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Abstract
Climate change is driving rapid and widespread erosion of the environmental con-
ditions that formerly supported species persistence. Existing projections of climate 
change typically focus on forecasts of acute environmental anomalies and global ex-
tinction risks. The current projections also frequently consider all species within a 
broad taxonomic group together without differentiating species-specific patterns. 
Consequently, we still know little about the explicit dimensions of climate risk (i.e., 
species-specific vulnerability, exposure and hazard) that are vital for predicting future 
biodiversity responses (e.g., adaptation, migration) and developing management and 
conservation strategies. Here, we use reef corals as model organisms (n = 741 species) 
to project the extent of regional and global climate risks of marine organisms into the 
future. We characterise species-specific vulnerability based on the global geographic 
range and historical environmental conditions (1900–1994) of each coral species 
within their ranges, and quantify the projected exposure to climate hazard beyond the 
historical conditions as climate risk. We show that many coral species will experience 
a complete loss of pre-modern climate analogs at the regional scale and across their 
entire distributional ranges, and such exposure to hazardous conditions are predicted 
to pose substantial regional and global climate risks to reef corals. Although high-
latitude regions may provide climate refugia for some tropical corals until the mid-21st 
century, they will not become a universal haven for all corals. Notably, high-latitude 
specialists and species with small geographic ranges remain particularly vulnerable 
as they tend to possess limited capacities to avoid climate risks (e.g., via adaptive 
and migratory responses). Predicted climate risks are amplified substantially under 
the SSP5-8.5 compared with the SSP1-2.6 scenario, highlighting the need for strin-
gent emission controls. Our projections of both regional and global climate risks offer 
unique opportunities to facilitate climate action at spatial scales relevant to conserva-
tion and management.
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1  |  INTRODUC TION

Global biodiversity is suffering constant decline (Butchart 
et al.,  2010). Anthropogenic habitat loss, overexploitation, pollu-
tion and proliferation of invasive species have been considered the 
primary causes of recent biodiversity loss, but climate change and 
its detrimental synergy with other factors are rapidly becoming the 
leading agents of global biodiversity decline (Arneth et al.,  2020; 
Díaz et al., 2019). The pervasive impacts of climate change on global 
biodiversity and its economic and ecological implications (Pecl 
et al.,  2017) have prompted multiple approaches to quantify and 
forecast climate change impacts on biodiversity (Araújo et al., 2019; 
Foden et al., 2019; Pacifici et al., 2015).

Analyses of climate change impacts frequently adopt the frame-
work and guidelines devised by the Intergovernmental Panel on 
Climate Change (IPCC) to quantify risks of climate change. The 
current framework introduced in the 6th IPCC report recognises 
that the risk of climate change for a species is a function of intrin-
sic vulnerability and exposure to extrinsic climate hazards (Figure 1; 
IPCC,  2022). Climate risks can be indeed reduced by species re-
sponses, including adaptation, migration and behavioural modifi-
cations (Nogués-Bravo et al., 2018), yet the root causes of climate 
risks continue to escalate and threaten global biodiversity (Arneth 
et al., 2020; Butchart et al., 2010; Díaz et al., 2019). The need and 
demand for climate risk assessment are therefore higher than ever 
to identify threatened species and regions (Araújo et al.,  2019; 
Foden et al.,  2019). In particular, climate risks among habitat-
forming species require urgent attention as they often exhibit higher 

vulnerability to climate change than other species, and their loss can 
lead to ecosystem collapse (Hobbs et al., 2018; Steneck et al., 2013; 
Wernberg et al., 2016).

Reef corals of the order Scleractinia comprise over 800 spe-
cies globally (DeVantier & Turak,  2017; Veron et al.,  2009, 2015). 
They create a complex habitat framework that sustains one of the 
most speciose ecosystems (Done, 1992; Done et al., 1996). Despite 
their ecological significance, coral species are declining in response 
to global warming and recurrent climatic and anthropogenic dis-
turbances (Dietzel et al., 2021; Hughes et al., 2017, 2018; Kleypas 
et al., 2021). Projections of climate change impacts on corals tend 
to employ an approach unique to the group and focus on predic-
tions of mass bleaching events that can lead to widespread mortality 
of corals. To date, climate risks for reef corals have been typically 
assessed based on spatially variable exposure of corals to climate 
hazards without considering species-specific climate sensitivity or 
adaptive capacity. Nevertheless, evidence suggests that climate sen-
sitivity and adaptive capacity (i.e., vulnerability) vary among coral 
species and their associated symbionts (Howells et al.,  2020; Kim 
et al., 2019; Loya et al., 2001; Sampayo et al., 2008; Sully et al., 2019; 
van Woesik et al., 2011). Indeed, a comprehensive climate risk as-
sessment of coral species incorporating both the intrinsic vulnera-
bility and exposure to extrinsic climate hazards can provide valuable 
insights into the degree to which reefs and coral taxa are at risk. 
Such comprehensive information can also enable more realistic pre-
dictions of coral community dynamics under climate change.

Here, we provide a climate risk assessment of 741 scleractinian 
coral species across the globe using metrics that incorporate the 

F I G U R E  1  Dimensions of the 6th IPCC climate risk assessment and definitions adopted in this study (IPCC, 2022).
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    |  3KIM et al.

dimensions of the climate risk assessment framework of the 6th 
IPCC report (i.e., vulnerability, exposure and hazard; IPCC, 2022). To 
achieve this, we first evaluate species-specific environmental vul-
nerability based on the species' global geographic ranges and the 
historical environmental conditions therein. We then use a range of 
climate change trajectories to project the extent of future exposure 
to climate hazards. Our goal is to summarise the magnitude of po-
tential adverse impacts of progressive climate change on reef cor-
als. We aim at achieving this goal by understanding the discrepancy 
between the environmental vulnerability of each coral species and 
their future exposure to climate hazards, expressed as regional and 
global climate risks.

2  |  MATERIAL S AND METHODS

2.1  |  Measuring the risk of climate change: Taxon-
specific vulnerability

Our approach to climate risk assessment is based on a comparison 
between species-specific measurements of climate vulnerability 
and future exposure of species to climate hazards. Vulnerability 
is the capacity of a species to persist in a range of climate condi-
tions, which often requires an explicit understanding of species 
traits (Williams et al., 2008). Unfortunately, the central repository 
for coral species traits still lacks a large amount data despite ardu-
ous efforts (Madin, Anderson, et al., 2016; Madin, Hoogenboom, 
et al., 2016). Alternatively, we use the association between georef-
erenced occurrence data and historical environmental conditions 
therein to define environmental conditions that support species 
persistence (Araújo & Peterson,  2012; Elith & Leathwick,  2009) 
and as a proxy to quantify climate vulnerability of each coral spe-
cies. Vulnerability of each coral species was determined by char-
acterising a multidimensional space that captures the species' past 
environmental exposures, combining two types of raw data: spe-
cies occurrence and past information on environmental conditions 
(Figure S1).

The global coral species occurrence data were gathered from 
Huang and Roy  (2015); their data set is an ecoregion-scale compi-
lation of shallow-water coral occurrence records from the litera-
ture and various global databases (Carpenter et al., 2008; Hughes 
et al., 2013; Veron et al., 2009, 2011). The mesophotic coral diversity 
that occurred beyond 40 m in depth was not included in this data set. 
Species occurrence data for new taxa (Baird et al., 2017; Schmidt-
Roach et al., 2013) were added to the data set. Subsequently, the 
species pool was further restricted to taxa that occurred in more 
than three ecoregions (n = 741).

We used the sixth-phase products of the Coupled Model 
Intercomparison Project (CMIP6) to amass past environmental 
exposure data (Eyring et al.,  2016). We selected the annual mean 
and variability (i.e., standard deviation) of environmental parame-
ters that can induce critical climate risks to reef corals: sea surface 
temperature (SST) and partial pressure of carbon dioxide (pCO2) 

(Hoegh-Guldberg et al., 2017). We used environmental conditions for 
the years between 1900 and 1994 (i.e., post-industrial, pre-modern 
period; hereafter pre-modern period; IPCC, 2022) to derive species-
specific climate vulnerability. A multimodel ensemble mean of the 
four environmental parameters (i.e., mean and standard deviation of 
SST and pCO2) was derived from three CMIP6 general circulation 
models (GCMs) to reduce model uncertainty (Table S1). We consid-
ered Shared Socioeconomic Pathways (SSPs) 1–2.6 and 5–8.5 sce-
narios for future environmental projections. Shared Socioeconomic 
Pathways are specific to the CMIP6, and each pathway projects a 
distinctive greenhouse gas concentration and socio-economic de-
velopment trajectory (O'Neill et al., 2016). We considered the SSP1-
2.6 as a projection that requires stringent emission controls to limit 
global warming to 2°C, and the SSP5-8.5 as a continuum of con-
temporary fossil-fuel development, coupled with energy-exhaustive 
social and economic trends (Riahi et al., 2017).

To quantify vulnerability of each coral species (see Figure  S1 
for the step-by-step illustration of vulnerability computation), envi-
ronmental conditions between 1900 and 1994 were first extracted 
from the multimodel ensemble for all data points in ecoregion poly-
gons where species occurrences were recorded. We restricted the 
ecoregions to coastal areas (within 25 km from coastlines and reef 
boundaries) using the Natural Earth's land and reef maps (http://
www.natur​alear​thdata.com) prior to extracting environmental pa-
rameters to avoid the parts of ecoregions that are uninhabitable for 
reef corals (e.g., open ocean). The extracted environmental param-
eters were summarised by taking ecoregion-scale medians of the 
parameters for each coral ecoregion (Veron et al.,  2009) to avoid 
potential disproportionate effects of environmental outliers. The 
taxon-specific compilation of ecoregion-scale environmental data 
was then transformed into two-dimensional data by calculating the 
first two principal components of the environmental variables using 
a principal component analysis (PCA; the first and second PC axes 
captured over 85% of the total variation in environmental condi-
tions for scleractinian corals). The multidimensional space occupied 
by taxon-specific environmental coordinates is equivalent to the 
species' historical climate exposure between 1900 and 1994, or its 
‘vulnerability’. To render vulnerability into an enclosed space with ex-
plicit boundaries for downstream analyses, we defined a convex hull 
encompassing the coordinates (Figure S1) using the ‘QUICKERSORT’ 
algorithm implemented in the ‘chull’ function in base R (Eddy, 1977). 
‘Vulnerability’ in this study shares its theoretical basis with envi-
ronmental niche models and their synonyms (e.g., habitat suitability 
models, bioclimatic envelope models). The core difference between 
the vulnerability in this study and the niche space of other models 
lies in the interpretation of the multidimensional space boundaries. 
Here, we recognise the vulnerability hull as a reference environmen-
tal space in which organisms have avoided vulnerable conditions 
prior to the ‘modern’ period defined by the IPCC during and after 
which climate change intensified (IPCC, 2022). As such, the space 
outside the vulnerability hull provides critical information about the 
magnitude of environmental hazards caused by progressive climate 
change after the pre-modern reference period (1900–1994), while 
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the same space would be considered uninformative in most environ-
mental niche models.

We also estimated the range size of each species to test whether 
species with smaller range sizes were projected to experience 
greater climate risks than widespread species (Purvis et al., 2000; 
Rabinowitz,  1981). The range size of each species was estimated 
by summing the coastal and reefal areas within all ecoregions that 
each species was recorded in using the occurrence dataset and the 
Natural Earth's land and reef maps (http://www.natur​alear​thdata.
com).

2.2  |  Measuring the risk of climate change: 
Exposure to climate hazards

We used our measure of taxon-specific vulnerability (Figure S1) as 
the basis for two distance metrics that quantified taxon-specific 
exposure to climate hazards (Figure  S2). First, we calculated the 
Euclidean distance between the taxon-specific centre of the vulner-
ability hull and the environmental coordinates of each species' oc-
currence record (hereafter the centroid distance or dC; Figure S2; 
Dallas et al., 2017; Kriticos et al., 2014). Second, we measured the 
radial distance between the centroid and the nearest edge of the 
species' vulnerability hull via the environmental coordinates of 
the species' occurrence record (hereafter the edge distance or dE; 
Figure S2). We then computed the ratio between the edge and the 
centroid distances (i.e., dE/dC; Figure S2). We refer to the logarith-
mic transformation of this ratio as the ‘multidimensional Climate Risk 
Score (mCRS)’ throughout this manuscript. It is important to note 
that distances from environmental coordinates of a species' oc-
currence record to the vulnerability hull centre (i.e., environmental 
centrality) and boundaries (i.e., environmental marginality) are not 
necessarily correlated (Santini et al., 2019). mCRS captures both the 
centrality and marginality of coordinates of the study sites in relation 
to the species-specific vulnerability hull. The ratio between the edge 
and centroid distances (dE/dC) is 1 and the logarithmic transforma-
tion of this ratio (log(dE/dC) = mCRS) is 0 when the coordinates of 
a study site are on the boundaries of a vulnerability hull. mCRS is 
greater than 0 when the coordinates of a study site occur within 
a vulnerability hull. mCRS is smaller than 0 when the coordinates 
of a study site are situated outside of a vulnerability hull. A mCRS 
value smaller than 0 only occurs when environmental conditions 
exceed the extent of a vulnerability hull that is constructed based 
on pre-modern environmental conditions (i.e., signifying exposure 
to climate hazards). This process was iterated over years between 
1995 and 2100 to calculate annual climate risk at each occurrence 
location for each coral species. We also tested whether regional 
climate risk diminished towards the boundaries of the vulnerability 
hull to examine whether corals in historically marginal habitats will 
experience reduced climate hazards than in their preferred habitats 
over the modern and post-modern periods (1995–2100). All R scripts 
required to compute the mCRS and reproduce results of this study 
are shared in a data repository (doi: 10.5061/dryad.jh9w0vtgk).

2.3  |  Interpretation of the mCRS 
metrics and caveats

In this study, we use the mCRS to infer two spatial aspects of cli-
mate risks. First, we use ΔmCRS to evaluate temporal changes in 
environmental conditions at a region by computing the difference in 
mCRS values of the same ecoregion over time (i.e., regional climate 
risk; e.g., ΔmCRS2100 = mCRS2100 – μmCRSpre-modern period). A more 
negative ΔmCRS value indicates a greater departure from a set of 
environmental conditions that historically supported the regional 
population (Figure  S1) and implies a higher likelihood/magnitude 
of adverse implications for the regional population. Second, we use 
mCRS values to identify the emergence of global climate risk. By de-
sign, a negative mCRS value at a location in a given year indicates 
that environmental conditions have exceeded conditions that the 
species experienced at any location across its entire distributional 
range in the past (i.e., the 6th IPCC pre-modern period: 1900–1994; 
IPCC, 2022), likely leading to substantial loss of the species' capacity 
to persist without dramatic responses.

The design of our risk framework includes few assumptions and 
caveats. First, our designation of reference period to define the 
species-specific vulnerability may render the risk scores sensitive. 
Indeed, many reef coral species thrive under post-modern environ-
mental conditions, suggesting that the fundamental species-specific 
vulnerability spaces may be generally larger than those defined in 
this study. However, the inclusion of modern and/or post-modern 
environmental conditions would reduce the sensitivity of our risk 
scores and weaken the scores' capacity to detect regional and global 
risks stemming from progressive climate change that intensified 
after the reference period (IPCC,  2022). Second, we focus on the 
projected persistence of reef corals within their current geographic 
ranges and do not account for potential biological and ecological 
processes that can reduce climate risks (e.g., adaptation and migra-
tion) due to the critical lack of data on the rate and magnitude of 
these processes for each coral species. Third, our metrics of climate 
risks assume a uniform decay of vulnerability from the hull centre 
to the boundaries because species-specific fitness kernels for our 
environmental parameters are not generally available for most scler-
actinian corals, and the available kernels are taxonomically biased 
(Madin, Anderson, et al., 2016; Madin, Hoogenboom, et al., 2016).

3  |  RESULTS

3.1  |  Regional and global climate risks for 
scleractinian corals

Regional climate risk (ΔmCRS; climate risk to a species at a loca-
tion from changes in regional environmental conditions that can 
alter persistence at the location) is already widespread across coral 
taxa in 2023 and is rapidly escalating (Figure  2a,b; annual results 
for full species list in Table S2). The discrepancy in regional climate 
risks between the SSPs is projected to widen towards the end of 
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the century. Regional climate risks are predicted to pose substan-
tially greater threat under the SSP5-8.5 scenario compared with 
the SSP1-2.6 scenario (Figure 2a,b). We also found that regional cli-
mate risk was predicted to decline towards the boundaries of the 
vulnerability hull where environmental conditions would be con-
sidered marginal in the past (Pearson's ρ between the distance to 

vulnerability hull boundaries (i.e., dE − dC) and regional climate risk 
(ΔmCRS); ρ = −0.88, p < .01 for SSP1-2.6; ρ = −0.94, p < .01 for SSP5-
8.5; Figure S3; Table S3).

Global climate risk (mCRS; climate risk to a species at a loca-
tion from an exposure to environmental conditions that are com-
pletely dissimilar to pre-modern conditions across the species' entire 

F I G U R E  2  Projected (a, b) regional (ΔmCRS) and (c, d) global (mCRS) climate risks for reef corals under the two CMIP6 trajectories 
(SSP1-2.6, SSP5-8.5). Species-specific mCRS and ΔmCRS values were summarised by calculating species-specific annual medians of mCRS 
and ΔmCRS values. Histogram bins were generated by sectioning the mCRS and ΔmCRS value ranges into 0.4-width bins. Positive values of 
each plot (top panels—green background) indicate (a, b) an absence of regional climate risks and (c, d) a presence of pre-modern (1990–1994) 
environmental conditions within the species' current global distribution. Negative values of each plot (bottom panels—red background) 
indicate (a, b) a regional escalation in climate risks since the pre-modern reference period and (c, d) an absence of pre-modern environmental 
conditions within the species' range. Plots in the first and second columns show patterns under the SSP1-2.6 and SSP5-8.5 scenarios, 
respectively. Bar plots in the left and right-hand panels of each column illustrate patterns projected for 2023 and 2100, respectively. Inset 
plots in (a, c) show regional and global climate risks computed for one of the pre-modern period years, 1980. Numbers in all plots indicate 
the proportion of the total observations (%) under each quadrant's climate trajectory and climate risk category. Numbers are rounded to the 
nearest integer.

 13652486, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16739 by T

est, W
iley O

nline L
ibrary on [23/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6  |    KIM et al.

geographic range) is also exacerbated over time and shows a clear 
disparity between the two SSP scenarios (Figure 2c,d). There are still 
locations in 2023 that can provide corals with pre-modern (1900–
1994) environmental conditions (green background in Figure 2c,d). 
These locations are mostly situated in the northern hemisphere, and 
the extent of global climate risk tends to decrease towards high lati-
tudes (Figure S4). Nonetheless, these temporary climate refugia are 
rare and predicted to vanish in the near future (red background in 
Figures 2c,d and 3).

Analysis of projected regional and global climate risks divided 
corals at a location into two groups. The first group is characterised 
by negative ΔmCRS and positive mCRS values. Corals with these 
risk outcomes at a location experience less favourable environmen-
tal conditions than during the pre-modern period at the location 
(i.e., negative ΔmCRS; regional climate risk). Despite the presence 
of regional climate risk, the location still provides environmental 
conditions within the range of pre-modern conditions that the spe-
cies has experienced elsewhere within its distributional range in 
the past (i.e., positive mCRS). Only a small portion of the examined 
corals experience these conditions today (4.2% under the SSP1-2.6 
in 2023; 1.2% under the SSP5-8.5 in 2023; Table S4). The second 
group of corals displays negative values for both ΔmCRS and mCRS 
metrics. These values highlight regional degradation of environmen-
tal conditions and a complete loss of potential climate refugia with 
pre-modern environmental conditions within the current species 
range. All examined taxa were projected to experience these risks 

by the end of the century regardless of the Shared Socioeconomic 
Pathway (SSP, Table S4) considered in the analyses. Species-level 
differences in climate risks were widespread (Table S2), and each 
genus included species with wide ranges of regional and global cli-
mate risks (Figure S5).

3.2  |  Geographic patterns of climate risks for 
scleractinian corals

Although risk magnitude varies across space, corals already experi-
ence considerable regional and global climate risks today (Figures 3 
and 4). As environmental conditions are rapidly becoming dissimi-
lar to the pre-modern conditions, corals are facing extensive global 
climate risk (Figure 3). The onset of global climate risk is delayed in 
the northern hemisphere, particularly at high latitudes (Figure  3). 
At higher latitudes, corals are also exposed to lower regional cli-
mate risks than in the tropics (Figure 4). These spatial differences 
in the level of regional and global climate risks diminish under the 
higher emissions scenario (Figures 3 and 4). Indeed, by mid-century, 
there is no place where corals will be able to avoid global climate 
risk under the SSP5-8.5 (Figure  3b). Importantly, comparison 
among coral species showed that small-range species will experi-
ence greater global climate risks than widespread species, a pattern 
that is further exacerbated under the higher emissions scenario 
(Figure S6; Table S6).

F I G U R E  3  Timing of global climate risk (mCRS) for reef corals under the (a) SSP1-2.6 and (b) SSP5-8.5 scenarios. The values on the map 
and marginal panels to the right show the regional and latitudinal median year in which species-specific mCRS values turn negative (i.e., 
hazardous climate for all species or the emergence of global climate risk across taxa within the region; solid lines in the marginal panel) and 
the first and third quartiles of the year in which global climate risk emerges (shaded areas in the marginal panel). Data are only shown in the 
coastal zone of each ecoregion. Map lines do not necessarily depict accepted national boundaries.
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4  |  DISCUSSION

Our findings foreshadow marked and continuous escalation of both 
regional and global climate risks for reef corals over the course of this 
century. Regional environmental conditions have already exceeded 
the range of pre-modern environmental conditions for all coral 
species (i.e., regional climate risk), even under stringent emission 
controls (i.e., SSP1-2.6; Figure 2a). Moreover, regional climate risks 
are projected to intensify rapidly in the future (Figures 2a,b and 4), 
consistent with widespread predicted losses of local/regional ther-
mal refugia based on current understanding of reef corals' generic 
thermal tolerance (Dixon et al., 2022). These findings highlight the 
severity of climate change impacts at regional scales, rapidly forcing 
corals to move to new locations within or outside their current dis-
tributional ranges (Cacciapaglia & Woesik, 2015; Couce et al., 2013; 
Descombes et al., 2015) or to adapt to the new conditions in situ 
(Bairos-Novak et al., 2021).

From a conservation and management perspective, the exis-
tence of climate refugia within a species' current distribution offers 
opportunities for active intervention approaches that can alleviate 
global climate risks (but see Chen et al., 2022; Rinkevich, 2021 for 
a list of caveats). Nevertheless, our findings only detected few cli-
mate refugia within the current species ranges of reef corals today 
and in the near future (Figures 2c,d and 3; Figure S4). These tempo-
rary refugia are located in the northern hemisphere, often at high 
latitudes (Figure  S4). At these locations, environmental conditions 

still remain within the range of pre-modern conditions. Assuming lit-
tle influence of adaptation, migration of individuals/populations to 
these locations may reduce global climate risks. However, reef cor-
als are sessile organisms whose structural formation takes years to 
centuries (Done, 1987), and rates of their range expansions (Yamano 
et al., 2011) are unlikely to outstrip the projected increase in global cli-
mate risk (Figure 3). Under these pressing circumstances, ex situ (i.e., 
outside a species' current range) responses (Chen et al., 2009; García 
Molinos et al., 2016; Johnson et al., 2011; Last et al., 2011; Lenoir & 
Svenning, 2015; Moritz et al., 2008; Pinsky et al., 2013; Thomas & 
Lennon, 1999; van Herk et al., 2002; Whitfield et al., 2007) and as-
sociated conservation strategies (Rehfeldt & Jaquish, 2010; Williams 
& Dumroese, 2013) might be necessary, as in situ (i.e., within a spe-
cies' current range) responses other than extirpation may become 
unlikely (Morelli et al., 2020; Potter & Hargrove, 2012).

Our study provides important insights to clarify the degree to 
which high-latitude regions will provide climate refugia for sclerac-
tinian corals (Glynn,  1996). High-latitude regions have served cor-
als as climate refugia in both historical and contemporary records. 
Tropical corals shifted their geographic ranges towards high lati-
tudes during warmer climatic periods, such as the Last Interglacial of 
the Pleistocene (Greenstein & Pandolfi, 2008; Kiessling et al., 2012). 
Poleward range expansions of corals are also observed in many re-
gions today (Baird et al., 2012; Denis et al., 2013; Marsh, 1993; Precht 
& Aronson, 2004; Yamano et al., 2011). Our results suggest that high-
latitude regions are likely to pose less climate risk to tropical corals 

F I G U R E  4  Geographic patterns of projected regional climate risks (ΔmCRS) for reef corals in 2100 under the (a) SSP1-2.6 and (b) 
SSP5-8.5 scenarios. The marginal panels to the right show the latitudinal median of species-specific regional climate risks (solid lines) and 
the first and third quartiles of the ΔmCRS values (shaded areas). A negative ΔmCRS value at a location indicates that regional climate risk 
is common across coral taxa at the location. Data are only shown in the coastal zone of each ecoregion. Map lines do not necessarily depict 
accepted national boundaries.
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(Figure 3; Figure S3), especially if corals are capable of migrating be-
yond their current geographic ranges (but see Abrego et al., 2021 
for drivers limiting latitudinal distribution of reef corals including 
various physical and biotic factors). On the contrary, current high-
latitude residents are projected to suffer substantial regional climate 
risks akin to tropical corals in the tropics (Figure 4). In other words, 
high-latitude regions will not become generic climate refugia for all 
corals. Rather, they will only provide viable habitat for tropical cor-
als whose pre-modern conditions in the tropics will resemble those 
at high latitudes in the future. Unlike their tropical counterparts, 
successful poleward range shifts of high-latitude specialists may be 
limited as they already exist under physical and biological stresses 
(Harriott & Banks, 2002; Kleypas et al., 1999; Sommer et al., 2018), 
and habitable substrates may be unavailable at high latitudes 
(Beger et al., 2014; Harriott & Banks, 2002; Kawecki, 2008; Lybolt 
et al., 2011; Perry & Larcombe, 2003). Moreover, mounting evidence 
suggests that subtropical specialists and endemics are particularly 
vulnerable to heat stress and coral bleaching (Cant et al.,  2021; 
Kim et al., 2019; Lachs et al., 2021). Similar to observations among 
other flora and fauna (Jablonski, 2008; Parmesan, 2006), many high-
latitude corals may thus experience contractions of their geographic 
ranges and greater extinction risk as their environmental conditions 
become unfavourable under climate change, and/or they are unable 
to compete with local species and incoming vagrants.

Importantly, our results also highlight the vulnerability of coral 
species with small-range sizes (Figure  S6; Table  S6). Small-range 
coral species are projected to experience higher global climate risks 
compared with widespread taxa, such that greater extents of novel 
climate conditions will engulf their entire distributional ranges. 
Notably, coral species with small ranges did not cluster in particular 
genera (Figure S7), indicating that climate risk associated with small 
species ranges is broadly distributed across coral genera. Although 
many coral species are geographically widespread and the number 
of small-range species is relatively low (Hughes et al., 2002, 2013), 
their disproportionate exposure to climate change is concerning. 
Dependence of these small-range species on a restricted number of 
disappearing habitats and refugia is likely to make them particularly 
vulnerable to climate change (Murali et al., 2021; Purvis et al., 2000; 
Trew & Maclean, 2021). For example, terrestrial regions with small-
range species are predicted to experience approximately 1.2 times 
faster rates of global warming and 1.6 times higher anthropogenic 
impacts, severely threatening their persistence (Enquist et al., 2019). 
Moreover, small-range species often perform important func-
tions (e.g., provision of complex habitat by the branching endemic 
Pocillopora aliciae on temperate reefs; Booth & Sear,  2018), and 
the loss of geographically rare species (Rabinowitz,  1981) can im-
pair novel or important ecological interactions and ecosystem pro-
cesses (Gorman et al., 2014; Mouillot et al., 2013; Valiente-Banuet 
et al., 2015).

Evidence is clear on the pervasive impacts of climate change 
across many elements of biodiversity (Bellard et al.,  2012; Shin 
et al.,  2019). A perilous number of organisms across terrestrial 
and marine realms are predicted to suffer critical climate risks and 

lose suitable habitats by the end of the century (García Molinos 
et al., 2016; Segan et al., 2016). Scleractinian corals are no excep-
tion. Consistent with the notion that climate change will escalate 
extinction risks for corals (Finnegan et al., 2015; Hughes et al., 2017; 
Kornder et al., 2018; Pandolfi et al., 2011; van Hooidonk et al., 2016), 
our findings indicate that the business-as-usual climate trajectory 
(i.e., SSP5-8.5; but see Hausfather & Peters, 2020) will put all cor-
als at critical risk. Our results also highlight added climate risks for 
high-latitude specialists and small-range taxa, as their traits and 
local environmental conditions tend to restrict opportunities for ad-
aptation and migration (Trew & Maclean,  2021). While the spatial 
variability in predicted climate risks among coral taxa points to con-
siderable reorganisation of coral assemblages on regional to global 
scales, our findings also emphasise that climate risks can be reduced 
by stringent climate actions (i.e., SSP1-2.6 vs. SSP5-8.5). In addition, 
evidence suggests that corals are actively employing response strat-
egies, such as adaptation and range shifts, to reduce climate risks 
(e.g., Matz et al., 2018; Tuckett et al., 2017). These findings highlight 
the utility of current and anticipated emission controls and reinforce 
hope in climate actions.
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