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The complete integral closure

of monoids and domains 11

A. GEROLDINGER - F. HALTER-KOCH - G. LETTL

RiassunToO: Utilizzando metodi geometrici, vengono costruiti monoidi primari la
cui chiusura integrale completa non & completamente integralmente chiusa. Tali mo-
noidi non possono essere ottenuti come monoidi moltiplicativi di domini di integrita
con gruppo di divisibilita finitamente generato.

ABSTRACT: Using geometrical methods we construct primary monoids whose com-
plete integral closure is not completely integrally closed. Such monoids cannot be re-
alized as multiplicative monoids of integral domains with finitely generated groups of
divisibility.

1 — Introduction

In this note we study the (complete) integral closure of monoids H
together with their groups of divisibility G(H) = Q(H)/H*. We will
show how under certain assumptions these investigations may be reduced
to the case where G(H) = Q(H) is torsion free (Theorem 1 and Corol-
lary 1); in particular, this works if G(H) is finitely generated. A monoid
with torsion free quotient group may be considered as a submonoid of
a real vector space. For such a monoid H _we characterize its integral

closure H and the complete integral closure H of H in geometrical terms
(Theorem 2).
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This allows us to construct primary monoids H whose complete in-
tegral closure H is not completely integrally closed (Theorem 3). In [1;

Theorem 4] it was proved that H is completely integrally closed for all
primary monoids H; hence this latter result is sharp.

In section 5 we characterize integral domains R with finitely gen-
erated groups of divisibility whose multiplicative monoids are primary.
In particular it will turn out that the complete integral closure of these
domains is completely integrally closed.

2 — Preliminaries

Throughout this paper, a monoid means a commutative and cancella-
tive semigroup with unit element. In this section and in the following one
we use multiplicative notation.

Let H be a monoid; then H* denotes its group of invertible elements
and Q(H) a quotient group of H with H C Q(H); H is called reduced
if H* = {1}. H is said to be primary , if H # H* and if a,b € H and
b ¢ H*, then alb” for some n € IN,. The integral closure H C Q(H) and
the complete integral closure H C Q(H) are defined by

H={z e Q(H)|z" € H for some n € N, }
and

H = {z € Q(H) | there exists some ¢ € H s.t. cz” € H for all n. € IN_}.

H is called z'ntggmlly closedif H = H , and it is called completely integrally
closed it H = H.
Clearly, we have o
HCHCHCQH);
furthermore H and H are integrally closed but in general H is not com-

pletely integrally closed. If H is primary then H is completely integrally
closed (cf. [1; Theorem 4]).
In analogy to the appropriate notion in ring theory we define

G(H) = Q(H)/H"

as the group of divisibility of H.
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As usual, we say that an abelian group G is bounded , if there exists
an n € IN, such that ¢" =1 for all g € G.

PROPOSITION 1. Let H be a monoid, G an abelian group and
m: Q(H) — G a group epimorphism with kernel K. Then we have:

1. If KH*/H* is a torsion group, then w(H) = =n(H) and
m(H*)=n(H)*.

2. If KH*/H* is bounded, then m(H) :7r/(—l?).

3. If K C H* and G is a free abelian group, then H ~ K x w(H).

PrOOF. Clearly, G is a quotient group of w(H).

1. Obviously 7(H) C 7(H) and w(H*) C m(H)*. Conversely, let
y € 7T/(\1EI/) C G be given; then there are x € Q(H),a € H and some
n € IN, such that y = n(z) and y" = w(a). Thus 2" = as for some s €
Ker(m) = K. Since KH* /H* is a torsion group, there exists an m € IN
with s™ € H*. This yields "™ € H,z € H whence y = 7(z) € 7(H).

Next, let w(a) € w(H)* with a € H. Then there exist a b € H and an
s € K such that ab = s. Since there is an m € IN, for which s™ € H*,
it follows that a € H*.

—

2. We have n(H) C 7r/(f?) and in order to verify the opposite inclusion

we take an element y = 7(z) € m(H) with x = a™'b for some a,b € H.
Then there exists an element ¢ € H such that foralln € IN, ca™ =d,s,
for some d, € H and s, € K. Let A\ € IN, be such that s* € H* for all
s € K, whence c*z*" € H for all n € IN,. Setting ¢* = c*a*~! we infer
that c*2™ € H for all m € IN, whence x € H.

3. Since G is free abelian, the exact sequence
1-K—-9QH) -G—1

splits; let n: G — Q(H) be the group monomorphism with 7 on = idg.
We set H' = n(n(H)); then H ~ n(H),H C H,Q(H') = n(G) and
Q(H) ~ K ® Q(H'). Hence the product K x H’ is a direct one, which
obviously is contained in H.

Conversely, let a € H be given. Then a = ¢b with ¢ € K and
be (nom)(Q(H)). Hence b =n(x) with x € G,

m(a) =7(b) = (mon)(zx) =2 € n(H)
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and thus b = n(x) € n(n(H)) = H'. 0

3 — (Complete) integral closure and groups of divisibility

The aim of this section is to point out a way how to reduce investi-
gations concerning the (complete) integral closure of primary monoids H
to reduced primary monoids H* having torsion free groups of divisibility.
The relationship between H and H* will be most intimate if H is reduced
and G(H) is a direct sum of a bounded group and a free abelian group.

THEOREM 1. Let H be a monoid, = : Q(H) — Q(H)/H* the
canonical epimorphism and H* = w(H). Then we have

1. H* is reduced, G(H*) = G(H) is torsion free and H* /H* is the
torsion subgroup of G(H).

2. H*~ H/H*, and if G(H) is free abelian then H ~ H* x H*.

3. Suppose }V{i/Hi is bounded. Then H* ~ H/H*, and if G(H) is
free abelian then H ~ H* x H*.

4. H is primary if and only if H* is primary.

PROOF.
1. H* is reduced by Proposition 1; hence G(H*) = Q(H*) =
Q(H)/H* = G(H). Clearly G(H) is torsion free and H*/H* is the
torsion group of G(H) because G(H)/(H* /H*) ~ G(H).
2. and 3. are consequences of Proposition 1.
4. This follows from [2; Lemma 2]. 0

COROLLARY 1. Let H be a reduced monoid and suppose that G(H)

15 a direct sum of a bounded ed group T and a free abelian group. Then
H~TxH* and H~T x H*.

PROOF. Since H* = {1},T = H* is the torsion subgroup of G(H) =
Q(H) and G(H) = G(H)/T. Thus the assertion follows immediately from
the previous theorem:. 0
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4 — Geometrical methods

In this section we investigate monoids having torsion free quotient
groups. A torsion free abelian group G is a flat Z-module and hence the
injection Z < Q induces an injection G = G ® Z — G ® Q. Using base
extension again, the Q-vector space G ® @ embeds into the real vector
space G ® IR. Throughout this section we use additive notation for the
operation of monoids. Therefore we may consider a monoid H with Q(H)
torsion free as a submonoid of the additive group of the real vector space
V = Q(H) ® IR, and obviously H contains a basis of V. This allows us
to study H using geometrical methods in V. .

Our first aim is to derive geometrical descriptions of H and H and
to obtain a geometrical characterization of being primary. From this we
see that H is completely integrally closed, if the quotient group of H is
finitely generated, and it enables us to construct primary monoids H for
which H is not completely integrally closed.

We recall some geometrical notations. Let V be a real vector space.
For two distinct elements z,y € V

[,y ={y+ Mz —y) [0 <A< 1}

denotes the line segment joining = and y; we set [z,y) = [z,y] \ {y} and
(@,y) = [2,9) \ {z}.

Let M C V be a subset; M is called (algebraically) open if for all
a € M and for all a # = € V there exists some b € (a,z) for which
[a,b] € M. M is called convex if [a,b] C M for all a,b € M. We denote
by

C(M)= { Z )\mx‘/\x €IR>o and A\, =0 for all but finitely many xEM}.

xeM

the convex cone with apex 0 € V' which is generated by M; C(M) C V is
a convex set. Finally

lin (M)=MU{z €V |[a,z) C M for some a € M with a # x}

is the set of points which are either in M or linearly accessible from M.
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If M is a convex subset with non empty interior in a topological vector
space then M is algebraically open if and only if M is topologically open,
and lin (M) is just the topological closure M of M ( [5; §11 A, Lemma)]).

THEOREM 2.  Let H be a nontrivial monoid such that Q(H) is
torsion free and suppose that Q(H) C Q(H)®@ Q C Q(H)® R = V.
Then we have

1. H=C(H)N Q(H).

2. C(H)=C(H).

3. H =lin (C(H))N Q(H).

4. H is primary and reduced if and only if C(H) \ {0} is open and
C(H)#V.

PROOF.

1. Let a € H C Q(H); then we have na € H C C(H) for some
n € IN,, which yields a € C(H) N Q(H).

Conversely, let 0 # a € C(H) N Q(H) be given. Hence there exist
hi € H and \; € IRw with a = 32 | A\;h,;. Since a and h; are contained
in the rational vector space Q(H)®Q, (A1,..., ;) may be interpreted as
a solution of a system of linear equations over Q. Since this system has a
positive solution, it has a positive rational one, and thus we may assume
that all A\; € Q.. Let n € IN; be such that n\; € INy for 1 < ¢ < k;
then na € H and hence a € H.

2. We have

C(H) S C(H) CC(C(H)) = C(H).

3. Let a € H C Q(H) be given; by definition there exists some ¢ € H
such that ¢+alN, C H C C(H). Therefore LetaeC(H) foralln € IN,.
Thus

[c+a,a) = U lc+a,tc+a] CC(H)
n>1
which implies a € lin (C(H)).

To verify the opposite inclusion, we take an element a € lin (C(H))N

Q(H). Hence there is an element ¢’ € C(H) such that

[d,a)={a+ A —a)|0<A<1} CC(H),
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which implies that (n 4 1)(a + 5(¢’ —a)) = ¢/ +na € C(H) for all
nelN, Ifd= Zi:l Ac, with ¢, € H and A, > 0, choose m € IN,

with 0 < A, <m for all 1 <v < k. Then

m(ch,)—i—naeC(H)ﬂQ(H) —H

v=1

for all n € IN,, and thus a € H.

4. Suppose that C(H) \ {0} is open and let a,b € H \ {0} be given.
Then there exists some ¢ € [a,a —b) = {a+ A(—=b) | 0 < X\ < 1} such
that [a,c] € C(H), and therefore a — £b € C(H) for some n € IN,. Then
na—be C(H)N Q(H) = H and hence there exists some m € IN, such
that m(na—0b) € H which yields mna—b € H. Since a,b € H \ {0} were
arbitrary, we conclude that either H is reduced and primary or H = H*,
which yields the contradiction C(H) = V.

Conversely, suppose that H is a reduced, primary monoid; then ob-
viously C(H) # V. Let 0# a € C(H) and x € V be given. Since H con-
tains a basis of V, there are hy,..., h, € H such that a = >, p;hi,x —
a = Zle pihi — >0 iy pih; with all p;, p; > 0. We may assume that
p1 > 0.

If £ = n everything is clear; otherwise we have

n k n
=2 i=1 i=k+1

= {2 =k,
_{n—k:i_zk;l(hl A . hz)+cAﬂ0§A§1}

with ¢, € C(H).

Since H is reduced, hy ¢ H*, and since H is primary, there is an m € IN
such that mhy — h; € H for k+1<i<n. Thus hy — X8 p, € C(H)
if A < oL for all k+ 1 < ¢ < n with g; > 0, which implies that

— mp;(n—~k)

[a,b] C C(H) for some b € (a,x). 0

REMARK. Let H be a monoid such that Q(H) is finitely generated
and torsion free. Then OQ(H) ® IR has finite dimension, the interior of
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C(H) is non empty and hence

o~

H = C(H) N Q(H).

This immediately shows that H is completely integrally closed. Since
every monoid with finitely generated quotient group is a G-monoid, this
also follows from [1; Theorem 4].

This result cannot be enbettered even for primary monoids: the next
theorem exhibits primary monoids H C Z* with 2 < s < co for which
all inclusions -

HcHCHCH
are strict; in particular H #* H.

THEOREM 3. For every d € INy U {oc} there exist reduced primary
monoids H with dimg(Q(H)®IR) = d+1 such that H is not completely
integrally closed.

PROOF.
1. Let d € N, U{oo} be given and put I ={i e N|0<i<d+ 1}.
For 0 # ¢ € I choose &; € IR~ with Zle & < oo and define

d
H = {(xi)iel € INJIF’ sup |x;| < oo and Zfﬁz < l‘g}
icl —

Thus H consists of all bounded sequences x € INi for which g is suf-
ficiently large. If (z;)ies, (¥i)ier € H then Y0 &z +y;) < 22 412 <
(zo + 10)?, hence H C Z' is a monoid which obviously is reduced, and
we claim that

(1) Q(H) = {(xi)iel ez’

sup |z;| < oo}.
icl

Indeed, a sequence (x;);cr € Z' is bounded if and only if it is the difference
of two bounded sequences in IN i with sufficiently large first component.

2. In the second step we will determine H and H. Put

H, = {(x7)l€I € ]Ni‘ SUP‘xi’ < oo} U {0}
il
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and
H, = {(xi)ief e IN'

sup |z;| < oo}

iel

Let © = (x;)ier € H; and m € N, with m > Zle &x;. Then we obtain
ma € H and hence tz € C(H) for all n € IN,.. Thus we have

2) U+, € C(H) SR, U o),

n>1

where the second inclusion is obvious. Now Theorem 2.1 and (1) yield
H=C(H)NQ(H) = H,.

Now let y = (y;)ier € Hy. Then x = (max{y;, 1});er € Hy € C(H)
and for any n € N, 2™ = (max{y;, %})iel € %Hl C C(H), which yields
[2,y) = Uy [£,2™] € C(H). Thus we have shown that

H, Clin (C(H)) € RL,.

Using Theorem 2.3 and (1) yields

—

H =1lin (C(H)) N Q(H) = H,.

3. Now we will show that H is a primary monoid. If d is finite we
deduce from (2) that C(H) = RZ}" U {0}, thus by Theorem 2.4 H is
primary.

For d = oo we will give a direct proof which is easier than show-
ing that C(H) is (algebraically) open. Let x = (2;)icr,y = (Yi)ier €
H \ {0}. For sufficiently large n € IN we have nx; >y, for all i € I and
Zle &(nzg — ;i) < (nag — yo)?, which shows nx —y € H.

4. In the final step we show that

o~

H = {(2:)icr € Holzy > 0} U{0}.

This ﬂelds H #* H and thus H is not completely integrally closed. Since

H - H= H, we must prove that for 0 # x € H, we have: x € H if and
only if xq # 0.
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First consider © = (z;)ic; € Hs with 2o = 0 and z; # 0 for some
j € I. For any ¢ = (¢;)ie; € H we have for sufficiently large n € IN,
S e +nay) > Ena; > ¢, thus c+nx ¢ H and o ¢ H.

Now let = (x;);e; € Hy with g > 1. Put m = max ¢ |z;|, choose
co € N, with ¢ > mYL,& and let ¢ = (¢o,1,1,...) € H. Then
one g\asily checks that ¢ + nx € H holds for all n € IN which proves
reH. O

REMARK.
1. Considering the finite dimensional case d € IN, , a quick glance at
the above proof exhibits

C(H) =R, 1lin(C(H)) = RE!, H =N,
H=IN, x N and H = IN“*!.

2. For every submonoid H C Z with Q(H) = Z we have H e
{—IN,IN, Z}. Thus H is completely integrally closed and the assumption
d+ 1 > 2 in the previous theorem cannot be improved.

5 — Integral domains

For an integral domain R let R* = R\ {0} denote the multiplicative
monoid of R, R* = R** its group of units, G(R) = G(R*) the group of
divisibility and R the integral closure of R in its quotient field.

We shall make use of the following simple observation: let A, B be
two domains with A C B whose quotient fields coincide; then they give
rise to the exact sequence of abelian groups

(3) 1— B*/A* - G(A) - G(B) —1

THEOREM 4.  Let R be an integral domain. Then the following
conditions are equivalent:

1. R® is primary and G(R) is finitely generated.
2. R is a one-dimenstonal local noetherian domain, its integral clo-
sure R is a finitely generated R-module and (RX: R*) < 0.
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PROOF.

1. = 2. R is one-dimensional and local because R*® is primary ([4;
Theorem 4.1]). Since G(R) is finitely generated, R is a finitely generated
R-module and R” /R* is finite by [3; Theorem 3.9].

It remains to verify that R is noetherian. G(R) has finite torsion
free rank and therefore, by [3; Theorem 2.1], R is the intersection of
just finitely many valuation overrings, say R = (., Vi with V; ¢ V; for
i # j. Then, for 1 < i < n, we have V; = Rp, for P, < R prime ( [6;
Theorem 12.2]). Since R is one-dimensional, all V; have rank one; setting
A= Rand B =1V, in (3) we infer that G(V;) is finitely generated and
hence isomorphic to Z; again from [6; Theorem 12.2] it follows that R
is a principal ideal domain. So finally R is noetherian by the theorem of
Eakin-Nagata.

2. = 1. R*® is primary by [4; Theorem 4.1]. R is a Dedekind
domain with finitely many prime ideals, whence it is a principal ideal
domain. Thus

R =FxR

where F is a free abelian monoid with finite basis, and hence G(R)
Q(F) is a free abelian group of finite rank. Thus the exact sequence (3)
(with A = R and B = R ) splits and

G(R)=G(R)&R"/R"

is finitely generated. U

REMARKS. Let R be an integral domain satisfying the equivalent
conditions of the previous theorem.

1. Since R is noetherian we infer ® = R and being a Dedekind
domain R is completely integrally closed.

2. The number of prime ideals of R equals the torsion free rank of
G(R).

3. R* is a finitely primary monoid (cf. [2; Theorem 2]).

In a final example we discuss a class of domains satisfying the con-
ditions of Theorem 4.

EXAMPLE. Let o be an order in a Dedekind domain R (i.e. o C R
is a subring, the quotient fields of o and R coincide, and R is a finitely
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generated o-module). Then for every (0) # p € spec(o) o, is a one-
dimensional local noetherian domain, o, is a finitely generated o,-module
and (0, : 0,) < (R: F) where F is the conductor of o C R (cf. [7; Kap.
I, Satz 12.11]). Hence if R has the finite norm property, then o, satisfies
condition 2 of Theorem 4.
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