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A Closed-Loop Shared Control Framework for Legged Robots

Peng Xu1∗, Zhikai Wang1∗, Liang Ding1, Senior Member, IEEE, Zhengyang Li1, Junyi Shi2, Haibo Gao1,

Guangjun Liu3, Senior Member, IEEE, Yanlong Huang4

Abstract—Shared control, as a combination of human and
robot intelligence, has been deemed as a promising direction
towards complementing the perception and learning capabilities
of legged robots. However, previous works on human-robot
control for legged robots are often limited to simple tasks, such
as controlling movement direction, posture, or single-leg motion,
yet extensive training of the operator is required. To facilitate the
transfer of human intelligence to legged robots in unstructured
environments, this paper presents a user-friendly closed-loop
shared control framework. The main novelty is that the operator
only needs to make decisions based on the recommendations
of the autonomous algorithm, without having to worry about
operations or consider contact planning issues. Specifically, a
rough navigation path from the operator is smoothed and
optimized to generate a path with reduced traversing cost. The
traversability of the generated path is assessed using fast Monte
Carlo tree search (FastMCTS), which is subsequently fed back
through an intuitive image interface and force feedback to help
the operator make decisions quickly, forming a closed-loop shared
control. The simulation and hardware experiments on a hexapod
robot show that the proposed framework gives full play to the
advantages of human-machine collaboration, and improves the
performance in terms of learning time from the operator, mission
completion time, and success rate than comparison methods.

I. INTRODUCTION

LEGGED robots are often expected to be working in

complex environments, such as disaster rescue and

planet exploration [1]. However, challenging environments

place great demands on the autonomous perception, plan-

ning, and decision-making capabilities of robots. Specifically,

autonomous systems are highly susceptible to unexpected

changes in the environment like atrocious weather. They

heavily rely on the system’s perception capabilities, making

it difficult to ensure the reliability of auto-control behavior

in the presence of inaccurate environmental information. On

the other hand, humans have advanced biological intelligence

like the ability of logical thinking, figurative thinking, high-

dimensional decision-making, comprehensive understanding,
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Fig. 1: The shared control framework.

etc. Therefore, it is more reliable to perform tasks com-

bining human and robot intelligence, such as using human

intelligence for high-level perceptual understanding, task de-

composition, and decision-making and using robots for data

collection, calculation, robot stabilization and motion control.

Although shared control has been extensively studied in

recent years, especially in the field of autonomous driving [2],

[3], few works have been done for legged robots. Compared to

vehicles and unmanned aerial vehicles (UAV), legged robots

make contact with terrains using discrete footholds and have

high-dimensionality of the contact search-space [4], which

brings more challenges for the shared control of legged robots.

For example, a collision-free path guided by operators is still

no guarantee that the legged robot can track it; or the motion

generated by the robot may be incomprehensible to humans.

The planning and decision-making tasks for legged robots are

complicated, which need to consider not only the walking

path of robots but also contact planning issues, namely, gait

transition, foothold selection, and posture optimization. These

issues limit the shared-control scheme for legged robots to

direct manual control, exerting much pressure and workload on

operators. Therefore, designing an intuitive, easy-to-operate,

comfortable shared control method for legged robots is highly

desirable.

A. Related Works

The complexity of contact planning, the high dimensional-

ity of the search space, the discontinuities, instabilities, and

non-convexity of the robot dynamics, as well as the non-

convexity of the terrain environment, among other factors,

make locomotion synthesis of legged robots a challenging

problem [4]. To simplify matters, many efforts separate contact

planning from trajectory planning, while gait, foothold, and

posture of the robot are also considered separately in contact

planning [5]–[7]. Although such treatment reduces planning



time considerably, the results are unlikely to achieve opti-

mality. In contrast, some work has attempted to formulate

contact planning as an optimization problem to be solved by

integer optimization algorithms [8], [9], but it is not able

to meet real-time requirements. Monte Carlo Tree Search

(MCTS) [10] is a method for solving sequential decision

problems. Peng et al. proposed a sliding-MCTS method for

solving state-sequence planning problems for legged robots

and demonstrated that the robots have better traversability in

sparse-foothold environments [11], but it still takes a long time

to search for the result. Although progress has been made

in terms of autonomous motion, the algorithms above cannot

satisfy the full autonomy of legged robots due to imperfect

environment sensing and localization algorithms.

The flexibility of a legged robot comes from high degrees

of freedom and discrete contact ability, while the drawback

is that it increases the complexity of human-robot cooperative

control. Existing works for legged robots concentrate on direct

control by humans. For example, researchers use different

input tools such as a joystick [12], [13], 3D input device

[14], [15], and user interface [16], [17] to directly control the

robot’s posture, legs’ position [18], and gait modes. However,

the tedious operations significantly increase the burden on

operators and are highly error-prone. In recent years, some

shared control work combined with auxiliary algorithms has

also emerged, such as giving the robot’s destination through

wearable devices [19] or sensing the gesture of humans

[20], then robots navigate there autonomously. However, the

existing research on human-robot coordination mechanisms

for legged robots is too straightforward, considering only

limited environmental factors to perform simple movements.

In addition, humans and robots are relatively independent in

the collaborative process. Operators mostly make decisions

based on subjective consciousness, lacking feedback informa-

tion from the robot.

Shared control develops rapidly on robots with low degrees

of freedom, such as wheeled and aerial vehicles [21]–[23].

Researchers focus on planning navigation paths for robots

consistent with human intention. For example, Lee K. H. et

al. provide continuous forward guidance for wheeled robots

by sketching paths on images, complementing the local intelli-

gence of the robot to perform obstacle avoidance path planning

for multiple scenarios [24]. Fennel M. et al. designed a force

feedback device via immersive human-robot interaction to

generate paths that both meet the human intention and satisfy

the constraints of the kinematic model of a wheeled robot [25].

In the field of UAVs (unmanned aerial vehicles), due to their

high-speed requirements, researchers hope to plan paths that

conform to human expectations while being smooth, search

fast, and kinetic constraints satisfied [26]. In contrast, shared

control for legged robots aims to make the robot’s path as

secure, affordable, and, most importantly, trackable as feasible.

Nevertheless, few works have considered these demands. A

similar shared control scheme for path-level interaction is

proposed for high-dimensional robots by Islam et al. [27]. The

operator only intervenes when the autonomous algorithm is

unable to continue and operates completely manually, without

any assistance from machine intelligence.

The development of technology makes shared control

schemes adopt various human-robot interaction means. In the

Darpa challenge, legged robots are operated mainly through

software interfaces [28]. Besides, Kurisu M. et al. designed

a manipulation platform with force, and haptic feedback

for large hexapod robots [15]. However, these input tools

are all cumbersome to operate, requiring quick reaction and

professional knowledge. In order to reduce its difficulty, voice

[29], gestures recognition [30], human posture detection [31],

and other means that do not require specific equipment are

emerging. Recently, contact input methods such as electrome-

chanical signals and brain-computer interfaces have also been

used [32]. It can be seen that humans tend to interact with

robots using a more natural and straightforward way. The

work presented in this paper can provide a basis for applying

user-friendly devices such as brain-machine interfaces for the

shared control of legged robots.

B. Contribution

In this paper, we design a shared control framework for

legged robots, which allows an operator to control legged

robots to perform navigation tasks by making decisions on

the evaluated results rather than controlling the motion of

the robot without a break. The input of the framework is a

rough human-guided path, which will be smoothed by B-spline

and optimized by a stochastic trajectory optimization approach

considering traversing costs, including collision, foothold den-

sity, physical characteristics, distance, and smoothing cost.

Then, the optimized path is evaluated by fast Monte Carlo tree

search (FastMCTS) in terms of the traversability of discrete

contact state sequences. Finally, the quality of the optimized

path is fed back to the operator via images and touch signals

so as to help the operator make decisions promptly. Our main

contribution includes four aspects:

1) An easy-to-operate shared control framework is pro-

posed for legged robots. The novelty is that operator

does not need to be involved throughout the entire

process and only makes decisions based on the rec-

ommendations of the autonomous algorithm, reducing

operational difficulties while ensuring the traversability

of robots in complex environments.

2) A closed-loop human-robot collaborative path planning

method is proposed, which is able to generate safe and

smooth paths while considering different environmental

costs with compatible human intention functions.

3) A fast Monte Carlo tree method is proposed to evaluate

the trackable degree of the planned paths by searching

for a feasible contact state sequence of legged robots

with a shorter search time compared with related meth-

ods.

4) A new form of an interactive system is designed. In

addition to joystick input, haptic, and image feedback,

motion prediction has been added to the system to make

it safer and more reliable for operators.

The rest of this article is organized as follows. Section II-A

introduces the method overview. Human-guided path method
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Fig. 2: The workflow of the proposed method. There are

five main parts, including human-guided path, path smooth-

ing, path optimization, path scoring, and robot feedback,

corresponding to the five parts of the method. The operator

provides the initial path and final decisions via an interactive

interface to generate a sequence of contact states for the robot.

The robot-machine aspect optimizes the operator’s input path

and evaluates its quality; finally, feedback information such

as evaluation results, environmental information, and robot

status is sent back to the operator, forming a closed loop of

cooperative control.

is described in Section II-B. Section II-C presents the path-

optimized method considering traversing costs. The methods

for evaluating path and feedback are proposed in Section II-

D and Section II-E respectively. Simulations and hardware

experiments are presented in Section III. Finally, Section IV

concludes this article, and Section V discusses the advantages

and disadvantages of the proposed methods.

II. METHODOLOGY

A. Method Overview

As shown in Fig. 2, the entire algorithm framework starts

with human guidance until the processed information, such as

the evaluated path or force signal, feeds back to the operator

to form a closed loop. The operator first gives a reference

path through the remote control handle. Then the algorithm

adjusts its initial path by smoothing and optimizing steps,

considering the environmental characteristics, to generate a

safer and smoother path. After that, the proposed FastMCTS

method is adopted to evaluate the optimized path from the

view of contact passability. Finally, the evaluated result will

be fed back to the operator using an intuitive way. During the

whole process, the operator only needs to provide some initial

information about the reference path (such as the direction

of the path or a sketch of the path) and then decide on the

robot navigation path based on the path score evaluated by the

evaluation algorithm.

B. Human Guided Path

When it comes to the shared control of mobile robots, a

more intuitive and comfortable way for humans is to simplify

the robot as a particle and guide its navigation path.

1) Guided Path Input Method: Two human-guided path

input methods are introduced in this essay. The first one is

the semi-manual method. Humans only need to give the target

destination, and then autonomous path planning algorithms

like rapidly exploring random tree (RRT) [33] are adopted

to generate the whole path to avoid obstacles. The operator

simply gives the forward target point to generate the initial

path.

Specifically, the operator sets the robot’s forward direction α

and forward distance rϕ through the haptic device, and then

gets the target location P which can be calculated in robot

coordinates as

P = rϕ

(

cosα
sinα

)

. (1)

Then, with P as the destination and the position of the robot as

the starting point, an obstacle avoidance path can be planned

by RRT as the reference trajectory for subsequent optimiza-

tion. In this way, the time consumed by subsequent trajec-

tory optimization can be significantly reduced. The STOMP

(Stochastic Trajectory Optimization) algorithm [34] can also

be prevented from falling into local optimum and failing to

find a viable path.

The second input method is manual path drawing. When

the path planned by autonomous planning algorithms cannot

meet the needs of human beings, such as controlling the robot

to approach the obstacle areas or forcing the robot to take

a specific path, completely manual input methods can be a

better way. This paper adopts a haptic device to teach the

path because of its advantages of intuitive input and tactile

feedback. The position of the handle end is mapped to the

speed of the virtual control object via

v = kmd, (2)

where d denotes the displacement vector of the handle end

with reference to an initial point; v represents the speed

vector of the virtual control object; km is the displacement

amplification factor. In this way, the operator can draw the

running trajectory of the virtual robot by controlling the

position of the handle.

2) Path Smoothing Method: Considering that the path gen-

erated by RRT or human teaching is tortuous and unnatural,

the cubic uniform B-spline is used to smooth the initial path.

The equation for a standard B-spline is

P (u) =

n
∑

i=0

diNi,k(u), (3)

where di(i = 0, 1, . . . , n) is the control point, also known

as the DeBoor point; Ni,k(i = 0, 1, . . . . . . , n) is the basis

function of k-degree canonical B-spline. A smooth B-spline

curve can be generated by sampling the value of the guided

path as data points, which can provide a better initial solution

for subsequent optimization.

Although the path guided by humans can be a reasonable

reference for robots, the rough sketched path often ignores

many factors, such as the traversing cost or whether the

trajectory is trackable. Therefore, it makes sense to improve

the security and executability of guided paths combined with

robot intelligence.



C. Path Optimization Method

Since it is difficult for humans to consider the constraints

of multiple environmental characteristics simultaneously, the

STOMP method is adopted to optimize the smoothed tra-

jectory. STOMP is a trajectory optimization framework, that

relies on generating noisy trajectories to estimate a better

trajectory at a lower cost [34]. Not only does STOMP sup-

port adjustments to the reference trajectory, but the method

uses derivative-free stochastic optimization, which allows the

method to add multiple constraints without affecting its con-

vergence. Therefore, STOMP is well suited for our problem

and guarantees that the generated paths are cost-optimized

given multiple environmental constraints. In order to gener-

ate a path more suitable for the legged robot to track, the

optimization problem to be solved can be expressed as the

following equation,

min
θ

∑

Q(.)(θ), (4)

where Q(.)(θ) =
∑N

i=1 q(.) (θi) denotes different cost func-

tions; q(.) denotes the cost in point θi; θ ∈ R
2×N represents

normalized discretized path points of x; x ∈ R
2×N represents

discretized path points that the robot should actually follow in

the Cartesian space, and N is the number of the discretized

points. It is worth mentioning that cost normalization can help

match the dimension of noisy increment to ensure that the

generated noisy exploratory paths can explore Cartesian space

as much as possible.

In order to obtain a reliable trajectory, several costs for

legged robots are considered.

1) Collision Cost: Completely forbidden areas, such as

areas that cannot be crossed, untouchable terrains such as silt,

and terrain with steep slopes, are treated as obstacles. Then

the corresponding signed distance field (SDF) is established.

SDF reflects the closest distance of a point to the boundary of

the obstacle [35], and the value of SDF outside the obstacle is

positive and inside the obstacle is negative. and the obstacle

cost is

qobs (θi) = ∥xi+1 − xi∥max (r + ε− f(xi), 0) , (5)

where f(xi) represents the value of SDF at xi; r denotes the

size of a robot; ε is the safety margin set aside.

2) Feasible Foothold Density Cost: Walking in areas with a

higher density of feasible footholds can ensure the passability

of legged robots. Once the environmental map is ready, the

binary map of footable and non-footable can be segmented by

establishing a cost map. Therefore, the foothold-density cost

of the robot can be expressed as

qfea (θi) = kfea (Ns,max −Ds (θi)) , (6)

where Ds(θi) represents the number of footholds in the area

of s around the path point xi ∈ R
2 corresponding to θi in

Cartesian space coordinates; Ns,max represents the theoretical

upper limit of the number of footholds in this region; kfea is

the weight coefficient. The larger the value of qfea (θi) is, the

higher the crossing cost the robot will pay.

3) Physical Characteristic Cost: In the wild environment,

robots need not only to deal with geometric obstacles but also

to meet terrains with various physical properties. However,

these terrains may have different traversing costs. For example,

the traversing cost of a dry slate is far lower than that of

walking on slippery ice. Therefore, the physical characteristic

cost is considered in this essay, and its calculation formula is

qphy (θi) = kphy





Ds(θi)
∑

j=1

kj,soft + kj,friction



 , (7)

where ki,soft and ki,friction respectively denote the softness and

friction degree of terrains, and their calculation method can be

found in our previous work [36].

4) Path Smoothing Cost: To ensure that the smoothness of

the initial path is not damaged during the optimization process,

a smoothness cost [34] is introduced, i.e.,

Qsm(θ) = ksmθ
T
Rθ, (8)

where R is a positive semi-definite matrix; Qsm(θ) denotes

the sum of squares of accelerations along the trajectory. This

term is directly added in Eq. (4).

5) Path Distance Cost: The application experience has

shown that ignoring the distance cost will cause the char-

acteristics of the generated path to deteriorate, and the path

will be excessively twisted and bent when facing complex

environments. Therefore, the cost of the shortest possible path

is introduced here, and its calculation method is

qsp (θi) = ksp









N−1
∑

j=1

∥θj+1 − θj∥



− ∥θN − θ1∥



 . (9)

After optimization, a path suitable for legged robots is ob-

tained, which comprehensively considers the characteristics of

smoothness, obstacle avoidance, and physical and geometrical

characteristics of terrains.

D. Path Scoring Mechanism via Contact Planning

In the path generation process mentioned above, although

many environmental constraints are considered, the path gen-

erated still cannot guarantee that it is trackable for legged

robots. This is because legged robots are different from

wheeled and unmanned aerial vehicles. They are expected

to work in an environment with discontinuous grounds and

need to consider whether they can follow a given path by

planning a contact state sequence. From the perspective of

human-machine collaboration, humans are not good at solving

combinatorial optimization problems for legged robots. For

example, finding the optimal combination of foothold, gait,

and pose is extremely brain-taxing. Therefore, the complex

discrete contact state planning is left apart to the machine

intelligence here, and the operator only needs to choose the

path with better quality. This section will introduce a path

evaluation method named FastMCTS to solve the problem.



1) FastMCTS Method: Monte Carlo Tree Search (MCTS)

[10] is an algorithm that uses random (Monte Carlo) samples

to find the best decision. MCTS is expert at solving prob-

lems such as discrete decision-making, such as alphaGo [37],

making it suitable for solving the complex motion planning

problem of legged robots. In the Monte Carlo tree, each node

represents a state of the robot Φ :=< W
BR, W

B r , cF , tF ,
W
F r

>, including the robot’s posture, position, foothold position,

support status during the transfer process, leg error status.

More details of the calculation of each parameter can be found

in our preprint [38].

Although the traditional MCTS method can be used directly

for contact state planning, the search speed is still plodding

because there are plenty of available contact states to choose

for a given state, which leads to much calculation amount

[38]. Therefore, the FastMCTS is introduced there, which can

find feasible results in seconds (or even faster, it depends on

the complexity of the terrain) and have a high passability.

Nevertheless, because there is less time for exploration and

optimization, the sacrifice made is that the result sequence is

redundant and not fully optimized, making the robot’s walking

efficiency extremely low. However, this method is very suitable

for judging the pros and cons of a path. Because being able

to quickly judge whether a path is trackable or not is what the

evaluation method needs, rather than the quality of the search

sequence results.

In the simulation step of the standard MCTS method,

many simulations have been performed. Nevertheless, only the

simulation results are utilized, and the state sequence obtained

during the simulation is discarded [38]. The FastMCTS uses

simulation sequences to quickly build a master branch of

the search tree and iteratively updates the master branch by

the branch with the highest potential to the destination. The

primary purpose of this algorithm is to construct a feasible

state sequence quickly, but its optimality cannot be guaranteed.

The fast Monte Carlo tree search algorithm is different from

the standard MCTS framework. It consists of four main

steps: Extension, Simulation, Updating Master Branch, and

Backtracking.

First, take the starting state Φstart of the hexapod robot as

the specified starting node Φk.

• Extension: Expand all candidate states of the specified

node Φk. Each candidate node can only be expanded once.

Note the nodes expanded as set ASΦk
.

• Simulation: To each node Φ0 ∈ ASΦk
, using the

default strategy simulation (Random selection of next step

gait, foothold, and posture is taken in this easy way) until

reaching the termination condition. Noting the distance of

the simulation as d(Φ0). Taking the nodes of the simulation

generated as set TΦ0
. The simulation termination condition of

this method is that the robot is continuously stuck or reaches

its destination.

• Updating Master Branch: Select the extended maximum

simulation distance node Φk,f ∈ ASΦk
.

Φk,f = argmax
Φ∈ASΦk

(d(Φ)). (10)

Then add the simulation node sequence TΦ0
to the search tree

and update it as the new master branch.

• Backtracking: If the master branch does not reach the

destination, then select the node ΦI from leaf nodes of the

search tree, which is closest to the target, toward the root

node successively, and start to expand, simulate, and update

the master branch.

Next, introduce the flow of the entire algorithm, according

to Fig. 3. In Fig. 3(a), all the candidate state nodes are

expanded according to the selected node. Then the simulation

is performed with them as the starting point, and the simulation

distance and state sequence are recorded. In Fig. 3(b), the node

with the largest simulation distance is selected for expansion,

and each node in the state sequence recorded in the simulation

is added one by one. The thick solid line indicates the master

branch in the figure. Figures 3(c)(d)(e) indicate that if the

master branch does not reach the destination, the algorithm

will gradually expand backward from the furthest child node

and update the master branch. The end condition of the entire

algorithm is: the tree node reaches the destination, or the

program traces back to the root node.

(a) Expasion (b) Extension (c) Set Master Branch

(d) Backtracking (e) Update Master Branch

1( )d  2( )d  3( )d  4( )d  ( )
i

d 

1( )d  2( )d  3( )d  ( )
i

d 

1( )d  2( )d  3( )d 
( )

i
d 

Fig. 3: Workflow of FastMCTS. (a)–(c) establish the initial

search tree, and the red line represents the master branch. (d)

if the furthest node does not reach the destination, the node

closest to the target and not extended is selected as the new

extended node. (e) if the furthest node of the newly extended

branch is closer to the destination than that of the main branch,

the main branch will be updated by the new one.

The algorithm uses the simulation results to establish the

master branch quickly and updates the master branch by

backtracking until it reaches the destination or back to the

root node. The main idea is to find the position where the

robot is easily trapped through multiple simulations and then

keep back and try again until it finds an available solution.
2) Path Scoring Method: Once an optimized path is gen-

erated, FastMCTS can be used to evaluate its quality. Specifi-



cally, the xi represents the ith discrete point of a tracked path

x that the robot should actually follow in the Cartesian space.

n is the discrete point number of the tracked path. And the

location where the robot cannot move forward at j iteration

judged by FastMCTS denotes as xfMCTS,j. Niter denotes the

iteration times of the evaluation process. Then the evaluation

path score is defined as

score = max

∑Ij
i=2 ∥xi − xi−1∥

∑n
i=2 ∥xi − xi−1∥

, j = 1, · · · , Niter (11)

with

Ij = argmin
1≤i≤n

(xi − xfMCTS,j) . (12)

E. Robot Feedback Method

1) Image Feedback: The entire path planning process is

conducted in a three-dimensional coordinate system, but a

more comfortable and informative way for humans is to

observe images or videos directly. Humans can obtain more

environmental information through raw visual images. There-

fore, the final path is projected to the image coordinate system,

marking the trackable part in green and the untrackable part

in red, enabling the operator to make decisions conveniently.

The formula for delivering 3D points to the image coordinate

system for camera models is

P uv = z−1
KT

[

Pw

1

]

, (13)

where P uv represents the coordinates in the image coordinate

system, Pw is the position in the world frame, z is the depth

value of the point cloud, K is the internal parameter of the

camera, and T is the external parameter of the camera.

2) Touch Feedback: In addition to visual feedback, with

the help of a 3D force teleoperated handle, operators can get

feedback force from the robot and make decisions through

feeling the touch force. For the human intervention method

of target position selection, the mapping relationship between

force feedback and path score is

F = khaptic × (1− score )×





cosα
sinα
0



 , (14)

where α denotes the yaw angle of the haptic device, same

as equation (1), and khaptic denotes the weight coefficient.

During operation, the greater the resistance felt by operators,

the lower the quality of the path is considered to be. In this

way, operators can clearly feel the path quality, reminding

them of the dangers through tactile feedback.

3) Motion Prediction Visual Feedback: When path evalua-

tion results are obtained, we visualize the next movement of

the robot and feed it back to the operator through the simu-

lation interface. By simulating the next motion, the operator

can judge the current state of the robot and predict the next

movement of the robot effectively. Specifically, the simulation

system collects all state information of the robot, including

position, posture, joint data, and contact forces. Based on

them, simulations predict the next movement of the robot and

visualize it in the interactive interface. Once the robot’s state is

different from what operators expected, they can find possible

issues timely. Meanwhile, the visualization of the next step

can also help operators to predict the future behavior of the

robot clearly, facilitating their decision process.

III. EXPERIMENTS

A. Experimental Setup

The proposed method is verified on ElSpider [11] (Fig. 4),

an electric-driven heavy-duty hexapod robot (1.9 × 2.1 × 0.5

m, 330 kg) developed by the Harbin Institute of Technology.

For environment sensing tasks, a depth camera (Intel D435i) is

installed on the robot. A visual capture system is used for state

estimation. The algorithm is run on a notebook computer with

an i7 2.60 GHz processor. Besides, a Huawei wireless router is

installed to build a local network for remote communication,

and a PHANToM teleoperated handle, supporting six-DOF

(Degrees of Freedom) input and three-DOF output, is adopted

in our experiments. The whole system runs based on the

Robot Operating System (ROS), and the operation command

from operators can be remotely transmitted to the robot node

through the ROS. The robot node transmits data, including

the environmental map, robot state, raw images, prediction

motion, and force, to the operator. For simulation, the robot

and environmental maps are visualized in the RVIZ software

of ROS. The structure and purpose of the experimental section

are summarized in Table I.

B. Simulation Results

1) The Path Generation Results: The shared control frame-

work is tested first in simulations. The simulated environments

are randomly deployed with various types of obstacles and

random footholds for walking. Three different paths are shown

in Fig. 5(a)-(b): the blue one is the human-guided path, B-

spline smooths the white, and the green is the final path

optimized by STOMP. It can be seen that the proposed method

can obtain a more secure path from a rough input path while

ensuring that the path is smooth and intuitive. In terms of

semi-manual input path, as shown in Fig. 5(b), the operator

gives a destination on the map and a zigzag path (yellow line

in the figure) generated by RRT is set as the initial path for the

proposed method. Finally, the proposed method still optimizes

the path and retains the shape of the initial trajectory to

Laptop

Router

Tracking Camera

Depth 

Camera

Teloperated

Handle

Remote Interface

Fig. 4: Hardware equipment.



TABLE I: Experimental Setup

Experiment category Purpose

Simulation
Path Generation Test It is carried out to demonstrate that the proposed method can improve the safety and reliability of human-guided paths.
Path Cost Comparison It is carried out to demonstrate the advantage of the proposed method in reducing traversing costs.
Path Passability Evaluation It is carried out to verify the advantages of FastMCTS over other methods in terms of computational speed.

Hardware Experiments
Navigation Experiments It is carried out to demonstrate the effect of the proposed method applied to robot navigation.
Robot Feedback It is carried out to demonstrate the role of robot feedback in our approach.
Comparison Experiments It is carried out to compare the proposed method with the latest shared control method and the traditional method.

(a) (b)

(c) (d)

Fig. 5: Simulation results of path planning. Blue lines denote

human guided path, white lines represent the smoothed result,

and red and green lines are the final path evaluated by

FastMCTS.
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Fig. 6: The cost of different paths.

some extent. Besides, by minimizing the foothold density cost,

paths tend to converge to areas with dense footholds while

avoiding obvious obstacles and keeping smooth and intuitive

(see Fig. 5(d)). The final paths with different human-guided

paths are shown in Fig. 5(c)(d). The green part denotes the

trackable area while the red represents the untrackable area,

which is evaluated by FastMCTS. It can be seen that these

paths tend to converge to areas with dense footholds while

avoiding obvious obstacles and keeping smooth and intuitive.

Through visualization, operators can evaluate the quality of

paths easily, helping them to find a better way for the robot.

2) Path Cost Comparison: In order to further quantify

the quality of path optimized, we collected the cost of 100

sets of paths (including human-guided path, smoothed path,

and optimized path) in different simulation scenarios. The

evaluated function includes three parts: collision cost, foothold

density cost, and smoothing cost. Each cost is normalized by

dividing the maximum cost among the three cost parts. As

shown in Fig. 6, it can be seen that the cost of the initial

human-guided path is much larger than the optimized path

cost result, while the smoothed path only reduces its cost by

about 11% compared with the optimized one. Therefore, by

smoothly optimizing the path, paths with lower cost and higher

security can be obtained.

3) Path Passability Evaluation: The planned continuous

path does not guarantee that legged robots can track it in

a sparse foothold environment. It is necessary to consider

whether a corresponding sequence of contact states can be

planned along the path. Therefore, we conducted several

experiments to validate the proposed FastMCTS on terrain

maps with three different densities of available footholds to

test its passability and search speed. As shown in Fig. 7,

the footholds on these maps are randomly distributed in a

specific rectangular area (10m × 2m), including 100 footholds,

150 footholds, and 200 footholds. For statistical results, these

two planning scenarios are performed on 20 different maps

for each foothold density. The starting point of the robot

is set as the coordinate origin, and the target point is (8m,

0m). When the robot moves more than 8 meters in the X-

axis direction, it is considered that the robot reaches its

destination. The first comparison method is another variant

of the MCTS method (slidingMCTS) designed for contact

planning for legged robots [11], which is proven to have a

higher passability advantage and higher quality of contact

sequences than RRT-based methods. The other comparison

method is the standard MCTS method, and when the search

time is over 20 minutes or the robot reaches the destination,

the algorithm stops.

Destination

Fig. 7: Random foothold distribution map.

We test the proposed FastMCTS method and the compar-

ison methods on 60 processed terrain maps with different

distributions of available footholds, and the results of the

passability are shown in Table II. It can be seen that the

proposed method has a similar performance to slidingMCTS

in terms of passability, but its search time is significantly

reduced. Specifically, the average planning time is within 1s,

while the search time of the slidingMCTS method is close to

100s and that of the standard MCTS is much more. However,

the compromise is the redundancy of contact state sequences,

which means more steps are required to walk for the same

distance. As shown in Tab. II, the average step length of

the proposed method is lower than that of the comparison

methods. This is because FastMCTS focuses on finding fea-

sible solutions rapidly without being fully optimized. Such

characteristics make FastMCTS suitable for rapid assessment

of the feasibility of pathways.

Based on FastMCTS, the planned navigation path is eval-

uated. As shown in Fig. 5(c)–(d), it can be seen intuitively

that the evaluation method labeled the path using red and

green colors clearly, representing the untrackable parts and

trackable parts respectively. Although obvious obstacles have

been avoided at the path level, conventional path planning



TABLE II: Comparison results of different contact sequence

planning methods. FD denotes forward distance, representing

passability of robots; ASL is average step length, representing

the speed of robots; AST means average search time; Sl is

slidingMCTS method; St is the standard MCTS method; Pr is

the proposed method.

FD(m) ASL(m/step) AST(s)
FN Sl St Pr Sl St Pr Sl St Pr

100 5.63 5.88 5.84 0.195 0.202 0.059 89.6 1120 0.9

150 7.42 6.71 7.36 0.213 0.218 0.068 105.3 >1200 0.6

200 7.81 6.12 7.82 0.280 0.292 0.071 82.7 >1200 0.3

(a) (c)(b)

forbidden areaforbidden area

obstacle

obstacle

obstacle

Fig. 8: The hardware experimental scenes.

methods cannot judge whether a path is trackable. However,

FastMCTS can make a good evaluation of the given path, and

the results can give feedback to humans, helping them know

more about their decision reasonability.

C. Hardware Experiments

1) Navigation Experiments: Three different challenging

terrain scenarios are constructed to test the effectiveness of

the proposed method, as shown in Fig. 8(a)–(c). Fig. 8(a)

represents a scene where the robot needs to avoid collisions

with the obstacles (towering boxes); Fig. 8(b) shows terrain

with uneven distribution of footholds where stones represent

forbidden areas (they cannot be chosen as footholds); Fig. 8(c)

is another kind of terrain with random forbidden stones and a

high obstacle. Figures 9(a)–(f) show the process of the robot

traversing these scenes. Each figure has three subgraphs. The

left subgraph shows the camera view of the legged robot,

and much information including elevation maps and paths

is projected on it, where the white represents the forbidden

area, the red is the high obstacles, and the blue area means

safe areas. For the paths, the blue line is the human-guided

path, and the green line means the optimized path that the

robot can track, while the red path cannot be tracked by the

robot. The middle subgraph is the simulation review which

shows the real-time visualization of the hardware robot and

the environmental elevation maps. The right subgraph is the

screenshot of the legged robot.

In these experiments, the operator was required to control

the robot to traverse the challenging terrain by observing

the human-computer interaction interface only. For the first

scene, the experimental process is shown in Fig. 9(a)–(c).

In the beginning, the operator intends to let the robot cross

the tunnel between the obstacle and the wall. However, the

path available in the operator’s view is judged as a low-

quality one by the robot. This is because the distance between

the two obstacles is smaller than the robot’s size, so the

area is considered as untrackable part by FastMCTS. In

Fig. 9(b), due to the drift of the pose tracking module, the

constructed semantic map of grounds goes wrong, and the

floor is regarded as the forbidden area. Nevertheless, although

(a)

(b)

(c)

(d)

(e)

(f)

Camera View Simulation View Real Scenario View Camera View Simulation View

forbidden area
obstacle

Real Scenario View

Fig. 9: Hardware Experiments results. The left subfigure is the

processed feedback image from the robot, and the evaluated

path and elevation map is projected in it. The white represents

the forbidden area, the red is the high obstacles, and the

blue area means the safe area. The blue line is the human-

guided path, and the green line means the optimized path that

the robot can track, while the red path cannot be tracked by

the robot. The middle subgraph is the simulation view which

shows the real-time visualization of the hardware robot and

the environmental elevation maps. The right subgraph is the

screenshot of the walking robot.

the robot algorithm evaluates the path selected by the operator

as partly untrackable, the operator still chooses it because he

thinks the area is safe through his analysis. Finally, the robot

traversed this area by tracking the path selected by the operator

(see Fig. 9(c)). It can be seen that human decision-making

ability and robot intelligence cooperate with each other in the

whole process. When meeting unreliable perception issues,

the role of human beings is highlighted. However, humans

are not good at doing elaborate planning, so the evaluation

results of a massive search by the algorithm can help them

make better decisions. For the second scene (Fig. 8(b)), we

can see that the trajectory drawn by the operator is close to

the area with sparse footholds. The path optimized by the

proposed algorithm allows the robot to choose the safer area

with fewer forbidden areas, and the obtained path is evaluated

as an available one. Similarly, for the last scene (Fig. 8(c)),

the algorithm helps humans to choose a path away from the

towering obstacles, and the robot can traverse the terrain by

switching gait and footholds reasonably (see Fig. 9(f)). It can

be seen that the proposed method can help humans make

better decisions, and the human-machine collaboration scheme

is able to tackle some tricky occasions like occurring sensor

failures, which cannot handle by a fully autonomous scheme.

More details can be found in our demonstration videos 1.

2) Robot Feedback Results: In the hardware experiments,

operators judge the quality of generated path by not only colors

but also by the force exerted by the handle. In order to show

the tactile feedback results clearly, a test on a specific scene

is performed to collect the force exerted on operators. As

shown in Fig. 10(a), a towering obstacle is placed in front

of the robot. The operator selects different forward directions

of the robot by controlling the handle. Figure 10(b) shows

the relationship between handle force and moving angles. It

can be seen that users can feel forces of different magnitudes

along the changes in paths, and when the quality of the path

is low, the operator can get a larger force to remind him of

1https://sites.google.com/view/shared-control-leggedrobot/home



(a) (b) -80 -60 -40 -20 0 20 40 60 80

0

1

2

3

R
es

is
ta

n
ce

 F
o

rc
e/

N

Forward Direction / °

Fig. 10: (a) force feedback experiments scene. (b) the rela-

tionship between handle force and the moving direction of the

robot.

the danger. On the other hand, through real-time visualization

of the hexapod and motion simulation of the next step (see

Fig. 9(d)–(f) in the simulation review), it is very convenient

for the operator to evaluate the robot’s status and predict its

next behavior of the robot, which greatly facilitates the remote

control of the operator. More feedback details can be found

in our demonstration videos.

3) Comparison Experiments: Comparison experiments are

also carried out to verify the convenience of the proposed

method in terms of human-machine operation. Two com-

parison methods are adopted in the experiment. The first

one is closest to the approach in this paper, introducing an-

other shared-control planning framework for high-dimensional

robots [27]. This approach recommends asking for user ad-

vice only when the planner determines that it is no longer

significantly advancing toward the goal. In the rest of the

cases, the robot plans its motion entirely by autonomous

algorithms. We call it the restricted intervention method here.

For the second comparison control scheme, operators need to

control the hexapod robot using the operation interface shown

in Fig. 11(d)(e). This interface includes various operation

commands including front and back, left and right, rotation,

step height setting, step length setting, gait selection, system

emergency stop operation, and so on. In the experiment, five

volunteers are invited to control the robot traverse different

terrains (see Fig. 11(a)-(c)) using two control systems. Each

volunteer learns to operate the control system first, and then

they can control the robot. 30 tests are conducted in all, for

each one, (1) any collision between the robot with obstacles

is not allowed, (2) the robot cannot also touch the forbidden

area (stones), and (3) the operators can only observe the

state and surroundings of the robot by the operation interface.

During the experiment, we counted the time the operator

learned to use the system, the time to complete the operation

task, and the success rate of the task. Finally, NASA-TLX

[39] is adopted to estimate operator workload based on the

questionnaire in terms of mental demand, physical demand,

temporal demand, performance, effort, and frustration. The

higher score of NASA-TLX means a higher workload.

The results can be found in Table III, and we can see that

volunteers spent a total of 31 minutes familiarizing them-

selves with the traditional UI operating system, 37 minutes

getting used to the restricted intervention control framework,

and 14 minutes learning the proposed shared-control system.

Volunteers need to adapt to the traditional UI operating system

but also the autonomous system, which results in the longest

learning time for the restricted intervention method. Regarding

the robot navigation experiments, it took each volunteer an

(d) (e)

(a) (b) (c)

Fig. 11: (a)-(c) the comparison experimental scenes. (d)(e) the

UI interface of the comparison operation scheme.

TABLE III: Comparison Results. The ”Manual” means the UI

operating method; ”Restricted” is the restricted intervention

method.

Learning Time Operating Time Success Rate NASA-TLX

Manual 31 min 21 min 60.0% 84.0
Restricted [27] 37 min 13 min 80.0% 45.33

Proposed 14 min 9 min 93.3% 18.33

average of 21 minutes to complete the task, with a success

rate of only 60.0% when using the UI control method. In

contrast, the volunteers took an average of 13 minutes to

navigate the robot to the target, with a success rate of 80%.

The robot navigation task was completed in an average of

9 minutes with a success rate of almost 93.3% using the

proposed method. The only failure is caused by the robot

touching a forbidden area, as the vision algorithm did not

recognize the stone. It is worth noting that the operators using

the traditional UI operating method sometimes control the

robot by observing the hardware robot rather than using the

remote interface during the process. Although this was against

our rules (3), we lowered the difficulty and continued their

tests. It is just an indication of the remote control difficulty of

the traditional UI operating system. On the other hand, most

of the operators tend to feel tired after finishing the experiment

using the UI operating system, and the index of NASA-TLX

is much higher than other methods. Regarding the restricted

intervention method, although it reduces the operating time, it

still cannot avoid using the fully manual operation, decreasing

the success rate and increasing the NASA-TLX. Another

disadvantage is that the human only intervenes when the

autonomous algorithm gets stuck, whereas often many dangers

can be predicted in advance by operators observing live images

of surroundings, which is the main reason why it is more time-

consuming than our method. Therefore, the results show that

the proposed shared-control method can significantly reduce

the training time of operators, and improve the completion

degree of navigation tasks. More details can be found in our

demonstration videos.

IV. CONCLUSIONS

In this paper, we have presented a closed-loop shared control

framework, facilitating the operation of humans for legged

robots. Rough paths provided by humans will be smoothed and

optimized considering different traversing costs. The FastM-

CTS is proposed to evaluate the optimized path, which can

judge the trackable degree of a given path by planning contact



state sequences of legged robots. The evaluated result will be

fed back through images and touch force, forming a closed

loop to help the operator control the robot concisely. Simu-

lations have been performed to investigate the advantages of

our method for generating navigation paths and the advantages

of FastMCTS over other methods for contact state sequence

planning. The result shows that the paths generated can

optimize the rough guided path as smoother and safer ones,

and the FastMCTS have much higher search speeds than that

of the comparison method without reducing the passability of

legged robots. Finally, hardware experiments and comparison

experiments have been carried out to verify the performance of

our method in real scenarios. The results show that using the

proposed method, operators can control the hexapod robot to

execute navigation tasks more efficiently, with a higher success

rate than that of the comparison control scheme. Through

the feedback information (the visualized path results, motion

prediction, and feedback forces), intelligent algorithms can

help operators evaluate the quality of their decision behavior,

while operators can also find the problem that the algorithm

cannot handle. This cooperative way makes the navigation

system more robust to tricky issues like perception errors.

V. DISCUSSION AND FUTURE WORK

The proposed method focuses on human-robot interaction

at the upper level of the path, placing more emphasis on

the robot’s traversability in complex environments with sparse

available footholds. At the same time, emphasizing the con-

tribution of machine intelligence to human decision-making

also contributes to the success of the proposed method. The

algorithm assesses the passability of the path and passes

it on to the operator, who makes a decision based on his

own judgment and feedback assessment, making the human-

machine interaction a closed-loop process. On the other hand,

in terms of technical integrity, we have designed a human-

robot interaction system that provides real-time feedback on

the robot’s status, the environmental map, and raw images.

Before the robot performs each step, the next behavior of

the robot is displayed in the interactive interface, giving the

operator an expectation of the robot’s movement, making the

operation safer and more reliable. Compared to other methods,

these strategies, therefore, reduce the operator’s workload and

improve the robot’s ability to traverse challenging environ-

ments.

However, there are still some shortcomings in our approach.

For example, the evaluation algorithm does not take into ac-

count constraints such as robot dynamics, joint moments, and

terrain-bearing capacity, which makes the evaluation results

potentially incorrect. However, adding more constraints must

lead to more computation and longer evaluation times, which

are not sufficient for real-time human-robot interaction. In

addition, the robot experiments are still being validated in

the laboratory. Outdoor experiments inevitably place higher

demands on the human-robot interaction system, such as col-

lecting more information about the environment, dealing with

perceptual uncertainty, and resolving communication delays.

In the future, we tend to conduct research on these aspects

to promote more intelligent human-computer interaction solu-

tions.
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