved by Kusano and Swanson [5].

4 – Existence of solutions with a prescribed singularity at 0.

Of concern is the problem of existence of infinitely many solutions

of the equation (1) in IRN − {0} with a prescribed singularity at the

origin. Such singularity is the one corresponding to the linear part of the

equation (1). For instance, if V ≡ 0 then we construct positive solutions

with a c|x|2−N behaviour at 0.

For it, we use the Kelvin transform and the results of the above

sections.

In this section we assume that V and g(x, u) are locally Hölder con-

tinuous on IRN − {0} and V also satisfies hypotheses (3) and (4). Sup-

pose that there exists a function g1 such that |g(x, u)| ≤ g1(|x|, u) for all

x ∈ IRN − {0} and u nonnegative. Also g1 is nondecreasing in u.

We define

p̃(a) =

∞∫

0

g1(r, ah0(r))h1(r)r
N−1d r

and the following set

(9) P̃ =
{
a ∈ IR+ : p̃(a) < aα and p̃

(
a − p̃(a)

α

)
< αa − p̃(a)

}

With the above conditions we have the following result
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Theorem 4. Suppose that

∞∫
r−1h

N/(N−2)
0 (r)dr < ∞,

∞∫
r|V (r)|h0(r)dr < ∞,

∞∫
rg1(r, ηh0(r))dr < ∞, for all η > 0.

Assume that there exists a positive constant a ∈ P̃ .

Then there exists a solution u of equation (1) in IRN − {0} such that

(10) lim
|x|→0

u(x)

h0(|x|) = a − p̃(a)

α
.

Also there exist two positive constants B and B′ such that

Bh0(|x|) ≤ u(x) ≤ B′h0(|x|), for all x ∈ IRN − {0}.

Proof. Let us call z the Kelvin transform of the function u. It is

given by

(11) z(x) = |x|2−Nu(x/|x|2).

The function z verifies the following equation

(12) −∆z + Ṽ (|x|)z + g̃(x, z) = 0 in IRN ,

where

Ṽ (|x|) =
1

|x|4 V
( 1

|x|
)
,

g̃(x, z) = |x|−(N+2)g
( x

|x|2 , |x|N−2z
)
,



122 H. SOTO – C. S. YARUR [14]

and

g̃1(r, z) = |x|−(N+2)g1

(1

r
, rN−2z

)
.

From the assumptions on h0 and h1, we get that h̃0(r) = r2−Nh1(1/r)

and h̃1(r) = r2−Nh0(1/r) are two linearly independent positive solutions

of

z′′(r) +
N − 1

r
z′(r) − Ṽ (r)z(r) = 0.

Also by(3), (4), (5) and the definition of h̃0, h̃1 we have lim
r→∞

h̃0(r)/h̃1(r)=0,

lim
r→0

h̃1(r)/h̃0(r)= 0 and h̃′
1h̃0 − h̃′

0h̃1 = r1−Nα.

Now, it can be easily checked that all the hypotheses of Theorem 3

are satisfied for Ṽ , g̃ and g̃1. Then, there exists a positive solution z of

(12) such that

lim
|x|→∞

z(x)

h̃1(|x|)
= c,

and

Bh̃1(|x|) ≤ z(x) ≤ B′h̃1(|x|),
for some positive constant B and B′.

It then follows that u(x) given by (11) satisfies the conclusion of this

theorem.

Example. Now we give an example to illustrate the above result.

Let us consider the problem of existence of positive solutions u of the

equation on IRN − {0}
∆u − u + uq = 0,

such that u → 0 at ∞ and u → ∞ at 0. If q ≥ (N + 2)/(N − 2) Ni and

Serrin [9] proved the nonexistence of such type of solutions. We can

applied Theorem 4 to get the existence of positive solutions u such that

u → 0 at ∞ and u → ∞ at 0 for all q < N/(N − 2). We also have the

behaviour at 0 and at ∞, that is

u B ce−rr− N−1
2 as r → ∞

and

u B br2−N as r → 0.
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