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Objective: Traumatic brain injury (TBI) leads to death and disability. This study

developed an e�ective prognostic nomogram for assessing the risk factors for

TBI mortality.

Method: Data were extracted from an online database called “Multiparameter

Intelligent Monitoring in Intensive Care IV” (MIMIC IV). The ICD code obtained

data from 2,551 TBI persons (first ICU stay, >18 years old) from this database.

R divided samples into 7:3 training and testing cohorts. The univariate analysis

determined whether the two cohorts di�ered statistically in baseline data. This

research used forward stepwise logistic regression after independent prognostic

factors for these TBI patients. The optimal variables were selected for the

model by the optimal subset method. The optimal feature subsets in pattern

recognition improved the model prediction, and the minimum BIC forest of

the high-dimensional mixed graph model achieved a better prediction e�ect.

A nomogram-labeled TBI-IHM model containing these risk factors was made

by nomology in State software. Least Squares OLS was used to build linear

models, and then the Receiver Operating Characteristic (ROC) curve was plotted.

The TBI-IHM nomogram model’s validity was determined by receiver operating

characteristic curves (AUCs), correction curve, Hosmer-Lemeshow test, integrated

discrimination improvement (IDI), net reclassification improvement (NRI), and

decision-curve analysis (DCA).

Result: The eight features with a minimal BIC model were mannitol use,

mechanical ventilation, vasopressor use, international normalized ratio,

urea nitrogen, respiratory rate, and cerebrovascular disease. The proposed

nomogram (TBI-IHM model) was the best mortality prediction model, with better

discrimination and superior model fitting for severely ill TBI patients staying in

ICU. The model’s receiver operating characteristic curve (ROC) was the best

compared to the seven other models. It might be clinically helpful for doctors to

make clinical decisions.

Conclusion: The proposed nomogram (TBI-IHM model) has significant potential

as a clinical utility in predicting mortality in TBI patients.
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1. Introduction

Traumatic brain injury (TBI) is “an alteration in brain function

caused by an external force” (1, 2). Epidemiological data from

developed countries have changed in the past few years. TBI

is a critical public health problem worldwide that can cause

death and disability. Approximately 64–74 million people sustain

TBI annually (3). Mild and severe TBI affects ∼55.9 million

and 5.48 million individuals, respectively (4). Furthermore, TBI

is estimated to contribute to a third of all US injury-related

deaths (30.5%) (5). A deterministic linkage dataset study in 2016

found that falling was Belgium’s predominant cause of injury.

Road safety and aging patients with TBI have increased recently,

reducing transport-related TBI mortality and causing a shift in

the health care system (1, 6, 7). Over the past two decades,

significant advancements have been made in managing severe

TBI both surgically and medically (8). The prognosis of patients

with TBI is poor. TBI typically results in physical disability,

cognitive dysfunction, and mortality, increasing direct and

indirect medical costs. TBI also impacts systemic inflammation.

Numerous secondary injuries, such as multiple molecular and

activated cellular pathways develop as the primary injury

progresses (2).

This study investigated if mortality can be lowered by

increasing awareness and focusing interventions on patients

with TBI to improve patient outcomes. It is essential to block

reversible factors by studying death-related factors as soon as

possible to upturn TBI patients’ mortality and modify their

prognosis and outcome. Some predictive models have been

developed for TBI subgroups. These include subarachnoid

hemorrhage, traumatic brain parenchyma hematoma, and

moderate or severe pediatric TBI patients who undergo

a second operation (9–12). However, it is challenging to

predict the outcome of patients with TBI. Several medical

problems have been predicted using nomograms, a two-

dimensional (2D) calculator developed from a mathematical

function (9). As a result of individual prognosis predictions,

clinicians can make better clinical decisions, decreasing

mortality rates.

This retrospective study analyzed the clinical data of 2,551

patients with TBI from MIMIC IV. In addition, risk factors

for TBI were explored, which were at hospital admission. In

addition, if we could explore the TBI mortality at patients’

hospital admission, timely intervention can improve outcomes.

The final objective of this model was to reduce the mortality of

TBI.

2. Materials and methods

2.1. Study design and participants

Several limitations exist in identifying the risk of lethal TBI.

Therefore, this research was based on the baseline characteristics

and clinical characteristics data of TBI patients from the

Multiparameter Intelligent Monitoring in Intensive Care IV

(MIMIC IV) database. The Laboratory for Computational

Physiology at the Massachusetts Institute of Technology

FIGURE 1

The enrollment flowchart of the study population in the training and

validation cohorts.

maintained the database. It contained information on more

than 30,000 patients in the ICU at Beth Israel Deaconess Medical

Center from 2008 to 2019. The participants signed consent

to complete the training course (CITI Data or Specimens

Only Research, PhysioNet Credentialed Health Data Use

Agreement) of the National Institutes of Health on the Internet.

The dataset comprised 2,551 patients who suffered from TBI.

Collected data included clinical characteristics, treatments,

and outcomes. The data were merged with State software,

and the samples were randomly divided into training and

testing cohorts in a 7:3 ratio using R software. The univariate

analysis determined if the two cohorts had statistically different

baseline data to ensure the two groups were comparable. The

R’s optimal subset method selected the optimal variables for the

model. The computer algorithm independently filtered the risk

factors of TBI patients’ hospital mortality. Finally, a nomogram

prediction model, TBI-IHM, was generated using the nomolog

function from the State software. The optimal feature subsets

in pattern recognition improved the model’s prediction. The

minimum BIC forest of the high-dimensional mixed-graph

model achieved a better prediction effect. Consequently, a

nomogram containing these risk factors was made to predict

the mortality incidence for TBI patients by nomolog in State

software (TBI-IHM model). This model can facilitate physicians

to modify decisions regarding patients with serious traumatic

intracranial injury (TBI). Least squares OLS was used to build

linear models, and the receiver operating characteristic (ROC)

curve was plotted. The TBI-IHM nomogram model’s validity was

determined by multiple indicators, including the area under the

receiver operating characteristic curves (AUCs), correction

curve, Hosmer-Lemeshow test, integrated discrimination

improvement (IDI), net reclassification improvement (NRI),

and decision-curve analysis (DCA). The design flow is shown

in Figure 1.
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2.2. Inclusion and exclusion criteria

This study excluded pregnant women and patients <18

years old. Only details of the first hospitalization were chosen

for patients who had been to the ICU multiple times. The

following information was extracted: age, median, women, BMI,

admission type, marital status (single, married, urgent, and

other), ethnicity (Black, white, Asian, and Other), first care unit

(trauma SICU, neurosurgical intensive care unit, medical intensive

care unit, surgical intensive care unit, and other), underlying

diseases (hypertension, myocardial infarction, congestive heart

failure, peripheral vascular disease, cerebrovascular disease, chronic

pulmonary disease, liver disease, diabetes, paraplegia, renal disease,

and metastatic solid tumor), Charlson Comorbidity Index, and

disease severity (First day GCS, Firstday APS-III, Firstday SOFA,

Firstday LODS, Firstday SAPS-II, and Firstday OASIS) (Table 1).

In addition, the following information was also extracted: vital

signs (temperature, heart rate, respiratory rate, MAP, SPO2,

and glucose), blood routine test (white blood cells, hemoglobin,

hematocrit, and platelets), biochemical indicators (creatinine, urea

nitrogen, blood sodium, blood potassium, blood calcium, blood

magnesium, blood chloride, blood phosphate, prothrombin time,

partial thromboplastin time, INR, bicarbonate, and anion gap),

interventions within 24 h of ICU admission (use of vasopressor,

use of albumin, use of furosemide, use of mannitol, use of

MV, and use of RRT), and outcomes (in-hospital mortality, ICU

mortality, and hospital LOS) (Table 2). All eligible patients were

divided into two groups (according to the in-hospital death

or not).

2.3. Statistical analysis

Continuous variables in the tables from this study were

presented as the mean with SD or median with interquartile

ranges. The student’s t-test, the Wilcoxon rank-sum test, and

the Kruskal Wallis test were used in these cases. A percentage

presented categorical variables and we compared them in the

X2 test. The R software (version 4.0.3) and SPSS software

(version 24.0) conducted statistical analyses. Statistically

significant meant P < 0.05. The research aimed to obtain a

minimum BIC forest of the high-dimensional mixed graph

model to achieve better prediction performance. The data was

divided into two cohorts by random sampling: the nomogram

training cohort (70%) and the performance testing cohort

(30%). The least squares OLS method was used to build linear

models. Then, ROC curves were plotted based on the receiver

operating characteristics. This study conducted tests to identify

the validity of the proposed nomogram model (TBI-IHM

nomogram). These tests included net reclassification improvement

(NRI), decision-curve analysis (DCA), the area under the

receiver operating characteristic curve (AUC), correction

curve, Hosmer-Lemeshow test, and integrated discrimination

improvement (IDI).

3. Results

3.1. Training and validation cohorts’
characteristics

According to the inclusion criteria, this study screened 2,551

patients from the MIMIC IV. Of these, 1,800 patients were selected

as the training cohort and 751 as the validation cohort. The baseline

characteristics of the training cohort and validation cohorts and

the clinical characteristics of all two cohorts are listed in Tables 1,

2, respectively. The general baseline characteristics and most

basic diseases were not statistically significantly different except

for cerebrovascular disease. There are no statistically significant

differences between the two cohorts regarding the disease severity

and the scores of the scoring table related to disease severity.

3.2. Nomogram construction

This research used optimal feature subsets in pattern

recognition to improve the model prediction. The minimum

BIC forest of the high-dimensional mixed-graph model achieved

a better prediction effect. The factors incorporated into the

nomogram included mannitol use, mechanical ventilation,

vasopressor use, international normalized ratio, urea nitrogen,

respiratory rate, cerebrovascular disease, and age (Figure 2).

The nomogram predicted the mortality of TBI patients by first

identifying every variable position to every corresponding point on

the nomogram’s axis. Second, points of all variables were added to

obtain a total score. Then the total score estimated the mortality

probability for every patient.

3.3. Comparison of predictive performance
between TBI-IHM nomogram and the other
common clinical prognosis evaluation
tables

3.3.1. The training cohort
This research produced AUCs to estimate the discrimination of

the TBI-IHM nomogram and the other six common score tables in

predicting the mortality of TBI. Both nomograms in the training

and the validation datasets performed better discrimination than

other common score tables. AUCs of nomogram (TBI-IHM) at

hospital mortality was 0.864, while the AUCs of other evaluation

tables were 0.3830 (GCS), 0.7626 (SOFA), 0.7716 (APS-III), 0.7832

(LODS), 0.7532 (SAPS-II), and 0.7501 (OASIS) (Figure 3). In

the validation datasets, the AUCs of TBI-IHM nomogram of

hospital mortality were 0.8542, while the AUCs of other evaluation

tables were 0.4283 (GCS), 0.7266 (SOFA), 0.7729 (APS-III), 0.7828

(LODS), 0.7249 (SAPS-II), and 0.7759 (OASIS) (Figure 4). The

calibration curves of Nomogram1 and Nomogram2 represented

higher homogeneity between the probabilities of the predicted

survival and actual survival proportion than the other six common

mortality forecast score tables.
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TABLE 1 The baseline characteristics of all participants according to the training or validation cohort.

Characteristic Whole population
(N = 2,551)

Training cohort
(N = 1,800)

Validation cohort
(N = 751)

P-value

Age, median (IQR) 65.69 (48.53–80.23) 66.00 (49.03–80.30) 64.73 (47.57–79.95) 0.638

Female, No. (%) 1,000 (39.2) 704 (39.1) 296 (39.4) 0.886

BMI, median (IQR) (kg/m2) 25.77 (22.43–29.78) 25.73 (22.40–29.69) 25.82 (22.53–30.04) 0.503

Admission type, No. (%) 0.551

Emergency 1,739 (68.2) 1,225 (68.1) 514 (68.4)

Observation 513 (20.1) 366 (20.3) 147 (19.6)

Urgent 213 (8.4) 144 (8.0) 69 (9.2)

Other 86 (3.4) 65 (3.6) 21 (2.8)

Marital status, No. (%) 0.200

Single 700 (27.4) 473 (26.3) 227 (30.2)

Married 940 (36.9) 673 (37.4) 267 (35.6)

Divorced 128 (5.0) 93 (5.2) 35 (4.7)

Widowed 292 (11.5) 201 (11.2) 91 (12.1)

Other 491 (19.3) 360 (20.0) 131 (17.4)

Ethnicity, No. (%) 0.663

Black 162 (6.4) 119 (6.6) 43 (5.7)

White 1,528 (59.9) 1,071 (59.5) 457 (60.9)

Asian 69 (2.7) 52 (2.9) 17 (2.3)

Other 792 (31.1) 558 (31.0) 234 (31.2)

First care unit, No. (%) 0.901

Trauma SICU (TSICU) 1,082 (42.4) 759 (42.2) 323 (43.0)

Neuro surgical intensive care unit 291 (11.4) 206 (11.4) 85 (11.3)

Surgical intensive care unit (SICU) 589 (23.1) 417 (23.2) 172 (22.9)

Medical intensive care unit (MICU) 133 (5.2) 90 (5.0) 43 (5.7)

Other 456 (17.9) 328 (18.2) 128 (17.0)

Underlying diseases, No. (%)

Hypertension 572 (22.4) 419 (23.3) 153 (20.4) 0.109

Myocardial infarction 187 (7.3) 138 (7.7) 49 (6.5) 0.313

Congestive heart failure 289 (11.3) 204 (11.3) 85 (11.3) 0.991

Peripheral vascular disease 131 (5.1) 91 (5.1) 40 (5.3) 0.778

Cerebrovascular disease 517 (20.3) 384 (21.3) 133 (17.7) 0.038

Chronic pulmonary disease 285 (11.2) 205 (11.4) 80 (10.7) 0.590

Liver disease 141 (5.5) 99 (5.5) 42 (5.6) 0.926

Diabetes 480 (18.8) 345 (19.2) 135 (18.0) 0.483

Paraplegia 266 (10.4) 200 (11.1) 66 (8.8) 0.080

Renal disease 229 (9.0) 157 (8.7) 72 (9.6) 0.486

Metastatic solid tumor 63 (2.5) 43 (2.4) 20 (2.7) 0.684

Charlson comorbidity index 4 (2–6) 4 (2–6) 4 (2–6) 0.457

Disease severity (median, IQR)

First-day GCS 13 (9–14) 13 (9–14) 13 (8–14) 0.991

First-day APS-III 39 (28–54) 39 (28–54) 38 (28–53) 0.420

(Continued)
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TABLE 1 (Continued)

Characteristic Whole population
(N = 2,551)

Training cohort
(N = 1,800)

Validation cohort
(N = 751)

P-value

First-day SOFA 4 (2–6) 4 (2–6) 4 (2–6) 0.802

First-day LODS 3 (2–6) 4 (2–6) 3 (2–6) 0.190

First-day SAPS-II 31 (24–39) 31 (24–39) 31 (23–39) 0.385

First-day OASIS 32 (26–39) 32 (26–39) 32 (26–38) 0.441

The calibration curves of the two nomograms (Figure 5)

showed that both calibration curves of the two cohorts (training

and validation datasets) were almost diagonal. The Hosmer-

Lemeshow test results indicated the absence of statistical

significance. The training cohort:χ2
= 29.019, p = 0.7103, and

the validation cohort: χ2
= 19.048, p = 0.1216, indicated that the

TBI-IHM nomogram was a good fit for the data.

The nomogram illustrated by a DCA curve (Figure 6) displayed

its clinical value. The proposed nomogram can guide some clinical

interventions with a higher benefit than other common scoring

scales in both cohorts. NRI and IDI of the nomogram and critical

care scoring system alone in survival prediction for TBI patients are

listed in Table 3.

4. Discussion

This study aimed to develop simple and more advanced

predictive models for mortality in traumatic brain injury (TBI).

Nomograms are well-documented clinical prediction tools (9).

A clinical examination and test can help predict mortality following

a traumatic brain injury, which might help detect diseases early,

accurately, and in a timely manner. This study investigated

risk factors to promote better clinical decision-making based on

predictivemodels. Nomograms were developed and validated using

baseline data and laboratory examinations of patients with TBI,

which can predict mortality due to TBI based on risk factors.

Several validity indicators were applied to the proposed nomogram

model, including the AUC, Hosmer-Lemeshow test, correction

curve, NRI, IDI, and DCA. In the goodness-of-fit test (NRI,

IDI), it was concluded that the calibration for the validation and

development of the model was good. Therefore, mortality can

be predicted more accurately with the proposed model. The use

of mannitol, mechanical ventilation, vapor pressure support use,

international normalized ratio, urea nitrogen, respiration rate, and

cerebrovascular disease was significantly associated with age in

this study.

Cerebral edema can develop due to the blood-brain barrier

(BBB) disruption, inflammation of the local area, vascular

abnormalities, or altered cellular metabolism of the brain.

Intracranial pressure (ICP) has been reduced with the use

of mannitol by removing water from cells (osmotic effect)

which lowered intracranial pressure (11–13). However,

excessive dehydration might impair the brain functions, such

as cognitive function and mental performance, caused by

hormonal dysfunctions, mitochondrial disorders, and brain

cytokine elevations (14). According to Halinder S Mangat’s

study, hypertonic saline reduces intracranial pressure more

effectively than mannitol as cerebral perfusion pressure burdens

(8). The concentration of accumulated mannitol increases with

extended mannitol use over time and cumulative dose, adversely

affecting the osmotic gradient and reducing the therapeutic effect

of intracranial pressure. Based on a meta-analysis, hypertonic

saline performed better than mannitol in several experiments that

involved lowering intracranial pressure and increasing cerebral

perfusion (8). Compared with other intracranial pressure-lowering

agents, hypertonic saline has superior efficacy and safety in TBI

patients. Chen et al. collected and analyzed the RCT data of

acute TBI patients with any severity randomized into RCTs. The

hypertonic saline was compared with other treatments to lower

intracranial pressure in the long term (13).

Aaron M. Cook’s study of the TBI subtype found that

hyperosmolar therapy could help reduce ICP elevations and

cerebral edema caused by TBI; however, no differences were

observed in neurological outcomes (15). The present research

concurred with these recommendations in treating elevated

intracranial pressure with hyperosmolar fluids. In some cases,

mannitol usage might lead to an increase in mortality among TBI

patients. According to this study’s nomogram, mannitol use was

associated with poor patient outcomes. Mannitol’s internal pressure

might increase in later use due to its increased internal pressure.

It is necessary to conduct a further randomized controlled trial

(RCT) study to confirm the findings. However, mannitol might be

useful in TBI at some point. If the increased intracranial pressure

is not reduced by mannitol, other solutions would need to be

explored. Furthermore, in some TBI-related studies, early mannitol

use independently increased the incidence of AKI (12). In patients

with brain injuries, mannitol is associated with hypovolemia,

hypotension, and increased mortality (16).

Approximately 3.9–23% of TBI patients develop AKI, which is

closely related to their mortality, long-term outcome, and length

and hospital stay expenses (17). Multiple mechanisms including

massive catecholamine release and inflammatory mediators cause

AKI after TBI. Ruoran Wang et al. indicated that AKI is most

likely to occur in the first 3 days of admission of TBI patients.

Their study showed that the occurrence and level of AKI at its

highest point were associated with mortality, while the duration

and burden of AKI were not related to mortality (18). Shuo

And’s study found that diuretics (furosemide torasemide), GCS

score, coronary heart disease, hypertension, and vasoactive drugs

(dopamine and norepinephrine) were the risk factors of AKI of TBI

patients in the neural-critical care unit (19). Induced hypoperfusion

by multiple causes is the leading cause of AKI development

in the special early phase and the elderly phase. Systemic

inflammation caused by the initial release of catecholamine and

neuroinflammation due to brain injury (14) is the leading cause
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TABLE 2 All participant’s clinical characteristics within 24h of ICU admission according to the training or validation cohort.

Characteristic Whole population
(N = 2,551)

Training cohort
(N = 1,800)

Validation cohort
(N = 751)

P-value

Vital Signs, median (IQR)

Temperature (◦C) 36.56 (36.33–36.78) 36.56 (36.33–36.78) 36.56 (36.33–36.83) 0.114

Heart rate (bpm) 65.00 (57.00–75.00) 65.00 (57.00–75.00) 65.00 (57.00–75.00) 0.670

Respiratory rate (bpm) 12.00 (10.00–14.00) 12.00 (10.00–14.00) 12.00 (10.00–14.00) 0.944

MAP (mmHg) 63.00 (55.00–71.00) 63.00 (55.00–71.00) 63.00 (55.00–70.00) 0.966

SPO2 (%) 94.00 (92.00–96.00) 94.00 (92.00–96.00) 94.00 (92.00–96.00) 0.846

Glucose (mg/dL) 109.00 (93.00–127.00) 109.00 (93.00–127.00) 111.00 (94.00–127.00) 0.294

Blood routine test (IQR)

White blood cells (K/µL) 9.20 (7.00–12.00) 9.30 (7.00–12.00) 9.00 (7.00–12.10) 0.502

Hemoglobin (g/dL) 11.20 (9.70–12.60) 11.20 (9.70–12.50) 11.30 (9.70–12.70) 0.597

Hematocrit (%) 33.40 (28.80–37.30) 33.40 (28.85–37.20) 33.70 (28.60–37.40) 0.892

Platelets (K/µL) 181.00 (138.00–227.00) 181.00 (138.00–229.50) 182.00 (139.00–226.00) 0.715

Biochemical indicators (IQR)

Creatinine (mg/dL) 0.80 (0.60–1.00) 0.80 (0.60–1.00) 0.80 (0.70–1.00) 0.592

Urea nitrogen (mg/dL) 14.00 (10.00–19.00) 14.00 (10.00–19.00) 14.00 (10.00–19.00) 0.357

Blood sodium (mEq/L) 138.00 (136.00–141.00) 138.00 (136.00–141.00) 139.00 (136.00–141.00) 0.479

Blood potassium (mEq/L) 3.80 (3.50–4.10) 3.80 (3.50–4.10) 3.80 (3.50–4.10) 0.667

Blood calcium (mEq/L) 8.40 (7.80–8.80) 8.40 (7.80–8.80) 8.40 (7.80–8.80) 0.600

Blood magnesium (mEq/L) 1.80 (1.60–2.00) 1.80 (1.60–2.00) 1.80 (1.60–2.00) 0.146

Blood chloride (mEq/L) 103.00 (100.00–106.00) 103.00 (100.00–106.00) 103.00 (100.00–106.00) 0.970

Blood phosphate (mEq/L) 3.00 (2.50–3.60) 3.10 (2.50–3.60) 3.00 (2.50–3.50) 0.030

Prothrombin time (s) 12.20 (11.30–13.40) 12.30 (11.30–13.40) 12.10 (11.30–13.20) 0.140

Partial thromboplastin time (s) 26.40 (24.30–29.00) 26.50 (24.30–29.10) 26.20 (24.10–28.80) 0.207

INR 1.10 (1.00–1.20) 1.10 (1.00–1.20) 1.10 (1.00–1.20) 0.107

Bicarbonate (mEq/L) 22.00 (20.00–24.00) 22.00 (20.00–24.00) 22.00 (20.00–24.00) 0.765

Aniongap (mEq/L) 13.00 (11.00–15.00) 13.00 (11.00–15.00) 13.00 (12.00–15.00) 0.530

Interventions within 24h of ICU admission

Use of vasopressor (%) 383 (15.0) 278 (15.4) 105 (14.0) 0.346

Use of albumin (%) 93 (3.7) 73 (4.1) 20 (2.7) 0.087

Use of furosemide (%) 190 (7.5) 121 (6.7) 69 (9.2) 0.031

Use of mannitol (%) 203 (8.0) 139 (7.7) 64 (8.5) 0.496

Use of MV (%) 1,152 (45.2) 819 (45.5) 333 (44.3) 0.592

Use of RRT (%) 18 (0.7) 13 (0.7) 5 (0.7) 0.877

Outcomes

In-hospital mortality (%) 413 (16.2) 291 (16.2) 122 (16.3) 0.961

ICU mortality (%) 312 (12.2) 221 (12.3) 91 (12.1) 0.910

Hospital LOS (days) 7.25 (4.02–13.67) 7.30 (4.03–13.71) 6.93 (4.00–13.37) 0.715

ICU LOS (days) 2.93 (1.77–6.04) 2.94 (1.77–6.03) 2.90 (1.76–6.13) 0.770

NE, anephrine; RRT, renal replacement therapy; MV, mechanical ventilation; LOS, length of stay in hospital; vasopressor_use = NE + E + dopamine + dobutamine + phenylephrine

+ vasopressin.

A minimum value for the continuous variable was chosen.
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FIGURE 2

Nomogram prediction of the probability of in-hospital mortality in TBI patients. A vertical line was drawn from each variable upward to the terms on

the nomogram, and the corresponding points were recorded. The point of each variable was summed up to obtain a total score corresponding to a

predicted mortality probability at the nomogram’s bottom.

of AKI (17). Catecholamine surges after TBIs cause excessive

activation of the renin–angiotensin–aldosterone system, leading

to renal dysfunction (20). Several pathophysiological processes

accompany injury in the early stage. These include hypoperfusion

caused by massive bleeding, systemic inflammation for severe brain

damage, and autoimmune complications. Rapid and large doses

of hyperosmotic drugs administered due to these causes result in

AKI patients having a poor prognosis after TBI (8, 21). Unlike

mannitol, which has potentially severe side effects on the kidneys,

more glycerol fructose and hypertonic saline should be used to

reduce intracranial pressure.

Respiration rate andmechanical ventilation use were associated

with mortality in the proposed TBI-IHM nomogram. Compared

to patients who did not have hospital-acquired pneumonia,

those with hospital-acquired pneumonia had worse outcomes

and experienced elevated intracranial pressure (4). There was a

significant association between ventilator-associated pneumonia,

prolonged ICU stays, and mechanical ventilation durations (22).

A prospective observational study by Chiara Robba et al. included

TBI ICU patients from multi centers in Europe and found an

association between an increased risk of VAP and a high risk

for respiratory failure in the ICU. Other risk factors include age,

younger alcohol abuse, drug abuse, thoracic trauma, chest trauma,

histamine-receptor antagonist intake, and antibiotic prophylaxis

(23). Compared to non-trauma patients, intubated patients in

ICU with trauma had a four times higher VAP incidence

rate (22).

TBI patients require regular mechanical ventilation to prevent

airway obstruction and exacerbation of injuries. Most TBI patients

have multiple pulmonary complications (such as pneumonia

and pulmonary edema); therefore, adjusting and modulating

oxygenation and ventilation is challenging. However, lowering

the respiratory rate does not lead to safer outcomes. Computer

algorithmswere used in the present research to calculate respiratory

rate parameters. In clinical prognosis, it will serve as a suggestive

system that indicates that the lower the respiratory rate the better

the outcome. Hypoxia or abnormal carbon dioxide retention

caused by low respiratory rates may not be conducive to

treating TBI patients (24, 25). Administering proper sedation

could result in shorter ICU stays, fewer ventilator days (26),

reduced oxygen consumption, lower respiratory rate and reduce

brain oxygen consumption of patients. The proper use of
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FIGURE 3

The ROCs of the TBI-IHM training cohort and the other common clinical prognosis evaluation scales. Additionally, AUCs determined that values ≥0.9

are “excellent”, ≥0.80 are “good”, ≥0.70 are “fair”, and <0.70 are “poor”.

FIGURE 4

The ROCs of the TBI-IHM validation cohort and the other common clinical prognosis evaluation tables.

sedatives can be premised on minimizing side effects by keeping

sedation at lighter levels (Richmond Agitation Sedation Scale,

RASS−2 to+1).

According to this study’s findings, there is an increased

probability of poor prognosis (mortality) in patients with abnormal

INR results. TBI patients are reported to suffer from occult

coagulopathy, dramatically increasing their mortality rates. Clinical

outcomes are adversely affected by trauma-induced coagulopathy

and secondary brain injury (27). Various mechanisms (platelet

dysfunction and hyperfibrinolysis caused by inflammation,

endothelial cell activation, etc.) lead to coagulopathy after TBI

platelet dysfunction and continuous bleeding (28). A previous

literature’s statistical analysis estimates that approximately one-

third of TBI patients developed coagulopathy. Abundant data cite

the incidence rate of coagulopathy to be 7–63% (29). The strong

association between TBI and coagulopathy is a well-recognized

risk factor for poor clinical outcomes following a TBI (29). In

addition to hemodynamic alterations and systemic inflammation,

patients who sustain TBI show signs of these conditions (30),

but their pathogenesis remains poorly understood. The research

results from the literature were consistent with the present study.

Consequently, it is essential to prevent traumatic coagulation

disease and detect abnormal coagulation functions as soon as

possible in the clinical treatment process. A timely adjustment of

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2023.1165020
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Chen et al. 10.3389/fneur.2023.1165020

FIGURE 5

The calibration curves for the validation cohort and the training cohort.

FIGURE 6

The decision-curve analysis of the validation cohort and the training cohort.

intervention and treatment may be necessary in cases of abnormal

coagulation. An example would be the infusion of blood plasma or

the administration of vitamin K.

The cerebrovascular disease has a high mortality rate

because of its acute progression, quickly deteriorating into severe

complications, such as brain cell edema (31). With poor prognosis

and high morbidity, cerebrovascular disease patients suffer from

poor quality of life and increased public health burden. Severe

TBI patients need a systematic scale to guide the systematic

management and avoid secondary injury (including hypotension,

hypoxia, and hypoglycemia) (21, 23).

Researchers found that ∼50% of severe TBI patients have

suffered from infections during the hospital stay period, which

might be related to the impaired immune function of patients.

Some studies found that brain vasoconstrictor factors in TBI

patients varied. ECF cytokine content in the brain was prominently

different from jugular and arterial blood (32, 33). Lassarén

et al.’s clinical trial found that the development of a systemic

clinical infection led to the decrease of brain-ECF (IL1-ra, G-CSF,

PDGF-ABBB, and MIP-1b) (32). However, further research is

needed to investigate whether the neuroinflammatory reaction of

systemic inflammation conditions causes damage to the nervous

system. Baune et al.’s study found that in elderly patients,

higher concentrations of IL-6 with chronic low-level systemic

inflammation may be associated with increased mortality (34). The

aging process strengthens the chronic immune response in the

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2023.1165020
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Chen et al. 10.3389/fneur.2023.1165020

TABLE 3 NRI and IDI of the nomogram and critical care scoring system alone in survival prediction for TBI patients.

Training cohort Validation cohort

Index Estimate 95% CI P-value Estimate 95% CI P-value

NRI (vs. GCS) 0.360 0.267–0.452 <0.001 0.252 0.107–0.396 <0.001

NRI (vs. SOFA) 0.215 0.122–0.308 <0.001 0.183 0.036–0.329 0.014

NRI (vs. APS-III) 0.110 0.013–0.206 0.026 0.158 0.016–0.300 0.029

NRI (vs. LODS) 0.163 0.072–0.254 <0.001 0.178 0.043–0.313 0.010

NRI (vs. SAPS-II) 0.291 0.206–0.377 <0.001 0.310 0.169–0.450 <0.001

NRI (vs. OASIS) 0.256 0.164–0.348 <0.001 0.168 0.027–0.308 0.020

IDI (vs. GCS) 0.189 0.156–0.222 <0.001 0.173 0.125–0.221 <0.001

IDI (vs. SOFA) 0.131 0.009–0.162 <0.001 0.123 0.075–0.172 <0.001

IDI (vs. APS-III) 0.090 0.054–0.127 <0.001 0.085 0.033–0.136 0.001

IDI (vs. LODS) 0.089 0.055–0.123 <0.001 0.074 0.022–0.126 0.005

IDI (vs. SAPS-II) 0.138 0.107–0.169 <0.001 0.134 0.088–0.181 <0.001

IDI (vs. OASIS) 0.135 0.104–0.166 <0.001 0.104 0.057–0.151 <0.001

brain (leading to chronic cerebrovascular changes, such as amyloid

protein deposition, resulting in increased leukocytes), which may

be linked to an ongoing dysfunction in the central nervous system

and degeneration (26, 35). Large cohort studies have demonstrated

that men and older patients with moderate/severe TBI have worse

long-term outcomes (35).

Lv et al. (31) developed a nomogram that could predict

mortality by cooperating with COP, neurological pathogenesis,

and other useful scores for neurological patients. The proposed

prediction model was more accurate than the commonly used

mortality scales.

Clinical nomogram models were used to examine the

relationship between baseline health status and future outcomes.

Physicians may be able to make informed decisions about their

patients’ care by incorporating clinical factors and scoring systems

into user-friendly nomograms. Due to its visual appeal, intuitive

nature, and appreciable functions, the nomogram has gradually

gained acceptance and consolidated use in clinics to facilitate

prediction and decision-making (10).

This research used the public database called MIMIC-IV, which

contained a large dataset of critically ill patients, providing strong

evidence for the results. Several publications have investigated

TBI’s incidence, mortality, risk factors, and outcomes over the

past few years. The current research generated groundbreaking

results. The proposed nomogram showed considerable clinical

utility for predicting mortality in patients with TBI. These factors

selected for the model made it convenient and straightforward

to utilize to estimate mortality rates. The complexity of clinical

algorithms was reduced, and a method for predicting critical

illness of TBI using easily obtainable clinical variables was

obtained. Secondly, compared to other commonly used scales, the

proposed model’s scoring system was better in comprehensively

reflecting patients’ overall situation with higher accuracy. It

also had a higher comparison level, repeatability, and accuracy

than other models, enhancing the prediction performance. By

intervening early in the variables positively related to mortality,

patient mortality can be reduced in clinical practice, especially

for individualized therapy. Factors that contribute to death

risk that cannot be changed can significantly indicate the

patient’s death risk. Therefore, this study can identify high-risk

patients early.

This research has some limitations. Technical limitations

prevented us from grading patients’ imaging examination pictures,

determining brain trauma degrees, or verifying patients’ mental

states; surgical method, surgical time, imaging information, and

other scores were not included in our study. Although these

variables were not included, we conducted statistical validation

and found that the predictive performance of this nomogram was

relatively excellent. In the near future, we plan to conduct further

prospective research in the hospital where we work, including

the important variables mentioned above. Future studies may

be able to verify and analyze the relative data of TBI patients

at the mentioned hospital through subsequent experiments. The

relative data of TBI patients in the dataset may be further validated

and analyzed.

5. Conclusion

This study achieved significant potential for TBI patients in

ICU with clinical utility. The proposed TBI-IHM nomogram

could estimate the mortality risk for each TBI patient.

This nomogram can assist clinical doctors in identifying

and making scientific clinical decisions at an early stage

of TBI.
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