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The complete integral closure

of monoids and domains II

A. GEROLDINGER – F. HALTER-KOCH – G. LETTL

Riassunto: Utilizzando metodi geometrici, vengono costruiti monoidi primari la
cui chiusura integrale completa non è completamente integralmente chiusa. Tali mo-
noidi non possono essere ottenuti come monoidi moltiplicativi di domini di integrità
con gruppo di divisibilità finitamente generato.

Abstract: Using geometrical methods we construct primary monoids whose com-
plete integral closure is not completely integrally closed. Such monoids cannot be re-
alized as multiplicative monoids of integral domains with finitely generated groups of
divisibility.

1 – Introduction

In this note we study the (complete) integral closure of monoids H

together with their groups of divisibility G(H) = Q(H)/H×. We will

show how under certain assumptions these investigations may be reduced

to the case where G(H) = Q(H) is torsion free (Theorem 1 and Corol-

lary 1); in particular, this works if G(H) is finitely generated. A monoid

with torsion free quotient group may be considered as a submonoid of

a real vector space. For such a monoid H we characterize its integral

closure H̃ and the complete integral closure
̂̃
H of H̃ in geometrical terms

(Theorem 2).
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This allows us to construct primary monoids H whose complete in-

tegral closure Ĥ is not completely integrally closed (Theorem 3). In [1;

Theorem 4] it was proved that
̂̃
H is completely integrally closed for all

primary monoids H; hence this latter result is sharp.

In section 5 we characterize integral domains R with finitely gen-

erated groups of divisibility whose multiplicative monoids are primary.

In particular it will turn out that the complete integral closure of these

domains is completely integrally closed.

2 – Preliminaries

Throughout this paper, a monoid means a commutative and cancella-

tive semigroup with unit element. In this section and in the following one

we use multiplicative notation.

Let H be a monoid; then H× denotes its group of invertible elements

and Q(H) a quotient group of H with H ⊆ Q(H); H is called reduced

if H× = {1}. H is said to be primary , if H %= H× and if a, b ∈ H and

b %∈ H×, then a|bn for some n ∈ IN+. The integral closure H̃ ⊆ Q(H) and

the complete integral closure Ĥ ⊆ Q(H) are defined by

H̃ = {x ∈ Q(H) | xn ∈ H for some n ∈ IN+}
and

Ĥ = {x ∈ Q(H) | there exists some c ∈ H s.t. cxn ∈ H for all n ∈ IN+}.

H is called integrally closed if H = H̃, and it is called completely integrally

closed if H = Ĥ.

Clearly, we have

H ⊆ H̃ ⊆ Ĥ ⊆ Q(H);

furthermore H̃ and Ĥ are integrally closed but in general Ĥ is not com-

pletely integrally closed. If H is primary then
̂̃
H is completely integrally

closed (cf. [1; Theorem 4]).

In analogy to the appropriate notion in ring theory we define

G(H) = Q(H)/H×

as the group of divisibility of H.
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As usual, we say that an abelian group G is bounded , if there exists

an n ∈ IN+ such that gn = 1 for all g ∈ G.

Proposition 1. Let H be a monoid, G an abelian group and

π : Q(H) → G a group epimorphism with kernel K. Then we have:

1. If KH×/H× is a torsion group, then π(H̃) = π̃(H) and

π(H×) = π(H)×.

2. If KH×/H× is bounded, then π(Ĥ) = π̂(H).

3. If K ⊆ H× and G is a free abelian group, then H ? K × π(H).

Proof. Clearly, G is a quotient group of π(H).

1. Obviously π(H̃) ⊆ π̃(H) and π(H×) ⊆ π(H)×. Conversely, let

y ∈ π̃(H) ⊆ G be given; then there are x ∈ Q(H), a ∈ H and some

n ∈ IN+ such that y = π(x) and yn = π(a). Thus xn = as for some s ∈
Ker(π) = K. Since KH×/H× is a torsion group, there exists an m ∈ IN+

with sm ∈ H×. This yields xnm ∈ H, x ∈ H̃ whence y = π(x) ∈ π(H̃).

Next, let π(a) ∈ π(H)× with a ∈ H. Then there exist a b ∈ H and an

s ∈ K such that ab = s. Since there is an m ∈ IN+ for which sm ∈ H×,

it follows that a ∈ H×.

2. We have π(Ĥ) ⊆ π̂(H) and in order to verify the opposite inclusion

we take an element y = π(x) ∈ π̂(H) with x = a−1b for some a, b ∈ H.

Then there exists an element c ∈ H such that for all n ∈ IN+ cxn = dnsn

for some dn ∈ H and sn ∈ K. Let λ ∈ IN+ be such that sλ ∈ H× for all

s ∈ K, whence cλxλn ∈ H for all n ∈ IN+. Setting c∗ = cλaλ−1 we infer

that c∗xm ∈ H for all m ∈ IN+ whence x ∈ Ĥ.

3. Since G is free abelian, the exact sequence

1 → K → Q(H) → G → 1

splits; let η : G → Q(H) be the group monomorphism with π ◦ η = idG.

We set H ′ = η(π(H)); then H ′ ? π(H), H ′ ⊆ H, Q(H ′) = η(G) and

Q(H) ? K ⊕ Q(H ′). Hence the product K × H ′ is a direct one, which

obviously is contained in H.

Conversely, let a ∈ H be given. Then a = εb with ε ∈ K and

b ∈ (η ◦ π)(Q(H)). Hence b = η(x) with x ∈ G,

π(a) = π(b) = (π ◦ η)(x) = x ∈ π(H)
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and thus b = η(x) ∈ η(π(H)) = H ′.

3 – (Complete) integral closure and groups of divisibility

The aim of this section is to point out a way how to reduce investi-

gations concerning the (complete) integral closure of primary monoids H

to reduced primary monoids H∗ having torsion free groups of divisibility.

The relationship between H and H∗ will be most intimate if H is reduced

and G(H) is a direct sum of a bounded group and a free abelian group.

Theorem 1. Let H be a monoid, π : Q(H) → Q(H)/H̃× the

canonical epimorphism and H∗ = π(H). Then we have

1. H∗ is reduced, G(H∗) = G(H̃) is torsion free and H̃×/H× is the

torsion subgroup of G(H).

2. H̃∗ ? H̃/H̃×, and if G(H̃) is free abelian then H̃ ? H̃× × H̃∗.

3. Suppose H̃×/H× is bounded. Then Ĥ∗ ? Ĥ/H̃×, and if G(H̃) is

free abelian then Ĥ ? H̃× × Ĥ∗.

4. H is primary if and only if H∗ is primary.

Proof.

1. H∗ is reduced by Proposition 1; hence G(H∗) = Q(H∗) =

Q(H)/H̃× = G(H̃). Clearly G(H̃) is torsion free and H̃×/H× is the

torsion group of G(H) because G(H)/(H̃×/H×) ? G(H̃).

2. and 3. are consequences of Proposition 1.

4. This follows from [2; Lemma 2].

Corollary 1. Let H be a reduced monoid and suppose that G(H)

is a direct sum of a bounded group T and a free abelian group. Then

H̃ ? T × H̃∗ and Ĥ ? T × Ĥ∗.

Proof. Since H× = {1} , T = H̃× is the torsion subgroup of G(H) =

Q(H) and G(H̃) = G(H)/T . Thus the assertion follows immediately from

the previous theorem.
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4 – Geometrical methods

In this section we investigate monoids having torsion free quotient

groups. A torsion free abelian group G is a flat Z-module and hence the

injection Z ↪→ Q induces an injection G = G ⊗ ZZ ↪→ G ⊗ Q. Using base

extension again, the Q-vector space G ⊗ Q embeds into the real vector

space G ⊗ IR. Throughout this section we use additive notation for the

operation of monoids. Therefore we may consider a monoid H with Q(H)

torsion free as a submonoid of the additive group of the real vector space

V = Q(H) ⊗ IR, and obviously H contains a basis of V . This allows us

to study H using geometrical methods in V .

Our first aim is to derive geometrical descriptions of H̃ and
̂̃
H and

to obtain a geometrical characterization of being primary. From this we

see that
̂̃
H is completely integrally closed, if the quotient group of H is

finitely generated, and it enables us to construct primary monoids H for

which Ĥ is not completely integrally closed.

We recall some geometrical notations. Let V be a real vector space.

For two distinct elements x, y ∈ V

[x, y] = {y + λ(x − y) | 0 ≤ λ ≤ 1}

denotes the line segment joining x and y; we set [x, y) = [x, y] \ {y} and

(x, y) = [x, y) \ {x}.

Let M ⊆ V be a subset; M is called (algebraically) open if for all

a ∈ M and for all a %= x ∈ V there exists some b ∈ (a, x) for which

[a, b] ⊆ M . M is called convex if [a, b] ⊆ M for all a, b ∈ M . We denote

by

C(M)=
{ ∑

x∈M

λxx
∣∣∣λx ∈ IR≥0 and λx =0 for all but finitely many x∈M

}
.

the convex cone with apex 0 ∈ V which is generated by M ; C(M) ⊆ V is

a convex set. Finally

lin (M) = M ∪ {
x ∈ V | [a, x) ⊆ M for some a ∈ M with a %= x

}

is the set of points which are either in M or linearly accessible from M .
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If M is a convex subset with non empty interior in a topological vector

space then M is algebraically open if and only if M is topologically open,

and lin (M) is just the topological closure M of M ( [5; §11 A, Lemma]).

Theorem 2. Let H be a nontrivial monoid such that Q(H) is

torsion free and suppose that Q(H) ⊆ Q(H) ⊗ Q ⊆ Q(H) ⊗ IR = V .

Then we have

1. H̃ = C(H) ∩ Q(H).

2. C(H̃) = C(H).

3.
̂̃
H = lin (C(H)) ∩ Q(H).

4. H is primary and reduced if and only if C(H) \ {0} is open and

C(H) %= V .

Proof.

1. Let a ∈ H̃ ⊆ Q(H); then we have na ∈ H ⊆ C(H) for some

n ∈ IN+, which yields a ∈ C(H) ∩ Q(H).

Conversely, let 0 %= a ∈ C(H) ∩ Q(H) be given. Hence there exist

hi ∈ H and λi ∈ IR>0 with a =
∑k

i=1 λihi. Since a and hi are contained

in the rational vector space Q(H)⊗Q, (λ1, . . . , λk) may be interpreted as

a solution of a system of linear equations over Q. Since this system has a

positive solution, it has a positive rational one, and thus we may assume

that all λi ∈ Q>0. Let n ∈ IN+ be such that nλi ∈ IN+ for 1 ≤ i ≤ k;

then na ∈ H and hence a ∈ H̃.

2. We have

C(H) ⊆ C(H̃) ⊆ C(C(H)) = C(H).

3. Let a ∈ ̂̃
H ⊆ Q(H) be given; by definition there exists some c ∈ H̃

such that c+aIN+ ⊆ H̃ ⊆ C(H). Therefore 1
n
c+a ∈ C(H) for all n ∈ IN+.

Thus

[c + a, a) =
⋃

n≥1

[
c + a, 1

n
c + a

] ⊆ C(H)

which implies a ∈ lin (C(H)).

To verify the opposite inclusion, we take an element a ∈ lin (C(H))∩
Q(H). Hence there is an element c′ ∈ C(H) such that

[c′, a) =
{
a + λ(c′ − a) | 0 < λ ≤ 1

} ⊆ C(H),
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which implies that (n + 1)(a + 1
n+1

(c′ − a)) = c′ + na ∈ C(H) for all

n ∈ IN+. If c′ =
∑k

ν=1 λνcν with cν ∈ H and λν > 0, choose m ∈ IN+

with 0 < λν < m for all 1 ≤ ν ≤ k. Then

m(
k∑

ν=1

cν) + na ∈ C(H) ∩ Q(H) = H̃

for all n ∈ IN+, and thus a ∈ ̂̃
H.

4. Suppose that C(H) \ {0} is open and let a, b ∈ H \ {0} be given.

Then there exists some c ∈ [a, a − b) =
{
a + λ(−b) | 0 ≤ λ < 1

}
such

that [a, c] ⊆ C(H), and therefore a − 1
n
b ∈ C(H) for some n ∈ IN+. Then

na − b ∈ C(H) ∩ Q(H) = H̃ and hence there exists some m ∈ IN+ such

that m(na− b) ∈ H which yields mna− b ∈ H. Since a, b ∈ H \{0} were

arbitrary, we conclude that either H is reduced and primary or H = H×,

which yields the contradiction C(H) = V .

Conversely, suppose that H is a reduced, primary monoid; then ob-

viously C(H) %= V . Let 0 %= a ∈ C(H) and x ∈ V be given. Since H con-

tains a basis of V , there are h1, . . . , hn ∈ H such that a =
∑n

i=1 ρihi, x −
a =

∑k
i=1 µihi − ∑n

i=k+1 µihi with all ρi, µi ≥ 0. We may assume that

ρ1 > 0.

If k = n everything is clear; otherwise we have

[a, x] =
{
ρ1h1 +

( n∑

i=2

ρihi + λ
k∑

i=1

µihi

) − λ
n∑

i=k+1

µihi

∣∣∣ 0 ≤ λ ≤ 1
}

=
{ ρ1

n − k

n∑

i=k+1

(
h1 − λ

µi(n − k)

ρ1

hi

)
+ cλ

∣∣∣0 ≤ λ ≤ 1
}

with cλ ∈ C(H).

Since H is reduced, h1 /∈ H×, and since H is primary, there is an m ∈ IN+

such that mh1 − hi ∈ H for k + 1 ≤ i ≤ n. Thus h1 − λµi(n−k)

ρ1
hi ∈ C(H)

if λ ≤ ρ1
mµi(n−k)

for all k + 1 ≤ i ≤ n with µi > 0, which implies that

[a, b] ⊆ C(H) for some b ∈ (a, x).

Remark. Let H be a monoid such that Q(H) is finitely generated

and torsion free. Then Q(H) ⊗ IR has finite dimension, the interior of
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C(H) is non empty and hence

̂̃
H = C(H) ∩ Q(H).

This immediately shows that
̂̃
H is completely integrally closed. Since

every monoid with finitely generated quotient group is a G-monoid, this

also follows from [1; Theorem 4].

This result cannot be enbettered even for primary monoids: the next

theorem exhibits primary monoids H ⊆ ZZs with 2 ≤ s ≤ ∞ for which

all inclusions

H ⊂ H̃ ⊂ Ĥ ⊂ ̂̃
H

are strict; in particular Ĥ %= ̂̂
H.

Theorem 3. For every d ∈ IN+ ∪ {∞} there exist reduced primary

monoids H with dim IR

(Q(H)⊗ IR
)

= d+1 such that Ĥ is not completely

integrally closed.

Proof.

1. Let d ∈ IN+ ∪ {∞} be given and put I = {i ∈ IN | 0 ≤ i < d + 1}.

For 0 %= i ∈ I choose ξi ∈ IR>0 with
∑d

i=1 ξi < ∞ and define

H =
{
(xi)i∈I ∈ IN I

+

∣∣∣ sup
i∈I

|xi| < ∞ and
d∑

i=1

ξixi ≤ x2
0

}
.

Thus H consists of all bounded sequences x ∈ IN I
+ for which x0 is suf-

ficiently large. If (xi)i∈I , (yi)i∈I ∈ H then
∑d

i=1 ξi(xi + yi) ≤ x2
0 + y2

0 ≤
(x0 + y0)

2, hence H ⊆ ZZI is a monoid which obviously is reduced, and

we claim that

(1) Q(H) =
{
(xi)i∈I ∈ ZZI

∣∣∣ sup
i∈I

|xi| < ∞
}
.

Indeed, a sequence (xi)i∈I ∈ ZZI is bounded if and only if it is the difference

of two bounded sequences in IN I
+ with sufficiently large first component.

2. In the second step we will determine H̃ and
̂̃
H. Put

H1 =
{
(xi)i∈I ∈ IN I

+

∣∣∣ sup
i∈I

|xi| < ∞
}

∪ {
0
}
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and

H2 =
{
(xi)i∈I ∈ INI

∣∣∣ sup
i∈I

|xi| < ∞
}
.

Let x = (xi)i∈I ∈ H1 and m ∈ IN+ with m ≥ ∑d
i=1 ξixi. Then we obtain

mx ∈ H and hence 1
n
x ∈ C(H) for all n ∈ IN+. Thus we have

(2)
⋃

n≥1

1

n
H1 ⊆ C(H) ⊆ IR I

>0 ∪ {0},

where the second inclusion is obvious. Now Theorem 2.1 and (1) yield

H̃ = C(H) ∩ Q(H) = H1.

Now let y = (yi)i∈I ∈ H2. Then x = (max{yi, 1})i∈I ∈ H1 ⊆ C(H)

and for any n ∈ IN+ x(n) = (max{yi,
1
n
})i∈I ∈ 1

n
H1 ⊆ C(H), which yields

[x, y) =
⋃

n≥1 [x, x(n)] ⊆ C(H). Thus we have shown that

H2 ⊆ lin
(C(H)

) ⊆ IR I
≥0.

Using Theorem 2.3 and (1) yields

̂̃
H = lin

(C(H)
) ∩ Q(H) = H2.

3. Now we will show that H is a primary monoid. If d is finite we

deduce from (2) that C(H) = IRd+1
>0 ∪ {0}, thus by Theorem 2.4 H is

primary.

For d = ∞ we will give a direct proof which is easier than show-

ing that C(H) is (algebraically) open. Let x = (xi)i∈I , y = (yi)i∈I ∈
H \ {0}. For sufficiently large n ∈ IN we have nxi > yi for all i ∈ I and∑d

i=1 ξi(nxi − yi) ≤ (nx0 − y0)
2, which shows nx − y ∈ H.

4. In the final step we show that

Ĥ =
{
(xi)i∈I ∈ H2

∣∣∣x0 > 0
}

∪ {
0
}
.

This yields Ĥ %= ̂̃
H and thus Ĥ is not completely integrally closed. Since

Ĥ ⊆ ̂̃
H = H2 we must prove that for 0 %= x ∈ H2 we have: x ∈ Ĥ if and

only if x0 %= 0.



290 A. GEROLDINGER – F. HALTER-KOCH – G. LETTL [10]

First consider x = (xi)i∈I ∈ H2 with x0 = 0 and xj %= 0 for some

j ∈ I. For any c = (ci)i∈I ∈ H we have for sufficiently large n ∈ IN+ :∑d
i=1 ξi(ci + nxi) ≥ ξjnxj > c2

0, thus c + nx /∈ H and x /∈ Ĥ.

Now let x = (xi)i∈I ∈ H2 with x0 ≥ 1. Put m = max i∈I |xi|, choose

c0 ∈ IN+ with c0 ≥ m
∑d

i=1 ξi and let c = (c0, 1, 1, . . . ) ∈ H. Then

one easily checks that c + nx ∈ H holds for all n ∈ IN which proves

x ∈ Ĥ.

Remark.

1. Considering the finite dimensional case d ∈ IN+, a quick glance at

the above proof exhibits

C(H) = IRd+1
>0 , lin

(C(H)
)

= IRd+1
≥0 , H̃ = INd+1

+ ,

Ĥ = IN+ × INd and
̂̃
H = INd+1 .

2. For every submonoid H ⊆ ZZ with Q(H) = ZZ we have H̃ ∈
{−IN, IN,ZZ}. Thus H̃ is completely integrally closed and the assumption

d + 1 ≥ 2 in the previous theorem cannot be improved.

5 – Integral domains

For an integral domain R let R• = R \ {0} denote the multiplicative

monoid of R, R× = R•× its group of units, G(R) = G(R•) the group of

divisibility and R the integral closure of R in its quotient field.

We shall make use of the following simple observation: let A, B be

two domains with A ⊆ B whose quotient fields coincide; then they give

rise to the exact sequence of abelian groups

(3) 1 → B×/A× → G(A) → G(B) → 1

Theorem 4. Let R be an integral domain. Then the following

conditions are equivalent:

1. R• is primary and G(R) is finitely generated.

2. R is a one-dimensional local noetherian domain, its integral clo-

sure R is a finitely generated R-module and (R
×

: R×) < ∞.
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Proof.

1. =⇒ 2. R is one-dimensional and local because R• is primary ([4;

Theorem 4.1]). Since G(R) is finitely generated, R is a finitely generated

R-module and R
×
/R× is finite by [3; Theorem 3.9].

It remains to verify that R is noetherian. G(R) has finite torsion

free rank and therefore, by [3; Theorem 2.1], R is the intersection of

just finitely many valuation overrings, say R =
⋂n

i=1 Vi with Vi $ Vj for

i %= j. Then, for 1 ≤ i ≤ n, we have Vi = RPi
for Pi 8 R prime ( [6;

Theorem 12.2]). Since R is one-dimensional, all Vi have rank one; setting

A = R and B = Vi in (3) we infer that G(Vi) is finitely generated and

hence isomorphic to ZZ; again from [6; Theorem 12.2] it follows that R

is a principal ideal domain. So finally R is noetherian by the theorem of

Eakin-Nagata.

2. =⇒ 1. R• is primary by [4; Theorem 4.1]. R is a Dedekind

domain with finitely many prime ideals, whence it is a principal ideal

domain. Thus

R
•

= F × R
×

where F is a free abelian monoid with finite basis, and hence G(R) =

Q(F ) is a free abelian group of finite rank. Thus the exact sequence (3)

(with A = R and B = R ) splits and

G(R) = G(R) ⊕ R
×
/R×

is finitely generated.

Remarks. Let R be an integral domain satisfying the equivalent

conditions of the previous theorem.

1. Since R is noetherian we infer R = R̂ and being a Dedekind

domain R̂ is completely integrally closed.

2. The number of prime ideals of R equals the torsion free rank of

G(R).

3. R• is a finitely primary monoid (cf. [2; Theorem 2]).

In a final example we discuss a class of domains satisfying the con-

ditions of Theorem 4.

Example. Let o be an order in a Dedekind domain R (i. e. o ⊆ R

is a subring, the quotient fields of o and R coincide, and R is a finitely
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generated o-module). Then for every (0) %= p ∈ spec(o) op is a one-

dimensional local noetherian domain, op is a finitely generated op-module

and (op
× : o×

p ) ≤ (R : F ) where F is the conductor of o ⊆ R (cf. [7; Kap.

I, Satz 12.11]). Hence if R has the finite norm property, then op satisfies

condition 2 of Theorem 4.
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