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1. Introduction

Shear-wave velocity plays a crucial role in prestack elastic
inversion, reservoir sensitive parameter analysis, and in situ
stress analysis [1–5]. Limited by cost and current acquisition
technology, shear-wave velocity is generally lacking in con-
ventional logging data in most areas, especially in old wells.
Therefore, developing a reliable and low-cost prediction
method of shear-wave velocity is extremely important.

Previously, the empirical formula [6, 7] and the petro-
physical model [8, 9] were used to predict shear-wave veloc-
ity. However, the empirical formula varies with the region
and lithology, which leads to the problem of insufficient gen-
eralization. The prediction accuracy of petrophysical model

depends on the calculation accuracy of each parameter, but
some parameters in complex reservoirs are difficult to obtain
accurately [10], which limits the application of petrophysical
model.

Deep learning can establish the nonlinear-mapping rela-
tionship between input and output, so it has been widely used
in face recognition, machine translation, image classification,
and other fields [11–13]. In recent years, some geophysicists
have introduced deep learning into the field of geology and
achieved some research results in the fields of petrophysics,
lithology identification, and reservoir parameter inversion
[14–16]. Among them, in the aspect of shear-wave velocity
modeling, scholars mainly use recurrent neural network
(RNN) [17] and convolutional neural network (CNN) [18]
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Compression-wave velocity and shear-wave velocity are important elastic parameters describing deeply tight sandstone. Limited 
by cost and technical reasons, the conventional logging data generally lack shear-wave velocity. In addition, the existing rock 
physics theory is difficult to accurately establish the rock physics models due to the complex pore structure of tight sandstone 
reservoir. With the rapid development of the artificial intelligence, the attention mechanism that can increase the sensitivity of 
the network to important characteristics has been widely used in machine translation, image processing, and other fields, but it 
is rarely used to predict shear-wave velocity. Based on the correlation between the shear-wave velocity and the conventional 
logging data in the spatiotemporal direction, a gate recurrent unit (GRU) fusion network based on the spatiotemporal 
attention mechanism (STAGRU) is proposed. Compared with the convolutional neural network (CNN) and gate recurrent 
unit (GRU), the network proposed can improve the sensitivity of the network to important spatiotemporal characteristics 
using the spatiotemporal attention mechanism. It is analyzed that the relationship between the spatiotemporal characteristics 
of the conventional logging data and the attention weights of the network proposed to verify the rationality of adding the 
spatiotemporal attention mechanism. Finally, the training and testing results of the STAGRU, CNN, and GRU networks show 
that the prediction accuracy and generalization of the network proposed are better than those of the other two networks.
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to establish the nonlinear mapping between input and output
[19–21]. Considering the powerful function of CNN extract-
ing spatial characteristics, Ma et al. [22] used CNN to predict
the shear-wave velocity, and the prediction accuracy of the
shear-wave velocity has been improved. The logging data
has regularity in the depth direction, and compared with
the CNN, the RNN is more suitable for dealing with conven-
tional logging data. Some scholars [23, 24] proposed a
method to deal with the lack of shear-wave velocity using a
long short-term memory (LSTM) network [25], which fully
considered the temporal characteristics of the conventional
logging data and achieved good prediction results in carbon-
ate and sandstone reservoirs. Compared with the LSTM net-
work, GRU [26] can reduce the network training parameters
and has been widely used to predict shear-wave velocity and
porosity [21, 27]. However, the above methods only focus on
the spatial characteristics or temporal characteristics of the
conventional logging data and ignore the influence of the
spatiotemporal characteristics of the conventional logging
data on shear-wave velocity. To comprehensively consider
the impact of the spatiotemporal characteristics of the
conventional logging data on shear-wave velocity, the fusion
network composed of CNN and LSTM or GRU is suggested
by some scholars [28–30]. Although the above method
improves the performance of the network, it does not high-
light the impact of important spatiotemporal characteristics
on shear-wave velocity, so there is a higher requirement

for the weight distribution of spatiotemporal characteristics
extracted from the network.

In recent years, the neural networks based on the atten-
tion mechanism have been used in machine translation,
power load, and geoscience [31–36], and these scholars claim
that the attention mechanism can improve the sensitivity of
the network to important characteristics. Kavianpour et al.
[37] developed an attention-based CNN-BILSTM fusion
network to predict earthquakes and achieved good prediction
results. To improve the accuracy of the seismic event
detection and localization, an attention mechanism-based
LSTM-FCN fusion network is proposed by Bai and Pejman
[38]. Compared with the ConvNetQuake model [39], the
prediction accuracy and classification performance of the
network are effectively improved. Shan et al. [40] provided
a fusion network based on the CNN-BILSTM, which is used
to predict the logging data to reduce drilling costs.

The above literatures show that deep learning network
has been widely used in seismic facies, lithology identifica-
tion, reservoir parameter inversion, and other fields, but
few neural networks based on the attention mechanism are
used to predict shear-wave velocity. In addition, shear-
wave velocity has a certain correlation with spatiotemporal
characteristics of the conventional logging data; a GRU
fusion network based on the spatiotemporal attention mech-
anism (STAGRU) is proposed, which mainly includes the
GRU layer, the spatial attention layer, the temporal attention
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Figure 1: Structure of GRU network.
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layer, and the fully connected layer. In this paper, the tight
sandstone reservoir in the Junggar Basin is used as the
research object. Based on the STAGRU fusion network, a
training and prediction flow about the shear-wave velocity
is established, and the weight distribution of the attention
layer is analyzed. Finally, the training and prediction results
of the STAGRU, CNN, and GRU networks show the network
proposed has higher prediction accuracy and generalization.

2. Methods

2.1. Gate Recurrent Unit (GRU). The gate recurrent unit
(GRU) is a variant of the recurrent neural network (RNN),
which not only solves the problem of vanishing or exploding
gradients in the traditional RNN [41] but also solves the
problem of long calculation time of the LSTM. On the other
hand, it sets up two gates in the hidden layer—reset gate (rt)
and update gate (zt) (Figure 1). The reset gate and update
gate perform retention and forgetting functions, respectively,
according to the input of the current moment. When the
reset gate (rt) is closer to 1, it means that more information
is preserved. When the update gate (zt) is close to 1, it means
that more information is forgotten. When the logging data
xt is input at time t, the reset gate (rt) and update gate (zt)
can be expressed as

rt = σ Wr ht−1, xt½ � + brð Þ,
zt = σ Wz ht−1, xt½ � + bzð Þ,

ð1Þ

where Wr and Wz are weight matrices of the reset gate and
the update gate, respectively; br and bz are the biases; ht−1 is
the output of the hidden state at time t − 1; “σ” is the logistic
sigmoid function, it can map the output to the range of [0,1];
and “[]” denotes two matrices are concatenated.

The new state eht contains the information controlled by
the reset gate and is combined with the update gate to get the
final output ht :

~ht = tanh Wh rt ∗ ht−1, xt½ � + bhð Þ,
ht = 1 − ztð Þ ∗ ht−1 + zt ∗ ~ht ,

ð2Þ

whereWh and bh are weight matrix and bias of the new state
~ht , respectively; “tanh” is the activation function; “∗” means
matrix multiplication; and ht is the output of the current
hidden state.

2.2. Spatial Attention Mechanism. Shear-wave velocity has a
certain correlation with spatial characteristics of the
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Figure 2: Structure of STAGRU fusion network.
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conventional logging data. The spatial attention mechanism
is added on the basis of the GRU network to improve the
sensitivity of important spatial characteristics on the shear-
wave velocity. The spatial characteristics of the conventional
logging data are input to the spatial attention layer and the
different weights of this layer are assigned to the spatial char-
acteristics to obtain the output of the spatial attention layer.
The hidden state ht = ½ht,1, ht,2, ht,3 ⋯ , ht,m� is the m
-dimensional characteristic vector at the t-th time step.
The spatial attention weights can be expressed as

αt′= Soft max Wαht + bαð Þ,
Xt′= αt′⊙ ht = αt,1ht,1, αt,2ht,2 ⋯ αt,mht,m½ �,

ð3Þ

where αt′= ½αt,1, αt,2 ⋯ αt,m� is the weights of the spatial
attention layer. Wα and bα are the weight matrix and bias,

respectively. The softmax is the normalization function.
“ ⊙ ” denotes that the dot product. Xt′ represents the
weighted result.

2.3. Temporal Attention Mechanism. Since the logging data
has regularity in the sedimentary formation, the temporal
attention mechanism is added on the basis of the GRU net-
work to improve the sensitivity of important temporal char-
acteristics on the shear-wave velocity. The temporal
characteristics are input to the temporal attention layer
and the different weights of this layer are assigned to the
temporal characteristics to obtain the output of the tempo-
ral attention layer. The hidden state Hn = ½H1,n,H2,n, H3,n
⋯ ,Ht,n� is the t-dimensional vector of the n-th spatial
characteristic. The temporal attention weights can be
expressed as

(a) (b) (c)

Figure 4: The cores of commercial oil wells. (a) Horizontal-bedding fracture. (b) Cross-bedding fracture. (c) Deformed-bedding fracture.
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βn
′ = softmax WβHn + bβ

� �
,

Xn′′ = βn
′ ⊙Hn = β1,nH1,nβ2,nH2,n ⋯ βt,nHt,n

� �
,

ð4Þ

where βn
′ = ½β1,n, β2,n ⋯ βt,n� is the weights of the temporal

attention layer. Wβ and bβ are the weight matrix and bias,

respectively. Xn′′ represents the weighted result.

2.4. The Structure of the STAGRU Fusion Network. Since the
shear-wave velocity has a certain correlation with spatiotem-
poral characteristics of the conventional logging data, a GRU
fusion network based on the spatiotemporal attention mech-
anism is suggested (Figure 2). The STAGRU fusion network
consists of an input layer, two GRU layers, a spatiotemporal
attention layer, and a fully connected layer. The GRU
layer is used to extract the spatiotemporal characteristics
of the conventional logging data. The spatiotemporal
attention layer is used to improve the sensitivity of the
network to important spatiotemporal characteristics. The
fully connected layer is used to increase the nonlinearity
of the network proposed.

2.5. Training and Prediction Process of the STAGRU Fusion
Network. The detailed process of training and prediction of
the STAGRU fusion network in this study can be divided
into the following steps (Figure 3):

(1) Input Training Data. The training set of the logging
data is input to the STAGRU fusion network.

(2) Data Preprocessing. Due to the large gap between log-
ging data, the StandardScaler and MinMaxScaler functions
are used to preprocess the logging data and map the logging
data to the range of [0,1], as shown in

Y i =
Xi − Xm

Xσ

,

Yi′=
Yi − Ymin

Ymax − Ymin
,

ð5Þ

where Xi is the logging data, Xm and Xσ are the mean and
variance of the logging data, respectively. Yi is the standard-
ized value; Ymin and Ymax are the minimum and maximum
values of the standardized data, respectively. Yi′ is the nor-
malized value.

(1) STAGRU Fusion Network Training. The mean square
error (MSE) is used as the loss function of the network and
the network proposed with the lowest loss error is selected.

(2) Input Testing Data. The testing set of the logging data
is input to the STAGRU fusion network.

(3) Network Evaluation. The mean absolute error (MAE)
and coefficient of determination (R2) are used as the evalua-
tion metrics of the network. The operation is calculated as
follows:

MAE = 1
n
〠
n

i=1
~yii − yið Þj j,

R2 = ∑n
i=1 ~yi − �yð Þ2

∑n
i=1 yi − �yð Þ2 ,

ð6Þ
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Figure 6: Autocorrelation coefficients of the conventional logging data.

Table 1: Parameters’ setting of the STAGRU fusion network.

Parameters Values

The number of hidden units in the first layer of GRU 25

Spatial attention weights 6

The number of hidden units in the second layer of GRU 25

Temporal attention weights 25
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where yi represents the real value, �yrepresents the mean of
real value, ~yi represents the predicted value, and n is the
number of samples.

3. Example Analysis

3.1. Dataset Introduction. The dataset used in this paper
comes from the Jurassic Badaowan Formation in Junggar
Basin, mainly composed of sandstone and mudstone. The
reservoir in the area of deep burial, low porosity, low perme-
ability, and complex pore structure is a typical unconven-
tional tight hydrocarbon reservoir. The pore structure of
commercial oil wells generally includes the fractures of hor-
izontal, cross, and deformed bedding (Figure 4), which is the
main cause of rock anisotropy. Therefore, the existing rock
physics theory is difficult to accurately establish the rock
physics models of tight sandstone reservoir. In order to
improve the accuracy of the rock physics models and the

prestack seismic inversion integrating wells with seismic
data, a GRU fusion network based on the spatiotemporal
attention mechanism is used to predict shear-wave velocity.
There are 15 wells in the area, of which 5 wells contain the
shear-wave velocity, which are marked as NY-1, NY-5,
NY-9, NY-11, and NY-15, respectively. The logging data in
NY-1, NY-5, and NY-9 wells is spliced to train the network,
and the logging data in NY-11 and NY-15 wells is used to
verify the generalization of the network.

3.2. Data Feature Selection. It is a typical regression problem
that uses deep learning to solve the lack of shear-wave veloc-
ity. In theory, the prediction accuracy of using deep learning
for regression problem is related to the correlation between
input and output. Figure 5 shows the cross plot of shear-
wave velocity and conventional logging data that the correla-
tions from high to low are as follows: compression-wave
velocity (VP), neutron porosity (CNL), resistivity (RT),

RHOB GR CNL DTC Log (RT) SP
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Figure 7: The weights of spatial characteristics in the spatial attention layer.
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gamma (GR), natural potential (SP), and density (RHOB)
with coefficients of 0.7266, 0.5932, 0.4093, 0.2710, 0.0027,
and 0.0003, respectively. On the other hand, since the log-
ging data has regularity in the sedimentary formation, the
autocorrelation function (ACF) is used to analyze the auto-
correlation of the conventional logging data. Figure 6 shows
the logging data lags 300 that the autocorrelation of the log-
ging data decreases continuously with the increase of lag.
When the lag is 50, the autocorrelation from high to low is
GR, VS, CNL, SP, VP, RHOB, and RT, respectively. The
above analyses show that the spatiotemporal characteristics
of the conventional logging data have a certain correlation
with shear-wave velocity.

3.3. Interpretability of Attention Weights. In order to
improve the sensitivity of the network to important spatio-
temporal characteristics, a GRU fusion network based on
the spatiotemporal attention mechanism is suggested and
the parameters are shown in Table 1. Meanwhile, the weights
of the spatial and temporal attention layer are analyzed in
Figures 7 and 8, respectively.

Figure 7 shows the weight distribution of the spatial
attention layer of the STAGRU fusion network. It can be
seen that the weight distribution of the spatial attention layer
from high to low is VP, CNL, RT, GR, SP, and RHOB, which
is consistent with the distribution of the correlation coeffi-
cient in Figure 5. In the prediction of the shear-wave velocity
of the STAGRU fusion network, the VP is assigned the larg-
est weight ratio by the spatial attention layer, reaching 0.52,
which means that the VP has the greatest influence on the
shear-wave velocity. The reason for the above phenomenon
is that compression-wave velocity and shear-wave velocity
reflect the elastic information of the rock from different

aspects, and the two are positively correlated, especially in
the sedimentary formation; the correlation coefficient of
them can reach more than 0.7, which verifies the rationality
of adding the spatial attention mechanism in this study. This
is the main reason that the empirical formula can better fit
the shear-wave velocity according to the compression-wave
velocity.

Figure 8 shows the weight distribution of the temporal
attention layer of the STAGRU fusion network. The 25 sam-
pling points in the conventional logging data are selected as
a sample and the shear-wave velocity in the middle of the
sample length is selected as the label. It can be seen that
the different weights are assigned to the temporal character-
istics of the logging data by the temporal attention layer. In
the prediction of the shear-wave velocity of the STAGRU
fusion network, the sample data at the label position is
assigned the largest weight ratio by the temporal attention
layer, reaching 0.3723, which means that it has the greatest
impact on the shear-wave velocity. With the increasing dis-
tance on both sides of the label, the general trend of the
attention weights is decreasing, which is consistent with
the distribution of the autocorrelation of the conventional
logging data in Figure 6. The reason for this phenomenon
is that the mineral composition of the sedimentary forma-
tion is gradually changing, so the logging data has a certain
autocorrelation in the depth direction, which verifies the
rationality of adding the temporal attention mechanism in
this study.

4. Network Comparative Analysis

To verify the performance of the STAGRU fusion network,
the prediction results of the STAGRU, CNN, and GRU
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Figure 9: Loss error curves of the STAGRU, GRU, and CNN networks.
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networks are analyzed, respectively. All networks use adap-
tive moment estimation (Adam) as the optimization algo-
rithm, which combines the advantages of the AdaGrad and
RMSProp algorithms [42, 43], and has the strong advantages
in handling large-scale data, parameter optimization, and
nonstationary objectives. At the same time, the dropout
layer is added to randomly discard neurons to increase the
generalization of the network.

4.1. Training Set Analysis. The logging data in NY-1, NY-5,
and NY-9 wells is used to train the CNN, GRU, and STA-
GRU networks. Figure 9 shows the loss errors of the three
networks; it can be seen that the loss error decreases contin-

uously with the increase of training times, and finally
reaches a stable and constant value, which means that the
network has reached the optimal state. However, the loss

RHOB (g/cm3) GR (API) CNL (%) DTC (𝜇s/�) RT (Ω·m) SP (mV) DTS (𝜇s/�)DTS (𝜇s/�) DTS (𝜇s/�)
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6050

6100
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6200

D
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th
 (m

)
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True
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Figure 10: Prediction results of the STAGRU, GRU, and CNN networks in the training set.

Table 2: Comparison of the prediction results of the GRU, CNN,
and STAGRU in training set.

Networks MAE R2

GRU 0.154 0.970

CNN 0.149 0.972

STAGRU 0.135 0.978
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Figure 11: Prediction results of the STAGRU, GRU, and CNN networks in testing set. (a) NY-11 well; (b) NY-15 well.
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error of the STAGRU fusion network is lower than that of
the other two networks, indicating that the STAGRU fusion
network can better mine the correlation between the spatio-
temporal characteristics of the conventional logging data
and the shear-wave velocity and improve the sensitivity of
the network to important spatiotemporal characteristics.
The predictions and evaluation results of the three networks
in training set are shown in Figure 10 and Table 2, respec-
tively. It can be seen that the prediction performance of
the STAGRU fusion network is slightly higher than that of
the GRU and CNN networks.

4.2. Testing Set Analysis. In order to better verify the pre-
diction accuracy and generalization of the network pro-
posed, the prediction results of the STAGRU, GRU, and
CNN networks are analyzed in the NY-11 and NY-15
wells as shown in Figure 11. In the mudstone formation,
the predicted values of the three networks are almost con-
sistent with the real values, such as the logging data at
depths from 5700 to 5750m in the NY-11 well and from
5845 to 5880m in the NY-15 well. However, in the sand-
stone formation, the prediction performance of the net-
work proposed is higher than the other two networks,
such as the logging data at depths from 5835 to 5860m
in the NY-11 well and from 5955 to 5980m in the NY-
15 well. It is concluded that the network proposed has a

higher prediction accuracy from the local amplification of
the STAGRU, CNN, and GRU network predictions in
the formation of sandstone in the NY-11 and NY-15 wells
(Figure 12). The prediction performance of the CNN is
better than that of the GRU, but the predicted values of
the STAGRU fusion network are almost consistent with
the real values at depths from 5945 to 5950m in the
NY-15 well, which shows the network proposed can make
up for the problems of information loss of the GRU and
the poor global perception of the CNN. Table 3 shows
the comparison results of the three networks that are
quantitatively evaluated using the MAE and R2. It can be
seen that the MAE of the STAGRU fusion network is
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Figure 12: The local amplification of shear-wave velocity predictions of the STAGRU, GRU, and CNN networks in the sandstone
formation. (a) NY-11 well; (b) NY-15 well.

Table 3: Comparison of the prediction results of the GRU, CNN,
and STAGRU in testing set.

Well names Networks MAE R2

NY-11

GRU 0.225 0.824

CNN 0.207 0.831

STAGRU 0.180 0.917

NY-15

GRU 0.198 0.841

CNN 0.188 0.860

STAGRU 0.184 0.897
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the lowest and the R2 is the highest in the NY-11 and NY-
15 wells. It can be seen from the evaluation results that
the STAGRU fusion network has higher prediction accu-
racy and generalization.

5. Conclusion

Due to the complex pore structure of the tight sandstone res-
ervoir in the Junggar Basin and the conventional network is
insufficient sensitivity to important spatiotemporal charac-
teristics, a GRU fusion network based on the spatiotemporal
attention mechanism is developed in this paper. The result
shows the weight distribution of the spatiotemporal atten-
tion layer is consistent with the autocorrelation of the
conventional logging data, and the correlation between the
conventional logging data and the shear-wave velocity,
which verifies the network proposed, can improve the sensi-
tivity of the network to important spatiotemporal character-
istics and the rationality of adding the spatiotemporal
attention mechanism. In addition, the test cases show that
in the formation of sandstone in NY-11 and NY-15 wells,
the R2 of the STAGRU fusion network is 9.7% and 8.8%
higher than that of the GRU and is 7.8% and 6.3% higher
than that of the CNN, indicating that the network proposed
has better prediction accuracy and generalization.
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