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Abstract—To enable innovative applications and services, both
industry and academia are exploring new technologies for sixth
generation (6G) communications. One of the promising candi-
dates is fluid antenna system (FAS). Unlike existing systems, FAS
is a novel communication technology where its antenna can freely
change its position and shape within a given space. Compared to
the traditional systems, this unique capability has the potential of
providing higher diversity and interference-free communications.
Nevertheless, the performance limits of FAS remain unclear as
its system properties are difficult to analyze. To address this, we
approximate the outage probability and diversity gain of FAS
in closed-form expressions. We then propose a suboptimal FAS
with N∗ ports, where a significant gain can be obtained over
FAS with N∗ − 1 ports whilst FAS with N∗ + 1 ports only
yields marginal improvement over the proposed suboptimal FAS.
In this paper, we also provide analytical and simulation results
to unfold the key factors that affect the performance of FAS.
Limited to systems with one active radio frequency (RF)-chain,
we show that the proposed suboptimal FAS outperforms single-
antenna (SISO) system and selection combining (SC) system in
terms of outage probability. Interestingly, when the given space
is λ

2
, the outage probability of the proposed suboptimal FAS with

one active RF-chain achieves near to that of the maximal ratio
combining (MRC) system with multiple active RF-chains.

Index Terms—6G, fluid antenna system, outage probability,
diversity gain, performance analysis.

I. INTRODUCTION

Fifth generation (5G) wireless networks have recently been
deployed worldwide and thus the industry and academia are
now looking for new technologies to maximize the poten-
tials of sixth generation (6G) wireless networks. One of the
promising candidates is fluid antenna system (FAS). Unlike
traditional antenna systems, FAS is a software-controllable
fluidic, conductive or dielectric structure that can freely adjust
its position and shape within a given space [1]. The most basic
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single fluid antenna consists of one radio frequency (RF)-chain
and N preset positions (known as ports) that are distributed
within a given space while more advanced designs are also
possible. The fluid radiator can freely switch its position
among these ports to obtain a stronger channel gain, lower
interference, and other desirable performance [2].

Fluid antenna is now feasible thanks to the recent advance-
ment of using liquid metals and ionized solutions for antennas.
Some prototypes can be found in [3]–[6]. As discussed in [7],
other flexible antenna structures such as software-controlled
pixel antenna or movable antenna can also be considered as
fluid antenna. In essence, the key principle of FAS is to exploit
its dynamic position and shape to achieve ultimate diversity
and multiplexing gains [7]. Moreover, in the future, FAS can
be applied together with other 6G candidates such as re-
configurable intelligent surfaces (RIS), massive multiple-input
multiple-output (MIMO) and terahertz (THz) communications.
In particular, FAS can help to reduce the optimization com-
plexity of RIS [1], improve the multiplexing gain of massive
MIMO [8] and combat the high path loss effect of THz
communications [9].

Despite its advantages, the fundamental limits of FAS and
key factors that affect its performance remain unclear. One
of the reasons is because the channels of FAS are strongly
correlated since the ports can be closely placed to each
other. Consequently, the probability density function (PDF)
and cumulative distribution function (CDF) of FAS channels
are intractable [10]. As a result, the outage probability and
diversity gain of FAS are not known in closed-form expres-
sions. In addition, increasing the number of ports of FAS
has an inherit diminishing gain due to one active RF-chain
[11].1 Thus, a suboptimal number of ports that are required
to achieve a satisfactory performance is not known. Yet, this
number is practically and theoretically important as it reduces
the implementation challenges and analysis complexity.

Conceptually, FAS can be viewed similar to a traditional
selection combining (SC) system since both systems use only
one active RF-chain and there is a set of ports (i.e., FAS)
or antennas (i.e., SC) to select from. Nevertheless, unlike
traditional SC system, FAS can have infinitely many ports in
a limited space (e.g., when using liquid metals) which makes
the implementation and analysis much more challenging. In
addition, the unique capability of freely switching the radiating
element among the ports can be exploited to mitigate multi-

1Throughout this paper, we refer to an active RF-chain as the RF-chain used
for communications. In contrast, the term RF-chains refers to a collection of
RF-chains that are connected to each antenna for it to work as intended.
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user interference. These features are impractical in traditional
SC systems.

State-of-the-arts show that FAS outperforms maximal ratio
combining (MRC) system if the number of ports is sufficiently
large [7]. In fact, [7] proves that FAS achieves arbitrarily small
outage for a fixed rate/signal-to-noise ratio (SNR) as N → ∞.
In [12], the authors reveal that the ergodic capacity of FAS
increases with N and thus FAS can outperform MRC in terms
of ergodic capacity. Interestingly, FAS can also be used for
multiple access. Specifically, [13] proposes a fluid antenna
multiple access (FAMA) system which leverages the moment
of deep fades in space to reduce multi-user interference.
Motivated by these works, [14] employs stochastic geometry to
analyze the outage probability of FAS in large-scale downlink
cellular networks and [15] analyzes the performance of FAS
in a more general correlated fading channel.

Nevertheless, [16] alludes that the channel modeling in the
previous works might be inaccurate. To address this, [10]
proposes a highly complicated channel model to follow closely
the spatial correlation of the Jake’s model. Using this channel
model, they highlight that FAS has limited performance gain
as N increases. Yet, the key reasons that limit the performance
of FAS remain ambiguous. This is because the eigenvalue and
eigenvector entries that are used in the analytical PDF/CDF
expressions provide limited insights.

It is important to highlight that deriving the PDF/CDF of
FAS channels is extremely challenging [10]. This is because
the channels of FAS are strongly correlated and thus they have
to be formulated in terms of multivariate correlated Rayleigh
distributions. Over the past few decades, extensive efforts have
been dedicated to this problem [17]. However, most of the
works only obtain the bivariate [18], [19], trivariate [18], [20],
[21], or quadvariate [21], [22] distributions while other works
restrict the correlation matrix to certain forms (e.g., equally
correlated [23] and exponentially correlated [24]). Fortunately,
the multivariate PDF/CDF of arbitrarily correlated Rayleigh
distributions are recently derived in [25]–[27]. Nevertheless,
the assumption of non-singular correlation matrix is retained.
In this paper, we omit this assumption (i.e., our correlation
matrix could be near-singular) and address the computation
problem via a suboptimal approximation.2

In addition to the above works, [29] develops a port selec-
tion algorithm that can approach the performance of optimal
FAS when only the received SNR of a few ports are observed.
Furthermore, [30] considers a field-response channel model
while omitting the spatial correlation effect and [31] extends
the model to a MIMO scenario. Moreover, FAMA can be
categorized into i) slow-FAMA and ii) fast-FAMA. The earlier
switches its port when the channel changes [32] while the
latter switches its port on a symbol-by-symbol basis [33]. The
analytical outage probability of two-user FAMA is also derived
in [34].

2The computational problem of a near-singular correlation matrix is much
harder to address than that of a singular matrix. This is because we can obtain
an independent matrix from a singular matrix by removing the dependent
entries [28]. But in the near-singular case, this approach cannot be applied.
Instead, we need to rely on approximations.

Motivated by the aforementioned works, this paper aims to
understand the fundamental limits of FAS as well as the key
factors that affect its performance. To this end, we approximate
the outage probability and diversity gain of FAS in closed-
form expressions via a simple and accurate channel model
that follows closely the spatial correlation of Jake’s model. In
addition, we propose a suboptimal FAS with N∗ ports as well
as an algorithm to approximate N∗. The main contributions
of our paper are summarized as follows:

• We employ a simple and accurate channel model that
follows the spatial correlation of Jake’s model. Based on
this channel model, we approximate the outage probabil-
ity in closed-form expressions. By applying Taylor series
approximation, we simplify the outage probability at high
SNR into a simpler and more meaningful expression.
Using this result, we obtain the diversity gain of FAS.

• We propose a suboptimal FAS with N∗ ports. The
proposed suboptimal FAS plays an important role as it
enables FAS to achieve near-optimal performance with
minimal number of ports. In particular, one may define
εtol to adjust the sub-optimality of the proposed FAS. For
example, if εtol is small, the proposed FAS is quantifiably
near-optimal at a cost of more ports. In addition, we
develop a polynomial-time algorithm to approximate N∗.
Besides, N∗ can be used to address the near-singular
correlation matrix problem.

• We provide analytical and simulation results to demon-
strate the key parameters that affect the performance of
FAS. Our discussions include intuitive insights on the
system characteristics as well as practical guidelines for
efficient FAS design.

The rest of the paper is organized as follows: Section II
details the system model and performance metrics. Section III
presents the outage probability and diversity gain of FAS. The
details of suboptimal FAS and the algorithm to approximate
N∗ are discussed in Section IV. Section V provides our
simulation results and we conclude the paper in Section VI.

Notations: Scalar variables are denoted by italic letters
(e.g., c), vectors are denoted by boldface italic small letters
(e.g., c) and matrices are denoted by boldface italic capital
letters (e.g., C). Besides, (·)T denotes transpose, (·)H denotes
conjugate transpose, (·)−1 denotes inverse of a matrix while |·|
and ∥·∥F denotes absolute and Frobenius norm, respectively.
Throughout this paper, log(·) denotes logarithm with base 2,
E [·] denotes the expectation and P {·} denotes the probability
of an event. In addition, fc (·) denotes the PDF of c, and Fc (·)
denotes the CDF of c. The notation 1c {·} is an indication
function for condition c and [·]+/−

c outputs the argument
that is lower/upper bounded by c. To help readers with our
mathematical content, the meanings of the key variables are
explained in Table I.

II. SYSTEM MODEL

In this paper, we consider a point-to-point FAS where the
transmitter is equipped with a conventional antenna and the
receiver is equipped with a fluid antenna. The fluid antenna
consists of one RF-chain and N preset locations (also known
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Table I: The meanings of key variables

Notation Meaning
DFAS Diversity gain of FAS
hn Complex channel coefficient of the n-th port
ĥn Approximation of hn

|hFAS| Maximum signal envelope of FAS
Jm,n Spatial correlation between the m-th and n-th ports
J Spatial correlation matrix
J ′ Spatial correlation matrix with N → ∞
K Co-factor of J
λ Wavelength of the carrier frequency
N Total number of ports
N ′ Rank of J ′

q Minimum required rate
SNR Transmit SNR
W Length of the fluid antenna in terms of λ
Θ Instantaneous received SNR of the receiver

as ports), which are evenly distributed along a linear dimension
of length Wλ where λ is the wavelength of the carrier
frequency. Since the ports are closely packed together, there
is a strong spatial correlation among them. Based on Jake’s
model [35], the spatial correlation between the m-th and n-th
ports is given by

Jm,n = σ2J0

(
2π

(m− n)

N − 1
W

)
, (1)

where σ2 accounts for the large-scale fading effect and J0 (·)
is the zero-order Bessel function of the first kind.

For ease of analysis, we introduce the correlation matrix J
where

J =

 J1,1 · · · J1,N
...

. . .
...

JN,1 · · · JN,N

 . (2)

In (2), we have Jm,n = Jn,m. Therefore, using eigenvalue
decomposition, we can obtain J = UΛUH where U is
an N × N matrix whose n-th column (denoted by un)
is the eigenvector of J and Λ = diag (λ1, . . . , λN ) is an
N × N diagonal matrix whose n-th diagonal entry is the
corresponding eigenvalue of un. Without loss of generality,
we assume that the values of the eigenvalues in Λ are arranged
in descending order. i.e., λ1 ≥ · · · ≥ λN .

Throughout this paper, we assume there is only one RF-
chain in FAS and thus only one port can be activated for
communications. The received signal of the n-th port is
expressed as

yn = hnx+ wn, n = 1, . . . , N, (3)

where hn is the complex channel coefficient of the n-th port,
x is the information signal with E

[
|x|2
]
= P and wn is the

additive white Gaussian noise of the n-th port with zero mean
and variance of N0. Due to the spatial correlation of the ports,
hn can be modeled as

hn =

N∑
m=1

un,m

√
λmzm, (4)

where un,m is the (n,m)-th entry of U , zm = am + jbm,
where am, bm,∀m, are independent and identically distributed

(i.i.d.) Gaussian random variables with zero mean and variance
of 1

2 . According to [10], (4) can also be approximated as

ĥn = Ψvn +

ϵ-rank∑
m=1

un,m

√
λmzm, (5)

where ϵ-rank is a modeling parameter, Ψ =√
σ2 −

∑ϵ-rank
m=1 u2

n,mλm, vn = cn + jdn and cn, dn,∀n, are
i.i.d. Gaussian random variables with zero mean and variance
of 1

2 .
To obtain the global optimum performance, FAS activates

a port with the maximum signal envelope [7],3 i.e.,

|hFAS| = max {|h1| , . . . , |hN |} . (6)

The instantaneous received SNR of the receiver is found as

Θ = |hFAS|2
P

N0
= |hFAS|2 SNR, (7)

where SNR = P
N0

is the transmit SNR and its outage
probability is defined as

P {log (1 + Θ) < q} = P {|hFAS| < Ω} , (8)

where Ω =
√

2q−1
SNR and q is the minimum required rate. In

addition, the diversity gain of FAS can be defined as [36]

lim
SNR→∞

− logPe (SNR)

log (SNR)
(9)

(a)
= lim

SNR→∞
−

logP
{
log
(
1 + |hFAS|2 SNR

)
< q
}

log (SNR)

= DFAS,

where (a) follows from the fact that error probability and
outage probability differ by a constant shift at high SNR [37].

III. OUTAGE PROBABILITY AND DIVERSITY GAIN OF FAS

As it is seen in (4), the complex channel coefficients h =
[h1, . . . , hN ]

T are correlated. Therefore, |h| is a correlated
Rayleigh random vector. We present the following lemmas to
obtain the closed-form outage probability and diversity gain
of FAS.

Lemma 1. The PDF of |h| can be approximated as

f|h| (|h1| , . . . , |hN |) (10)

≈ η

s0∑
s1=0

s1∑
s2=0

. . .

sT−1∑
sT=0

(
1

2

)∑T
t=1 s∗t T∏

t=1

β (t, s∗t )×

∑
v∈V

[
T∏

t=1

(
s∗t
vt

)][
(2π)

N
N∏
i=1

1{∆i=0}

]
.

Proof: See Appendix A.

In (10), η =

N∏
n=1

|hn|

πNdet(J)
exp

{
−

∑N
n=1|hn|2Kn,n

det(J)

}
, T =

N(N−1)
2 , β (t, s∗t ) ≜ ζ

s∗t
t

s∗t !
, ζt = − 2Km,n|hn||hm|

det(J) and s∗t =

3Due to the port spatial correlation, it is shown in [32] that only a small
number of observed ports/training is required to obtain the full channel state
information.
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st−st+1 with sT+1 = 0. Throughout this paper, the subscript
t and m,n are related as follows: t = n + (m− 1)N −
m(m+1)

2 , m < n, while m,n can be obtained from t with
m = min m′ ∈ Z subject to

∑m′

i=1 (N − i) > t and
n = t− (m− 1)N + m(m+1)

2 .
Note that s0 is a finite constant which has to be large for the

approximation to be accurate. In addition, v = [v1, . . . , vT ]
T ,

V denotes the set of all the possible permutations and ∆i =∑N
n=1 Gi,n −

∑N
n=1 Gn,i − Gi,i. Furthermore, Km,n is the

(m,n)-th entry of K where K is the co-factor of J , and
Gm,n is the (m,n)-th entry of G where G is defined as

G =


0 γ1 γ2 · · · γN−1

γN · · · γ2N−3

...
. . .

...
γT

0 · · · 0

 , (11)

and γt = 2vt − s∗t ∈ Z.

Lemma 2. The CDF of |h| can be approximated as

F|h| (R1, . . . , RN ) (12)

≈
s0∑

s1=0

s1∑
s2=0

. . .

sT−1∑
sT=0

g (s∗)

πNdet(J)

T∏
t=1

(−Km,n)
s∗t

s∗t !det(J)s
∗
t
×

N∏
n=1

1

2

(
Kn,n

det(J)

)− s̄n
2 − 1

2

×[
Γ

(
1 + s̄n

2

)
− Γ

(
1 + s̄n

2
,
Kn,nR

2
n

det(J)

)]
.

Proof: See Appendix B.
In (12), we have s̄n =

∑N
i=1 S

∗
n,i +

∑n−1
i=1 S∗

i,n + 1 where
S∗
i,n is the (i, n)-th entry of S∗ and S∗ is introduced in (36).

Furthermore,

g (s∗) =

(
1

2

)∑T
t=1 s∗t ∑

v∈V

[
T∏

t=1

(
s∗t
vt

)]
(2π)

N
N∏
i=1

1{∆i=0}.

(13)
The expressions in (10) and (12) are extremely complicated.
Nevertheless, they enable us to obtain more insightful deriva-
tions as shown later in this paper. Using the above lemmas,
we present the following theorems.

Theorem 1. The outage probability of FAS can be approxi-
mated in a closed-form expression as

P {|hFAS| < Ω} (14)
= F|h| (Ω, . . . , Ω)

≈
s0∑

s1=0

s1∑
s2=0

. . .

sT−1∑
sT=0

g (s∗)

πNdet(J)

T∏
t=1

(−Km,n)
s∗t

s∗t !det(J)s
∗
t
×

N∏
n=1

1

2

(
Kn,n

det(J)

)− s̄n
2 − 1

2

×[
Γ

(
1 + s̄n

2

)
− Γ

(
1 + s̄n

2
,
Kn,nΩ

2

det(J)

)]
.

Proof: The result can be obtained using Lemma 2 and
substituting R1 = · · · = RN = Ω.

Remark 1. According to [10], h can be modeled using ĥ =[
ĥ1, . . . , ĥN

]T
and using the latter model, they show that the

outage probability of FAS can be approximated by

F|hFAS| (Ω) ≈

[
N∏

n=1

∞�

0

1∑ϵ-rank
m=1 u2

n,mλm

× (15)

exp

(
− r∑ϵ-rank

m=1 u2
n,mλm

)
×

(
1−Q1

(√
2r

Ψ
,

√
2Ω

Ψ

))L

dr

] 1
L

,

where Q1 (·, ·) is the Marcum-Q function and L =

min
{

1.52(N−1)
2πW , N

}
. Note that (15) is a remarkable expres-

sion as each n term only has a single integral. Nevertheless,
we found that it is challenging to obtain deeper insights from
this expression.

Theorem 2. The outage probability of FAS at high SNR is
given by

P {|hFAS| < Ω} =
1

det(J)
Ω2N + o

(
1

SNRN

)
. (16)

Proof: See Appendix C.

Theorem 3. The diversity gain of FAS is approximately
expressed as

DFAS ≈ min {N,N ′} , (17)

where N ′ is the numerical rank of J ′ such that J ′ is the
covariance matrix as defined in (2) with N → ∞ for a fixed
W .

Proof: See Appendix D.
In Theorem 2, we can interpret det

(
J−1

)
as the penalty

term and Ω2 as gain of FAS that scales exponentially w.r.t.
N . Meanwhile, the term with little-o can be ignored as it
approaches zero if the SNR is high. Nevertheless, in Theorem
3, we can see that the diversity gain is limited by min {N,N ′}.
Thus, increasing N over N ′ might not be useful. Notice that
these interpretations cannot be directly obtained from (15).

IV. SUBOPTIMAL SOLUTION: FAS WITH N∗ PORTS

At a fundamental level, [11] showed that increasing the
number of channels (or ports) would yield a diminishing gain
(i.e., the average received SNR gain is

∑N
n

1
n .). In fact, [10]

showed that for a fixed W , the outage probability of FAS
might remain similar after some N . For ease of expositions,
we denote this N as N∗ where N∗ ≤ N .

To the best of our knowledge, little is known about N∗.
In fact, it is very challenging to obtain N∗ as it varies with
the parameter W or more precisely the correlation matrix J .4

Yet, finding N∗ is essential in both theory and practice since it
helps FAS to achieve an efficient performance with a minimal
number of ports. In this section, we present a simple method
to approximate N∗ for a given W .

4Referring to (1) and (2), we can see that N∗ depends on the parameter
W .
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To begin with, we present the following theorem.

Theorem 4. Suppose the channels of FAS with N ports
are denoted by h. Then h can be well-approximated by

h̃ =
[
h̃1, . . . , h̃N

]T
where

h̃n =

Ñ∑
m=1

un,m

√
λmzm, (18)

where Ñ is the numerical rank of J . That is, the PDF and
CDF of h and h̃ are similar.

Proof: Let Ñ be the numerical rank of J where Ñ ≤ N .
Using the definition of numerical rank, we have λn < ϵ for
n ∈

{
Ñ + 1, . . . , N

}
where ϵ ≈ 0. According to Eckart-

Young-Mirsky theorem [38], the optimal J̃ that minimizes
the Frobenius norm between matrix J and J̃ subject to
the constraint that rank

(
J̃
)

≤ Ñ is J̃ = UΛ̃UH where

Λ̃ = diag (λ1, . . . , λÑ , 0, . . . 0).
Using this insight, we introduce h̃ as defined in Theorem 4

where the covariance of h̃ is J̃ (i.e., the best approximation of
J for rank

(
J̃
)
≤ Ñ ). As a result, we can well-approximate

h using h̃ since the Frechet distance between the two distri-
butions is [39]

W2

(
CN (0N×1,J) , CN

(
0N×1, J̃

))
(19)

=

∥∥∥∥(Λ)
1
2 −

(
Λ̃
) 1

2

∥∥∥∥2
F

≈ 0.

Corollary 1. If we have the exact eigenvalues and rank of J ,
then h = h̃.

Proof: Let Λ and Ñ be the exact eigenvalues and rank
of J . Using the definition of rank, we have λn = 0 for
n ∈

{
Ñ + 1, . . . , N

}
. It then follows that the Frechet distance

between the distributions of h and h̃ is zero.
As seen in (19), it is the eigenvalues of correlation matrix

that play a critical role in the channel approximation. Moti-
vated by this insight, we introduce a new formula as follows:

εN∗ = SN − SN∗ (20)

= σ2 − SN∗ ,

where SN∗ = 1
N

∑N∗

n=1 λn. Note that (20) is analogous to (19)
in the sense that the left hand side of (20) measures the gap
between the distributions of h and h∗, where h∗ is similarly
defined as in (18) but we instead replace Ñ with N∗ and
impose that N∗ ≤ Ñ . Meanwhile, on the right hand side of
(20), we consider the average eigenvalues of J∗, where J∗ is
the covariance of h∗.

To reduce the number of required ports, we define εtol > 0
and find the smallest integer N∗ such that εtol ≥ εN∗ . Since
J∗ only has N∗ dominant eigenvalues, we propose to employ
a suboptimal FAS with N∗ ports. Interestingly, εtol has a nice
heuristic interpretation in practice. Specifically, it defines the
sub-optimality of the proposed FAS, i.e., the proposed FAS is
near optimal if εtol is small and less optimal if εtol is large.

Algorithm 1 Method of approximating N∗ given W

1: Input: W, εtol; Output: N∗

2: Compute J = UΛUH

3: Define n = 1 and compute εn
4: While εtol < εn and n < Ñ
5: n = n+ 1
6: εn = σ2 − Sn

7: end
8: Return n as N∗

By fixing εtol appropriately,5 we observe that FAS with N∗

ports yields considerable improvement over all FAS with N <
N∗ ports while most of the FAS with N > N∗ ports yields
marginal improvement over FAS with N − 1 ports. Note that
we usually have N∗ < Ñ if J is ill-conditioned and N∗ = Ñ
if J is well-conditioned.

The method of approximating N∗ is given in Algorithm 1.
To measure the computational complexity of our algorithm, we
consider the floating-point operations (flops). A flop is defined
as one addition, subtraction, multiplication or division of two
floating point numbers [40]. In Algorithm 1, computing J
and UΛUH requires 6N2 and 21N3 flops, respectively [41].
Computing εn requires n+1 flops for each n. Therefore, the
total flops of Algorithm 1 is 21N3+6N2+ 1

2N
∗2+ 3

2N
∗, which

has a polynomial time-complexity of O
(
N3
)

since N∗ ≤
N . In other words, Algorithm 1 is only dominated by the
computation of UΛUH .

Note that N∗ is also useful in theory. For example, Lemma
1 and 2 and Theorem 1, 2, and 3 are incalculable if J is near-
singular. To address this, we present the following theorem.

Theorem 5. If J is near-singular, then we can approximate
the channels of FAS with N ports using N∗ ports from a
computational perspective. Nevertheless, a small gap between
the channel distributions of FAS with N ports and that of N∗

ports might exist.

Proof: If J is near-singular, then one or more entries
are almost linear combinations of the other entries. Thus, we
can remove these nearly-dependent entries and only consider
N∗ independent entries. Since FAS with N∗ ports has N∗

dominant eigenvalues, Lemma 1 and 2 and Theorem 1, 2,
and 3 are calculable. Nevertheless, there might be a small gap
between the channel distributions of FAS with N ports and
that of N∗ ports since the entries are nearly-dependent only.

V. RESULTS AND DISCUSSIONS

In this section, we present simulation results to better under-
stand the performance of FAS. We focus on the design of an
efficient FAS as well as the factors that limit its performance.
Unless stated otherwise, we assume that σ2 = 1, N = 50,
W = 0.5, q = 10 and SNR = 30dB.

Firstly, we demonstrate the accuracy of (10) and (12). In
order to visualize the joint PDF and CDF of |h|, we consider

5We recommend to set εtol = 0.01σ2 (i.e., the average eigenvalues of J∗

is 99% of that of J)
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(a)

(b)

Figure 1: FAS with 2 ports: a) joint PDF; b) joint CDF.

a FAS with 2 ports (i.e., N = 2). In Fig. 1, the red grid
represents the numerical PDF/CDF while the solid surface is
the analytical PDF/CDF. As observed, the approximation of
the PDF/CDF of |h| matches closely with the numerical ones
over all the distributed region. Still, it is worth noting that
(10) and (12) are very complicated. Thus, approximations with
simpler expressions remain desirable.

Fig. 2 compares the outage probability of FAS to (14) and
(15). As observed, (14) is more accurate because the analytical
expression is derived directly from the multivariate correlated
Rayleigh distributions and the approximation is only used
when truncating the infinite series to a finite one. Here, we
assume that s0 = 20. Compared to the numerical result, the
truncation error is negligible as long as s0 is sufficiently large.
In contrast, (15) is less accurate because the outage probability
of FAS is approximated using the power of single integrals
where such simplification may lead to some inaccuracies.
Nevertheless, it is worth highlighting that (14) can only be
computed for small N as its expression is highly complicated.
Thus, (15) is still useful for large N .
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Figure 2: Outage probability of FAS versus SNR.
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Figure 3: Outage probability of FAS versus SNR for different
N and W : a) W = 0.5; b) W = 10.
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Figure 4: Outage probability of FAS at high SNR.

In Fig. 3, we compute the outage probability of FAS versus
SNR for different N and W . Comparing Fig. 3(a) and Fig.
3(b), we can clearly see that the outage probability is mainly
limited by W . In particular, if W is small and N is large, the
outage probability remains similar which is in alignment with
the findings of [10]. Nevertheless, if W is sufficiently large,
the outage probability decreases significantly as N increases.

To better understand this, we further compare the outage
probability of FAS to (15) and (16) in Fig. 4. Compared to
the numerical result, we can see that (15) is less accurate while
(16) is accurate as SNR increases. Specifically, (16) is much
more accurate as SNR increases because we apply Taylor
series approximation at around zero which corresponds to
asymptotically high SNR. Hence, the error becomes negligible
at high SNR. From (16), we learn that det

(
J−1

)
plays a

critical role in the performance of FAS. In particular, J has to
be well-conditioned in order for Ω2N to be the dominant term.
If J is near-singular, then N is no longer important. This is
because det

(
J−1

)
cannot be compensated by Ω2N . To make

J a well-conditioned matrix, we can either increase W for
a fixed N or decrease N for a fixed W . Nevertheless, we
believe that larger N does not cause any harm to the system
in practice. It only makes the theoretical analysis harder.

As shown in Fig. 5(a), we compare the outage probability of
FAS with N ports and that of N ′ ports for different W where
N < N ′. As it is seen, the outage probability of the earlier
is lower bounded by the latter regardless of W . In Fig. 5(b),
we investigate the opposite case where N > N ′. As observed,
the outage probability of FAS with N ports and that of N ′

ports are the same for different W . Thus, the diversity gain
of FAS is limited by min {N,N ′}, which verifies Theorem 3.
Theorem 3 also suggests that increasing the ports beyond N ′

provides no improvement in a point-to-point setting.
Fig. 6(a) presents the CDF of h and h̃ where we fix

R1 = · · · = RN = R. In the result, no significant variation is
observed between h and h̃ regardless of R, N and W . This
is because the Frechet distance between the two distributions
is always near zero. This confirms Theorem 4 and suggests
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Figure 5: Outage probability of FAS with N ports versus N ′

ports: a) N = 3 < N ′; b) N = 50 > N ′ .

that one can always use h̃ instead of h. In addition, Fig. 6(b)
shows the CDF of h and h∗. Unlike the previous result, there
is a small gap between the two distributions as W increases.
Despite having some gaps, the approximation is still fairly
good. This result verifies Theorem 5.

Next, we investigate the accuracy of Algorithm 1 and the
efficiency of the proposed suboptimal FAS. The parameter
N∗ for different W using Algorithm 1 is summarized in
Table II. As seen in Fig. 7, the outage probability of FAS
with N∗ ports is promising. Specifically, FAS with N∗ ports
yields a significant improvement over FAS with N∗ − 1
ports. Meanwhile, FAS with N + 1 ports provides negligible
improvement over FAS with N∗ ports. Thus, we may use the
suboptimal FAS for an efficient performance.

Finally in Fig. 8, we compare the outage probability of the
proposed suboptimal FAS, the optimal FAS, the single antenna
(SISO) system, the N -branch SC system, and the N -branch
MRC system. In SC and MRC systems, we assume there are
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Figure 6: CDF between: a) h and h̃; b) h and h∗.
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Figure 7: Outage probability of suboptimal FAS.
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Figure 8: Outage probability of suboptimal FAS vs. SISO, SC,
and MRC.

Table II: Parameter N∗ for different W using algorithm 1
where εtol = 0.01

W 0.5 1 2 3 4
N∗ 3 4 6 8 10

N RF-chains where each antenna has to be at least λ
2 apart and

their spatial correlations are considered. Note that MRC has N
active RF-chains. Results show that the proposed suboptimal
FAS outperforms SISO and SC systems. This improvement is
due to the ability of FAS switching to the best port within a
finite W .

In addition, MRC has the lowest outage probability and it
outperforms optimal FAS. This superiority is due to the power
gain where a larger number of active RF-chains (i.e.,

⌊
W
0.5

⌋
+1)

is utilized in MRC while FAS has only one active RF-chain.
Although MRC is more superior than the suboptimal FAS, the
latter can achieve a similar performance as compared to the
earlier when W = 0.5. Yet, it is important to recall that MRC
has one additional RF-chain as compared to the suboptimal
FAS in this case. Thus, it will be very interesting to compare
the performance of MIMO-FAS and MIMO with the same
number of active RF-chains.

VI. CONCLUSIONS

In this paper, we considered FAS and approximated its out-
age probability and diversity gain in closed-form expressions.
New meaningful insights were obtained from the analytical
results, and simulation results were given to better understand
the factors that limit the performance of FAS. Our results
showed that the performance of FAS strongly depends on
the spatial correlation matrix J . Specifically, increasing the
ports beyond N ′ yields no diversity gain in a point-to-point
setting. Instead, increasing N causes the correlation matrix J
to be ill-conditioned. To address this, one can either increase
W for a fixed N or decrease N for a fixed W . In addition,
we proposed a suboptimal FAS with N∗ ports. By fixing an
appropriate εtol, the proposed scheme enabled us to obtain a
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significant gain over FAS with N∗−1 while it nearly achieved
the same performance as FAS with N∗ + 1 ports. Thus, the
approximation of N∗ is useful since a larger number of ports
yields diminishing gains and additional costs. Furthermore,
N∗ can be used to approximate the channels of FAS with N
ports if the correlation matrix J is near-singular. Last but not
least, the proposed suboptimal FAS outperforms SISO and SC
systems but falls behind MRC due to having a single active
RF-chain. Nevertheless, it was discovered that suboptimal FAS
and MRC achieve similar performance when W = 0.5. Thus,
it would be interesting to study the performance of MIMO-
FAS and MIMO in the future.

APPENDIX A: APPROXIMATED PDF OF |h|

The exact PDF of |h| is first derived in [25]–[27]. In this
paper, we employ similar steps and further approximate the
PDF of |h| by introducing G: an N × N matrix, using an
accurate binomial theorem, and truncating the infinite series
to a finite one for ease of computation. According to [36],
the PDF of a circularly symmetric complex Gaussian random
variables is known as

f (h) =
1

πNdet(J)
exp

{
−hHJ−1h

}
, (21)

where J−1 = KT

det(J) via Crammer rule. Using [42, (7-8) &
(7-9)], the PDF of (21) in terms of its amplitude and phase
can be obtained as

f|h|,θ (|h1| , θ1, . . . , |hN | , θN ) = η

T∏
t=1

exp
{
ζt cos

(
θ̄t
)}

,

(22)

where η =

N∏
n=1

|hn|

πNdet(J)
exp

{
−

∑N
n=1|hn|2Kn,n

det(J)

}
, T = N(N−1)

2 ,

ζt = − 2Km,n|hn||hm|
det(J) and θ̄t = θn − θm. Throughout this

paper, we use the mapping function t = n + (m− 1)N −
m(m+1)

2 , m < n, while (m,n) can be obtained from t by
setting m = min m′ ∈ Z subject to

∑m′

i=1 (N − i) > t and
n = t− (m− 1)N + m(m+1)

2 .
Integrating (22) w.r.t. θn,∀n over [0, 2π], we have

f|h| (|h1| , . . . , |hN |)

=

� 2π

0

· · ·
� 2π

0

f (|h1| , θ1, . . . , |hN | , θN ) dθ1 . . . dθN

(23)

(a)
= η

� 2π

0

· · ·
� 2π

0

T∏
t=1

∞∑
st=0

ζstt
st!

cos
(
θ̄t
)st

dθ1 . . . dθN (24)

(b)
= η

∞∑
s1=0

s1∑
s2=0

. . .

sT−1∑
sT=0

T∏
t=1

β (t, s∗t )× (25)

� 2π

0

· · ·
� 2π

0

cos
(
θ̄t
)s∗t dθ1 . . . dθN

(c)
= η

∞∑
s1=0

s1∑
s2=0

. . .

sT−1∑
sT=0

(
1

2

)∑T
t=1 s∗t T∏

t=1

β (t, s∗t )× (26)

� 2π

0

· · ·
� 2π

0

T∏
t=1

(
exp

{
jθ̄t
}
+ exp

{
−jθ̄t

})s∗t dθ1 . . . dθN
(d)
= η

∞∑
s1=0

. . .

sT−1∑
sT=0

(
1

2

)∑T
t=1 s∗t T∏

t=1

β (t, s∗t )
∑
v∈V

T∏
t=1

(
s∗t
vt

)
×

(27)
� 2π

0

· · ·
� 2π

0

exp

{
j

T∑
t=1

γtθ̄t

}
dθ1 . . . dθN ,

where (a) is obtained by using exp {x} =
∑∞

s=0
xs

s! and
(b) is obtained using Cauchy product of power series where

β (t, s∗t ) ≜
ζ
s∗t
t

s∗t !
and s∗t = st − st+1 with sT+1 = 0. Further-

more, (c) is obtained using cos (x) = exp(jx)+exp(−jx)
2 and (d)

is obtained using binomial theorem where v = [v1, . . . , vT ]
T ,

V denotes the set of all the possible permutations and γt =
2vt − s∗t ∈ Z.

Note that
� 2π

0
· · ·

� 2π

0
exp

{
j
∑T

t=1 γtθ̄t

}
dθ1 . . . dθN =

(2π)
N if and only if

∑T
t=1 γtθ̄t = 0, and otherwise zero.

Therefore, we introduce a new matrix G as defined in (11)
and the matrix Θ̄ given by

Θ̄ =


0 θ̄1 θ̄2 . . . θ̄N−1

θ̄N . . . θ̄2N−3

...
. . .

...
θ̄T

0 . . . 0

 (28)

=


0 θ2 − θ1 θ3 − θ1 . . . θN − θ1

θ3 − θ2 . . . θN − θ2
...

. . .
...

θN − θN−1

0 . . . 0

 .

Using Θ̄ and G, we can easily integrate (27) w.r.t. to θi by
taking the sum of the same entries of G as that of Θ̄ with θi,
i.e., ∆i =

∑N
n=1 Gi,n −

∑N
n=1 Gn,i − Gi,i. Therefore, (27)

leads to

(27) = η

∞∑
s1=0

s1∑
s2=0

. . .

sT−1∑
sT=0

(
1

2

)∑T
t=1 s∗t T∏

t=1

β (t, s∗t )× (29)

∑
v∈V

[
T∏

t=1

(
s∗t
vt

)][
(2π)

N
N∏
i=1

1{∆i=0}

]
(a)
≈ η

s0∑
s1=0

s1∑
s2=0

. . .

sT−1∑
sT=0

(
1

2

)∑T
t=1 s∗t T∏

t=1

β (t, s∗t )×

(30)∑
v∈V

[
T∏

t=1

(
s∗t
vt

)][
(2π)

N
N∏
i=1

1{∆i=0}

]
,

where (a) can be obtained using the facts that
(
1
2

)∑T
t=1 s∗t

is monotonically decreasing in each summation term and
β (t, s∗t ) ≈ 0 if s∗t is sufficiently large.
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APPENDIX B: APPROXIMATED CDF OF |h|

Using (10), the CDF of |h| can be obtained as

F (R1, . . . , RN )

≈
� R1

0

. . .

� RN

0

f|h| (|h1| , . . . , |hN |) d |h1| · · · d |hN | (31)

=

s0∑
s1=0

s1∑
s2=0

. . .

sT−1∑
sT=0

g (s∗)

πNdet(J)

T∏
t=1

(−2Km,n)
s∗t

s∗t !det(J)s
∗
t
× (32)

� R1

0

. . .

� RN

0

N∏
n=1

|hn|
N∏

n=1

N∏
m<n

|hn|s
∗
n |hm|s

∗
m ×

exp

{
−
∑N

n=1 |hn|2 Kn,n

det(J)

}
d |h1| · · · d |hN |

=

s0∑
s1=0

s1∑
s2=0

. . .

sT−1∑
sT=0

g (s∗)

πNdet(J)

T∏
t=1

(−2Km,n)
s∗t

s∗t !det(J)s
∗
t
× (33)

N∏
n=1

� Rn

0

|hn|s̄n+1
exp

{
−|hn|2 Kn,n

det(J)

}
d |hn|

=

s0∑
s1=0

s1∑
s2=0

. . .

sT−1∑
sT=0

g (s∗)

πNdet(J)

T∏
t=1

(−Km,n)
s∗t

s∗t !det(J)s
∗
t
× (34)

N∏
n=1

1

2

(
Kn,n

det(J)

)− s̄n
2 − 1

2

×[
Γ

(
1 + s̄n

2

)
− Γ

(
1 + s̄n

2
,
Kn,nR

2
n

det(J)

)]
,

where

g (s∗) =

(
1

2

)∑T
t=1 s∗t ∑

v∈V

[
T∏

t=1

(
s∗t
vt

)]
(2π)

N
N∏
i=1

1{∆i=0},

(35)
and s̄n is the sum of s∗t affecting (|hn| |hm|)s

∗
t . To compute

s̄n , let us introduce a new matrix

S∗ =


0 s∗1 s∗2 . . . s∗N−1

s∗N . . . s∗2N−3
...

. . .
...
s∗T

0 . . . 0

 . (36)

Using (36), we have s̄n =
∑N

i=1 S
∗
n,i +

∑n−1
i=1 S∗

i,n + 1 such
that S∗

i,n is the (i, n)-th entry of S∗.

APPENDIX C: OUTAGE PROBABILITY AT HIGH SNR

According to [37], the outage probability of a wireless
communication system at high SNR can be obtained via the
PDF of its fading channels. In particular, suppose the PDF of
the channels at high SNR can be approximated as

f|hFAS| (Ω) = 2ξΩ2M+1 + o
(
Ω2M+1

)
. (37)

Then the outage probability at high SNR is found as

P {|hFAS| < Ω} =
ξ

M + 1
Ω2(M+1)+o

(
1

SNRM+1

)
. (38)

Before approximating the PDF of FAS at high SNR, we
highlight that the PDF of (21) in terms of its amplitude and
phase can be rewritten as

f|h|,θ (|h1| , θ1, . . . , |hN | , θN ) =

N∏
n=1

|hn|Hn

πNdet(J)
, (39)

where

Hn = exp

{
− Kn,n |hn|2

det(J)
− (40)

2
∑N

m=n+1 Km,n |hn| |hm| cos (θn − θm)

det(J)

}
.

Using (39), the approximated PDF of FAS at high SNR can
be derived as

f|hFAS| (Ω) =
∂F|hFAS| (Ω)

∂Ω
(41)

(a)
=N

� Ω

0

. . .

� Ω

0

� 2π

0

· · ·
� 2π

0

× (42)

f|h|,θ (|h1| , θ1, . . . , |hN−1| , θN−1,Ω, θN )×
d |h1| · · · d |hN−1| dθ1 . . . dθN

(b)
=

NΩ

πNdet(J)

� 2π

0

· · ·
� 2π

0

HN× (43)
� Ω

0

|hN−1|
(
HN−1 × . . .(� Ω

0

|h2|H2

(� Ω

0

|h1|H1d |h1|

)
d |h2|

)

d |hN−1|

)
dθ1 . . . dθN ,

where (a) is obtained using Leibniz integral and (b) is obtained
using (39).

According to [43], the term
� Ω

0
|hn|Hnd |hn| can be solved

by applying Taylor series approximation at around zero.
Specifically, we have� Ω

0

|hn|Hnd |hn| =
Ω2

2
+ o

(
Ω2
)
, n = {1, . . . , N − 1}

(44)

and the Taylor series approximation of HN at zero is

HN = 1 + o (1) . (45)

Substituting (44) and (45) into (43), we have

f|hFAS| (Ω)

=
NΩ

πNdet(J)

[
Ω2

2
+ o

(
Ω2
)]N−1 � 2π

0

· · ·
� 2π

0

dθ1 . . . dθN

(46)

=
2N

det(J)
Ω2N−1 + o

(
Ω2N−1

)
. (47)

Comparing (47) to (37), we have M = N − 1 and ξ = N
det(J) .

Applying (38), we have

P {|hFAS| < Ω} ≈ 1

det(J)
Ω2N + o

(
1

SNRN

)
. (48)
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APPENDIX D: DIVERSITY GAIN OF FAS

Let us consider the case where W → ∞. According to
[37], the diversity gain of a wireless communication system
can be obtained via the PDF of its fading channels at high
SNR. Specifically, suppose the PDF of the channels at high
SNR can be approximated as in (37). Then diversity gain of
such system is given by

D = M + 1. (49)

In Appendix C, we have M = N − 1. Thus, it is straight-
forward that the diversity gain of FAS as W → ∞ is
N . Nevertheless, if W is finite, J might be near to being
singular. To see this, let us consider FAS with N → ∞
ports within a finite W where each port is equally separated,
and they are indexed as 1, 2, . . .. Without loss of generality,
let us focus on two ports: the n-th and (n + 1)-th port.
The correlation between the n-th port and (n + 1)-th port
is Jn,n+1 = lim

N→∞
σ2J0

(
2π 1

N−1W
)

= σ2J0 (0), and we
have hn+1 = hn. Thus, the joint CDF of hn and hn+1 is
Fhn,hn+1 (g1, g2) = Fhn (min {g1, g2}), which implies that
they reduce to singularity. Since there are many such ports,
we can use a finite N ′ ports to approximate the channels
of FAS with N ports, where N ′ is the numerical rank of
J ′ such that J ′ is covariance matrix as defined in (2) with
N → ∞ for a fixed W . As a result, the diversity gain of
FAS is approximately limited by min {N,N ′}. If N is large,
the same observation can be obtained. To remove the nearly-
dependent entries of J , one may employ rank-revealing QR
factorization [44] or Gauss-Jordan elimination with a given
tolerance.
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