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The Permian–Triassic tectonic setting is still controversial in the southern Altaids. The Beishan orogen is an ideal region to
address the final tectonic of the Altaids. These systematic mapping, geochemistry, and geochronology studies on the
Houhongquan ophiolitic mélange in the south Beishan are conducted to address this issue. New mapping reveals that the
Houhongquan ophiolitic mélange consists of blocks of gabbro, basalt, chert, granite, and strongly deformed and cleaved
sandstone in the southern Beishan. The studies reveal that the mafic fragments are relics of normal-mid-ocean ridge (N-MOR)
and suprasubduction zone (SSZ) types of oceanic lithosphere. The four sandstone matrix samples yield the maximum
depositional ages of 222 ± 5Ma, 233:8 ± 2:3Ma, 263:4 ± 2:5Ma, and 263:5 ± 2:8Ma, respectively, indicating that the youngest
sandstones were tectonic emplaced in the Houhongquan ophiolitic mélange after ca. 222Ma. The sandstone matrices display
two types of age spectra. Early Permian sandstones have a single Devonian to Early Permian peak age patterns, indicating the
existence of an independent Permian intraoceanic arc. In contrast, Late Triassic sandstones have multiple peaks with some
Precambrian zircons, suggesting that they were sourced from a continental arc. Accordingly, we consider that the
Houhongquan ophiolitic mélange tectonic was emplaced in the intraoceanic island arc during the Middle Permian and docked
to a continental margin arc during the Late Triassic. Thus, we argue that the terminal amalgamation timing of the southern
Altaids was probably during ca. 222-217Ma.

1. Introduction

The Altaids (or Central Asian Orogenic Belt) is the largest
accretionary orogenic collage in the Phanerozoic [1–3]
(Figure 1(a)). It is formed by numerous different tectonic
terranes, including intra-oceanic/island arcs, microconti-
nents, oceanic plateaus, and accretionary prisms in the

Phanerozoic [3–6]. The Altaids was formed by consumption
of the Paleo-Asian Ocean along the South Tianshan–
Beishan–Solonker suture zone at the south Altaids [3, 6].
Nevertheless, the final accretionary and amalgamation pro-
cesses are controversial, varying from the Devonian [7–11]
to Triassic [6, 12–14] in different ophiolitic belts. Accordingly,
the Beishan orogen, the middle segment of the Tianshan–
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Beishan–Solonker suture zone, is critical for manifesting the
accretionary tectonics and addressing the final time of amal-
gamation [11, 13, 15, 16].

The Beishan orogen comprises of several continental
arcs, intraoceanic arcs, and accretionary prisms [16].
Although previous studies have established several evolution
models for the multiblock accretion and their amalgamation
processes, the tectonic and evolution in space during the
Devonian to Triassic are still debatable. Both subduction set-
tings [16–19] and postcollision rifting [9, 10, 20, 21] have
been proposed. In the southern Beishan orogen, voluminous
Devonian to Triassic magmatism, sedimentary rocks devel-
oped in the Liuyuan accretionary complex belt, which is crit-
ical for constraining the tectonic of the Beishan orogen. In
past decades, several studies have obtained the ages
(~286Ma to 270Ma) of gabbros in this belt, but the closure
of the Liuyuan-Houhongquan Ocean has not been con-
strained [9, 16, 22]. The age of the matrices of an accretion-
ary complex is used for constraining the subduction
processes, with the youngest matrices close to the final amal-
gamation time [23]. The spectra of the detrital zircon use-
fully constrain the sedimentary provenance [24, 25] and its
maximum depositional age (MDA) [26–29]. Therefore, the
MDA of matrices of the mélange is a valuable method to
study the emplacement processes of accretionary complexes.

This study reports new field mapping of the Houhong-
quan ophiolitic mélange in the Beishan orogen. We also
present new geochronological data of the sandstone matrices
and geochemical data of mafic rocks from the ophiolitic
mélange, aiming to reveal the accretion process of the Hou-
hongquan ophiolitic mélange and put new constraints on
the final amalgamation history of the south Altaids.

2. Geological Backgrounds

The Beishan orogen consists of several WE-trending tec-
tonic units, which are bounded by four ophiolitic mélanges
(or accretionary complex) as illustrated in Figures 1(b) and
1(b) [11, 16]. The Houhongquan ophiolitic mélange is situ-
ated at the eastern segment of the Liuyuan accretionary
complex situated between the Huaniushan and Shibanshan
arcs (Figures 1(b) and 1(c)).

The Huaniushan arc comprises a set of Precambrian to
Permian gneisses, migmatites, schists, sedimentary rocks,
and carbonates [11, 16, 30, 31] and Ordovician–Permian
arc-related basalt, andesite, rhyolite, and pyroclastic rocks
[8, 13, 16, 32]. The sandstones, schists, and mylonites have
the maximum depositional ages (MDA) of 293 to 457Ma
[9, 33, 34]. Extensive intrusions are ages from the Ordovi-
cian to Triassic, including I-, S-, and A-type granites, adaki-
tic granites, and (ultra-)mafic intrusions (Figure 1(c) and
Supplementary Table 2) [8, 9, 18, 22, 35–37].

The Shibanshan arc is the southernmost terrane of the
Beishan orogen rooted in the Dunhuang block
(Figures 2(b) and 2(c)). Two units constitute the Shibanshan
arc: late Paleozoic volcanic-sedimentary unit and the meta-
morphic Beishan complex unit. The late Paleozoic
volcanic-sedimentary unit, which is located at north Shiban-
shan arc, consists of Devonian–Permian arc-related volcanic

rocks, sedimentary rocks, and some carbonates [8, 11, 16].
The Beishan complex unit comprises migmatites, gneisses,
(mylonitic) schists, and marbles, with MDAs of 1450–
254Ma and volumes of Precambrian zircons (Figure 1(c)
and Supplementary Table 2) [19, 20, 38]. Some Precambrian
schists have also been discovered in this unit [10, 20, 39].
The arc-related granites are extensive in the two units and
dated from the Carboniferous to Triassic (Figure 1(c) and
Supplementary Table 2) [8, 40, 41].

The Liuyuan accretionary complex comprises the
Gubaoquan eclogites as well as the Huitongshan, Hua-
niushan, Liuyuan, Houhongquan, and Zhangfangshan
ophiolitic mélange from west to east. The ophiolitic
mélanges are composed of ultramafic rocks, gabbros, basalts,
cherts, sedimentary rocks, and limestones [9, 13, 16, 42]. The
age of the ophiolitic fragments and eclogites varies from
1071Ma to 270Ma (Supplementary Table 2). The Liuyuan-
Houhongquan mafic-sedimentary rock belt is located along
the Liuyuan accretionary complex from Liuyuan to
Houhongquan area. The Houhongquan area is well
exposed in the eastern segment of this belt (Figures 1(c)
and 2). It consists of gabbro, pillow basalt, massive basalt,
cleavage basalt, chert, sedimentary rock, and some andesite
to dacite block [9, 13, 43]. The gabbros of the Liuyuan area
and Yinaoxia area have ages ranging from 270 to 286Ma
[9, 13, 44]. The cherts are of biochemical origin (contain
radiolarians and sponge spicules) and deposited in the
pelagic environment near a continental margin [43]. The
sedimentary rocks have the MDAs of 293Ma to 234Ma
[9, 45]. To date, the genesis of these basalts and gabbros
is strongly debated: one model suggests that they are the
ophiolitic remnants [13, 16], whereas another model
proposed that these magmatic and sedimentary rocks
formed in the rift [8, 9, 46] and were thrusted southward
during 230–227Ma [9] or in a back-arc setting [34] during
300-230Ma and were thrusted southward during 270-
217Ma [34].

3. Field Observations and Sampling

The Houhongquan ophiolitic mélange was exposed within
the Mesozoic-Cenozoic sediments. The Houhongquan
ophiolitic mélanges have the typical block-in-matrix struc-
ture (Figures 2 and 3). Altered gabbros, massive and pillow
basalts, and chert fragments (Figure 4) and cleaved con-
glomerate, sandstone, and siltstone blocks (Figure 5) were
thrust-imbricated into NEE-trending dismembered slices
(Figures 2(c) and 2(d)). Volumes of basaltic and gabbroic
fragments embraced in the cleaved sandstones (Figures 4(b)
and 4(c)). The basaltic fragments that are close to the fault
are strongly cleaved (Figure 4(c)). Usually, chert fragments
are imbricated into basalts or occurred between basalts and
sediments (Figures 2(c), 2(d), and 4(d)). The EW-trending
granite fragments are located along faults (Figure 2). Sedi-
mentary blocks are in fault contact with basalts
(Figures 2(c) and 2(d)). The southwestern part sedimentary
rocks are EW trending with S-dipping beddings and cleav-
ages (Figures 2(b), 2(f), and 2(g)). However, the sedimentary
blocks in the northern parts of the complex are EW-trending
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with vertical N-dipping beddings and cleavages (Figures 2(b),
2(h), and 2(i)).

Some turbidites that consist of conglomerates, sand-
stones, siltstones, and mudstones can be well recognized in
the outcrop (Figure 5). They are composed of conglomer-
ate/gravel-bearing sandstones in the bottom (A layer,
Figures 5(a) and 5(d)), followed by sandstones with a hori-

zontal bedding (B layer, Figures 5(a) and 5(b)), local cross-
bedding (C layer, Figure 5(b)), and finally tuff siltstones,
mudstones, and siliceous mudstones (D layer; Figures 5(b)
and 5(c)). In general, siltstones and mudstones are highly
cleaved (Figure 5(a)).

Thirteen basalts and six gabbros were picked (Figure 2)
for geochemical studies. Two basalts and two gabbros were
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Figure 1: (a) Tectonic map of Altaids and adjacent areas [2, 3] showing that the Beishan orogen is located at the southern Altaids in (b).
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selected for Sr and Nd isotope analyses. Gabbro samples are
grey and slightly altered (Figures 4(c) and 4(e)). They consist
of medium-grained plagioclase (~50%) and pyroxene
(~25%), as well as minor olivine and Fe–Ti oxides
(Figure 4(e)). The basalts show variable degrees of chloritiza-
tion, epidotization, and/or carbonation (Figures 4(a) and

4(b)). Locally, they have circular to elliptical amygdaloidal
structures. The basalts consist of plagioclase, pyroxene, and
minor olivine and a small amount of pyroxene phenocryst
in some samples (Figure 4(f)).

As described above, the sedimentary blocks are com-
posed of conglomerates, sandstones, siltstones, and
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mudstones. The conglomerates mainly consist of angular
basalts, rhyolites, cherts, and minor quartz fragments
(Figure 5(d)). The coarse-grained sandstones comprise
angular plagioclase and basalt lithic fragments (e.g., sample
21T51, Figure 5(e)). The sandstones comprise of angular
quartz, plagioclase, and minor lithic fragments (e.g., samples
21T50 and 21T55). The siltstones consist of quartz and tuff/
clay (sample 21T56, Figure 5(f)).

4. Geochemical Results

4.1. Major and Trace Elements. The analysis results are pre-
sented in Table 1. The samples 21T48-7 and 21T57-5 are too
altered (LOI > 5%), and we have excluded them from the
dataset. These rocks plot tholeiitic basalt as shown in
Figure 6. The compositions of these mafic samples are
slightly correlated (Supplementary figure 2).

Eleven basalt samples have a relatively wide content of
SiO2 (46.5–54.3wt. %), Al2O3 (12.8–15.1wt. %), CaO (8.2–
15.9wt. %), MgO (3.1–6.9wt. %), and Mg# values of 43–61.
These basalts exhibit relatively moderate to high contents
of TiO2 (1.6–3.3wt. %). They have a wide range of Cr (10–
280 ppm) and Ni (6.6–62.3 ppm) contents. The basalts are
slightly enriched in LREEs (ðLa/YbÞN = 1:2 – 2:2) and have
slightly negative Eu anomalies (Eu∗ = 0:8 – 1:0) ([47],
Figure 7(a)). The basalts can be divided into two distinct
groups: one group has slight depletions of Nb and Ta (Th/

Nb PM = 1:08 − 2:38) (black lines in Figure 7(b)) whereas
another group shows depletions of Th relative to Nb and
Ta (Th/NbPM = 0:86 − 0:96) (red lines in Figure 7(b)).

Six gabbro samples have SiO2 contents of 46.9 to 52.4wt.
%, and TiO2 contents of 2.0 to 2.6wt. %. They are character-
ized by Al2O3 ranging from 14.2 to 16.4wt. %, CaO ranging
from 7.3 to 9.3wt. %, and MgO ranging from 4.3 to 4.5wt. %
(Mg# = 46 − 63), and K2O +Na2O ranging from 3.4 to
5.3wt. %. The gabbro samples have Cr and Ni contents of
70–210 ppm and 32–64 ppm. They show slight enrichment
in LREEs (ðLa/YbÞN = 1:7 – 2:7) and weak Eu anomalies
(Eu∗ = 0:9 – 1:0) in the chondrite-normalized REE diagram
([48]; Figure 7(c)). The gabbro samples also exhibit two
distinct groups [46]: one group shows slight depletions of
Nb and Ta (Th/NbPM = 1:45 − 1:61) (black lines in
Figure 7(d)), whereas another group shows depletion pat-
terns (Th/NbPM = 0:85 − 0:96) (red lines in Figure 7(d)).

4.2. Sr–Nd Isotopes. The results of Sr and Nd isotopic analy-
ses are summarized in Table 2 and shown in Figure 8. Two
basalt samples have (87Sr/86Sr)i values of 0.704748 and
0.704859 and εNd (t) values of +6.2 and +6.3, respectively.
The two gabbro samples have (87Sr/86Sr)i values of
0.705602 and 0.705863 and εNd (t) values of +5.8 and +6.0.
Because the samples are slightly altered by the seawater
(e.g., chloritization, epidotization), the Sr isotopes moved
along the trend of the seawater alteration (Figure 8) [49].
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5. Zircon U–Pb Ages

Overall, 393 analyses of zircons from four sedimentary sam-
ples yielded 374 concordant ages (concordance% > 90% or
<110%). Different methods are suggested to constrain the
MDA of sedimentary rocks in international community

[26, 27], including the youngest one, the three youngest
grains, and the youngest peak. Here, we adopt the weight
mean age of the three youngest grains if they overlap at a
2σ uncertainty or the youngest one if the weight mean age
of the three youngest zircons far exceed the 2σ uncertainty
(MWSD is poor).
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Figure 4: Photograph and photomicrographs of the oceanic and granite blocks: (a) pillow basalt; (b) basalt fragment in foliated sandstone
matrix; (c) basalt block in sandstone; (d) chert block in basalt; (e) photomicrograph of gabbro which mainly consists of pyroxene and
plagioclase; (f) photomicrograph of basalts; the circular structure is amygdaloidal. Pl: plagioclase; Px: pyroxene.

6 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2023/1988410/5789735/1988410.pdf
by guest
on 02 June 2023



5.1. Sample 21T50. The zircons of the sample 21T50 are
euhedral, and some are slightly rounded. They range in
length of 50–120μm with length/width ratios of 1.2–2.0,
with oscillatory zones (Figure 9(a)). They have Th/U values
of 0.18–2.49. One hundred grains were analysed, and ninety
grains yield concordant ages with a multipeak spectrum and
peaks ca. 268Ma (~43.3%) and ca. 390Ma (~40.1%) and
some Precambrian ages scattered at 615Ma, 878Ma,
1246Ma, and 2144Ma (Figure 9(b)). The youngest three
zircons (222 ± 5Ma, 235 ± 3Ma, and 235 ± 5Ma) yield a
weight mean age of 232 ± 16Ma (Figure 9(a)); however,
the MWSD is poor (MWSD = 10), so we suggest that the
MDA of the sandstone is the youngest zircon gain
(222Ma).

5.2. Sample 21T55. Zircons from sample 21T55 in the eastern
part of the Houhongquan ophiolitic mélange are euhedral and
are 50–150μm long. They display oscillatory zonation
(Figure 9(c)) and Th/U ratios of 0.09–2.61. Ninety-nine grains
of 100 analysed grains yielded concordant ages with a multi-
peak spectrum. The two major peaks are at ca. 262Ma
(~63.3% of the total) and ca. 398Ma (~29.3%) (Figures 9(c)
and 9(d)). There are eight Precambrian zircon ages ranging
from 902Ma to 2484Ma (~7.4%). The three youngest zircons
yield 233:8 ± 2:3Ma (MSWD= 0:39) (Figure 9(c)), indicating
the MDA of the sandstone.

5.3. Sample 21T51. Zircons from sample 21T51 have irregu-
lar lengths of 50–120μm and clear oscillatory zoning
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Figure 5: Photograph and photomicrographs of the sedimentary matrix: (a–c) photographs of turbidite; the siltstone and mudstone are
cleaved; (d) conglomerate; (e, f) photomicrographs of lithic sandstone, siltstone, and mudstone. Q: quartz; Pl: plagioclase; L: lithic fragment.

7Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2023/1988410/5789735/1988410.pdf
by guest
on 02 June 2023



T
a
bl
e
1:
G
eo
ch
em

ic
al
re
su
lts

of
ba
sa
lts

an
d
ga
bb
ro

fr
om

th
e
H
ou

ho
ng
qu

an
op

hi
ol
it
ic
m
él
an
ge
.

Sa
m
pl
e
N
o.

21
T
48
-2

21
T
48
-3

21
T
48
-7

21
T
58
-2

21
T
58
-3

21
T
59
-2

21
T
61
-3

21
T
64
-2

21
T
65
-2

21
T
65
-3

21
T
48
-5

21
T
57
-5

21
T
61
-2

21
T
53
-2

21
T
53
-3

21
T
57
-2

21
T
57
-3

21
T
60
-2

21
T
60
-3

R
oc
k
ty
pe

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

G
ab
br
o

G
ab
br
o

G
ab
br
o

G
ab
br
o

G
ab
br
o

G
ab
br
o

Si
O
2

50
.3
9

48
.4
2

50
.6
1

50
.9
4

47
.8
5

47
.9
0

54
.2
5

50
.5
6

46
.5
1

49
.1
4

48
.2
8

47
.1
7

50
.9
2

46
.9
1

47
.2
4

50
.6
1

52
.4
1

49
.8
4

50
.5
8

T
iO

2
1.
88

1.
97

1.
62

2.
19

2.
20

1.
59

2.
39

3.
28

1.
55

1.
62

2.
30

1.
87

2.
50

2.
05

2.
34

2.
03

2.
05

2.
57

2.
43

A
l 2
O
3

14
.2
2

14
.9
0

12
.5
8

14
.4
2

13
.7
6

15
.1
2

13
.3
6

12
.8
4

14
.3
6

14
.4
2

14
.4
0

15
.7
0

13
.9
3

16
.2
8

15
.8
2

16
.4
4

15
.9
4

14
.2
4

14
.4
2

C
aO

9.
09

10
.3
0

11
.3
5

8.
78

8.
36

11
.4
0

9.
47

8.
21

15
.9
0

11
.0
5

10
.1
0

9.
25

10
.4
5

9.
25

9.
29

8.
54

7.
88

7.
34

8.
85

Fe
2O

3T
10
.7
0

9.
95

9.
91

10
.9
6

14
.2
7

10
.0
8

9.
51

12
.3
1

9.
59

10
.3
5

12
.1
1

8.
45

11
.9
9

10
.4
3

10
.6
7

8.
93

8.
28

12
.4
4

11
.5
7

M
nO

0.
17

0.
19

0.
14

0.
18

0.
18

0.
19

0.
26

0.
14

0.
16

0.
18

0.
22

0.
45

0.
23

0.
18

0.
18

0.
21

0.
23

0.
37

0.
21

M
gO

6.
92

6.
31

4.
13

6.
30

6.
42

6.
84

3.
09

4.
65

3.
69

4.
25

6.
14

4.
86

4.
07

6.
48

6.
30

6.
28

6.
04

5.
31

4.
28

K
2O

0.
43

0.
50

0.
15

0.
63

0.
72

0.
49

0.
19

0.
07

0.
06

0.
14

0.
94

0.
39

0.
14

0.
36

0.
65

0.
55

0.
66

0.
10

0.
11

N
a 2
O

2.
44

3.
54

4.
16

3.
61

3.
98

2.
81

3.
81

4.
96

3.
28

4.
83

2.
81

5.
19

3.
74

3.
89

3.
72

2.
87

2.
91

5.
23

5.
23

P
2O

5
0.
25

0.
24

0.
24

0.
25

0.
23

0.
19

0.
29

0.
53

0.
22

0.
24

0.
28

0.
32

0.
30

0.
29

0.
30

0.
33

0.
34

0.
39

0.
46

LO
I

3.
62

4.
09

5.
31

2.
15

2.
55

3.
14

3.
08

2.
49

4.
73

3.
81

2.
75

6.
42

2.
05

4.
54

3.
38

3.
75

3.
05

2.
40

2.
06

T
ot
al

10
0.
11

10
0.
41

10
0.
20

10
0.
41

10
0.
52

99
.7
5

99
.7
0

10
0.
04

10
0.
05

10
0.
03

10
0.
33

10
0.
07

10
0.
32

10
0.
66

99
.8
9

10
0.
54

99
.7
9

10
0.
23

10
0.
20

M
g#

60
.1
1

59
.6
4

49
.2
7

57
.2
6

51
.1
8

61
.2
6

43
.0
9

46
.8
2

47
.2
8

48
.9
0

54
.1
6

57
.2
7

44
.1
7

59
.1
5

57
.9
1

62
.1
1

62
.9
6

49
.8
7

46
.3
0

Sc
41
.9

42
.8

34
.8

42
.8

42
.5

39
.6

42
.0

33
.4

30
.5

31
.7

45
.7

29
.8

43
.7

36
.7

36
.1

32
.4

30
.2

38
.6

32
.9

V
33
0

36
1

29
9

35
5

37
7

28
5

37
2

36
2

31
8

30
3

36
4

25
1

39
7

29
2

33
4

27
0

26
6

33
3

34
1

C
r

17
0

19
0

19
0

12
0

12
0

28
0

40
10

18
0

18
0

10
0

17
0

40
21
0

19
0

18
0

17
0

11
0

70

C
o

37
.5

38
.8

27
.9

34
.6

39
.4

42
.6

39
.5

19
.0

31
.5

29
.6

41
.6

35
.0

39
.1

35
.2

32
.3

31
.1

30
.4

35
.4

31
.3

N
i

57
.1

58
.8

45
.6

45
.4

38
.2

56
.7

23
.3

6.
6

62
.3

55
.2

33
.6

62
.4

23
.8

63
.6

55
.1

58
.3

59
.0

31
.9

31
.8

C
u

33
.5

37
.2

27
.7

24
.8

27
.3

10
.2

59
.5

15
.0

33
.8

35
.7

38
.4

39
.5

63
.1

44
.4

50
.4

97
.0

60
.9

25
.3

37
.0

Z
n

86
93

52
98

10
2

85
98

57
62

71
97

70
12
0

80
78

73
70

87
97

G
a

20
.3

21
.5

13
.1
0

20
.1

19
.2
0

18
.4
0

20
.2

26
.8

22
.6

17
.1
5

20
.3

18
.4
0

21
.5

20
.8

20
.5

21
.1

20
.3

21
.4

24
.3

R
b

4.
9

6.
2

1.
5

16
.6

18
.7

11
.1

1.
0

0.
6

0.
7

1.
6

17
.1

9.
1

0.
6

4.
2

6.
9

5.
2

6.
7

0.
9

2.
1

Sr
29
5

20
8

13
8.
0

23
1

21
5

18
1.
0

28
5

17
1.
0

12
0.
5

18
9.
5

33
6

27
6

26
8

19
5.
0

15
4.
5

28
8

29
7

17
8.
0

10
5.
5

Y
37
.4

36
.7

31
.6

43
.2

42
.6

31
.5

41
.4

95
.8

30
.0

32
.4

40
.3

31
.2

43
.3

33
.3

34
.3

34
.3

35
.1

49
.5

58
.8

N
b

5.
3

5.
3

4.
5

3.
8

3.
7

3.
3

4.
6

7.
8

5.
1

5.
3

4.
6

7.
2

4.
8

7.
0

7.
4

7.
8

8.
0

5.
8

7.
1

C
s

0.
26

0.
26

0.
28

0.
57

0.
68

0.
47

0.
08

0.
05

0.
14

0.
13

0.
54

0.
43

0.
04

0.
21

0.
22

0.
38

0.
38

0.
04

0.
20

B
a

85
.4

71
.0

33
.3

37
.2

44
.2

69
.4

67
.7

17
.6

40
.6

27
.3

13
0.
0

29
1

33
.3

43
.8

56
.9

75
.8

81
.2

21
.8

10
5.
5

La
8.
4

8.
3

7.
2

6.
6

6.
7

5.
2

8.
0

19
.2

8.
8

9.
3

7.
5

8.
9

8.
0

10
.3

10
.3

11
.8

11
.8

10
.5

14
.5

C
e

23
.3

23
.5

20
.4

20
.2

20
.4

15
.4

23
.4

50
.5

22
.6

23
.4

24
.4

26
.0

24
.3

27
.4

27
.9

30
.3

30
.9

30
.2

43
.7

P
r

3.
57

3.
58

2.
99

3.
37

3.
27

2.
51

3.
75

7.
64

3.
28

3.
44

3.
63

3.
87

3.
94

4.
00

4.
10

4.
37

4.
48

4.
68

5.
83

N
d

17
.5

17
.2

14
.7

17
.7

17
.2

12
.9

19
.2

39
.1

15
.4

16
.3

18
.3

18
.4

20
.0

18
.5

19
.2

20
.4

20
.8

23
.4

28
.4

Sm
5.
01

4.
99

4.
17

5.
47

5.
31

3.
97

5.
55

11
.7
0

4.
24

4.
52

5.
28

4.
75

5.
98

4.
94

5.
13

5.
27

5.
36

6.
82

8.
11

E
u

1.
85

1.
82

1.
50

2.
05

2.
01

1.
48

2.
08

3.
56

1.
50

1.
53

1.
99

1.
56

2.
16

1.
79

1.
83

1.
90

1.
87

2.
38

2.
68

G
d

6.
67

6.
65

5.
51

7.
42

7.
35

5.
42

7.
28

15
.6
0

5.
47

5.
62

7.
12

5.
82

7.
82

6.
19

6.
36

6.
28

6.
44

8.
55

10
.2
5

T
b

1.
08

1.
07

0.
91

1.
24

1.
21

0.
87

1.
16

2.
56

0.
87

0.
91

1.
15

0.
94

1.
24

0.
99

1.
00

1.
00

1.
00

1.
38

1.
64

D
y

6.
93

6.
83

5.
71

7.
78

7.
92

5.
78

7.
74

16
.7
0

5.
55

5.
87

7.
53

5.
75

8.
06

6.
24

6.
38

6.
25

6.
38

8.
86

10
.5
0

H
o

1.
39

1.
39

1.
16

1.
58

1.
61

1.
17

1.
55

3.
45

1.
13

1.
18

1.
51

1.
17

1.
63

1.
24

1.
29

1.
27

1.
28

1.
81

2.
13

E
r

3.
93

3.
96

3.
33

4.
43

4.
55

3.
27

4.
39

9.
91

3.
23

3.
31

4.
13

3.
26

4.
54

3.
48

3.
55

3.
61

3.
53

5.
12

6.
00

8 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2023/1988410/5789735/1988410.pdf
by guest
on 02 June 2023



T
a
bl
e
1:
C
on

ti
nu

ed
.

Sa
m
pl
e
N
o.

21
T
48
-2

21
T
48
-3

21
T
48
-7

21
T
58
-2

21
T
58
-3

21
T
59
-2

21
T
61
-3

21
T
64
-2

21
T
65
-2

21
T
65
-3

21
T
48
-5

21
T
57
-5

21
T
61
-2

21
T
53
-2

21
T
53
-3

21
T
57
-2

21
T
57
-3

21
T
60
-2

21
T
60
-3

R
oc
k
ty
pe

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

B
as
al
t

G
ab
br
o

G
ab
br
o

G
ab
br
o

G
ab
br
o

G
ab
br
o

G
ab
br
o

T
m

0.
59

0.
58

0.
49

0.
66

0.
68

0.
49

0.
65

1.
49

0.
47

0.
50

0.
63

0.
48

0.
68

0.
52

0.
53

0.
53

0.
53

0.
75

0.
90

Y
b

3.
54

3.
49

3.
02

3.
89

4.
09

2.
95

3.
90

9.
10

2.
89

3.
01

3.
74

2.
90

4.
05

3.
17

3.
19

3.
26

3.
20

4.
56

5.
33

Lu
0.
56

0.
55

0.
47

0.
62

0.
66

0.
48

0.
64

1.
46

0.
46

0.
48

0.
61

0.
45

0.
65

0.
50

0.
52

0.
51

0.
50

0.
72

0.
86

Z
r

17
8

17
9

14
5

16
4

16
6

12
5

19
1

39
1

14
8

15
3

19
4

19
4

19
8

19
3

20
0

21
6

22
3

22
9

27
2

H
f

4.
2

4.
2

3.
4

4.
2

4.
1

3.
2

4.
6

9.
4

3.
6

3.
7

4.
6

4.
4

4.
8

4.
2

4.
5

4.
8

4.
8

5.
3

6.
4

T
a

0.
39

0.
39

0.
32

0.
26

0.
26

0.
23

0.
31

0.
56

0.
32

0.
35

0.
37

0.
48

0.
32

0.
49

0.
48

0.
57

0.
54

0.
41

0.
46

P
b

1.
9

2.
0

1.
8

1.
6

2.
0

1.
6

2.
2

3.
4

3.
4

2.
4

1.
9

2.
0

1.
0

1.
7

1.
8

1.
8

2.
1

1.
4

1.
1

T
h

0.
93

0.
90

0.
80

0.
76

0.
77

0.
56

0.
59

2.
21

1.
00

1.
00

0.
48

0.
77

0.
55

0.
74

0.
76

0.
88

0.
91

1.
00

1.
36

U
0.
27

0.
27

0.
20

0.
75

0.
31

0.
22

0.
51

0.
94

0.
22

0.
18

0.
24

0.
50

0.
22

0.
34

0.
30

0.
33

0.
55

0.
54

0.
69

M
g#

60
.1

59
.6

49
.3

57
.3

51
.2

61
.3

43
.1

46
.8

47
.3

48
.9

54
.2

57
.3

44
.2

59
.1

57
.9

62
.1

63
.0

49
.9

46
.3

M
g#

=
ðF
e 2
O

3T
∗
0:
89
98
/7
1:
85

∗
ð1

−
0:
15
ÞÞ
∗
10
0;
Eu

∗
=
Eu

N
/S
Q
RT

ðSm
N
∗
G
dN

Þ.

9Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2023/1988410/5789735/1988410.pdf
by guest
on 02 June 2023



0

1

2

3

4

5

42 47 52 57 62
SiO2

Fe
O

t/M
gO

Basalt
Alk-basalt Foidite

And/bas-And

Trachy
And

Tephri Pbonolite
Rhyolite+Dacite

Alkali Rhyolite

Trachyte

Phonolite

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100
Nb/Y

Zr
/T

iO
2 ⁎

 0.
00

01 Tholeiitic

Calc-alkaline

(a)

Basalt
Gabbro

(b)
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(Figure 9(e)). The analysed zircons show Th/U ratios of
0.36–1.49.87 concordant grains (~96%) displaying two
major peaks at ca. 270Ma (~86.7%) and ca. 402Ma
(~11.1%). Only two Precambrian zircons have 740Ma and
1040Ma, respectively (Figures 9(e) and 9(f)). The youngest
three zircon ages yield 263:5 ± 2:8Ma (MSWD = 0:001)
(Figure 9(e)), which represent the MDA for the sandstone.

5.4. Sample 21T56. Zircons from sample 21T56 are euhedral
which are 80–120μm long (length/width = 1 – 1:5), with
sharp oscillatory zones (Figure 9(g)). Their Th/U values vary
from 0.60 to 1.70. Ninety-eight concordant analysed grains
(98%) have a single peak at ca. 270Ma (~99% of the total)
(Figure 9(h)). The three youngest zircons yield 263:4 ± 2:5
Ma (MSWD = 0:06) (Figure 9(g)), which is the MDA of
the sandstone matrix.

6. Discussion

6.1. Tectonic Setting of the Oceanic Components. The basalt
and gabbro are tholeiitic magma with relatively high εNd
(t) (+5.8–+6.3 and low (87Sr/86Sr)i (0.704748–0.70563)
(Figure 8) ([45, 50], this study), suggesting that they were
sourced from the depleted mantle. However, their geochem-
ical data also indicate that these mafic blocks are derived
from the different types or ages of oceanic crust. The compo-
sitions of the samples are uncorrelated, suggesting they have
different sources (supplementary figure 2). Their slight
enrichment of LREE (Figures 7(a) and 7(c)) is like that of
E-MOR- and SSZ-type ophiolites. They also display back-
arc basin basalts (BABB) and N-MORB geochemical
signatures with slight depletions of Nb-Ta compared to the
Th and La (Th/NbPM = 1:08 − 2:38) and depletions of Th
relative to Nb and Ta (Th/NbPM = 0:86 − 0:96)
(Figures 7(b) and 7(d)) [51, 52]. They are also plotted in

the N-MORB/BAB MORB realm on the V–Ti/1000
diagram ([53], Figure 10(a)). On the Hf-Th-Ta diagram
([54], Figure 10(b)), they are plotted in the N-MORB field
and the arc-related basalt field, which coincide with the
Lau Basin and Mariana Trough. All of these suggest that
mafic fragments are composed of N-MOR- and SSZ-type
ophiolites.

6.2. Age of the Houhongquan Ophiolitic Mélange. Previous
works have tried to place a constraint on the age of the Hou-
hongquan ophiolitic mélange, but none of them have been
successful. Moreover, these rocks were considered coherent
strata instead of being part of the tectonic mélange, and their
ages were constrained by the felsic rocks around the Hou-
hongquan ophiolitic mélange according to stratigraphic cor-
relations of the regional sedimentary rocks [45, 50, 55]. For
example, the rhyolite and the dacite south to the mélange
have zircon ages of 291:1 ± 2:6Ma and 289:5 ± 2:3Ma [50],
and the calcareous sandstone has an age of 275:8 ± 1:4Ma
in the Houhongquan ophiolitic mélange [45].

The detrital zircon age of the sedimentary rocks can pro-
vide a vital constraint on the MDA [27, 28]. The interval
time between MDA and the true depositional age can be
very short in the arc-related basins and accretionary prisms
[26]. The clasts of conglomerates are mainly the angular
chert, rhyolite, and basalt (Figure 5(d)), the coarse-grained
sandstone contains the angular/broken basalt and rhyolite
fragments (Figure 5(e)), and most of the zircons are euhedral
and weak/not rounded (Figure 9), indicating they have prox-
imal sources and deposited in the subduction zone [26, 56].
Therefore, the MDA of detrital zircons can represent the
deposition time of these rocks [26]. The sandstone samples
(21T50 and 21T55) yielded Late Triassic MDAs of 222 ± 5
Ma and 233:8 ± 2:3Ma, respectively (Figures 9(a) and
9(b)). The sandstone samples (21T51 and 21T56) yielded
Middle Permian MDAs of 263:5 ± 2:8Ma and 263:4 ± 2:5
Ma, respectively (Figures 8(c) and 8(d)). In addition, Guo
et al. [45] reported a calcareous sandstone in the Houhong-
quan ophiolitic mélange, which has a MDA of 275:8 ± 1:4
Ma. All the results for each sample indicate that the ages
of sedimentary blocks range from Middle Permian to Late
Triassic. Previous geochronological studies for the gabbro
of the Liuyuan-Houhongquan mafic-sedimentary rock belt
revealed that they have ages of 270Ma to 286Ma [9, 13,
44] (Supplementary Table 2, Figure 11(a)). Some
sedimentary blocks with MDAs of 234Ma, 268Ma, and
285Ma (Figure 11(a)) were also reported in the Liuyuan-
Houhongquan mafic-sedimentary rock belt [9]. Thus, the
Liuyuan–Houhongquan Ocean still existed at 222Ma. This
conclusion is consistent with the rift model in which the
Liuyuan basin closed during 230–227Ma [9] and the back-
arc basin model in which the Liuyuan back-arc basin
closed until 217Ma [34]. Therefore, no matter the
Liuyuan–Houhongquan oceanic basin is a rift basin, a
back-arc basin, or the Paleo-Asian Ocean, it did not closed
until ca. 222Ma.

6.3. Provenance of the Matrix. As discussed above, the com-
ponents and petrology of the sandstones suggest they were
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sourced from the nearby arc [26, 56]. The Houhongquan
ophiolitic mélange is just positioned between the Huaniushan
arc in the north and the Shibanshan arc in the south
(Figure 1(b)). Previous studies revealed that the Hua-

niushan arc is a Japan-type arc during Early Ordovician-
Permian, and the Shibanshan arc is an Early Devonian-
Permian continental margin arc on the Dunhuang block
[16, 35, 41]. They mainly comprise Triassic–Ordovician
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arc-related basalts, andesites, rhyolites, and granitoids
(Figures 2, 11(b) and 11(c); Supplementary Table 2) [18,
19, 22, 30, 41] and some Precambrian gneisses and schists
[10, 20, 39]. Usually, the sedimentary rocks of the two
arcs contain voluminous Precambrian zircon grains [19,
20, 31, 38, 57] (Figures 12(d), 12(f)–12(h)).

Our studies reveal that the sandstones (21T50, 21T51,
21T55, and 21T56) define two groups of age patterns. (1)
The sedimentary samples (21T51 and 21T56) show Middle
Permian MDAs with a single peak of ca. 274Ma and a small
amount of ages ranging from 362Ma to 447Ma (9 grains,
~5%) and minor Precambrian ages (2 grains, ~1%). These
characteristics are like the detrital zircon age patterns of
the sedimentary rock in intraoceanic arc setting, e.g., the
Char and Zharma zones of eastern Kazakhstan [58], as well
as the sediments of the Talkeetna arc in Alaska [59], of the
Outer Melanesian Arc in the Fiji Islands behind the Tonga
arc [60] and of the Izu-Bonin-Marianas arc [61]. These age
compositions are different to the Permian sandstones in
the Huaniushan arc and the Shibanshan arc (Figures 12(c),
12(e)–12(g)) but are consistent with two samples in the
northern Shibanshan arc (Figure 12(d)). The detrital zircon
age patterns of these sedimentary rocks suggest an intraocea-
nic arc in the Liuyuan–Houhongquan Ocean, which do not
contain Precambrian zircon grains. Furthermore, the mafic
rocks of the Houhongquan ophiolitic mélange plot in the
same fields of Mariana arc and Lau Basin as shown in
Figure 10(b), also suggesting that they deposited in the
intraoceanic subduction zone. (2) Samples 21T50 and
21T55 have Triassic MDAs. Their detrital zircon age spectra
are similar to the magmatic and sedimentary records from
the Huaniushan arc and the Shibanshan arc with dominant
age peaks from Triassic to Devonian and some scattered

Precambrian ages (Figures 12(c), 12(e)–12(g)). These two
sedimentary samples (21T50 and 21T55) were probably
sourced from either the Huaniushan arc or the Shibanshan
arc.

In summary, an independent intraoceanic arc was the pri-
mary source for the Permian matrix of the Houhongquan
ophiolitic mélange. The Huaniushan arc or the Shibanshan
arcs were the provenances for the Triassic sandstone matrixes.

6.4. Tectonic Evolution and Implications for the Altaids. Our
geological mapping reveals that the mafic rocks are thrust-
imbricated within the Houhongquan ophiolitic mélange
complex. The basalts and gabbros demonstrate the N-
MOR- and SSZ-type ophiolitic geochemical signatures. The
chert blocks contain radiolarian and sponge ancient needles
([43], Supplement Figure 1). All the data suggest that they
are the relic fragments of the ophiolite [62, 63]. In
addition, zircon U–Pb ages reveal oceanic crustal blocks in
the Liuyuan accretionary complex age ranging from
1071Ma to 270Ma, as previously described (Figure 11(a)).
The sedimentary and metamorphic sedimentary blocks
have the MDAs that range from 457Ma to 222Ma ([9, 64],
this study).

In the Eastern Tianshan to Beishan orogen, no consen-
sus regarding the closure timing of the Paleo-Asian Ocean
emerged, to date, the proposed timing ranging from Devo-
nian to Triassic. The main models proposed by different
authors include (1) Devonian [10, 65], (2) Carboniferous
[8, 9, 11], (3) Latest Carboniferous–Early Permian [66], (4)
Late Permian [3, 16], and (5) Late Triassic [41, 67–70].
Our new geochronological results of the Houhongquan
ophiolitic mélange indicate that the Liuyuan-Houhongquan
Ocean was still subducting at ca. 222Ma.
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As discussed before, although geologists hold different
viewpoints on oceanic basin type of the Liuyuan–Houhong-
quan Ocean during the Permian to late Triassic, their compre-
hensive studies also suggest that the Liuyuan–Houhongquan
Ocean basin closed by the southward thrust and folded during
the Late Triassic. For example, (1) Wang et al. [9] suggest that
the Liuyuan rift basin closed during 230–227Ma, (2) Tian &
Xiao [34] suggest that the Liuyuan back-arc basin closed until
217Ma, and (3) the branch of the Paleo-Asian Ocean closed
posterior to the Late Triassic in the Eastern Tianshan–Beishan
region [69, 71].

In recent years, some lines of evidence have reported
the existence of the Paleo-Asian Ocean in the Late Triassic
in the Tianshan–Beishan orogens: (1) Late Triassic (ca.
234Ma) sedimentary matrix in the Kanguer mélange
[67]; (2) multiple sources before the Permian–Triassic, as
indicated by sedimentary rocks between the Dananhu and
Yamansu arcs [68]; (3) Middle to Late Triassic adakite-like,
arc-related granites and mafic plutons from eastern Tianshan
to Beishan orogen [9, 22, 34, 72–74]; (4) Mid–Late Trias-
sic eclogite facies metamorphic rocks and forearc sedimen-
tary rocks in the western Tianshan [14, 75–77]; (5)

(a) Oceanic fragments of Liuyuan complex (n = 19)

(b) MDAs of sedimentary matrices of Liuyuan complex (n = 14)
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tectonic SN-trending thrusting and folding occurred [9,
34]; and (6) tectonic relations also support that the oceanic
basins closed after ca. 232Ma [3, 15, 69, 71]. Combined with
previous data, we propose a new model for the eastern
Tianshan-Beishan orogen during Permian to Triassic.

(1) During Middle Permian, an intraoceanic arc developed
in the Liuyuan–Houhongquan Ocean and deposited
sandstone with Middle Permian MDAs and a single
peak of detrital zircon age (Figure 13(a)). The intrao-
ceanic subduction zone was amalgamated and welded
to the Shibanshan continental arc duringMiddle Perm-
ian to Late Triassic and led to the emplacement of these
intraoceanic arc-sourced sandstone blocks in the fore-
arc mélange [33, 34]

(2) During Late Triassic, the Ocean was not closed in the
eastern Tianshan and Beishan orogen (Figure 13(b)).
Moreover, at least two oceanic basins of the Paleo-
Asian Ocean existed, e.g., the Liuyuan–Houhong-
quan Ocean and the Kanguer Ocean [67, 73]

The Liuyuan–Houhongquan Ocean may be a limited
narrow ocean basin in the Late Triassic because the sand-
stone blocks in the Houhongquan ophiolitic mélange con-

tain a certain proportion of Precambrian zircons compared
to the Permian sandstones. The Kanguer Ocean is a limited
narrow ocean basin that cannot prevent material exchange
from the Dananhu and Yamansu arcs [67, 68, 70]. The
Liuyuan–Houhongquan Ocean subducted bidirectionally
below the Huaniushan arc and the Shibanshan arc, resulting
in voluminous arc-related magmatism: (1) in the Hua-
niushan arc, the 240–238Ma adakite-like granites [22], the
249–234Ma arc-related granites [72, 74], the calc–alkaline
228Ma mafic rocks [78], and the 225–217Ma I-type
granite-related A2-type high-fractionation orogenic granites
[22, 70]; (2) in the Shibanshan arc, the 241Ma arc-related
granite was also reported [19]. Combining with the Mid–
Late Triassic eclogites and forearc sedimentary rocks in
the Western Tianshan [14, 75, 77, 79], we conclude that the
Tarim Craton and Dunhuang block finally docked at the
Altaids at the Late Triassic.

7. Conclusions

(1) Geological mapping and field relationships indi-
cate that the Houhongquan ophiolitic mélange is
characterized by top-to-south thrusting with block-
in-matrix structure. The relics of the subducted

(a) Middle permian

(b) Late triassic
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Figure 13: Tectonic model of the eastern Tianshan and Beishan orogen in the Permian to Triassic. (a) In the Middle Permian, the Liuyuan–
Houhongquan Ocean remained open and subducted bidirectionally. The Liuyuan–Houhongquan Ocean is a multi-island ocean that
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oceanic plate contains the blocks of gabbro, pillow
basalt, massive basalt, and radiolarian cherts

(2) The basalts and gabbros in the Houhongquan ophioli-
tic mélange contain N-MOR- and SSZ-type ophiolite

(3) The MDAs of the sandstone blocks from the
Houhongquan ophiolitic mélange are 222 ± 5Ma,
233:8 ± 2:3Ma, 263:4 ± 2:5Ma, and 263:5 ± 2:8Ma,
respectively. These dating results indicate that the
Liuyuan–Houhongquan Ocean closed at ca. 222Ma

(4) The sandstone blocks from the Houhongquan
ophiolitic mélange display two types of detrital age
patterns. The Middle Permian MDA sandstones
have a single Middle Permian with a Devonian peak,
indicating an intraoceanic arc. However, the Late
Triassic MDA sandstones have multiple peaks and
contain Precambrian zircons, suggesting that they
were sourced from a continental arc. These results
indicated that the Liuyuan–Houhongquan Ocean
was a multi-island ocean in the Middle Permian and
that the intraoceanic arc docked on the Shibanshan
arc in the Late Triassic and terminated the Paleo-
Asian Ocean in this part of the southern Altaids
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