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Local behavior of solutions of quasilinear elliptic

equations with coefficients in Morrey spaces

P. ZAMBONI

Riassunto: In questa nota proviamo una disuguaglianza di Harnack per equazioni
quasilineari di tipo ellittico, estendendo i risultati contenuti in [6] e [5].

Abstract: In this paper we prove a Harnack inequality for some quasilinear el-
liptic equations, extending the results in [6] and [5].

1 – Introduction

In his work [6] J. Serrin extended the Harnack inequality to quasi-

linear equations of the form

(1.1) divA
(
x, u(x),∇u(x)

)
+ B

(
x, u(x),∇u(x)

)
= 0 .

In his paper Serrin assumes that the coefficients in the structure condi-

tions belong to appropriate Lp spaces. Precisely his assumptions are

(1.2)





a = constant

b(x), e(x) ∈ L
n/(p−1)

c(x) ∈ L
n/(1−ε)

d(x), f(x), g(x) ∈ L
n/(p−ε)
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where a, b, c, d, e, f and g are the coefficients in the structure conditions

given in (2.1) of the following section 2 and ε is a positive small number.

Recently Rakotoson and Ziemer in [5] somewhat improved the

above mentioned result by Serrin. Indeed in Theorem 3.12 of [5] a Har-

nack inequality is proved for equation

divA
(
x, u(x),∇u(x)

)
+ B

(
x, u(x),∇u(x)

)
= µ

under the following assumptions

(1.3)





a ∼= constant , c(x) ∈ L∞
loc

b(x) = d(x) = 0

e(x) ∈ L
n/(p−1+ε)

f(x) ∈ L
n/(p+ε)

+ L1,λ

g(x) ∈ L
n/(p+ε)

.

We wish to point out that, because of the form of the L∞ estimate

they get in Theorem 3.4, their constant is blowing up as the radius of

the ball, on which the inequality is considered, approaches zero. This in

particular makes it impossible to deduce Hölder continuity of the local

solution from Harnack inequality.

Our aim in this note is to extend the validity of the Harnack inequal-

ity in both papers [6] and [5] weakening the assumptions in [6] and [5] and

obtaining the very same conclusion as in Serrin, i.e. an inequality with

constant independent of the radius of the ball. This is done in Theorem 2

in the following section 4.

As an obvious consequence we obtain the local Hölder continuity of

solutions improving Theorem 3.7 in [5], Corollary 1 in [4] and our own

Theorem 3 in [7].

Essentially our hypotheses are done using everywhere the Morrey

space scale instead of the Lp spaces and it can be shown by examples

that in this scale they are optimal in order to have the boundedness of

the local solutions.

A comparison between our assumptions and the above recalled ones

can be found in Remark 1 at the end of this paper.

About the technique we tried to follow as closely as possible the by

now classical work [6], i.e. we will use the Moser’s iteration technique.
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Clearly, because of the lack of high integrability of our coefficients,

many modifications are needed, which are pointed in the proof of the

theorems below. In particular we have to use on a regular basis Adams

inequality (see Lemma 1 below) instead of Hölder plus Sobolev to estimate

products of coefficients times test functions. This we learnt from the

paper [5] and the later [4].

We did not give the details of the proof whenever it is essentially the

same as in Serrin only stressing the differences in treatment which lead

to the basic inequalities.

After this work was completed we heard by Professor Ziemer, whose

kindness we gratefully aknowledge, that G. Lieberman has recently ob-

tained a result similar to ours. In his work [3] G. Lieberman proves

L∞ estimate and Harnack principle for positive solutions of a quasilinear

second order equation. While the structure assumptions seem to be more

general, in some cases, than ours, the class of solutions he considers is

different. This because he is forced by the structure to assume a priori

the boundedness of the solutions. This, on the contrary, we prove in

Theorem 1 in this paper.

2 – Structure hypotheses and preliminary results

Let Ω be a bounded open subset of IRn. Let

A(x, u, ξ) : Ω × IR × IRn −→ IRn

and

B(x, u, ξ) : Ω × IR × IRn −→ IR

two continuous functions satisfying inequalities of the form

(2.1)





∣∣A(x, u, ξ)
∣∣ ≤ a|ξ|p−1 + b|u|p−1 + e

∣∣B(x, u, ξ)
∣∣ ≤ c|ξ|p−1 + d|u|p−1 + f

ξ · A(x, u, ξ) ≥ |ξ|p − d|u|p − g

for a.e. x ∈ Ω, ∀u ∈ IR, ∀ ξ ∈ IRn. Here p is a fixed number in ]1, n[, a

is a positive constant and the functions b(x), c(x), d(x), e(x), f(x) and
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g(x) are such that

(2.2)





b(x), e(x) ∈ L
p

p−1
,λ

c(x) ∈ Lp,λ

d(x), f(x), g(x) ∈ L1,λ

where λ = n − p + α, α > 0.

We recall that for q ∈ [1,+∞[, η ∈]0, n[, Lq,η = Lq,η(Ω) denotes the

classical Morrey space of the functions f ∈ Lq(Ω) such that

sup
x∈Ω
ρ>0

1

ρη

∫

B(x,ρ)∩Ω

∣∣f(y)
∣∣qdy = ‖f‖q

q,η;Ω < +∞

where B(x, ρ) is the ball centered at x with radius ρ (whenever x is not

relevant we will write Bρ).

In the following two lemmas are vital

Lemma 1 (Adams [1]). Let µ a nonnegative measure in IRn such

that for all x ∈ IRn and 0 < r < +∞, there is a constant M with the

property that µ
[
B(x, r)

] ≤ Mrλ, where λ =
s

p
(n − p), 1 < p < s < +∞

and p < n. If u ∈ C∞
0 (IRn) then

( ∫

IRn

|u|sdµ

) 1
s ≤ C M

1
s

( ∫

IRn

|∇u|pdx

) 1
p

where C = C(p, λ, n).

Lemma 2 (Poincaré, John-Nirenberg [2]). Let Br̃ ⊂ Rn, u(x) ∈
H1,p(Br̃) and suppose that for all Br ⊂ Br̃ there exists a constant K such

that

( ∫

Br

|∇u|pdx

)1/p

≤ Kr(n−p)/p .

Then there exist two positive constants p0 and C depending on K, p, n

such that

( ∫

Br̃

ep0udx

) ( ∫

Br̃

e−p0udx

)
≤ C|Br̃|2 .
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A function u(x) is said to be a local solution of (1.1) in Ω if u ∈
H1,p

loc (Ω) and

∫

Ω

{
A

(
x, u(x),∇u(x)

)∇ϕ(x)+B
(
x, u(x),∇u(x)

)
ϕ(x)

}
dx = 0(2.3)

∀ϕ ∈ C∞
0 (Ω) .

Using Young’s inequality and Lemma 1 it is immediately seen that

(2.3) is meaningful.

3 – Local boundedness of solutions

The purpose of this section is to show that weak solutions of equation

(1.1) are locally bounded.

Theorem 1. There exist a positive number r0, independent of u,

such that, if we assume that u(x) is a local solution of equation (1.1) in

Ω, that conditions (2.1) and (2.2) hold and that Br and B2r are balls with

the same center with B2r ⊂⊂ Ω, then for r ≤ r0 we have

‖u‖L∞(Br) ≤ Cr−n/p

{( ∫

B2r

|u|pdx

)1/p

+ hrn/p

}

where

h = (r
p−1

p
α‖e‖ p

p−1
,λ;B2r

+ rα‖f‖1,λ;B2r
)

1
p−1 + (rα‖g‖1,λ;B2r

)
1
p .

Proof. First we prove the theorem for the special case r = 1.

Set v = |u|+h, where h is a positive constant. From (2.1) we deduce

(3.1)





∣∣A(x, u, ξ)
∣∣ ≤ a|ξ|p−1 + b1|v|p−1

∣∣B(x, u, ξ)
∣∣ ≤ c|ξ|p−1 + d1|v|p−1

ξ · A(x, u, ξ) ≥ |ξ|p − d1|v|p

where b1 = b + h1−pe and d1 = d + h1−pf + h−pg.
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Thus, setting

h =
(‖e‖ p

p−1
,λ;B2

+ ‖f‖1,λ;B2

) 1
p−1 +

(‖g‖1,λ;B2

) 1
p

we have that the norms of b1 and d1 are bounded,

(3.2)

{ ‖b1‖ p
p−1

,λ;B2
≤ ‖b‖ p

p−1
,λ;B2

+ 1

‖d1‖1,λ;B2
≤ ‖d‖1,λ;B2

+ 2 .

For fixed numbers q ≥ 1 and 6 > h we consider the functions

F (v) =

{
vq if h ≤ v ≤ 6

q6q−1v − (q − 1)6q if 6 ≤ v

and

G(u) = signu
[
F (v)F ′(v)p−1 − qp−1hβ

]
, −∞ < u < +∞

where β is such that pq = p + β − 1.

As a test function in (2.3) we take

ϕ(x) = ηp(x)G(u)

where η(x) is a non negative smooth function with support in B2.

Substituting ϕ(x) in (2.3) and using the assumptions (3.1) we obtain,

as in [6],

(3.3)

∫

B2

ηp|∇w|pdx ≤ ap

∫

B2

∣∣(∇η)w
∣∣∣∣η(∇w)

∣∣p−1
dx+

+ qp−1p

∫

B2

b1

∣∣(∇η)w
∣∣|ηw|p−1dx+

+

∫

B2

c|ηw|
∣∣η(∇w)

∣∣p−1
dx + (1 + p)qp−1

∫

B2

d1|ηw|pdx ,

where w = w(x) = F (v).
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We simplify (3.3) using Young’s inequality

abp−1 ≤ 1

p
ε(1−p)ap +

(
1 − 1

p

)
εbp , ∀ ε > 0

obtaining

(3.5)

∫

B2

ηp|∇w|pdx ≤ C1(p + 1)qp

{ ∫

B2

∣∣w(∇η)
∣∣pdx +

∫

B2

|ηw|pdµ

}

where C1 is a positive constant depending only on p and a and µ denotes

the measure defined by

dµ = (b
p

p−1
1 + cp + d1)dx .

Noting that for 0 < ρ < +∞ we have

µ[Bρ] ≤ Mρλ

where

M = ‖b1‖p/(p−1)
p/(p−1),λ;B2

+ ‖c‖p
p,λ,B2

+ ‖d1‖1,λ;B2

using Lemma 1 we obtain

(3.6)

∫

B2

|ηw|pdµ ≤
( ∫

B2

|ηw|sdµ

)p/s

µ(B2)
1−p/s ≤

≤ C2(p, λ, n)M

{ ∫

B2

∣∣(∇η)w
∣∣pdx +

∫

B2

∣∣(∇w)η
∣∣pdx

}

where s is defined by (n − p)s/p = λ.

Substituting (3.6) in (3.5) and assuming that

(3.7) C1(p + 1)C2M < 1

we obtain ∥∥η(∇w)
∥∥

L
p
(B2)

≤ C3(p, a)q
∥∥w(∇η)

∥∥
L

p
(B2)
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and by Sobolev inequality we have

(3.8) ‖ηw‖
L

p∗
(B2)

≤ C4q
∥∥w(∇η)

∥∥
L

p
(B2)

where C4 is a constant depending only on p, a and n.

Now proceeding exactly as in [6] pp. 258-259, by the familiar iteration

procedure, we obtain

‖u‖L∞(B1) ≤ C
{‖u‖L

p
(B2) + h

}
.

This proves the theorem in the special case r = 1. The general case

r %= 1 is obtained by dilation.

We note that, in this case, condition (3.7) yields the number r0 in

the statement of the theorem, this is easily seen having in mind the way

in which the Lp,λ norms in the “constant” M vary under dilation.

4 – Harnack’s inequality and the Hölder continuity of solutions

Theorem 2. There exists a number r0 > 0, independent of u, such

that if assume that u(x) is a non negative local solution of equation (1.1)

and that conditions (2.1) and (2.2) hold, then for r ≤ r0 and B3r ⊂⊂ Ω

we have

max
Br

u(x) ≤ C
{

min
Br

u(x) + h
}

where

C = C
(
p, n, a, λ, r0, ‖b‖p/(p−1),λ;B3r

, ‖c‖p,λ;B3r
, ‖d‖1,λ;B3r

)

h =
(
r

p−1
p

α‖e‖ p
p−1

,λ;B3r
+ rα‖f‖1,λ;B3r

) 1
p−1 +

(
rα‖g‖1,λ;B3r

) 1
p .

Proof. Also in this case we prove the theorem assuming r = 1.

Proceeding as in Theorem 1, setting v = |u| + h, we deduce the new

conditions (3.1) and (3.2) and then, taking as a test function in (2.3)

ϕ(x) = ηpvβ, where η(x) is a non negative smooth function with support
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in B3 and β ∈ IR, we obtain

(4.1)

∫

B3

|∇v|pηpvβ−1dx ≤ C1(p, a)
(
1 + |β|−1

){ ∫

B3

|∇η|pvp+β−1dx+

+

∫

B3

ηpvp+β−1dµ

}
.

Here we may assume that v(x) ≥ ε > 0. Otherwise we may replace

v by v + ε and let ε → 0 in the final result.

Setting

w(x) =

{
vq(x) where pq = p + β − 1 if β %= 1 − p

log v(x) if β = 1 − p

(4.1) yields

(4.2)

∫

B3

ηp|∇w|pdx ≤ C1|q|p
(
1 + |β|−1

)p
{ ∫

B3

|∇η|pwpdx+

+

∫

B3

ηpwpdµ

}
if β %= 1 − p

(4.2)′
∫

B3

ηp|∇w|pdx ≤ C1

{ ∫

B3

|∇η|pdx +

∫

B3

ηpdµ

}
if β = 1 − p .

We consider first the (4.2)′. Using Lemma 1 we have

(4.3)

∫

B3

ηp|∇w|pdx ≤ C2

∫

B3

|∇η|pdx

where C2 is a positive constant depending on p, n, a, λ, ‖b‖p/(p−1),λ;B3
,

‖c‖p,λ;B3
and ‖d‖1,λ;B3

.

Let Bh be an arbitrary open ball contained in B2 with the same

center. We choose η(x) so that η(x) = 1 in Bh, 0 ≤ η ≤ 1 in B3 \ Bh and

|∇η| ≤ 3/h, h > 1.

From (4.3) we have

‖∇w‖L
p
(Bh) ≤ C3h

(n−p)/p
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where C3 is a positive constant depending on the same arguments of C2.

Thus, from Lemma 2, we have that there exist two positive constants

p0 and k depending on p, n and C3 such that

( ∫

B2

ep0wdx

) ( ∫

B2

e−p0wdx

)
≤ K .

Since w = log v we have

(4.4) φ(p0, 2) ≤ Kφ(−p0, 2)

where, for any real number p %= 0, we have

φ(p, h) =

( ∫

Bh

|v|pdx

)1/p

.

We consider now the (4.2). Using Lemma 1 and proceeding as in

Theorem 1 we have

(4.5)

∫

B3

ηp|∇w|pdx ≤ C1|q|p
(
1 + |β|−1

)p
∫

B3

|∇η|pwpdx

provided

C1|q|p
(
1 + |β|−1

)p
C(p, λ, n)

{‖b1‖p/(p−1)
p/(p−1),λ;B3

+ ‖c‖p
p,λ,B3

+ ‖d1‖1,λ;B3

}
< 1

and using Sobolev inequality, (4.5) yields

(4.6) ‖ηw‖
L

p∗
(B3)

≤ C4|q|
(
1 + |β|)

∥∥(∇η)w
∥∥

L
p
(B3)

where C4 is a positive constant depending only on p, a and n.

Now following the pattern of [6] pp. 267-268 we have

φ(∞, 1) ≤ C ′φ(p′
0, 2)

and

φ(−∞, 1) ≥ C ′′φ(p0, 2)
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where C ′ and C ′′ are two positive constants depending only on p, a and

n, and p′
0 ≤ p0. Recalling (4.4) we obtain

φ(∞, 1) ≤ Cφ(−∞, 1)

where C = C
(
p, n, a, λ, ‖b‖p/(p−1),λ;B3

, ‖c‖p,λ;B3
, ‖d‖1,λ;B3

)
that is

max
B1

u(x) ≤ C
{

min
B1

u(x) + h
}

.

The general case r %= 1 follows again by dilation.

As in [6], using Harnack’s inequality, we deduce the following result

Corollary 1. Let u(x) be a weak solution of equation (1.1). If

we assume that (2.1) and (2.2) hold, then u is locally Hölder continuous

on Ω.

Remark 1 We wish to point out that it can be seen by simple ex-

amples that our assumptions (2.2) on the coefficients of the structure

conditions are sharp in the scale of Morrey spaces (for more details see

Remark 2 in [7]).

Furthermore, we wish to show that our hypotheses are more general

than those in [6] and, at least in some instances, than those in [5] and [4].

Indeed comparing (2.2) with (1.2) we have

L
n/(p−ε) ! L1,λ ; L

n/(1−ε) ! Lp,λ ; L
n/(p−1) ! L

p/(p−1),λ
.

While, with respect to [5] where it is assumed b = d = 0 we have

b ∈ L
p/(p−1),λ

d ∈ L1,λ and about e, f and g the comparison goes similarly

to the above with [6].

Similar considerations can be seen to hold with respect to [4].
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