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Parkinson’s disease (PD) is a complex progressive neurodegenerative disease 
associated with aging. Its main pathological feature is the degeneration and 
loss of dopaminergic neurons related to the misfolding and aggregation of 
α-synuclein. The pathogenesis of PD has not yet been fully elucidated, and its 
occurrence and development process are closely related to the microbiota-
gut-brain axis. Dysregulation of intestinal microbiota may promote the damage 
of the intestinal epithelial barrier, intestinal inflammation, and the upward 
diffusion of phosphorylated α-synuclein from the enteric nervous system 
(ENS) to the brain in susceptible individuals and further lead to gastrointestinal 
dysfunction, neuroinflammation, and neurodegeneration of the central nervous 
system (CNS) through the disordered microbiota-gut-brain axis. The present 
review aimed to summarize recent advancements in studies focusing on the 
role of the microbiota-gut-brain axis in the pathogenesis of PD, especially the 
mechanism of intestinal microbiome dysregulation, intestinal inflammation, and 
gastrointestinal dysfunction in PD. Maintaining or restoring homeostasis in the gut 
microenvironment by targeting the gut microbiome may provide future direction 
for the development of new biomarkers for early diagnosis of PD and therapeutic 
strategies to slow disease progression.
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1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease associated with aging 
(1), and its prodromal stage may be longer than 20 years. The prodromal stage is characterized 
by specific non-motor symptoms, including rapid eye movement sleep behavior disorder 
(RBD), autonomic nerve dysfunction, and cognitive disorders (1, 2). The main pathological 
feature of PD is the progressive loss of dopaminergic neuron (DN), which is related to the 
misfolding and aggregation of α-synuclein (1–3). However, α-synuclein could be detected in 
both central nervous system (CNS) and enteric nervous system (ENS). Studies on animal 
models of PD indicate that abnormal α-synuclein may spread to the CNS in a prion-like 
manner through the vagus (4, 5). In the pathogenesis and development of PD, the intestinal 
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microbiome affects the close two-way communication between the 
gastrointestinal tract and the brain, which is called the microbiota-
gut-brain axis (Figure  1). PD patients have significant intestinal 
microbiome disorders and metabolite changes, which may promote 
the damage of the intestinal epithelial barrier, intestinal inflammation, 
and abnormal phosphorylation of α-synuclein to spread upward from 
the ENS to the brain in individuals with genetic susceptibility and 
further lead to gastrointestinal dysfunction, neuroinflammation, and 
neurodegeneration of CNS through the disordered microbiota-gut-
brain axis (6, 7). Currently, no treatment can cure or effectively 
prevent the progression of PD. Although dopamine replacement 
therapy helps to improve the initial motor symptoms, it cannot 
inhibit dopaminergic neurodegeneration and is associated with 
motor complications (8, 9). Meanwhile, oral administration of 
levodopa and other PD-related drugs requires the optimal 
gastrointestinal function to determine the ideal drug metabolism. 
However, gastrointestinal dysfunction and intestinal microbiome 
disorders in PD patients will interfere with the absorption and 
utilization of drugs (10–15), while some therapeutic agents (such as 
dopamine agonists) may directly affect the gut microbiome and 
aggravate gastrointestinal dysfunction (16–18). Therefore, there is an 
urgent need to better determine the pathobiological mechanism of 
the highly complex bidirectional association of the microbiota-gut-
brain axis in PD. Hence, in this review, we aimed to summarize recent 

advancements in studies focusing on the role of the microbiota-gut-
brain axis in the pathogenesis of PD, especially the potential 
mechanism of intestinal microbiome dysregulation, intestinal 
inflammation, and gastrointestinal dysfunction in PD. In order to 
reveal new insights into the etiology and pathophysiology of PD, a 
new strategy is provided for the early diagnosis and treatment of PD 
from the perspective of the intestinal tract by targeting the 
gut microbiome.

2. The body-first and brain-first PD

Since Braak et  al. discovered that pathological α-synuclein 
aggregated in the ENS may spread retrogradely to the brain through 
the vagus (19), a series of studies have shown that there is an 
important two-way interaction between the gut and the brain (20, 
21). PD is assumed to exist in two subtypes: The brain-first PD, in 
which α-synuclein pathology spreads from the CNS affects the 
autonomic nervous system, and body-first PD, in which α-synuclein 
pathology originates from the intestinal or peripheral autonomic 
nervous system and then spreads to the CNS through vagus and 
sympathetic connections (22, 23). Compared to normal subjects, 
α-synuclein was found in the stomach and vagus of PD subjects (24). 
Human epidemiological data showed that complete truncal vagotomy 

FIGURE 1

A schematic overview of microbiota-gut-brain axis in Parkinson’s disease. Dysregulation of intestinal microbiota may promote the damage of the 
intestinal epithelial barrier, intestinal inflammation, and the upward diffusion of phosphorylated α-synuclein from the enteric nervous system (ENS) to 
the brain through the vagus nerve in susceptible individuals and further lead to gastrointestinal dysfunction, neuroinflammation, and 
neurodegeneration of the central nervous system (CNS) through the disordered microbiota-gut-brain axis.

https://doi.org/10.3389/fneur.2023.1185375
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2023.1185375

Frontiers in Neurology 03 frontiersin.org

could reduce the risk of secondary PD and delay the age of PD onset 
(25), indicating that α-synuclein is not only deposited in the 
substantia nigra but also in the gastrointestinal tract and the vagus. 
Animal studies have shown that α-synuclein aggregates can spread 
from the gastrointestinal tract to the brain through the autonomic 
nervous system. By injecting pathological α-synuclein into the 
duodenum and the pyloric muscle layer of mice (26) or the duodenal 
wall of rats (20), initial retrograde multi-synaptic propagation of 
pathological α-synuclein along with the loss of DN, motor and 
non-motor symptoms. However, trunk vagotomy and loss of 
α-synuclein could prevent the transmission of α-synuclein from the 
gut to the brain and the associated neurodegeneration and behavioral 
defects (26). Arotcarena et  al. found that in non-human primate 
models, enteral injection or striatal injection of α-synuclein from PD 
patients can induce striatal injury and pathological manifestations of 
the ENS (21).

RBD is the strongest prodromal marker of PD, and clinical and 
imaging evidence suggests that RBD can be used as a clinical marker 
to distinguish body-first PD (RBD positive) from brain-first PD (RBD 
negative) (27, 28). The PET tracer 11C-Donepezil was used clinically 
to evaluate parasympathetic enteric innervation, and it was found that 
patients with RBD had reduced uptake of 11C-donepezil in the colon 
and small intestine (29), indicating that the body-first PD patients 
showed autonomic nerve innervation loss in the prodromal stage. This 
was verified in 37 newly diagnosed PD patients, using a multi-modal 
imaging case–control PET study which found that the 11C-donepezil 
intake of the colon in body-first type was significantly lower than that 
in the brain-first type (30). Cardiac 123I-MIBG imaging can effectively 
assess whether sympathetic dysfunction is present, and the study 
found that 92% of RBD patients show pathological 123I-MIBG 
imaging (27), and body-first PD patients show significantly a lower 
cardiac 123I-MIBG signal due to sympathetic dysfunction (30). The 
above imaging evidence supports the existence of brain-first and 
body-first subtypes of PD. In addition, colonic dysfunction can 
be quantified objectively by total colonic volume and colonic transit 
time (CTT). Studies have found that compared with healthy control 
groups, PD patients usually have significantly prolonged CTT and 
larger total colon volume (30, 31), among which total colon volume 
and CTT increase more significantly in patients with body-first 
PD (27).

Both clinical studies and animal model evidence (19–32) indicate 
that the dysfunctional autonomic nervous system (such as vagus) may 
be the pathway of pathological transmission of α-synuclein in PD 
between ENS and CNS, which is consistent with the body-first and 
brain-first hypothesis mechanism of PD.

3. Microbiota–gut–brain axis and 
intestinal microbiome dysregulation 
in PD

The gut microbiota is the densest microbiome in the human body, 
composed of bacteria, viruses, protozoa, fungi, etc., and communicates 
bidirectional with the brain through the microbiota gut–brain axis, 
thus significantly affecting the intestinal barrier function, 
inflammatory response, and nervous system function of the host (33, 
34). The structure and function of the intestinal microbiome are 
constantly undergoing dynamic changes, which will be significantly 
affected by genetic factors and environmental factors (infection, 

medication, food, etc.), and the abnormal quantity or quality is called 
intestinal microbiota disorder (35). The dysregulation of intestinal 
microbiome in PD patients leads to increased exposure to various 
pro-inflammatory and neurotoxic microorganisms, and the changes 
in the entire intestinal microbiome are shown as a decreased level of 
short-chain fatty acids (SCFAs) and increased lipopolysaccharide 
(LPS) (36–38). In addition, intestinal microbiota can produce 
functional amyloid protein, namely, microbial amyloid protein, which 
can not only promote intestinal and systemic inflammation but also 
accelerate the aggregation of α-synuclein in the intestinal nerve plexus 
and spreads to the CNS through a transsynaptic cell-to-cell 
transmission (39). The above mechanisms may cause neuronal 
damage or promote susceptibility to neuronal damage, thus affecting 
the occurrence and development of PD (40).

3.1. Changes of major intestinal microbiota 
in PD and their correlation with clinical 
characteristics

The composition and function of intestinal microbiota are closely 
related to clinical characteristics of PD, including clinical symptoms, 
disease progression, and severity (41, 42). The high-throughput 
sequencing studies found that intestinal microbiome changes in PD 
patients persisted in follow-up sampling 2 years later (43), and the 
most significant changes were the decrease of the bacterial group 
producing SCFAs (with anti-inflammatory effects) and the increase of 
the bacterial group producing LPS (with pro-inflammatory properties) 
(44). With the development of PD, the abundance of Faecalibacterium, 
Roseburia, Prevotella, Lachnospiraceae family and their key member 
Butyrivibrio decrease significantly, while the abundance of 
Megasphaera, Akkermansia, and Verrucomicrobia as well as 
Lactobacillaceae continued to increase in PD patients (45–47). Among 
them, Roseburia decomposed carbohydrates to produce SCFAs, which 
can protect the gut from pathogens. The decreased abundance of 
Roseburia affects the host’s ability to repair epithelial cells and regulate 
inflammation and is associated with the deterioration of cognitive 
function. Prevotella decomposes proteins and carbohydrates to 
produce SCFAs, the abundance of which is negatively correlated with 
disease severity. Its abundance is significantly decreased in rapidly 
progressing PD patients and is associated with the deterioration of 
cognitive function (48). Butyrivibrio abundance decline is correlated 
with poor motor function and motor complications (49). The 
accumulation of Akkermansia promotes intestinal mucous barrier 
damage and intestinal inflammation, leading to abnormal aggregation 
of α-synuclein in the intestine, and eventually leads to higher 
endotoxemia and systemic inflammation to promote the progress of 
neuropathology (46). Increased abundance of Megasphaera is 
associated with poor motor and cognitive function (50). At the same 
time, changes in the composition of intestinal microbiota can affect 
neurodegeneration through inflammatory response, the abundance of 
Bacteroides is correlated with the level of plasma TNF-α and the 
severity of motor symptoms (51). In addition, reduced abundance of 
the major producers of butyrate (including the genera Roseburia, 
Romboutsia, and Prevotella) was associated not only with worsening 
cognitive function but also with the severity of depressive symptoms 
in PD patients (52) (Table 1).

At present, there is heterogeneity in the results of studies on the 
changes in intestinal microbiota in PD, which may be  due to 
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differences in research methods, disease status, and population as well 
as confounding factors (49). In order to elucidate the significance of 
changes in gut microbiome in PD and assess its potential as biomarkers 
for risk, diagnosis, treatment, and prognosis of PD, future large-scale 
clinical studies could employ a cross-comparative multi-omics 
approach combined with clear patient criteria (including geographic 
regions, ethnicity, disease stage, and detailed phenotypes and 
genotyping) to provide a comprehensive understanding of how the gut 
microbiome and its metabolites interact with the host and influence 
the cause, symptoms, and progression of PD. At the same time, more 
rigorous experimental design and more advanced detection methods 
are needed to deeply analyze the dynamic evolution process of 
intestinal microbiota in PD patients and animal models.

3.2. Changes in metabolites derived from 
gut microbiome

Microbial metabolites can not only reflect the composition and 
function of intestinal microbiota but also are closely related to the 
progression of PD. Abnormal microbial metabolites are correlated 
with the pathology of α-synuclein and the activation of microglia 
cells, which can promote the neurodegeneration and movement 
disorders of PD animal models (53). Among them, SCFAs are the 
main metabolite of dietary fiber fermentation by intestinal microflora 
(including acetic acid, propionic acid, and butyric acid.), which plays 
a key role in maintaining the integrity of the colon epithelium, 
regulating immune response and intestinal permeability, as well as 
affecting brain function (54). The case–control study confirmed that 
the fecal microbiome and metabolome composition of PD patients 
were significantly different from that of the control group, and the 
fecal SCFAs level and the bacteria-producing level were both 
decreased, but the plasma SCFAs level increased (55, 56), which is 

associated with impairment of the gut–blood barrier and may 
be aggravated by constipation (57). Metagenomic functional analysis 
confirmed differences in microbiome metabolism related to SCFAs 
precursor metabolism in PD patients (48). Microbial metabolite 
levels related to the relative abundance of the proinflammatory 
intestinal microbes, in PD patients, and the abundance of 
proinflammatory microorganisms such as Clostridiales bacterium 
and Ruminococcus sp. is significantly correlated with the decrease of 
SCFAs level in feces and the increase of SCFAs level in plasma, 
especially propionic acid (58). SCFAs levels in feces and plasma of PD 
patients are not only correlated to specific changes in intestinal 
microbiome but also closely related to the clinical severity of PD (59). 
Specifically, poor cognitive function of PD patients was significantly 
correlated with low SCFAs level in feces (55), high butyric acid, and 
valerate level in plasma (58). The poorer the motor function, the 
lower the fecal SCFAs level, and the higher the plasma propionic acid 
concentration (58), and the poor postural instability–gait disorder 
score is associated with a low butyric acid level (55). Meanwhile, 
elevated microbial metabolites in the plasma of PD patients include 
indole derivatives, secondary bile acids, and hippuric acid (HA), 
which act as signaling molecules that can cross the blood–brain 
barrier to regulate inflammatory response and metabolic homeostasis. 
Among them, the plasma HA level is correlated with PD disease 
status (60). The elevated plasma levels of Trimethylamine N-oxide 
derived from gut microbes through dietary components, including 
L-carnitine and choline, are associated with disease severity and 
progression of PD (61) (Table 2). In addition, preclinical studies have 
found changes in intestinal microbiota and metabolites in various 
animal models of PD, and restoring healthy intestinal microbiota can 
effectively improve the damage of dopamine neurons in animal 
models of PD. MPTP-induced mouse models with a reduced 
abundance of Faecalicatena was accompanied by decreased 
expression of propionic acid and striatal Tyrosine hydroxylase (TH) 

TABLE 1 Summary of altered intestinal microbiota in PD and their correlation with clinical symptoms.

Bacteria Abundance Function Motor Symptom Non-motor Symptom References

Roseburia ↓ Produce SCFAs - Be associated with the deterioration of 

cognitive function;

Be associated with depressive 

symptom

Mao et al. (48);

Xie et al. (52)

Prevotella ↓ Produce SCFAs - Be associated with the deterioration of 

cognitive function;

Be associated with depressive 

symptom

Mao et al. (48);

Xie et al. (52)

Butyrivibrio ↓ Produce butyrate Be correlated with poor motor 

function and motor complication

- Toh et al. (49)

Romboutsia ↓ Produce butyrate - Be associated with worsening 

cognitive function and depressive 

symptom

Xie et al. (52)

Akkermansia ↑ Degrade intestinal 

mucin

- Promote gastrointestinal dysfunction Nishiwaki et al. (46);

Cirstea et al. (121)

Megasphaera ↑ - Be associated with poor motor 

function

Be associated with poor cognitive 

function

Vascellari et al. (50)

Bacteroides ↑ - Be correlated with severity of 

motor symptom

- Lin et al. (51)

↓ refers to decreased abundance and ↑ refers to increased abundance.
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(62). A fasting-simulated diet increases favorable gut microbiome 
and SCFAs in PD mice, thereby increasing brain-derived 
neurotrophic factor (BDNF) levels and reducing neuroinflammation 
(63). Osteocalcin can improve the dyskinesia and DN loss of PD mice 
by increasing Bacteroidetes and the level of propionic acid (64).

The clinical correlation between intestinal microbes with their 
metabolites and PD further supports intestinal microbes as new 
biomarkers for early diagnosis of PD and potential targets for 
treatment. Moreover, changes in intestinal microbiota composition 
affect fecal metabolomics characteristics. Therefore, fecal 
metabolomics can be  used to better understand the association 
between intestinal microbiota and clinical features (including clinical 
phenotype, disease status, and progression) in PD patients.

4. Genetic and environmental factors 
contribute to the microbiota-gut-brain 
axis disturbance

The interaction between genetic susceptibility and environmental 
factors jointly promotes the occurrence and development of PD (65). 
Studies have shown that >85% of PD cases occur in a sporadic manner, 
and familial PD can be attributed to disease-causing gene mutations 
associated with PARK sites, including Parkin, PINK1, and LRRK2. 
Epidemiological data indicated that less than 50% of LRRK2 mutation 
carriers eventually develop PD (66), suggesting that environmental 
factors other than genetic mutations are needed to trigger 
PD. Neuropathological studies have shown that α-synuclein can 
spread from ENS to central DA, and age is the key factor for the spread 
of α-synuclein. Inoculation of α-synuclein into the gastrointestinal 
tract of elderly rats, α-synuclein transmits along enteric nerve (67) or 
sympathetic and parasympathetic nerves (68) to the brain. 
Mitochondria are key participants in inducing, promoting, or 
aggravating the pathogenesis of PD (69). Mitochondrial damage is 
involved in the inflammatory cascade (70, 71). Intestinal microbial 
disorders in PD patients may lead to the progressive loss of DN 
through mitochondrial dysfunction (72, 73).

The gastrointestinal tract is an important place of contact with the 
environment, and environmental risk factors related to PD, including 
infection, environmental pollutants, and pressure, can affect the 
intestinal microbiome, which is the trigger for the occurrence and 
development of PD in genetically susceptible hosts (74). A prospective 
cohort study involving 228,485 individuals aged 50 and above found 

that gastrointestinal infection was associated with an increased risk of 
PD, and the destruction of the gastrointestinal mucosa by bacterial 
and viral pathogens could trigger the aggregation of α-synuclein in 
intestinal neurons and initiate its retrograde transport to CNS (75). 
Repeated infection of intestinal Citrobacter rodentium can damage DN 
in PINK1−/− mice and lead to motor deficiency (76). Further studies 
have revealed changes in intestinal microbiota over time, including 
the increased abundance of Enterobacteriaceae and Verrucomicrobia 
(77). The above studies have shown that differences in intestinal 
microflora caused by gastrointestinal infection can trigger PD. After 
long-term administration of rotenone, α-synuclein accumulation was 
observed in the CNS and intestine of mice (78), and the development 
of motor dysfunction depend on the presence of intestinal microbiota, 
compared with sterile mice, the changes in intestinal microbiota 
composition in conventionally fed mice were the same as those in 
human PD patients, including increased Lactobacillaceae, and 
decreased Lachnospiraceae (79). Chronic stress causes hypothalamic–
pituitary–adrenal dysfunction in PD mice, leading to intestinal barrier 
dysfunction and decreased anti-inflammatory bacteria Lactobacillus 
abundance (80). The ingestion of trichloroethylene in elderly rats 
induces reduced abundance of Blautia that produced SCFAs (81).

The above research results indicated that the diversity and stability 
of intestinal microbiota decrease with age can lead to an increased 
genetic susceptibility to PD-related neurodegeneration, and 
environmental factors are more likely to trigger the pathophysiological 
process of PD microbe-gut-brain axis disorder.

5. Intestinal microbiome dysregulation 
and intestinal inflammation

The dysbiosis of intestinal microbiota can lead to intestinal 
inflammation, which can initiate the accumulation of misfolded 
α-synuclein in ENS in the early stage, and activate microglia and 
astrocytes through the microbiota-gut-brain axis upward pathway, 
thus triggering and/or promoting CNS inflammation and 
neurodegeneration. The above mechanism can have a synergistic 
effect with genetic and environmental factors to jointly trigger and 
promote the occurrence and development of PD (82, 83). Rota et al. 
found that in α-synuclein transgenic mice, significant symptoms of 
gastrointestinal dysfunction (such as constipation) precede CNS 
neurodegeneration (84). Further studies showed that the aggregation 
of α-synuclein in the colon of early PD mouse could trigger intestinal 

TABLE 2 Changes of microbial metabolites and their effects on PD.

Microbial metabolites Function Plasma level Effect on PD References

Short-chain fatty acids (SCFAs) Maintain the integrity of the colon 

epithelium;

Regulate immune response and 

intestinal permeability;

Affect brain function

↑ Be related to abundance of 

proinflammatory intestinal microbes;

Be related to poor cognitive function;

Be related to poor motor function

Tan et al. (55);

Nuzum et al. (56);

Chen et al. (58);

Wallen et al. (59);

Hippuric acid Regulate the brain’s inflammatory 

response and metabolic 

homeostasis

↑ Be correlated with PD disease status Chen et al. (60)

Trimethylamine N-oxide Promote α-synuclein aggregations 

and neuroinflammation

↑ Be associated with disease severity 

and motor symptom progression

Chen et al. (61)

↓ refers to decreased plasma level and ↑ refers to increased plasma level.
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inflammation and induce impairment of the intestinal barrier, 
accompanied by reduced production of SCFAs such as butyric acid 
and propionic acid (85). Through the double-hit PD model, it was 
found that intestinal inflammation and microbial dysbiosis could 
promote mucosal barrier leakage, enhance intestinal inflammation in 
mice, and accompany DN loss (86, 87).

As producers of Toll-like sensors (TLRs) ligands, the 
dysregulation of intestinal microbiota causes damage to intestinal 
epithelial cells through the activation of TLRs, then triggered the 
downstream TLR4 signaling pathway, thus promoting the 
inflammatory response in the gut and brain of PD patients (88). 
Intestinal inflammation, neuroinflammation, intestinal dysfunction, 
and neurodegeneration were significantly reduced in PD rodent 
models with TLR4 knockout (89, 90). Some variants of the TLR4 
genes are considered to be risk factors of inflammatory bowel disease 
(IBD) and PD (91). Intestinal inflammation, a hallmark of IBD, plays 
an important role in the occurrence and development of PD. Clinical 
studies have indicated that clear genetic and pathophysiological links 
between IBD and PD (92, 93), and IBD may moderately increase PD 
risk (94). Both IBD and PD have intestinal inflammation, intestinal 
barrier dysfunction, and intestinal microbiome dysbiosis (95). 
Dysregulation of intestinal microbiome is closely associated with 
chronic intestinal inflammation in IBD, IBD patients and PD patients 
had the same intestinal microbiome characteristics, showing 
pro-inflammatory microbiota profiles, with a lower microbial 
α-diversity，and the abnormal expression of α-synuclein has been 
found in both intestines and ENS of IBD patients (96, 97). Similar to 
the PD, the abundance of bacteria-producing SCFAs like 
Lachnospiraceae, Roseburia, Faecalibacterium, Ruminococcus and 
Blautia in patients with IBD decreased significantly (98), gut 
microbiota dysbiosis promotes the onset of IBD. Meanwhile, multiple 
cohort studies (99–102) and two systematic reviews and meta-
analysis (103, 104) have found that irritable bowel syndrome (IBS) is 
associated with a higher hazard of PD. IBS is a functional bowel 
disorder characterized by recurrent abdominal pain and changes in 
bowel habits (105, 106). It has been found that intestinal 
inflammation, increased intestinal permeability and changes in 
intestinal microbiome are involved in the pathogenesis of IBS, which 
was similar to that of PD (107). A nested case–control study with 1.7 
million participants suggested that IBS is associated with a higher risk 
of PD and support the importance of the microbiota-gut-brain axis 
in PD etiology (108). The above studies indicate that intestinal 
microbiome dysregulation promotes intestinal inflammation, which 
plays an important role in the pathogenesis of PD.

6. Intestinal microbiome dysregulation 
and gastrointestinal dysfunction

Clinical and neuropathological evidence shows that the 
neurodegeneration of PD is accompanied by gastrointestinal 
dysfunction (109–112). A retrospective study involving 1.5 million 
participants showed that the earliest estimated time of onset of PD 
prodromal gastrointestinal dysfunction occurred decades before 
motor symptoms (109). Heinzel et al. conducted a study on 666 elderly 
people and found that intestinal microbiota composition was related 
to PD precursor markers, and its changes would lead to changes in 
clinical symptoms (110).

6.1. Constipation

Constipation is the most common PD-related gastrointestinal 
dysfunction, which is considered as reliable evidence of autonomic 
nervous disorder in the PD prodromal stage (113). The severity of 
constipation can predict the progress of motor symptoms and 
cognitive impairment in PD patients and seriously affect their 
quality of life (114). Lubomski et al. found that PD patients were 
three times more likely to be constipated than healthy subjects (78.6 
vs. 28.4%); age, stage, depression, anxiety, and autonomic 
dysfunction all increased the risk of constipation in PD patients 
(115); and the significantly reduced physical activity in PD patients 
was correlated with the severity of constipation (116). With the 
progression of the disease, the incidence of constipation in PD 
patients increases, and more than 80% of PD patients (including 
newly diagnosed PD patients) show prolonged CTT (117). At the 
same time, chronic constipation leads to slower gastrointestinal 
emptying, which can delay PD drug absorption (impaired 
pharmacodynamics) and thus lead to deterioration of motor 
function (118, 119). Clinical studies have proved that intestinal 
microbial dysregulation is related to gastrointestinal dysfunction in 
PD patients. According to the 16SrRNA gene sequence data of 324 
participants, the effect of constipation on PD is as high as 76.56% 
mediated by intestinal microbial changes (120), and intestinal 
microflora dysbiosis plays an important role in PD-related 
constipation mainly through the reduction of SCFAs producing 
bacteria. Constipated PD patients show unique intestinal microbiota 
characteristics, namely, decreased butyrate synthesis, increased 
production of harmful amino acid metabolites, including an increase 
in Akkermansia and Bifidobacterium while a decrease in 
Faecalibacterium and Lachnospiraceae. Akkermansia was positively 
correlated with chronic constipation and stool hardness, while 
Faecalibacterium and bacteria-producing butyrate are negatively 
correlated with stool hardness and constipation (121). The above 
studies indicated that intestinal microbiota composition and 
metabolic changes in PD patients are closely related to intestinal 
function, and supplementation of probiotics containing SCFAs 
producing bacteria or drugs promoting the growth of SCFAs-
producing bacteria which may have a potential application prospect 
in the prevention and treatment of PD-related constipation.

6.2. Small intestinal bacterial overgrowth 
(SIBO)

SIBO refers to a large amount of colonization of the small intestine 
by bacteria present in the colon (122). A meta-analysis involving 973 
participants showed an increased prevalence of SIBO in PD patients 
(33–52%) and a strong association with motor complications (123). 
SIBO-positive patients exhibit increased intestinal permeability, 
bacterial translocation, promoting microglial cell activation and 
abnormal accumulation of α-synuclein in intestinal neurons, as well as 
affecting levodopa bioavailability due to peripheral inflammation or 
partial metabolism of levodopa. Van et al. found that PD patients with 
SIBO positive had a higher relative abundance of bacterial tyrosine 
decarboxylase in the proximal small intestine (the site of levodopa 
absorption), which reduces the level of levodopa in situ (10). Among the 
bacteria species identified so far, Enterococcus faecalis rich in tyrosine 
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decarboxylase can fully metabolize levodopa peripheral (11). 
Meanwhile, PD treatment drugs may be an important confounder of 
intestinal microbiome changes, and dopamine agonists can cause SIBO 
in healthy rats, including an increase in Lactobacillus, and affect L-dopa 
bioavailability (17). The above studies have shown a negative correlation 
between bacteria with tyrosine decarboxylase activity and the level of 
levodopa in the systemic circulation, and PD-related drugs essentially 
have significant effects on disease-related complications, including 
promoting gastrointestinal dysfunction, SIBO, and altering intestinal 
microbiome composition (18). Therefore, specific bacterial species in 
the small intestine such as Enterococcus faecalis, Lactobacillus species, 
and tyrosine decarboxylase activity levels can be used as biomarkers to 
monitor the efficacy of levodopa. Future studies need to consider the 
effects of PD therapeutics and SIBO eradication on gastrointestinal 
motor function and microbiome composition.

6.3. Helicobacter pylori (HP) infection

HP infection has been found to be  associated with the 
pathophysiology and increased risk of PD (124). Colonization of HP 
in the gastrointestinal tract leads to the destruction of the blood–brain 
barrier, neuroinflammation, and degradation of DN through direct 
neurotoxic effects (neurotoxic factors directly damage cells), local 
effects (chronic mucosal inflammation damages the gastrointestinal 
barrier), and systemic immune responses (increased secretion of 
pro-inflammatory cytokines). Meanwhile, HP induces the reduction 
of gastric acid that leads to dysregulation of the gut microbiome, 
contributing to the development of SIBO, as previously described, 
which worsens the motor function of PD (125). The retrospective 
cohort study found that compared with the control group (n = 9,105), 
the HP infection group (n = 9,105) had a significantly higher risk of 
PD (126). Another case–control study found that HP-positive patients 
had worse motor function (127). A meta-analysis of 13 studies showed 
that HP infection was associated with more severe motor symptoms 
and worse drug response in PD patients (12). Another meta-analysis 
of 10 studies found that the eradication of HP could improve motor 
retardation and myotonia in PD patients as well as improve the 
therapeutic outcome of levodopa (13). Clinical observation suggested 
that duodenal inflammation induced by HP infection is accompanied 
by mucosal damage, which leads to poor drug response and motion 
fluctuation in PD patients through impaired levodopa bioavailability 
(14). The above studies emphasize that HP infection is involved in the 
pathophysiological process of PD, which can not only worsen the 
severity of the disease but also negatively affect the drug response of 
patients. HP eradication may improve its bioavailability by reducing 
HP-dependent levodopa consumption, thus improving motor control 
(15). Considering the high clinical prevalence of HP infection, it may 
be  reasonable to screen people with a high risk of PD for 
HP. Meanwhile, for PD patients with poor symptom control, HP 
eradication may enhance the effect of levodopa, but whether HP 
eradication affects the natural process or progression of PD remains 
to be  verified by further large-scale longitudinal studies and 
randomized controlled trials.

The prodromal stage is a window of opportunity for better 
understanding the pathogenesis of PD and early detection of the 
disease. Gastrointestinal dysfunction is the most important non-motor 
symptoms in PD patients (128). Currently, the management and 

treatment of PD-related gastrointestinal dysfunction are limited (129). 
Studies have shown that not only levodopa and other therapeutic 
drugs can directly affect the microbiome but also the intestinal 
microbiome can interfere with the absorption and utilization of drugs. 
Therefore, it is crucial to identify and treat PD-related gastrointestinal 
dysfunction, and further studies are needed on the potential 
interactions between intestinal microbiota and therapeutic drugs 
used, so as to improve the bioavailability of drugs such as levodopa 
and provide a basis for the development of new complementary 
therapeutic strategies for PD at the intestinal level.

7. PD therapy: disease remission 
strategies based on regulation of the 
gut microbiome

Considering the role of the microbiota-gut-brain axis in the 
occurrence and progression of PD, disease mitigation strategies based 
on intestinal microbiome regulation deserve further research, 
especially in the prevention and treatment of gastrointestinal 
dysfunction and motor symptoms in PD. At present, preclinical and 
clinical studies mainly focus on reducing the clinical symptoms of PD 
or delaying the progression of the disease through probiotics, 
prebiotics, and diet adjustment (130).

7.1. Food and diet pattern

Diet and nutrition are the main factors affecting the balance of 
intestinal microbiota (131). Epidemiological reports showed that the 
regulation of intestinal microbiota through food and diet pattern can 
not only reduce the risk of PD (132) but also improve the symptoms 
and quality of life of PD patients (133, 134). There is a strong 
correlation between the age of PD onset and dietary habits, with 
adherence to the Mediterranean diet that can reduce the probability 
of precursor PD in the elderly (135). Adherence to the MIND diet is 
closely associated with delayed onset of PD in women, with the 
longest delay of 17.4 years, and adherence to the Greek 
Mediterranean diet is associated with delayed onset of PD in men, 
with a difference of up to 8.4 years (136). A negative association 
between Mediterranean diet adherence and PD was observed in a 
cohort of more than 47,000 Swedish women (137). Evidence from a 
systematic review involving 52 studies suggests that following a 
Mediterranean diet can reduce the onset and clinical progression of 
PD (138). Specific dietary patterns can regulate intestinal 
inflammation and influence the risk of PD (139). Western diet rich 
in refined carbohydrates and animal saturated fats, may have a 
harmful effect on the microbiota-gut-brain axis, which can lead to 
intestinal microbiome dysbiosis and increase bacteria containing a 
large amount of LPS, thus affecting intestinal barrier function and 
leading to endotoxemia, systemic inflammation, and mitochondrial 
dysfunction (140), which is associated with increased risk and 
deterioration of PD. Rich in flavonoids, polyunsaturated fatty acids, 
and plant fiber, the Mediterranean diet has a positive effect on the 
gut microbiome, which can increase SCFAs-producing bacteria and 
induce GLP-1 and BDNF release, reduce intestinal inflammation, 
and prevent neurodegeneration, thereby reducing the risk of PD 
(141). A case–control study with 54 PD patients showed that a 
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vegetarian diet including a high proportion of anti-inflammatory 
acting short-fatty acids (SCFA) can improve the pro-inflammatory 
intestinal microbiome in PD patients, with a significant clinical 
improvement as quantified by UPDRS III (142). In addition, 
α-synuclein in food, which share cross-reaction epitopes with 
human α-synuclein and have molecular similarity with brain 
antigens were involved in synaptic nucleoprotein lesions in the 
pathogenesis of PD through autoimmunity (143, 144), including 
forming immune complexes with antibodies to cross the blood–
brain barrier and also reaching the blood–brain barrier from ENS 
(145). Therefore, elimination of foods containing α-synuclein in the 
diet may help to prevent or delay the occurrence and development 
of PD (Table 3).

The food and diet pattern may affect the microbiota-gut-brain axis 
by altering the composition of the microbiome, thereby improving the 
progression of PD. In future, it is necessary to further determine the 
potential beneficial effects of various dietary patterns in inhibiting 
amyloid accumulation and oxidative stress in ENS and better 
understand the effects of diet and intestinal microbial disorders on 
PD, including disease progression, autonomic dysfunction, and 
cognitive function. At the same time, the long-term nature of food and 
diet pattern needs to be considered, as well as the duration, dose, and 
combination of interventions for different dietary patterns.

7.2. Probiotics

Probiotics are live microorganisms that are beneficial to the 
health of the host when given in appropriate amounts, and preclinical 
and clinical studies have shown that probiotics regulate gut 
microbiota (improving intestinal barrier integrity, reducing 
overgrowth of potentially pathogenic bacteria in the gut, and 
inhibiting bacterial translocation), maintain immune homeostasis 
(regulating the immune system of the gastrointestinal mucosa), 
protect DN (inhibiting glial cell activation, increasing BDNF and 
SCFAs, and reducing LPS), and improve the overall PD behavioral 

phenotype (146). Intake of probiotics can not only improve 
constipation-related non-motor symptoms in PD patients but also 
alleviate motor dysfunction (147, 148). Multiple randomized 
controlled clinical trials have shown that the ingestion of probiotics 
(with multiple strains of probiotics alone (149, 150) or in combination 
with probiotic fibers (151)) can improve gastrointestinal symptoms 
in PD patients by modulating the microbiota-gut-brain axis, 
including reducing abdominal pain, bloating, and constipation 
symptoms, and improving stool hardness, bowel frequency, and 
bowel habits in PD patients with constipation (152). Therefore, 
probiotics relieve constipation by regulating intestinal microbiota, 
which has a good clinical application value (153). In addition, taking 
probiotics for 12 weeks can reduce MDS-UPDRS scores and improve 
insulin resistance in PD patients (154). At the same time, preclinical 
studies have found that probiotics can alleviate movement disorders 
in PD animal models and exert neuroprotective effects on DN. Long-
term administration of probiotics can not only improve 
gastrointestinal symptoms and UPDRS scores of MitoPark PD mice 
but also inhibit the progressive degeneration of DN in the nigra 
(155). Goya et al. found that the probiotic Bacillus subtilis PXN21 
could affect the release of intestinal microbial metabolites in 
Caenorhabditis elegans, thereby inhibiting and reversing the 
aggregation of α-synuclein and removing formed synuclein lesions 
(156). Intestinal microbiota can also affect the progression of PD by 
regulating intestinal endocrine through GLP-1, relieve oxidative 
stress and inflammatory response, and inhibit TH neuron apoptosis 
through activating its receptor GLP-1R (157). Ingestion of probiotics 
can reduce the intestinal pathogen Enterobacteriaceae in MPTP-
induced PD mice (158), reverse the dysbiosis of intestinal microbiome 
(increased abundance of Alistipes) (159), and increase TH-positive 
neurons by increasing GLP-1.

Considering the high variability of the inherent intestinal 
microbiota from PD patients and exogenous probiotics, a further 
longitudinal study is needed on the influence of exogenous probiotics 
on the intestinal microenvironment of PD patients before and after 
intervention under optimal control conditions and to verify the long-
term efficacy, safety, and mechanism of its treatment of PD. Meanwhile, 
accurate development of personalized treatment plans requires the 
determination of the most appropriate probiotics for PD treatment 
based on the specific intestinal microbiota profile of a single 
PD patient.

8. Conclusion

In summary, the preclinical and clinical research evidence 
discussed in this review supports the important role of bidirectional 
microbiota-gut-brain pathways and intestinal microbiome 
dysregulation in the initiation and progression of PD. In the condition 
of intestinal microbiota dysbiosis, the pro-inflammatory 
microenvironment may induce α-synuclein deposited in ENS to 
spread to the CNS in the form of transsynaptic cell transmission and 
further causes gastrointestinal dysfunction, neuroinflammation, and 
neurodegeneration through the disordered microbiota-gut-brain 
axis. The relationship between intestinal microbiota disorder and PD 
is far more complex than the one-way causal relationship. Elucidating 
the pathophysiological role of the microbiota-gut-brain axis in PD 

TABLE 3 Summary of the role of food and diet pattern in PD.

Food or Diet 
Pattern

Effect on PD References

Mediterranean diet Reduce the risk of PD Maraki et al. (135);

Yin et al. (137);

Bianchi et al. (138);

Bianchi et al. (141)

MIND diet Delay the onset of PD 

in women

Metcalfe-Roach et al. (136)

Greek Mediterranean 

diet

Delay the onset of PD 

in men

Metcalfe-Roach et al. (136)

Western diet Increase risk and 

deterioration of PD

Terenzi et al. (139);

Jackson et al. (140);

Vegetarian diet Improve clinical motor 

symptoms of PD

Hegelmaier et al. (142)

Containing 

α-synuclein in the 

diet

Be involved in the 

pathogenesis of PD 

through autoimmunity.

Vojdani et al. (143);

Vojdani et al. (144);

Lerner et al. (145)
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can not only further reveal the early pathogenesis of PD and predict 
the progression of neurodegeneration, phenotypic transformation, 
and prognosis but also intestinal microbiome-oriented treatment 
strategies to maintain or restore the homeostasis of the intestinal 
microenvironment may alter the disease course of PD through the 
microbiota-gut-brain axis, which will provide future direction for the 
development of new biomarkers for early diagnosis and therapeutic 
targets to slow the progression of PD. This can be applied clinically 
to design more effective personalized or subtype-specific, patient-
centered treatment and prevention strategies.
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