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Reservoir permeability, generally determined by experimental or well testing methods, is an essential parameter in the oil and gas
field development. In this paper, we present a novel analogy and machine learning method to predict reservoir permeability.
Firstly, the core test and production data of other 24 blocks (analog blocks) are counted according to the DLG block (target
block) of Jing’an Oilfield, and the permeability analogy parameters including porosity, shale content, reservoir thickness, oil
saturation, liquid production, and production pressure difference are optimized by Pearson and principal component analysis.
Then, the fuzzy matter element method is used to calculate the similarity between the target block and analog blocks.
According to the similarity calculation results, reservoir permeability of DLG block is predicted by reservoir engineering
method (the relationship between core permeability and porosity of QK-D7 in similar blocks) and machine learning method
(random forest, gradient boosting decision tree, light gradient boosting machine, and categorical boosting). By comparing the
prediction accuracy of the two methods through the evaluation index determination coefficient (R2) and root mean square
error (RMSE), the CatBoost model has higher accuracy in predicting reservoir permeability, with R2 of 0.951 and RMSE of
0.139. Finally, the CatBoost model is selected to predict reservoir permeability of 121 oil wells in the DLG block. This work
uses simple logging and production data to quickly and accurately predict reservoir permeability without coring and testing. At
the same time, the prediction results are well applied to the formulation of DLG block development technology strategy, which
provides a new idea for the application of machine learning to predict oilfield parameters.

1. Introduction

In the process of exploration and development of oil and gas
fields, permeability is the basis for determining production
rate, optimizing completion perforation scheme, and select-
ing the best drainage position [1–5]. The main methods for
determining reservoir permeability include indoor core test
method, logging or seismic inversion processing method,
and well testing analysis method [6–13]. Core permeability
is a rock physics concept. Its acquisition is through the col-
lection of core samples from the reservoir, generally using

air as infiltration fluid for laboratory measurement of rock
samples [14–16]. Logging permeability is a concept of geo-
physics, which is estimated according to the statistical
relationship between logging parameters and reservoir per-
meability [11, 12, 17–19]. Well testing permeability is a con-
cept of reservoir engineering, which is interpreted from
shut-in pressure measurement data [20–22]. The reliability
of measurement is not consistent with different ways of
obtaining permeability, and core permeability is the main
factor. The traditional way to predict permeability is to
establish various physical models and calculate permeability
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by formula derivation. In terms of physical model establish-
ment, Amaefule et al. proposed the classical FZI (flow zone
index) model, which can be used to predict the permeability
from core to single well profile and also widely used in per-
meability prediction of homogeneous reservoirs such as
sandstone, carbonate rock, and shale [23, 24]. Based on the
FZI model, Rezaee et al. introduced the formation factor
(F) and the current zoning index (CZI) to adjust the model
[25]. Although traditional physical models are widely used
to calculate permeability, they are highly dependent on core
test data. Moreover, for the unique seepage characteristics of
low permeability reservoirs, the classical and improved
Amaefule models still have some limitations [26–28]. In
order to solve these problems, later generations proposed
more revised models [27, 29, 30]. For example, Nooruddin
and Hossain proposed an improved K-C equation, which
considered the relationship between cementation index
(m), lithology factor (a), and porosity and modified FZI
to FZIm [31]. However, the improved method still needs
some parameters tested in the experiment, which are diffi-
cult to obtain and costly. Therefore, directly finding the
correlation between permeability and logging data and
production data is the key to economically, rapidly, and
accurately predict the permeability of uncored reservoirs
in low permeability reservoirs.

In recent years, with the application of big data method
in oilfield, this method is more and more applied to perme-
ability prediction [32–39]. Zhou et al. combined principal
component analysis (PCA), clustering method, and regres-
sion analysis and found that the gas production of Marcellus
shale was significantly affected by the number of hydraulic
fractures, vertical depth, proppant, and fracturing fluid vol-
ume pumped during well stimulation [40]. Male et al. used
linear regression model and gradient boosting model to pre-
dict the permeability of cemented sandstone in Beihai. The
results showed that the gradient boosting model had better
prediction effect [41]. Wang et al. used big data technology
to predict reservoir parameters and oil well productivity in
the western South China Sea oilfield [39]. Khalifah et al. took
porosity, pore throat diameter, and formation factors as
input structural parameters and used artificial neural net-
work (ANN) and genetic algorithm to predict the permeabil-
ity of tight carbonate rocks. Compared with the K-C
equation, the Berg model and other seven traditional physi-
cal models. The results show that the machine learning
method has higher accuracy [42]. Based on machine learn-
ing algorithm, logging data are also used to predict the per-
meability of sandstone and carbonate reservoirs [39, 43–48].
For example, Urang et al. used crude oil bulk density and
water saturation as input parameters of permeability predic-
tion model, combined with standardized nonlinear regres-
sion analysis, and proposed a new model based on artificial
neural network [49].

In recent years, many people have used machine learn-
ing methods to model and predict permeability as a logging
record function [50–55]. Al-Mudhafar used a probabilistic
neural network (PNN) to obtain accurate lithofacies classifi-
cation and then used the generalized boosted regression
model (GBM) to predict permeability by establishing a non-

linear relationship between core permeability, well logging
data, and lithofacies [52]. Lee et al. proposed a two-step
method for logging permeability prediction using nonpara-
metric regression combined with multivariate statistical
analysis. Firstly, the logging data is classified into electrofa-
cies types. Secondly, alternating conditional expectation
(ACE), generalized additive model (GAM), and neural net-
work (NNET) are used to predict permeability using logging
in each electrical phase [56]. Al-Mudhafar et al. used
extreme gradient boosting (XGBoost) and adaptive boosting
(AdaBoost) configured as classifiers to measure discrete lith-
ofacies distributions based on core data and then combined
the predicted lithofacies with recorded logging data and ana-
lyzed them through an XGBoost regression model to predict
permeability [57]. Al-Anazi et al. established a permeability
prediction model using support vector regression (SVR) of
well logging in heterogeneous sandstone reservoirs [58].
Perez et al. determined the relative importance of logging
in identifying electrical facies, lithofacies, and HFU based
on the tree method, explained the lost logging records in
the permeability prediction process, and predicted the per-
meability in the Salt Creek Oilfield Unit (SCFU) in western
Texas [59].

Other big data algorithms are also used in permeability
prediction, including fuzzy logic model [60], XGBoost [61],
SVM [62], and random forests [63]. Rafik et al. applied
variable selection to the nonparametric regression ACE to
improve permeability predictions [64]. Al-Mudhafar classi-
fied lithofacies using multinomial logistic regression
(Multinom), logistic boosting regression (LogitBoost), and
extreme gradient boosting (XGBoost) and incorporated
the discrete phase distribution and logging interpretation
derived from LogitBoost into a multivariate permeability
model and predict corrected core permeability for logging
interpretation of all wells in the reservoir [51, 52]. Zhao
et al. trained decision tree regression to predict the perme-
ability of low-permeability sandstones of the Zhuhai For-
mation in the Wenchang A sag, Pearl River Mouth
Basin, using seven machine learning algorithms, including
linear regression, backpropagation neural network regres-
sion, K-neighbor regression, random forest regression, sup-
port vector machine regression, gradient boosting decision
tree regression, and extreme gradient boosting (XGBoost),
with logging data as input [65]. Zhang et al. proposed a
new method of univariate prediction model (UPP) and
bivariate prediction model (BPP) and constructed support
vector regression (SVR), random forest (RF), and deep
residual neural network (ResNet) machine learning models
for permeability prediction [17, 19]. Anifowose et al. stud-
ied the commonly used and complex ML techniques in
estimating the permeability of carbonate reservoirs in the
Middle East [62]. This study integrated seismic attributes
and cable data to adjust the influence of hyperparameters
on technical performance to improve permeability predic-
tion. Previous studies have obtained good permeability
prediction results based on various machine learning
methods, but the application of predicted permeability in
low permeability oilfield development technology adjust-
ment is limited.
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In this paper, the core test and production data of 24
blocks (analog blocks) in Jing’an Oilfield are counted. Based
on big data analogy method, the oil well reservoir permeabil-
ity of DLG block (target block) in the oilfield is predicted,
and the corresponding development technology policy is
formulated according to the prediction results. The geologi-
cal and reservoir characteristics of DLG block are analyzed
firstly, and 11 dynamic and static parameters that affect the
permeability of the analogy block are counted. The main
controlling factors of permeability (porosity, mudstone con-
tent, reservoir thickness, oil saturation, liquid production,
and production pressure differential) were selected from
the above parameters by using Pearson and principal com-
ponent analysis, and an analogy system of permeability con-
taining six main controlling factors was established. Then,
the similarity between the target block and the analogy block
is calculated by using the fuzzy matter-element method.
According to the similarity calculation results, reservoir
engineering method (core permeability and core porosity
relationship of the similar block) and machine learning
method (RF model, GBDT model, LightGBM model, and
CatBoost model) are used to predict the reservoir permeabil-
ity of DLG block in the target block. Results show that the
CatBoost model has higher accuracy in predicting reservoir

permeability. Finally, the CatBoost model in machine learn-
ing method is selected to predict the reservoir permeability
of 121 oil wells in the target block. Using the predicted res-
ervoir permeability, combined with the formation pressure,
water content and liquid production contour map, aiming
at the problems existing in the current development process,
the corresponding development technology strategy is put
forward, which provides extremely valuable experience for
the efficient development of the block. The methods of pre-
dicting reservoir permeability based on machine learning are
highly dependent on core experimental parameters and have
potential limitations in uncored areas. They fail to make
good use of dynamic parameters and predict reservoir per-
meability without combining oilfield development technol-
ogy policies. In this paper, the machine learning algorithm
is used to make full use of the existing dynamic and static
parameter data, find similar blocks by establishing an anal-
ogy system, and provide a set of processes for rapid predic-
tion of reservoir permeability without coring and testing.
The predicted reservoir permeability is well applied to the
formulation of development technology strategy, which pro-
vides a new idea for the application of machine learning to
predict oilfield parameters. The workflow of permeability
prediction and application is shown in Figure 1.

Screen main control factors

Establish analogy system

Find similar blocks

Establish RF model

Establish GBDT model

Establish LightGBM model
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Figure 1: Reservoir permeability prediction and application flowchart.
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2. Establishment of Permeability
Analogy Model

The purpose of block analogy is to find blocks similar to
the characteristics of the target block. Due to the same
or similar geological characteristics and development
methods between the analogy block and the target block,
the development experience and exploitation mode accu-
mulated by the analogy block after long-term development
adjustment and optimization can indicate the direction for
the efficient development of the target block.

How to select analogy parameters accurately has become
an important part of block analogy. When judging whether
the blocks are similar, it is usually necessary to consider
the static characteristic parameters. The “similarity” between
the target block and the analog block is determined by
parameter comparison, and the most similar block is
selected to predict the reservoir permeability of the target
block. Due to the limited parameters affecting reservoir per-
meability, some analog parameters are difficult to collect,
and different parameters have different effects on permeabil-
ity. Therefore, in order to improve the operability and
practicability of analogy, it is necessary to select the main

influencing factors of permeability from the collected block
parameters as the analogy index system.

In this paper, according to the general situation of
Jing’an Oilfield onshore low permeability oilfield, according
to the existing research results of geological and engineering
factors on permeability, 11 parameters affecting permeability
are determined, and the data of 24 blocks affecting perme-
ability in the oilfield are counted. The permeability is mainly
affected by the characteristics of static parameters, and the
influencing factors include eight static geological parameters
and three dynamic production parameters. Static geological

Table 1: Actual values of 24 block analogy parameters.

Block K P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
DLG 0.54 13.50 15.60 21.90 57.90 1.50 5.56 1.96 860 1.20 28.60 2

QK-D7 0.61 13.34 15.19 18.97 57.21 2.58 3.24 2.74 746 1.21 30.24 1

QK-D13 0.42 12.97 14.72 19.01 56.94 3.47 4.26 1.72 698 1.20 32.16 3

QK-D17 0.72 12.56 14.23 17.64 54.23 1.69 4.69 1.69 842 1.19 19.47 2

QK-D14 0.76 14.21 13.96 17.21 53.97 2.42 2.76 2.31 834 1.20 27.84 1

QK-D5 0.43 14.87 12.46 25.42 52.68 3.78 2.49 2.54 867 1.23 34.26 1

QK-D23 0.36 11.94 11.82 26.38 51.02 3.69 3.12 3.21 941 1.18 36.48 3

QK-D4 0.89 11.84 12.21 26.94 63.97 2.97 3.06 3.28 745 1.24 32.16 4

QK-D8 0.84 11.97 18.74 16.38 64.02 2.68 7.28 4.27 747 1.20 39.46 2

QK-D10 0.96 15.06 19.84 27.69 63.86 2.59 1.26 1.46 762 1.23 38.45 3

QK-D6 1.02 18.96 20.16 15.24 48.97 2.47 1.39 1.87 624 1.26 42.16 1

QK-D1 0.73 10.67 21.32 28.14 63.92 1.65 2.91 1.94 659 1.21 24.74 3

QK-D9 0.91 19.63 24.36 28.63 47.26 1.24 3.45 1.25 613 1.18 46.23 3

QK-D3 0.69 9.94 25.47 13.29 46.97 1.03 3.77 3.25 579 1.20 50.12 4

QK-D16 1.14 21.24 9.86 10.29 45.61 1.65 2.15 3.57 781 1.19 62.31 4

QK-D20 0.74 10.06 8.21 30.04 44.28 4.69 1.38 4.16 632 1.20 24.16 2

QK-D11 0.82 10.47 7.46 8.67 43.61 4.79 4.67 2.67 648 1.21 60.48 2

QK-D24 1.96 29.46 9.28 7.69 42.12 5.85 4.21 1.36 653 1.21 55.27 3

QK-D18 2.87 34.62 26.39 31.16 41.68 5.92 6.17 1.17 725 1.19 51.02 1

QK-D2 0.75 9.14 28.47 6.21 39.65 6.87 6.74 1.69 749 1.21 49.61 2

QK-D15 0.85 8.46 30.26 6.03 35.17 8.21 1.32 6.84 865 1.24 61.03 3

QK-D12 3.65 36.74 7.21 34.67 33.12 9.14 5.02 10.21 813 1.23 61.27 3

QK-D22 1.14 20.71 31.65 34.89 34.16 12.36 5.80 9.46 816 1.21 57.68 2

QK-D19 1.56 21.33 35.87 5.42 32.17 14.69 6.02 8.72 742 1.20 50.19 2

QK-D21 3.24 36.74 41.23 4.18 31.06 18.23 5.96 7.69 761 1.17 47.65 3

K refers to permeability; P1~P11 refer to porosity, shale content, reservoir thickness, oil saturation, liquid production, production pressure difference, oil
viscosity, surface crude oil density, oil volume factor, water content, and number of oil layers.

Table 2: Pearson correlation coefficient and correlation degree
classification.

The variation range of
correlation coefficient

Correlation intensity

0.8~1.0 Extremely strong correlation

0.6~0.8 Strong correlation

0.4~0.6 Moderately relevant

0.2~0.4 Weak correlation

0~0.2 Very weak or no correlation
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parameters including porosity, mudstone content, number
of oil layers, oil viscosity, reservoir thickness, oil volume fac-
tor, oil saturation, surface crude oil density, and the pore
throat ratio data are missing and not included in the analy-
sis. The dynamic production parameters include liquid pro-
duction, production pressure difference, and water content.
The range of each parameter is shown in Table 1.

2.1. Screening of Main Control Factors. In this paper,
Pearson correlation coefficient method is used to calculate
the correlation coefficient between the influence parameters
and permeability, and the parameters with strong correla-
tion with permeability are preliminarily screened [66–68].
This method can measure the linear correlation between
two random variables X and Y , and the range of correlation
coefficient is ð−1, 1Þ. When X is linearly correlated with Y ,
the correlation coefficient is 1 (positive linear correlation)
or -1 (negative linear correlation), the closer the absolute
value of the correlation coefficient is to 1, the stronger the
correlation between the two, and the specific correlation is
shown in Table 2.

The Pearson correlation coefficient method was used to
analyze the correlation between 11 dynamic and static
influencing factors and permeability in 24 samples. The
static influencing factors with strong correlation with the
permeability have a great influence on the permeability
and are initially selected as the analog index, which is left
to the principal component analysis method for verification.
The analysis results are shown in Table 3 and Figure 2.

It can be concluded from Table 3 and Figure 2 that
among the 11 permeability influencing factors, porosity
and shale content are strongly correlated with permeability;
the correlation coefficients were 0.834 and 0.682, respec-
tively; reservoir thickness, oil saturation, liquid production,
and production pressure difference are moderately corre-
lated with permeability, with correlation coefficient between
0.4 and 0.6; oil viscosity and surface crude oil density are

weakly correlated with permeability, and other factors are
extremely weakly correlated with productivity.

It can be seen from the correlation matrix diagram
(Table 3) that among the various influencing factors in the
block, the liquid production is moderately correlated with
the oil viscosity, the oil saturation is moderately correlated
with the porosity, and the correlation between other
influencing factors is weak. This is because the permeability
of the block studied in this paper is low, and the data of geo-
logical factors and fluid properties have small changes, and
the correlation is not strong. At the same time, affected by
the quantity and quality of data, the deeper and universal
laws between data may not be reflected.

2.2. Establishment of Permeability Analogy System. In this
paper, the principal component analysis method is used to
establish the permeability analogy system combined with
the Pearson correlation analysis results. Principal compo-
nent analysis is a commonly used method in statistics, which
is suitable for dealing with data with high dimensions and
strong correlation among variables. For PCA algorithm, if
the characteristic parameters with strong input correlation
lead to the rank of the input matrix close to 0, the matrix
operation results of PCA algorithm will cause a large devia-
tion. Through the Pearson parameter matrix table, it can be
concluded that the correlation between the selected perme-
ability factors is not strong, so the 11 features are all used
for principal component analysis. The step of this method
is to standardize the sample data and then calculate the char-
acteristic root and variance percentage. The calculation
results are shown in Table 4, and the main characteristics
of accumulating more than 90% variance information are
obtained as the analogy index system.

The components with eigenvalues greater than 1 and
cumulative contribution rate greater than 90% are selected
as principal components. From Table 4, it can be seen that
there are 4 components with eigenvalues greater than 1

Table 3: Correlation matrix between permeability and influence parameters.

Analysis index K P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
K 1.000 0.834 0.682 0.506 0.479 0.427 0.408 0.356 0.208 0.139 0.067 0.019

P0 0.834 1.000 0.124 0.237 0.478 0.146 0.081 0.104 0.216 0.168 0.076 0.073

P1 0.682 0.124 1.000 0.013 0.030 0.024 0.017 0.036 0.027 0.018 0.013 0.058

P2 0.506 0.237 0.013 1.000 0.124 0.018 0.032 0.102 0.126 0.064 0.082 0.041

P3 0.479 0.478 0.030 0.124 1.000 0.176 0.080 0.041 0.052 0.021 0.013 0.036

P4 0.427 0.146 0.024 0.018 0.176 1.000 0.361 0.482 0.173 0.079 0.033 0.024

P5 0.408 0.081 0.017 0.032 0.080 0.361 1.000 0.017 0.026 0.001 0.032 0.018

P6 0.356 0.104 0.036 0.102 0.041 0.482 0.017 1.000 0.018 0.022 0.012 0.001

P7 0.208 0.216 0.027 0.126 0.052 0.173 0.026 0.018 1.000 0.014 0.003 0.009

P8 0.139 0.168 0.018 0.064 0.021 0.079 0.001 0.022 0.014 1.000 0.001 0.002

P9 0.067 0.076 0.013 0.082 0.013 0.033 0.032 0.012 0.003 0.001 1.000 0.004

P10 0.019 0.073 0.058 0.041 0.036 0.024 0.018 0.001 0.009 0.002 0.004 1.000

P0~P10 refer to porosity, shale content, reservoir thickness, oil saturation, liquid production, production pressure difference, oil viscosity, surface crude oil
density, oil volume factor, water content, and number of oil layers; K refers to permeability.
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and 5 components with cumulative contribution rate
greater than 90%. From the slope of eigenvalue decline,
it can be concluded that the decline slope gradually
slows down from the sixth component. In order to
extract the information of the original variables as much
as possible, combined with Pearson correlation analysis,

the first six components with a cumulative contribution
rate of 98.047% were finally extracted as the final prin-
cipal components. The main controlling factors affecting
permeability are porosity, shale content, reservoir thickness,
liquid production, oil saturation, and production pressure
difference.
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Figure 2: Correlation coefficient between permeability and influence parameters.

Table 4: Total variance interpretation of permeability influence parameters.

Total variance explanation

Component
Latent root

Latent root Variance proportion (%) Accumulation (%)

1 4.306 39.142 39.142%

2 2.858 25.982 65.124

3 1.537 13.975 79.099

4 1.017 9.247 88.346

5 0.813 7.389 95.735

6 0.257 2.339 98.074

7 0.146 1.324 99.398

8 0.054 0.497 99.895

9 0.011 0.099 99.994

10 0.001 0.006 100.000

11 0.000 0.000 100.000

Components 1~11 refer to porosity, shale content, reservoir thickness, oil saturation, liquid production, production pressure difference, oil viscosity, surface
crude oil density, oil volume factor, water content, and number of oil layers, respectively.
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Next, the linear combination coefficient of each index in
each principal component is calculated, and the weight value
of each principal component is finally calculated according
to the information such as load coefficient. The results are
shown in Table 5.

The establishment of analogy system mainly considers
the static characteristic parameters. It can be seen from the
weight values of each principal component in Table 5 that
the weight values of liquid production and production pres-
sure difference of dynamic characteristic parameters are
small, which are lower than 10%. The weight of the four
static characteristic parameters is consistent with the actual
situation in the field. Therefore, the above six parameters
and the calculated weight value are selected to construct
the permeability analogy system.

2.3. Finding of Similar Blocks. According to the analog
parameter system established by Pearson correlation coeffi-
cient method and principal component analysis method,

fuzzy matter element method is selected to calculate the
similarity between analog blocks and target blocks accord-
ing to the weight of analog parameters. The target block
DLG is an actual block in Jing’an Oilfield. The average
burial depth of the reservoir is 1680m, the average reser-
voir thickness is 21.7m, the average porosity is 13.5%, the
average permeability is 0:54 × 10 − 3 μm2, the original res-
ervoir formation pressure is 11.5MPa, and the saturation
pressure is 7.26MPa, which is the same pressure system.
The reservoir temperature is 325K. The basic information
of the block is shown in Table 6.

The relevant parameter data of 24 blocks in Jing’an Oil-
field are used as analog blocks, and the similarity calculation
needs to collect the above analog parameters as the basis.
However, some block parameter data are vacant, and the
missing data content and quantity of each block are differ-
ent. Considering the need for null value processing in the
similarity calculation process, the fuzzy matter-element
method is used to define the fuzzy value of the index

Table 5: Weight calculation results of permeability principal component parameters.

Name of principal component Variance explained rate Cumulative variance interpretation rate Weight

Porosity 0.391 0.391 0.399

Shale content 0.260 0.651 0.265

Oil saturation 0.14 0.791 0.143

Reservoir thickness 0.092 0.883 0.094

Liquid production 0.074 0.957 0.075

Production pressure difference 0.023 0.981 0.024

Table 6: Target block DLG basic dynamic and static parameter.

Parameter Value Parameter Value

Block area (km2) 10.5 Geological reserves (104t) 780

Average burial depth (m) 1680 Reservoir temperature (K) 325

Rock type
Mainly medium-fine

lithic feldspar sandstone
Sedimentary micro

Lower distributary channel,
flank of underwater
distributary channel,

mouth bar, diversion bend

Acid sensitivity Weak Speed sensitivity Weak

Original formation pressure (MPa) 11.5 Saturation pressure (MPa) 7.26

Number of oil layers 2 Reservoir thickness (m) 21.70

Permeability (10-3 μm2) 0.54 Porosity (%) 13.5

Coefficient of variation 1.1 Oil saturation (%) 51.9

Surface crude oil density (kg/m3) 860 Oil viscosity (mPa·s) 1.96

Oil volume factor 1.2 Shale content 15.6

Water well 41 Well network
Rhombus inverse nine-spot

well pattern

Well spacing density (well/km2) 11.52 Oil well 121

Injection-production ratio 3.1
Production pressure
difference (MPa)

5.56

Average daily liquid production per well (m3/d) 1.5 Water content (%) 28.6

Average daily water injection per well (m3/d) 17 Oil production rate (%) 0.59
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corresponding to the reservoir null value as 0. That is, the
parameters corresponding to the null value are not involved
in the similarity accumulation.

The similarity between the nth block and the target block
(DLG block) is expressed by the sum of the product of the
fuzzy value of each target block and the corresponding
weight of each parameter.

The similarity calculation results show that the QK-D7
target block is the most similar, the similarity is as high as
97.6%, and there are 8 oilfields with similarity greater than
70% (Figure 3). The relationship between core permeability
and core porosity in QK-D7 block is selected by reservoir
engineering method to predict reservoir permeability in the
target block. 421 single well samples from the first 8 blocks
with similarity greater than 70% were selected to establish
permeability prediction model by big data method.

3. Reservoir Engineering Method

Logging permeability is determined by mathematical statis-
tics and other methods to establish the statistical regression
relationship between reservoir permeability and rock poros-
ity, specific surface, bound water saturation, and other
parameters. The logging permeability can reflect the average
permeability of the formation in a large area near the well-
bore, but it cannot well reflect the real average permeability
of the formation with strong heterogeneity. The core perme-
ability is measured by coring the target layer and cleaning
the lithology and then using air as the medium to measure
the absolute permeability of the core. The measurement
method can directly measure the absolute permeability of

the core at the coring point. It is a more direct measurement
method of permeability, which is more direct and accurate
than logging permeability, but the cost of this method is
high.

Therefore, the specific steps of reservoir permeability
prediction by reservoir engineering method in this paper
are as follows. The existing relationship between core per-
meability and porosity in similar blocks is counted, and
the logging porosity of the target block is brought into
the relationship to correct the existing logging permeabil-
ity, so as to obtain more accurate reservoir permeability.

The similarity calculation results show that the QK-D7
block is the most similar to the DLG block. The permeability
of QK-D7 block is low, with 23 measured core data. The lin-
ear relationship between core permeability and porosity is
shown in Figure 4.

It can be seen from the diagram that the linear relation-
ship between permeability and porosity in similar blocks is
good, R2 is 0.904. The logging porosity of DLG block is
substituted into the relationship between permeability and
porosity of QK-D7 core in similar blocks, and the calculated
permeability is DLG block reservoir permeability (Table 7).

The core permeability of 11 wells in the DLG block is
measured, and the predicted reservoir permeability is com-
pared with the measured core permeability, and permeabil-
ity is concentrated in 0:5 − 1:0 × 10−3 μm2 (Table 7). From
the comparison chart of the two (Figure 5), it can be intui-
tively seen that the error of the two is small, and the R2 value
is 0.906, which further shows that the method of predicting
reservoir permeability using big data analogy combined with
reservoir engineering-related formulas is more reasonable.

0

10

20

30

40

50

60

70

80

90

100

Si
m

ila
rit

y 
(%

)

Analogy block

Q
K-

D
7

Q
K-

D
13

Q
K-

D
17

Q
K-

D
14

Q
K-

D
5

Q
K-

D
23

Q
K-

D
4

Q
K-

D
8

Q
K-

D
10

Q
K-

D
6

Q
K-

D
1

Q
K-

D
9

Q
K-

D
3

Q
K-

D
16

Q
K-

D
20

Q
K-

D
11

Q
K-

D
24

Q
K-

D
18

Q
K-

D
2

Q
K-

D
15

Q
K-

D
12

Q
K-

D
22

Q
K-

D
19

Q
K-

D
21

Figure 3: The calculation results of the similarity of the target block DLG search analogy block.
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4. Machine Learning Method

Six parameters of analogy system are selected as input
parameters, and permeability is selected as target parame-
ters. Four machine learning algorithms (random forest,
gradient boosting decision tree, light gradient boosting
machine, and categorical boosting) are used to establish
permeability prediction models. Using the similarity calcu-
lation results, the data of 421 oil wells in the first 8 blocks
with a similarity greater than 70% were selected as the
sample data. Due to the small amount of sample data in
this paper, the application of random secondary sampling
cross-validation method [69–71], using 70% of the sample
data as a training set and the remaining 30% as a test set,
helps to obtain a reliable and stable model. The random

quadratic sampling cross-validation method can be used
to evaluate the prediction performance of the model, espe-
cially the performance of the trained model on new data. It
can reduce the overfitting to a certain extent and can
obtain as much effective information as possible from lim-
ited data, so as to find suitable model parameters more
conveniently. Then, the accuracy of the model was evalu-
ated by the mean square error (MSE), root mean square
error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and determination coefficient
(R2) of five evaluation indexes, and the prediction model
with the best performance was selected. The first four eval-
uation index value is smaller; the higher the accuracy and
the R2 value closer to 1 indicate that the effect is better;
see Table 8.

4.1. Random Forest (RF) Model. The permeability prediction
model is established based on random forest algorithm. The
parameters of the algorithm are listed in Table 9. 90% of the
sample data is used to train the capacity prediction model,
and 10% of the sample data is used to test the performance
of the model. The RF model prediction results are shown
in Figure 6. It can be seen intuitively from the diagram that
when the permeability is lower than 2 × 10−3 μm2, the pre-
diction effect is better.

It can be seen from the prediction results that the train-
ing set fits well. When the permeability is greater than 3 ×
10−3 μm2, the prediction result is poor, the test set has a poor
fit, and there is an overfitting phenomenon. The perfor-
mance evaluation results of the model are shown in
Table 10. The determination coefficients R2 of the training
set and the test set are 0.946 and 0.884, and the root mean
square error is low. The smaller the value of the first four
evaluation indexes indicates the higher the accuracy. The
relationship between the training set and the sample data
is used to train the model. Therefore, the accuracy of the

Table 7: Comparison between predicted reservoir and core
permeability of DLG block (prediction and correction of DLG
logging permeability and core permeability in block QK-D7 by
using relationship between core permeability and porosity).

Logging porosity
Predicted reservoir

permeability
Core

permeability

10.82 0.53 0.58

13.24 1.13 0.92

11.47 0.69 0.82

10.56 0.46 0.69

11.48 0.69 0.60

15.62 1.73 1.59

11.27 0.60 0.73

10.02 0.33 0.47

9.17 0.12 0.15

12.36 0.91 0.72

9.78 0.27 0.25

0

0.5

1

1.5

2

8 10 12 14 16

Co
re

 p
er

m
ea

bi
lit

y 
(1

0–3
 μ
m

2 )

Porosity (%)

Figure 4: Relationship between core permeability and core porosity of QK-D7 in similar block.
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training set in Table 10 is higher than that of the test set, and
the variance is small.

4.2. Gradient Boosting Decision Tree (GBDT) Model. The
permeability prediction model is established based on GBDT
algorithm. The parameters of the algorithm are listed in

Table 11. The model is divided into training set and test
set, which are the same as the RF model. It can be seen from
the prediction results (Figure 7) that compared with the
above model, the GBDT model performs better on the train-
ing set and test set than the RF model. When the permeabil-
ity is higher than 2 × 10−3 μm2, the model prediction effect is
better. However, when the permeability is higher than 6 ×
10−3 μm2, the training set effect is poor.

The evaluation results of the performance index of the
model are shown in Table 12. The determination coefficients
R2 of the training set and the test set are 0.957 and 0.918.
The R2 value of the training set and the test set is greater
than that of the RF model, and the root mean square error
is greater than that of the RF model. Compared with the
above models, the overall performance of the GBDT model
is better than that of the RF model.

4.3. Light Gradient Boosting Machine (LightGBM) Model.
The permeability prediction model is established based on
LightGBM algorithm. The calculation efficiency of this
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Figure 5: Comparison of predicted reservoir permeability and core permeability in the DLG block.

Table 8: Regression model evaluation index.

Evaluation index Formula Evaluation criteria

R2 score R2 = 1 −〠nsamples
i=1 yture − ypred

� �2
/〠nsamples

i=1 yture − ytureð Þ2 The results are between 0 and 1. The larger the
value is, the better the effect is.

Mean squared error MSE = 1/nsamples〠
nsamples
i=1 yture − ypred

� �2 The smaller the calculation result, the smaller
the error.

Root mean square error RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nsamples〠

nsamples
i=1 yture − ypred

� �2
r

The result is between 0 and 1. The smaller the
value is, the worse the result is.

Mean absolute error MAE = 1/nsamples〠
nsamples
i=1 yture − ypred

���
��� The larger the calculation results, the greater

the error.

Mean absolute percentage error MAPE = 1/nsamples〠
nsamples
i=1 ypred − yture/yture

���
��� The smaller the calculation result, the smaller

the error.

Notes: yture is the actual output value (observed value) for data y, and ypred is the corresponding predicted value.

Table 9: Parameter values of the RF model.

Parameter name
Parameter

value

Minimum number of samples for internal
node splitting

2

Minimum sample number of leaf nodes 1

Minimum weight of samples in leaf nodes 0

Maximum depth of a tree 10

Maximum number of leaf nodes 50

Threshold of node partition purity 0

Number of decision trees 100
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model is high, and the training parameters are shown in
Table 13. The prediction results are shown in Figure 8. It
can be seen from the figure that the fitting accuracy of the
model training set is very high, and there is an overfitting
phenomenon. The prediction error on the test sample is
close to that of GBDT model. When searching for the opti-
mal solution, the model is based on the optimal segmenta-
tion variable and does not take into account the idea that
the optimal solution is the synthesis of all features, resulting
in poor consistency of the test set.

The performance evaluation results of the model are
shown in Table 14. The determination coefficients R2 of
the training set and the test set are 0.976 and 0.923. The R2

value of the training set is much larger than that of the other

two models, and the root mean square error is close to that
of the RF model. Compared with the above two models,
the LightGBM model performs best on the training set,
and the matching effect on the test set is not good, and over-
all prediction is better than the other two models.

4.4. Categorical Boosting (CatBoost) Model. The permeability
prediction model is established based on CatBoost algo-
rithm. The parameters of the algorithm are listed in
Table 15. The difference between the predicted permeability
and the actual permeability is small, and the fitting data can
be better when the permeability is high, and the prediction
results are shown in Figure 9. Compared with LightGBM
and GBDT models, the CatBoost model better solves the
problems of prediction migration and overfitting. So the
CatBoost model has better stability and generalization abil-
ity. The training set and test set are both good.

The performance evaluation results of the model are
shown in Table 16. The determination coefficients R2 of
the training set and the test set are 0.987 and 0.951, and
the root mean square error is small; the model has high
accuracy. Based on the above three models, this model has
the best overall performance.

5. Comparison of Two Methods

Based on reservoir engineering and machine learning
methods that can predict reservoir permeability, the deter-
mination coefficient (R2) and root mean square error
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Figure 6: The results of reservoir permeability predicted by the RF model. (a) The comparison of actual permeability and predicted
permeability of training set and test set. (b) The prediction results of the test set.

Table 10: Evaluation results of RF model index.

Sample data MSE RMSE MAE MAPE R2

Training sets 0.046 0.214 0.144 10.033 0.946

Testing sets 0.095 0.308 0.224 16.068 0.884

Table 11: Parameter values of the GBDT model.

Parameter name
Parameter

value

Learning rate 0.08

Minimum number of samples for internal
node splitting

2

Minimum sample number of leaf nodes 1

Minimum weight of samples in leaf nodes 0

Maximum depth of a tree 10

Maximum number of leaf nodes 50

Threshold of node partition purity 0
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(RMSE) are used to evaluate the accuracy of the two
methods (Figure 10).

The closer the R2 value is to 1, the higher the accuracy of
the model is, and the RMSE is the opposite. It can be seen
from the figure that the CatBoost model R2 is the largest,
followed by the LightGBM model. The determination coeffi-
cients of the reservoir engineering method and the GBDT
model are similar, while the RMSE coefficients of the reser-
voir engineering method and the CatBoost model are simi-
lar, far less than those of the other three models. Finally,

the CatBoost model with the best generalization and the best
performance is selected to predict the permeability of oil well
reservoir in the DLG block.

6. Application

According to the comparison results of the above different
reservoir permeability prediction methods, the CatBoost
model is finally selected to predict the reservoir permeability
of 121 wells in the DLG block.

The area of DLG block is 10.5 km2, and the original geo-
logical reserves are 7.8 million tons. The oil-bearing strata
are mainly Triassic Yanchang Formation, and the sedimen-
tary microfacies are mainly underwater distributary channel
microfacies. The regional structure is a west-dip monoclinic
with east high and west low, and the dip angle is less than 1°.
According to the sensitivity test, the reservoir has no water
sensitivity, no salt sensitivity, weak speed sensitivity, and
weak acid sensitivity. The reservoir rock types in this area
are mainly medium-fine grained lithic feldspathic sandstone
with strong heterogeneity, poor reservoir oil moisture, inac-
tive reservoir edge and bottom water, and small ground
saturation pressure difference. The reservoir is mainly con-
trolled by traps formed by the tight layer in the upward
direction and the sand body lateral deformation zone. Natu-
ral fractures are not developed in general, and the oil well
dynamic mainly reflects the artificial fractures. The oil reser-
voirs in this area are low-permeability lithologic blocks with
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Figure 7: The results of reservoir permeability predicted by the GBDT model. (a) The comparison of actual permeability and predicted
permeability of training set and test set. (b) The prediction results of the test set.

Table 12: Evaluation results of GBDT model index.

Sample data MSE RMSE MAE MAPE R2

Training sets 0.133 0.365 0.246 16.366 0.957

Testing sets 0.103 0.321 0.268 20.433 0.918

Table 13: Parameter values of the LightGBM model.

Parameter name Parameter value

Data segmentation 0.8

Base learner gbdt

Number of base learners 100

Learning rate 0.1

L1 regular term 0

L2 regular term 1

Sample sampling rate 1

Tree characteristic sampling rate 1

Node splitting threshold 0

Minimum weight of samples in leaf nodes 0

Maximum depth of a tree 10

Minimum sample number of leaf nodes 10
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low reservoir abundance, dense lithology, poor reservoir
physical properties, and strong intralayer heterogeneity.

At present, there are 162 oil and water wells in this block,
including 121 oil wells and 41 wells. At present, it is in the
stage of production capacity construction. The rhombic
inverted nine-spot well pattern is used, the average daily
water injection is 17m3/d, and the average single well liquid
production is 1.5m3/d. The maximum daily liquid produc-
tion of a single well reaches 5.93m3/d, the maximum daily
water injection of a single well reaches 21.46m3/d, the max-
imum oil production of a single well reaches 4.27m3/d, and
the oil recovery rate is 0.34%–0.85%. This paper uses the oil
well reservoir permeability predicted in this block to draw
the reservoir permeability contour map (Figure 11(a)).

According to the predicted reservoir permeability con-
tour map (Figure 11(a)), it can be concluded that the reser-
voir permeability value of 51.2% oil wells in the block is
higher than 2 × 10−3 μm2, and the reservoir permeability
value of 29.4% oil wells is lower than 1 × 10−3 μm2. Among
them, the reservoir permeability of 133-36 well, lj34-362
well, 134-34 well, lj34-344 well, and l35-34 well is higher,
with an average of 3:47 × 10−3 μm2.

It can be seen from the contour map of formation pres-
sure (Figure 11(b)) that the current formation pressure in
this block is about 8MPa, and the formation pressure in
the central region is relatively high.

It can be seen from the water content contour map
(Figure 11(c)) that most of the oil wells are in the middle
and low water content period. Among 121 oil wells, 60.2%
of the wells are with water content less than 20%, 25.3% of
the wells are with water content between 20 and 40%, 10.4%
of the wells are with water content between 40 and 60%, and
4.1% of the wells are with water content greater than 60%.

Combined with the contour map of fluid production in
this block (Figure 11(d)), it can be concluded that the
regions with high fluid production are mainly concentrated
in the southwest, west, and southeast regions. The regions
with high reservoir permeability have low fluid production
and low water injection utilization rate.

In general, 75.2% of the oil well liquid production is less
than 1.5 t/d, the overall moisture content is low, the oil well
liquid supply capacity is insufficient, the permeability of the
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Figure 8: The results of reservoir permeability predicted by the LightGBM model. (a) The comparison of actual permeability and predicted
permeability of training set and test set. (b) The prediction results of the test set.

Table 14: Evaluation results of LightGBM model index.

Sample data MSE RMSE MAE MAPE R2

Training sets 0.068 0.158 0.123 7.114 0.976

Testing sets 0.079 0.181 0.219 17.371 0.923

Table 15: Parameter values of the CatBoost model.

Parameter name
Parameter

value

Data segmentation 0.9

Iteration times 100

Learning rate 0.1

L2 regular term 1

Maximum depth of a tree 10

Overfitting detection threshold 0

Number of iterations continued after
optimization

20
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central region is lower than the high yield liquid, and the
development effect is poor. In view of the above problems,
this paper puts forward the corresponding development
technology policy based on the current development status
of the block:

(1) According to the predicted reservoir permeability
contour map and liquid production volume contour

map, the study block is divided into the noneffective
area in the middle and the effective area in the east
and west. For the well pattern infill in the central
area, the well spacing between oil wells was short-
ened from the original 520m to 173m. At the same
time, the corner wells in the diamond-shaped reverse
nine-spot well pattern were transferred to form a
row of water injection (Figure 12)
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Figure 9: The results of reservoir permeability predicted by the CatBoost model. (a) The comparison of actual permeability and predicted
permeability of training set and test set. (b) The prediction results of the test set.

Table 16: Evaluation results of CatBoost model index.

Sample data MSE RMSE MAE MAPE R2

Training sets 0.012 0.108 0.083 6.532 0.987

Testing sets 0.064 0.139 0.207 16.687 0.951
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Figure 10: Comparison of index evaluation of different permeability prediction methods. (a) R2 evaluation results. (b) The result of RMSE
evaluation.
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The adjustment scheme of well pattern in the eastern
and western regions is based on the fixed point encryp-
tion, and the well pattern encryption is carried out in
the local areas with poor development effect and low
formation pressure maintenance level (wells lj36-341,

lj40-363, lj38-366, 131-39, lj34-422, and 133-41), so as
to improve the formation energy, the control degree of
water wells, and the water flooding effect.

(2) For the wells not corresponding to the injection-
production horizon in the study area, it is sug-
gested to supplement the injection hole and
improve the corresponding relationship of the
injection-production horizon. The wells that need
to improve the corresponding relationship between
injection and production are mainly the following
12 wells. The number of supplementary injection
wells and the supplementary injection horizon is
shown in Table 17

(3) According to the results of part (1), the current
average daily liquid production per well, daily oil
production per well, and the average daily water
injection per well of injection wells in each region
are shown in Table 18
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Figure 11: Isoline map. (a–d) The current reservoir permeability, formation pressure, water content, and liquid production isoline map.
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Figure 12: Diamond reverse nine-point well pattern corner well
injection adjustment. Blue for the injection wells, and red for the
production wells.
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According to the calculation formula of liquid produc-
tion index in reservoir engineering manual, the reasonable
water injection and reasonable liquid production in differ-
ent regions of the area are shown in Table 19.

According to the calculation results (Tables 18 and
19), the water injection rate of the water injection wells
in the target area is evaluated. The water injection rate is
smaller in the middle and southwest and larger in the
west, southeast, and north. The reasonable water injection
rate in each region was determined by the calculation
results, in which the reasonable water injection rate in
the eastern effective region was 17.4m3/d, the reasonable
water injection rate in the central effective region was
16.8m3/d, and the reasonable water injection rate in the
western ineffective region was 18.3m3/d. Therefore, the
water injection volume in the whole region is adjusted as
follows.

In view of the ineffective area in the middle of the target
block, the water injection rate of 9 wells (l33-34, l35-36, l36-
38, l37-39, l38-40, l35-38, l33-37, l35-37, and lj34-383) was
adjusted to 16.5m3/d.

In view of the effective area in the western part of the
target block, the water injection rates of five water injec-
tion wells were adjusted. The water injection rates of well
l36-31 were adjusted to 13m3/d, those of well l38-33 were
adjusted to 12.5m3/d, and the water injection rates of well
l39-36, well l36-34, and well l40-36 were adjusted to
18m3/d.

In the eastern effective area, 6 water injection wells were
adjusted to 12.5m3/d for wells l30-40 and l34-41 and
18m3/d for wells lj32-401, l31-39, l30-39, and lj30-381.

7. Conclusion

In this paper, the original dynamic and static data are
fully utilized to establish a permeability analogy system
to find similar blocks by using big data analogy method,
and the prediction results of reservoir engineering method
and machine learning method are compared. Finally, the
CatBoost model of machine learning method is selected
to predict the permeability of 121 oil wells in the DLG
block. The main conclusions are as follows:

(1) In this paper, the logging and production data are
counted, and the Pearson and principal component
analysis are used to screen the main controlling
factors of permeability and establish the analogy
system of six parameters including porosity, shale
content, reservoir thickness, oil saturation, liquid
production, and production pressure difference.
Then, the fuzzy matter-element method is used to
calculate the similarity between DLG block and
the analogy block, and the blocks with similarity
greater than 70% are selected as the similar blocks
of DLG block

(2) According to the similarity calculation results, res-
ervoir permeability of the DLG block is calculated
by reservoir engineering method. In this method,
the logging porosity of the DLG block is introduced
into the correlation formula between core perme-
ability and core porosity of QK-D7 block with the
highest similarity, and the reservoir permeability of

Table 17: Wells and layers needing replenishment.

Well number Reinjection horizon Well number Reinjection horizon

l30-35 Yanchang-6 l36-32 Yanchang-5

l30-39 Yanchang-5/6 l36-41 Yanchang-3/4

l31-30 Yanchang-5/6 l36-42 Yanchang-6

l31-32 Yanchang-4/5/6 l36-45 Yanchang-6

l31-38 Yanchang-5/6 l37-37 Yanchang-4/5

l31-40 Yanchang-5/6 l37-38 Yanchang-5/6

Table 18: Average liquid production, oil production, and water injection per well in target area.

Partition West effective area Eastern effective area Central ineffective area

Average daily liquid production of single well (m3) 1.85 1.41 1.41

Average daily oil production per well (m3) 0.94 1.00 0.56

Average daily water injection of single well (m3) 17.40 16.80 18.30

Table 19: Reasonable water injection and liquid production in target area.

Partition West effective area Eastern effective area Central ineffective area

Reasonable daily liquid production of single well (m3) 3.01 2.64 2.01

Reasonable single well daily water injection (m3) 18.60 17.60 16.80
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the DLG block is calculated. Compared with 11
measured core permeability in the DLG block, the
determination coefficient is 0.906, indicating that
the method is accurate

(3) 421 oil wells in 8 blocks with similarity higher than
70%were selected as sample data, and machine learn-
ing method is used to predict reservoir permeability
in the DLG block. Using randomized quadratic
sampling cross-validation method to establish RF,
GBDT, LightGBM, and CatBoost models, R2, MSE,
RMSE, MAE, and MAPE are used to evaluate the
accuracy of the model. Results show that the Cat-
Boost model has higher accuracy in predicting
reservoir permeability, with R2 of 0.951 and RMSE
of 0.139. By comparing the reservoir engineering
method, the CatBoost model is finally selected to pre-
dict reservoir permeability of 121 wells in the DLG
block

(4) Using the predicted reservoir permeability, com-
bined with the current production data such as
formation pressure, water content, and liquid pro-
duction in this block, contour maps are plotted,
respectively. In view of the problems existing in
the current mining process, the development
adjustment measures such as increasing well spac-
ing density, supplementary perforation, and ratio-
nal proration are proposed, which is beneficial to
the efficient development of the block and pro-
vides a new idea for the application of machine
learning to predict oilfield parameters
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