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1. Introduction

In carbonate and unconventional reservoirs (e.g., tight shale
and oil reservoirs), fractures not only connect isolated pores
and increase the effective porosity of the reservoir but also
provide an important space for oil and gas migration [1]
and can improve the permeability of the reservoir [2, 3].
When a shear wave passes through strata containing frac-
tures and the polarization direction of the shear wave is obli-
que to the azimuth of fractures, it splits into fast and slow
shear waves; this action is referred to as the birefringence
phenomenon [4]. The delay time between fast and slow
shear waves is related to fracture density, and the polariza-
tion direction of the fast shear wave is parallel to the fracture
plane [5–9]. At present, shear-wave splitting (SWS) analy-
sis is a commonly used and effective method for predict-
ing fractures [10–12].

However, when geophones receive the two shear waves,
the fast and slow shear waves are coupled [13, 14]. There-

fore, the polarization direction of the fast shear wave and
the delay time cannot be determined directly [15, 16] and
require calculation through SWS analysis. Alford [17] pro-
posed a method to minimize energy in the off-diagonal ele-
ments (xy and yx components) of the data matrix by
rotating a series of azimuths in the source and receiver axes,
obtaining an accurate azimuth and delay time. When strata
with different depths contain fractures in different direc-
tions, shear waves passing through multiple fractured strata
can result in multiple splits, leading to the inaccuracy of the
method mentioned above [18]. Winterstein and Meadows
[5] proposed the layer-stripping method to solve this prob-
lem. Subsequently, Li and Crampin [19] suggested a linear-
transform technique as an alternative to the rotation-
scanning technique, in which the complex motion of shear
wave is transformed into linear motion. To overcome the
asymmetry of the seismic data matrix and wave polarization,
singular value decomposition (SVD) [20] and eigenvector-
eigenvalue decomposition (EED) [21, 22] were developed.
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Shear-wave splitting (SWS) analysis is used to predict fractures in subsurface media. Specifically, two parameters relevant to SWS 
analysis (the azimuth of the fast shear wave and the time delay between the fast and slow shear waves) are used to quantify the 
main azimuth and degree of the fracture development, respectively. However, the algorithms of SWS analysis using a grid 
search have relatively low computational efficiency, as they need to calculate the objective function values of all grid points. To 
improve the efficiency of SWS analysis, we proposed new algorithms using the gradient descent, Newton, and advance-retreat 
methods. The new methods use the direction of the fastest gradient descent, the intersection points of the tangent plane of the 
first-order objective function with the zero plane, and narrowing the range of extremum points to determine the search path.
Therefore, this removes the necessity to compare all grid points in the value region. We compared the three methods and the 
rotation-correlation method, and both synthetic and field data tests indicated that all three methods had higher computational 
efficiency than the traditional grid search method. Among the proposed methods, the gradient-descent method obtained the 
most accurate results for both synthetic and field data. Our study shows that SWS analysis combined with the gradient-descent 
method can accurately and efficiently obtain SWS parameters for fracture prediction.
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However, the influence of a low signal-to-noise ratio does
not allow the polarization directions of the split shear waves
to be estimated accurately through the SVD and EED
methods, which leads to deterioration in the separation of
the split shear waves [23, 24]. During the same period, a
series of scanning algorithms with different objective func-
tions emerged: the tangential energy [25–27], covariance
matrix [28–30], and rotation-correlation methods [31–34].
All scanning methods perform a grid search to determine
the SWS parameters (polarization azimuth of fast shear
waves θ and delay time Δt), but the calculation efficiency is
generally low owing to the calculation by increment.

In recent years, many geophysical inversions have been
proposed based on optimization algorithms, such as the
Gauss-Newton method used by Lu et al. to build a model
update matrix and objective function [35], the gradient
method applied by Moghaddam et al. to construct a faster
and smoother model misfit reduction [36], and the
advance-retreat method used by Xiao et al. to determine fil-
ter length [37]. The application of these combined optimiza-
tion algorithms can solve partial complex problems.

Using the gradient descent, Newton, and advance-
retreat algorithms can also improve the calculation effi-
ciency [38–40]. Therefore, we proposed three SWS analysis
methods based on the three optimization principles and
designed the objective function to obtain the best results.
Then, we evaluated the accuracy and computational effi-
ciency of the three methods for synthetic and field data.
The results showed that the three methods can effectively
solve the issue of low computational efficiency while the
gradient-descent method ensures accuracy by comparing
the inversion results of the three methods with the fracture
porosity.

2. Methods

2.1. Rotation-Correlation Method. The application of the
rotation-correlation method is prominent [41–49] and can
remove the effect of splitting [50]. As the P-wave reaches
the reflection interface, it generates an upward converted
shear wave (Figure 1). When the polarization direction of
the shear wave is tilted with the fracture plane, it splits into
a group of orthogonal fast and slow S-waves [51]. The
upward direction of the fast and slow shear waves is nearly
vertical to the ground, and the fast shear wave reaches the
surface faster than the slow one. The R and T components
of the three-component geophone can receive the mixed sig-
nals of fast and slow shear waves on the ground. The direc-
tion of the R component is parallel to the source-geophone
direction, and the direction of the T component is orthogo-
nal to the source-geophone direction.

When the converted shear wave, SðtÞ, is obliquely polar-
ized to the fracture plane, the following equation is used to
calculate the wavefield:

S1 tð Þ
S2 t − Δtð Þ

" #
=

cos θ
−sin θ

" #
S tð Þ, ð1Þ

where θ and Δt are two SWS parameters [52], and S1ðtÞ and
S2ðtÞ are the time series of the fast and slow shear waves,
respectively. The R and T components can be expressed by
θ and SðtÞ through vector transformation:

R tð Þ
T tð Þ

" #
=

cos θ sin θ

sin θ −cos θ

" #
S1 tð Þ

S2 t − Δtð Þ

" #
: ð2Þ

We multiply Equation (2) by the inverse of the θ matrix
to obtain

S1 tð Þ
S2 t − Δtð Þ

" #
=

cos θ sin θ

sin θ −cos θ

" #−1 R tð Þ
T tð Þ

" #
: ð3Þ

Thus, S1ðtÞ and S2ðt−ΔtÞ can be obtained from the field-
received R and T components.

Finally, the objective function is constructed based on
the correlation of the fast and slow shear waves:

COV θ, Δtð Þ =
∑ S1 tð Þ − S1 tð Þ
� �

S2 tð Þ − S2 tð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ S1 tð Þ − S1 tð Þ
� �2

∑ S2 tð Þ − S2 tð Þ
� �2

r ,

ð4Þ

where S1ðtÞ and S2ðtÞ are the average values of S1ðtÞ and S
2ðtÞ within a time window, respectively. Then, the COV
values of all grid points were calculated to determine reason-
able θ and Δt ðCOV = 1Þ as SWS parameters [53].

The rotation-correlation method is a grid search method
which is used to search for the maximum cross-correlation
coefficient; further, it derives the splitting time from the
delay time corresponding to maximum cross-correlation
coefficient [54]. This method’s calculation efficiency is low
because the COV values must be computed from 0° to 180°

with an increment of 1° [55–57]. At present, many optimiza-
tion algorithms can quickly search for the extremum point
of the objective function. Therefore, we have taken the
COV as the objective function and determined the search
path by using the gradient descent, Newton, and advance-
retreat methods.

2.2. Gradient-Descent Method. The direction of the partial
derivative of the residual to the independent variable is taken
as the search direction, and the first-order derivative of the
updated objective function is close to zero [58, 59]. Combin-
ing the SWS with the gradient descent, we obtained the fol-
lowing equations of the objective function:

X = θ, Δt½ �T ,
y = f Xð Þ,
yi = f Xið Þ,

φ = 〠
l

i=1
yi −mið Þ2:

ð5Þ
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We constructed model vector X with θ and Δt: the
model value is y; f is the function rule between X and y;
yi is the ith model value; mi is the ith observation value
which always equals to 1; Xi is the ith parameter vector;
the residual is φ of yi and mi; and l is the total number of
observations.

The updates of the model value, residual, partial deriva-
tive, and vector X for the kth time can be written as

yk = f Xk
� �

,

φk = 〠
l

i=1
yki − 1

� �2
,

∂ φk
� �
∂ Xð Þ = ∂ φk

� �
∂ θð Þ

∂ φk
� �
∂ Δtð Þ

#T

,

2
4

Xk = θk, Δtk
h iT

,

Xk+1 = Xk − α × ∂ φk
� �
∂ Xð Þ ,

ð6Þ

where a is a step length. The update of SWS parameter θ and
t can be written as follows:

θk+1 = θk − α × ∂ φk
� �
∂ θð Þ ,

Δtk+1 = Δtk − α × ∂ φk
� �
∂ Δtð Þ :

ð7Þ

However, we express the gradient value with a differen-
tial expression because the objective function is nonlinear.
We obtained the four gradient values by differentiating the
initial point (x1, x2) with its four adjacent grid points in
the four directions of the binary function:

dF1 =
f x1 + Δx, x2ð Þ − f x1, x2ð Þ

Δx
,

dF2 =
f x1 − Δx, x2ð Þ − f x1, x2ð Þ

−Δx
,

dF3 =
f x1, x2 + Δxð Þ − f x1, x2ð Þ

Δx
,

dF4 =
f x1, x2 − Δxð Þ − f x1, x2ð Þ

−Δx
,

ð8Þ

where dFi is the gradient value, i represents the different
directions, and Δx equals to 1. We take the adjacent
point with the maximum value of dFi as the update
point. If the dFi of the update point is less than ε1 (a
small positive number), the iteration is terminated and
the corresponding θ and Δt of that point is the output.

We randomly selected an initial point on a surface
to search for the optimal point (see Figure 2). After
14 iterations, we obtained the inversion result (optimal
point).

2.3. Newton Method. The Newton method can quickly
obtain the zero of the first-order derivatives of the objective
function [60–62]. Based on the one-dimensional Newton

Fast S-wave

Fracture plane

S-wave

Slow S-wave

P-wave

Shot

Geophone

T

R𝜃

Reflection interface 

Ground

Figure 1: Shear-wave splitting (SWS) diagram. The red and blue arrows on the ground represent the polarization directions of the fast and
slow shear waves, respectively, and θ represents the fracture azimuth.
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method, the updates of vector X and SWS parameters θ and
Δt can be calculated using

Xk+1 = Xk −
COV′
COV″

,  COV′ = ∂ COVð Þ
∂ Xð Þ ,

θk+1 = θk −
COVθ

′
COVθ

″ , COVθ
′ = ∂ COVð Þ

∂ θð Þ ,

Δtk+1 = Δtk −
COVΔt′
COVΔt″

, COVΔt′=
∂ COVð Þ
∂ Δtð Þ ,

ð9Þ

where COV′ is the first-order derivative of the objective
function and COV″ is the second-order derivative. The
subscripts θ and Δt denote the partial derivatives of the

objective function for the azimuth or delay time direction,
respectively.

The Newton method searches for zero through a tangent
line (see Figure 3(a)). A is the initial point; B is the intersec-
tion point of the tangent and zero lines; and C is the projec-
tion of point B onto the objective function. The Newton
method obtains the zero through the tangent line in one
dimension and through the tangent plane in two dimen-
sions. The tangent plane is composed of the θ and Δt tan-
gents. The intersection points of tangent lines (θ and Δt)
and the zero plane are points B1 and B2, respectively. The
two points construct intersection line L. Then, computing
the objective function values of all points on intersecting line
L and comparing with each other, we can obtain C1 (the
minimum COV′). B3, the projection point of C1 onto L, is
the update point. We show the specific steps of the two-
dimensional Newton method below (see Figure 3(b)).

(a) (b)

Initial point

Optimal point

0 40 80 120 160 200
Value

Figure 2: The convergence process of the gradient-descent method. (a) The red point is the initial point, and the black points are the
adjacent points. (b) The convergence path. The extremum point is equal to the optimal value.
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Figure 3: Convergence of the Newton method. (a) One-dimensional and (b) two-dimensional Newton methods.
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We expressed the first-order derivative in differential
form because the equation is nonlinear. The COV′ value
of the initial point (θ1, Δt1) is computed as

Then, we take points (θ1 + Δθ, Δt1) and (θ1, Δt1 + ΔT) as
an increment in the azimuth and delay time directions,

respectively. By substituting the two points into Equation
(10), we can determine the first derivative of θ and Δt:

where COVΔθ
′ and COVΔT′ represent the values of the first-

order derivative of the two points. Therefore, the tangent
lines of the azimuth and delay time equations according to
the COVΔθ

′, COVΔT′, and COV′, can be written as

yθ =
x − θ1
Δθ

× COVΔθ
′ − COV′

� �
+ COV′,

yΔT = x − Δt1
ΔT

× COVΔT′ − COV′
� �

+ COV′,
ð12Þ

where yθ and yΔT are the tangent lines of the azimuth and
delay time, respectively, and x is the independent variable
for azimuth or delay time.

We assumed that the COV′ of point B1 is O1 and B2
is O2, and Z1, Z2, and Z3 are substituted for COV′, CO
VΔθ

′, and COVΔT′, respectively. Then, intersection points
B1ðx1, y1,O1Þ and B2ðx2, y2,O2Þ can be calculated using
O1, O2, Z1, Z2, and Z3, which was expressed as

O1 − Z2
Z1 − Z2

= x1 − θ1 − Δθ

−Δθ
,

O1 − Z2
Z1 − Z2

= y1 − Δt1
Δt1 − Δt1

,

O2 − Z3
Z1 − Z3

= x2 − θ1
θ1 − θ1

,

O2 − Z3
Z1 − Z3

= y2 − Δt1 − ΔT
−ΔT

:

ð13Þ

Because O1 and O2 are equal to zero, Equation (13)
can be simplified as

x1 =
Δθ × Z2
Z1 − Z2

+ θ1 + Δθ,

y1 = Δt1,
x2 = θ1,

y2 =
ΔT × Z3
Z1 − Z3

+ Δt1 + ΔT:

ð14Þ

Then, the intersecting line, Lðx, yÞ, formed by B1 and
B2 can be expressed as

y = x − x2ð Þ × y1 − y2ð Þ
x1 − x2

+ y2: ð15Þ

If x is the azimuth, y is the delay time. Then, calculat-
ing the projection values of intersecting line L onto the
surface, we can obtain the minimum value of C1, taking
B3, which is the projection point of C1 onto L, as the
update point. If C1 is less than ε2 (a small positive num-
ber), we take the point as the result; otherwise, the update
continues.

2.4. Advance-Retreat Method Based on the Golden Section.
The advance-retreat method determines the range, including
the maximum value, by the opposite sign of the upper and
lower bounds [63, 64], and the golden section method
obtains the maximum value by narrowing the range [65,
66]. Then, we can obtain the maximum value quickly by

COV′ θ1, Δt1ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
COV θ1 + Δθ, Δt1ð Þ − COV θ1, Δt1ð Þ

Δθ

� �2
+ COV θ1, Δt1 + ΔTð Þ − COV θ1, Δt1ð Þ

ΔT

� �2
s

: ð10Þ

COVΔθ
′ = COV′ θ1 + Δθ, Δt1ð Þ =


COV θ1 + 2Δθ, Δt1ð Þ − COV θ1 + Δθ, Δt1ð Þ

Δθ

� �2
+ COV θ1 + Δθ, Δt1 + ΔTð Þ − COV θ1 + Δθ, Δt1ð Þ

ΔT

� �2
s

COVΔT′ = COV′ θ1, Δt1 + ΔTð Þ =

COV θ1 + Δθ, Δt1 + ΔTð Þ − COV θ1, Δt1 + ΔTð Þ

Δθ

� �2
+ COV θ1, Δt1 + 2ΔTð Þ − COV θ1, Δt1 + ΔTð Þ

ΔT

� �2
,

s

ð11Þ
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combining the two methods. The two-dimensional advance-
retreat method obtains the maximum value of COV by reg-
ularly searching for the maximum value of the independent
variables. This pattern searches for the maximum value in

one direction and then continues to search for the maximum
value in another direction. We output the point of the sec-
ond maximum value as the result. If the COV′ of the result
is less than ε3 (a small number), the loop is ended; otherwise,

Figure 4: Flow chart of the advance-retreat method based on the golden section.
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Figure 5: The search process of the advance and retreat method and simulation to find the real value of SWS. (a) One-dimensional advance-
retreat method to find the range of maximum value ðΔtk,Δtk+1Þ. (b) The zero point (optimal point) is determined by narrowing the range.
(c) The black points are the update points, and the red point is the real value.

advance-retreat is performed until the result satisfies the
condition (COV′ less than the ε3). We set the search pattern
Δt to θ.

When searching for the maximum value of Δt, first, we
must determine the range, including the maximum value
of Δt. The range is determined by the values of the upper
and lower bounds, which we use as the COV′ of the initial
point ðθk,ΔtkÞ and comparison point ðθk,Δtk+1Þ, respectively.
The Δtk+1 equals Δtk plus a step length h. Comparing
whether COVΔt′ðθk, ΔtkÞ times COVΔt′ðθk, Δtk+1Þ is less than
zero, we obtained the range ½Δtk,Δtk+1�. If it is less than zero,
we move to the next step. Otherwise, we obtained the new
Δtk+1 which equals the new Δtk plus the new h. The new Δ
tk equals the last Δtk+1 and the new h is twice the last h.
Then, we calculate the new COVΔt′ðθk, ΔtkÞ and COVΔt′ðθk,
Δtk+1Þ to compare their signs. According to the sign, we
choose to execute the golden section or continue to update
the two points. The selection of this process is shown

COVΔt′ θk, Δtkð ÞCOVΔt′ θk, Δtk+1ð Þ > 0,

Δtk = Δtk+1,

h⟶ 2h,

Δtk+1 = Δtk + h,

COVΔt′ θk, Δtkð ÞCOVΔt′ θk, Δtk+1ð Þ < 0,

Δt ∈ Δtk, Δtk+1½ �:
ð16Þ

The second step is to narrow the range. Two comparison
points ðθk, ltÞ and ðθk, utÞ are determined, and lt equals to
Δtk plus 0.382 times the difference between Δtk+1 and Δtk.
ut equals Δtk plus 0.618 times the difference between Δtk+1
and Δtk, as shown in

lt = Δtk + 0:382 × Δtk+1 − Δtkð Þ, ð17aÞ

ut = Δtk + 0:618 × Δtk+1 − Δtkð Þ, ð17bÞ
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Then, by comparing jCOVΔt′ðθk, ltÞj with jCOVΔt′ðθk, utÞj,
we update lt or ut based on

COVΔt′ θk, ltð Þ		 		 > COVΔt′ θk, utð Þ		 		,
Δtk = lt ,
lt+1 = Δtk + 0:382 × Δtk+1 − Δtkð Þ,

ð18aÞ

COVΔt′ θk, ltð Þ		 		 < COVΔt′ θk, utð Þ		 		,
Δtk+1 = ut ,
ut+1 = Δtk + 0:618 × Δtk+1 − Δtkð Þ,

ð18bÞ

The update continues until the difference between jCO
VΔt′ðθk, ltÞj and jCOVΔt′ðθk, utÞj is less than precision εΔt (a
small positive number). Then, we obtain the maximum value
of Δt which equals the sum of lt plus ut divided by 2.

This completes the search for the maximum value of Δt.
The next step is to search for the maximum value of θ from
the point ðθk,ΔtÞ. The maximum value update process of θ is
similar to the search for the maximum value of Δt. We
obtained the comparison point ðθk+1,ΔtÞ using the initial
point ðθk,ΔtÞ, which is θk+1, equal to the θk plus step length
h (a new step length). Then, we compared the sign of CO

Vθ
′ðθk, ΔtÞ with COVθ

′ðθk+1, ΔtÞ to choose to move onto
the next step or update the two points. If it is different, the
range is ½θk, θk+1�; otherwise, we obtain the new θk+1 which
equals the new θk plus a new h (not h in the direction of
the delay time), and the new θk equals the last θk+1, and
the new h is twice the last h. Then, we calculate the new
COVθ

′ðθk, ΔtÞ and COVθ
′ðθk+1, ΔtÞ to compare. The selection

of this process is shown as

COVθ
′ θk, Δtð ÞCOVθ

′ θk+1, Δtð Þ > 0,
θk = θk+1,
h⟶ 2h,

θk+1 = θk + h,
COVθ

′ θk, Δtð ÞCOVθ
′ θk+1, Δtð Þ < 0,

θ ∈ θk, θk+1½ �,

ð19Þ

Then, we obtain lθ and uθ using

lθ = θk + 0:382 × θk+1 − θkð Þ, ð20aÞ

uθ = θk + 0:618 × θk+1 − θkð Þ: ð20bÞ
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Figure 6: Component signal time series. (a) Ricker wavelet SðtÞ, (b) fast shear wave S1ðtÞ and slow shear wave without delay S2ðtÞ, (c) fast
shear wave S1ðtÞ and slow shear wave S2ðt−ΔtÞ, and (d) R and T component time series.
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Then, comparing the values of jCOVθ
′ðlθ, ΔtÞj with jCO

Vθ
′ðuθ, ΔtÞj, we update lθ or uθ using

COVθ
′ lθ, Δtð Þ		 		 > COVθ

′ uθ, Δtð Þ		 		,
θk = lθ,

ð21aÞ

lθ+1 = θk + 0:382 × θk+1 − θkð Þ,
COVθ

′ lθ, Δtð Þ		 		 < COVθ
′ uθ, Δtð Þ		 		,

θk+1 = uθ,
uθ+1 = θk + 0:618 × θk+1 − θkð Þ:

ð21bÞ

The iteration continues until the difference between
jCOVθ

′ðlθ, ΔtÞj and jCOVθ
′ðuθ, ΔtÞj is less than precision

εθ (a small positive number). The maximum value of θ
equals the sum of lθ plus uθ divided by 2.

Then, we compute the COV′ of the point ðθ,ΔtÞ. If CO
V′ is less than the precision ε3 (a small positive number),
we stop the loop and take the point as the result. Otherwise,
the procedure continues to alternately search for the maxi-
mum values of Δt and θ until the COV′ is less than εθ.
The entire flowchart is shown in Figure 4.

If a point can be used in both positive and negative
directions to search for the maximum value of Δt or θ, we
need to calculate the maximum values of the two directions
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Table 1: Divisions and initial points of the four subregions.

Subregion 1 Subregion 2 Subregion 3 Subregion 4

Azimuth region (°) [0–90) [0–90) [90–180] [90–180]

Delay time region (ms) [0–30) [30–60] [0–30) [30–60]

Initial point (°, ms) (45,15) (45,45) (135,15) (135,45)
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and select the lower COV′ as the update point. Figures 5(a)
and 5(b) show the advance-retreat method to find the max-
imum value in one dimension. Figure 5(a) shows how to
quickly determine the range of maximum value as h

increases, and Figure 5(b) shows that the maximum value
is obtained based on the golden section by narrowing its
range. In Figure 5(c), we combined the SWS analysis with
advance-retreat method to search for the real value. First,
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Figure 8: Error comparison of the three methods. The left column is the azimuth error diagram and the right column is the delay time error
diagram; (a, b) gradient-descent method, (c, d) Newton method, and (e, f) advance-retreat method.

Table 2: Calculation times and inversion results of the four methods.

Gradient descent Newton Advance-retreat Rotation-correlation

Calculation times 191 218 69 11041

Result (°, ms) (30,10) (45,15) (38,8) (30,10)
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the zero point of the delay time is obtained, followed by the
azimuth. The real value can be obtained after 4 iterations.

3. Synthetic Data Test

We compared the inversion results of the three methods
through synthetic data. We used a Ricker wavelet (S) with
a main frequency of 30Hz to obtain the synthetic R and T

component data. Δt and θ were set as 10ms and 30°, respec-
tively. The time window was set at 128ms S1ðtÞ and S2ðt−
ΔtÞ were obtained using Equation (1), and RðtÞ and TðtÞ
were obtained using Equation (2). The signal time series
are as shown in Figure 6.

We set ε1, ε2, and ε3 equal to 10
-8, εΔt and εθ equal to 10

-6,
and the step lengths of Δt and θ as 1° and 1ms, respectively.
The size of test region was set as 180 × 60, where 180 and 60
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Figure 9: Error diagrams for the advance-retreat method with different initial step length; the left column is for the azimuth and the right
column depicts delay time. The step length units from top to bottom are 1, 2, 3, and 4.
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are the ranges of the azimuth and delay time, respectively.
The three methods may fall into the local convergence [67,
68]; therefore, to exclude local optima, we divided the region
into four subregions and ran the computations in each subre-
gion to obtain four output points. The maximum value is
selected by comparing the four output points. The size of
each subregion was 90 × 30, with a total of 2821 grid points
(Figure 7(a)). Then, we took the central point of each subre-
gion as the initial point. The SWS parameters corresponding
to the maximum value of COV were obtained by comparing
the output values of the four subregions. The subregions and
initial points of the model are listed in Table 1, and Figure 7
shows the convergence progress of the three methods.

The calculation results and times for the three methods
and the rotation-correlation method are shown in Table 2.
The convergence speed of the three methods is all faster than
the rotation-correlation method which requires 11,041 cal-
culation times. Although the advance-retreat method had
the least number of iterations, it cannot obtain accurate
results. The gradient-descent method had the most accurate
results.

We tested the inversion results of the three methods for
2,821 real values ranging from 0–90° and 0–30ms with an
increment of 1 unit to compare the errors of the three
methods. The errors between the real values and results for
the three methods are shown in Figure 8.

If the real azimuth was close to 0° or 90°, the errors of the
three methods were high. When the azimuth was tilted to

15° to 75°, the inversion results of the gradient-descent
method were the best with errors close to 0. As the delay
time approached 15ms, the error between the azimuth of
inversion and the real value of the Newton method reached
30°. When the delay time was between 10 and 20ms, the
inversion results of the advance-retreat method displayed
regular errors (see Figures 8(e) and 8(f), red box). The step
length can affect the result of the advance-retreat method;
therefore, to obtain the optimal step length, we compared
the error diagram of the advance-retreat method with initial
step length units of 1, 2, 3, and 4 (see Figure 9).

The comparison of the inversion method with different
initial step lengths showed that when the azimuth ranged
from 15–75°, the error of the inversion using a step length
unit of 3 was close to 0, which was more accurate than
other initial step units. Therefore, the initial step lengths
of the advance-retreat method in the field data were set
as 3° and 3ms.

To test the stability of the gradient-descent method, we
added 10%, 20%, and 50% noise level to the original signals
S1ðtÞ and S2ðtÞ with azimuth and delay time of 30° and
10ms, respectively. The time window of signals was
133ms. We obtained the RðtÞ and TðtÞ with noise according
to Equation (2) (Figure 10).

We tested the errors of the SWS analysis method com-
bined with the gradient method and the rotation-correlation
method for the noise-added signals. The delay time model
was tested for 0–30ms with an increment of 1ms, and the
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azimuth was tested for 0–90° with an increment of 1°. The
error diagram is shown in Figure 11.

When the two methods are compared at the same noise
level, the errors of azimuth and delay time are nearly similar.
As the noise increases, the effective range of the azimuth
narrows from 20–70° to 30–60°. Compared to the lower
values of the delay time simulation (0–10ms), the error of
the gradient-descent method is smaller than the rotation-
correlation method.

4. Field Data Testing

To verify the accuracy of the three methods, we used the R
and T components of the field data to predict the degree of
anisotropy and fracture azimuth of well A in Basin B, China.
The target reservoir is a typical tight gas reservoir, and the
prediction of fracture azimuths was key for improving pro-
ductivity. The sections of R and T components are shown
in Figure 12; well A is near the 50th trace. The target layer
is the S Formation (see Figure 12, green dotted box). There-

fore, we selected the 50th trace of the R and T components
to predict the anisotropic strength by using the three
methods.

To ensure a complete wave mode in the time window
and reduce the extent of unnecessary calculation, we set
the length of the time window to be approximately one
wavelength. We observed that the two adjacent wave peaks
in the R or T components were close to 32ms (see
Figure 12). Therefore, the length of the time window was
set as 32ms. The subregion and initial point are shown in
Table 3. We set the ratio of the delay and travel time in
the target layer as the degree of anisotropy and fracture
development. The presence of fractures caused changes in
porosity, resulting in further changes in deep and shallow
lateral resistivities [69]. Therefore, the fracture porosity can
be calculated using these resistivities [70] as

Φf =
A1
Rs

+ A2
Rd

+ A3

� �
× Rmf , ð22Þ

(c) (d)

(g) (h)

0 30 60 90 0 15 25 30

Error (ms)

20105

(a) (b)

∆
t (

m
s)

(e) (f)

0 30 60 90 0 15 25 30

Error (ms)

20105

(i)

30

30

20

10

60 90
0

0

Error (°)

𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

∆
t (

m
s)

30

30

20

10

60 90
0

0
𝜃 (°)

(j)

Error (°)

(k) (l)

Figure 11: Error diagrams for the gradient method (first two columns on the left) and the rotation-correlation method (last two columns on
the right). The first and third columns are the error diagrams for azimuth, and the second and fourth columns are the error diagrams for
delay time. The noise levels from top to bottom are 10%, 20%, and 50%, respectively.
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where Rs and Rd are the shallow and deep lateral resistivi-
ties, respectively; Rmf is resistivity of the mud filtrate; A1,
A2, and A3 are constants based on the statistical results
from the same geologic age strata in the adjacent areas of
basin B from oil field C. The constant values of the adjacent
strata in Tarim Basin are A1 = −0:4063, A2 = 1:2813, and
A3 = 0:000151.

The curves of the fracture porosity and the results of
rotation-correlation and the three methods are shown in
Figure 13. The results of the gradient-descent method
matched the fracture porosity curve best, especially between
the depths of 6200–6290 and 6420–6480m, as highlighted in
the blue dotted boxes. The gradient-descent method
required a maximum of 400 iterations, the maximum num-
ber of iterations for the advance-retreat method did not
exceed 200, and the maximum number of iterations for the
Newton method did not exceed 1200. The statistical results
of calculation times showed that the gradient-descent
method was calculated 75194 times in all depth locations,
the Newton method 312356 times, the advance-retreat
method 25192 times, and the rotation-correlation method
3153744 times. This shows that the gradient-descent method
and the advance-retreat method can reduce the computation
load by two orders of magnitude, while the Newton method
can only reduce the computation load by one order of
magnitude.

The other SWS parameter is the azimuth of the fast
shear wave. We calculated the azimuths through the
gradient-descent method and use a rose diagram (see
Figure 14) to present the fracture azimuths. The dominant
fracture azimuths in the target layer were distributed at
approximately 45° and 135° (southwest–northeast and
northwest–southeast). This result was consistent with that
obtained by Yang et al. [71].

5. Discussion

Because grid search methods need to go through all the
points to select the SWS parameters, the enumeration pro-
cess involves a lot of unnecessary computation. In this study,
we considered the COV (the objective function of rotation-
correlation method) as the objective function. By setting an
initial point, computational efficiency can be improved
because the point can be updated autonomously toward
the extremum point according to the theory of optimization
algorithm.

The number of partitions is one of the parameters that
can be adjusted in the three methods. Increasing the number
of partitions will result in more output values, and the maxi-
mum value selectedmay be closer to the real value because there
are more results to compare. However, an increase in the num-
ber of partitions necessarily increases computation times.

If the actual azimuth value is close to 0° or 90°, the results
of these three methods are affected. Because the shear wave
passes through the fractures almost parallel or orthogonal
to the fracture plane, SWS does not occur—this is called
the “null direction” [50]. The existence of a null measure-
ment will result in constant S1ðtÞ and S2ðtÞ signals; there-
fore, according to Equation (5), the value of COV would
be constant, and the gradient variation at any two adjacent
points would be close to 0. Thus, the results of the SWS anal-
ysis are not accurate in this case.

The gradient-descent method was tested with Δx equal
to 1. The convergence efficiency can be improved by setting
different Δx, but this may affect the accuracy. In the future,
we will consider setting Δx as a variable and not limiting
the search direction to the positive and negative four direc-
tions in the xy axis. In addition, more search directions will
be studied to achieve more effective results.

Table 3: Divisions and initial points of the four subregions.

Subregion 1 Subregion 2 Subregion 3 Subregion 4

Azimuth region (°) [0–90] [0–90] [90–180] [90–180]

Delay time region (ms) [0–16] [16–32] [0–16] [16–32]

Initial point (°, ms) (45,8) (45,24) (135,8) (135,24)

1

5210

4710

4210

5710

Trace

(a) (b)

20 40 60 80 100
3710

A A
Ti

m
e (

m
s)

1
Trace

20 40 60 80 100

5210

4710

4210

5710

3710

Ti
m

e (
m

s)

Figure 12: R and T profiles of traces 1 to 100; the black line is well A. (a) R component profile and (b) T component profile.
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6. Conclusions

To improve the efficiency of the SWS analysis, we proposed
new algorithms combining the gradient descent, Newton,
and advance-retreat methods. We set the COV as the objec-
tive function, combined the characteristics of the three
methods to guide the search path and selected the largest
result by partitioning. The synthetic tests showed that the
gradient-descent method is more accurate than the other
two methods. The calculation times of the field data statistics
show that the gradient descent and the advance-retreat
methods can reduce the computation load by two orders of
magnitude, while the Newton method can only reduce the
computation load by one order of magnitude. The results
predicted by the gradient-descent method are closer to the
fracture porosity calculated by resistivity logging. The syn-
thetic and field data tests both prove that the three methods
are faster than traditional grid search methods, and that the
gradient-descent method combined with SWS analysis is
better than the other two methods. Our proposed SWS algo-
rithm combined with the gradient-descent method can effec-
tively improve the computational efficiency while the
accuracy is guaranteed, and it can be applied for predicting
the fracture azimuth and anisotropic strength in fractured
reservoirs.
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