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Evidence from studies, such as in science or medicine, often corresponds to conditional 
probability statements. Furthermore, evidence can conflict, in particular when coming from 
multiple studies. Whilst it is natural to make sense of such evidence using arguments, 
there is a lack of a systematic formalism for representing and reasoning with conditional 
probability statements in computational argumentation. We address this shortcoming by 
providing a formalization of conditional probabilistic argumentation based on probabilistic 
conditional logic. We provide a semantics and a collection of comprehensible inference 
rules that give different insights into evidence. We show how arguments constructed from 
proofs and attacks between them can be analyzed as arguments graphs using dialectical 
semantics and via the epistemic approach to probabilistic argumentation. Our approach 
allows for a transparent and systematic way of handling uncertainty that often arises in 
evidence.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In many fields, in particular in science, technology, medicine, and social sciences, evidence comes in the form of con-
ditional probabilities (either explicitly or implicitly) that have been obtained by analyzing data that may have come from 
surveys, databases, or scientific experiments. Systematic use of evidence is important in diverse areas of professional and 
administrative life including healthcare, ecology management, environmental management, education, policing and security 
administration, and health and safety management.

However, the rapidly increasing amount of evidence available on a subject means that it is difficult for a decision maker 
to locate, or even be aware of, new evidence that is relevant to their needs. Even if the decision maker locates the necessary 
evidence, it is difficult for them to effectively and efficiently assimilate and fully exploit the current state of all the evidence. 
In addition to the difficulty presented by the sheer volume of information, the evidence is often conceptually complex, 
heterogeneous, incomplete and inconsistent. So for the decision maker, it is imperative to abstract away from the details 
of individual items of evidence, and to aggregate the evidence in a way that reduces the volume, complexity, inconsistency 
and incompleteness.

To illustrate these issues, consider how evidence is acquired and used in healthcare. Many studies such as randomized 
clinical trials, and observational studies, are published every year in the medical literature. Healthcare professionals need 
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to use this evidence when making decisions for specific patients. To help them, there are systematic ways to collate and 
analyze evidence in the form of meta-analyzes, systematic reviews, and evidence-based guidelines. So individual healthcare 
professionals might use a mix of primary evidence (such as from randomized clinical trials, and observational studies) as 
well as meta-analyzes, systematic reviews, and guidelines [34,35]. In order to do this, the quality of the evidence is taken 
into account as we illustrate in the following example.

Example 1. Suppose there are two treatments T 1 and T 2 for a disease D , and one study S1 suggests that T 1 cures D in 
75% of patients, but with a 1% chance of an unpleasant side-effect, and another study S2 suggests that T 2 cures D in 99%
of patients, also with a 1% chance of an unpleasant side-effect. So T 2 appears to be better than T 1. However, also suppose 
that S1 was a very large study conducted to very high standards and supported by an independent and highly reputable 
healthcare charity whereas S2 is a small study that was not entirely randomized and was sponsored by the manufacturer 
of the treatment T 2. So now there is uncertainty about whether the evidence in S2 is indeed reliable.

For domains such as in healthcare, Example 1 illustrates that we require computational techniques that represent the 
key evidence from each study, and computational techniques to analyze this evidence. These techniques should support 
the querying and aggregation of the knowledge. Furthermore, since the evidence, will be incomplete, uncertain, and in-
consistent in various ways, these techniques should reflect how professionals deal with such information, which is often 
by constructing and evaluating arguments and counterarguments (for example, see an analysis of argumentation in clinical 
research publications [31], development of techniques for argument mining from clinical research publications [57], devel-
opment of computational argumentation for aggregating evidence from randomized clinical trials [49], and development of 
computational argumentation for making recommendations from potentially conflicting clinical guidelines [18,87]).

Central to the development of computational techniques for reasoning with evidence is the need to have an appro-
priate representation. Since we assume evidence is obtained from scientific studies (e.g. randomized trials, cohort studies, 
meta-analyzes, etc), there is normally an underlying formal structure to the evidence. For instance, in medical evidence the 
information we need to extract consists of specific categories of data from published papers about clinical trials, as specified 
by the PICO format, where P is for the patient class of the trial, I is for the intervention class (i.e. treatment) to which 
some patients were assigned, C is for the control class (e.g. alternative treatment) to which the remaining patients were 
assigned, and O is the outcome being measure the difference between the intervention and control classes (see [42] for 
more information on the PICO format). To illustrate, consider an example based on an actual paper as follows [28].

. . . patients with axillary lymph node-negative, estrogen receptor-positive breast cancer. . . . . chemotherapy plus tamoxifen 
resulted in significantly better disease-free survival than tamoxifen alone (90% for MFT versus 85% for tamoxifen [P =
.01]; . . .

From this information, we can extract details of the patient class for the trial, including the facts that they are breast can-
cer patients who are axillary lymph node-negative and estrogen receptor-positive, that the treatments are either chemother-
apy plus tamoxifen or tamoxifen alone, and that with the outcome disease-free survival, chemotherapy plus tamoxifen was 
significantly better than tamoxifen. We can for instance model this evidence as follows.

Example 2. Let bc denote breast cancer patient, ln denote axillary lymph node-negative, ep denote estrogen receptor-
positive, ct denote chemotherapy plus tamoxifen, ta denote tamoxifen alone, and ds denote disease-free survival. The 
evidence in [28] quoted above can be represented by the following conditional probability statements.

P (ds|ln∧ ep∧ ct) = 0.9 P (ds|ln∧ ep∧ ta) = 0.85

So Example 2 illustrates how representing evidence from clinical trials in the form of conditional probabilities provides 
an ideal format for capturing the object-level uncertainty. Efficacy of any treatment can then be considered in terms of 
conditional probability (i.e. the probability of that the treatment has a specified desired outcome given the patient class and 
circumstance and the treatment). There may be multiple desired outcomes such as disease-free survival, and survival over 
5 years, and so there could be multiple conditional probability statements for the same patient class and treatment. This 
means that reasoning with the evidence becomes a multi-dimensional problem. This is further compounded by considering 
side-effects. As illustrated by Example 3 below, we can capture the different perspectives (different benefits and drawbacks) 
in the form of arguments and counterarguments.

Example 3. Consider treatments T1 and T2, where T1 is better than T2 for treating the disorder according to a particular 
positive outcome but with respect to a particular side-effect, T1 is worse than T2. Deciding whether T1 is a better choice 
than T2 depends on the two outcomes (the positive outcome and the side-effect) and their magnitudes (for example if 
the positive outcome is only marginally in favor of T1 but the side-effect is very severe, it may be preferable to choose 
T2). Preferences over outcome indicators and their magnitude can be represented by counterarguments. For instance, an 
argument that assumes T1 as a treatment can have a counterargument that expresses the sentiment against the treatment. 
In this way, the relative utility of one option over another can be captured in terms of argumentation.
2
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Medical evidence can also come from analyzing healthcare databases such as electronic health records. Unfortunately, 
general patterns obtained by data analytics can be lower grade evidence by comparison with randomized clinical trials 
and meta-analyzes. Furthermore, biases and confounding factors can commonly and profoundly affect relationships between 
interventions and outcomes when compared with randomized clinical trials [34,35]. These are issues of the quality of evi-
dence. They raise different perspectives on the evidence, and so can also be analyzed using arguments and counterarguments 
as illustrated by Example 4 below.

Example 4. When looking at a patient database, it might be seen that patients with a particular disorder might be treated 
with either T1 or T2, and that patients with T1 tend to have low mortality but patients with T2 tend to have higher 
mortality. From this, it might be inferred that T1 is better than T2. However, it might be the case that the data is biased 
because T1 is only given to patients who have a mild form of the disorder whereas T2 is given to patients with a serious 
form of the disorder. In other words, there is a counterargument based on the observation that the two patients groups are 
not equivalent.

The effectiveness of any medical test can also be considered in terms of conditional probability (i.e. the probability that 
a patient has a disorder given the patient class and circumstance and the test being positive). In order to reason about 
medical tests, we may also need to use Bayes theorem, where the known conditional probability is the test being positive 
given the patient class and circumstances and the patient has the disease.

Whilst conditional probabilities are a natural and widely used format for representing evidence in many domains includ-
ing in healthcare, there are challenges to using this in automated reasoning systems for argumentation.

Transparent reasoning with conditional probabilities We need a knowledge representation and reasoning formalism that 
allows for representation of conditional probabilities but also allows for transparent reasoning. Probabilistic graph-
ical models like Bayesian networks have been applied to model medical diagnosis problems [11,40,52]. However, 
Bayesian networks are less flexible in that they only allow conditioning a variable on a fixed set of parents and 
require a full parametrization for the conditional probability of the variable given its parents. Probabilistic condi-
tional logic has been applied in medical expert systems before [92]. However, with the exception of [29], reasoning 
algorithms are usually based on solving numerical optimization problem [6,41]. While this approach has computa-
tional advantages, it often remains unclear why an inference follows from a premise. Relatively little consideration 
has been given to a structured way of breaking inference into easier to understand steps.

Argumentation with conditional probabilities We need to incorporate reasoning with conditional probabilities into a 
framework for computational argumentation. There are numerous proposals for structured (i.e. logic-based) ar-
gumentation (for a review see [9]), but relatively few proposals for using probabilistic logics. Moreover, there has 
been a lack of consideration of how conditional probabilities can be directly handled in structured argumentation, 
though as we discuss in the literature review, some proposals handle conditional probabilities as defeasible rules 
(e.g. [21]). As part of argumentation with conditional probabilities, we need to represent meta-level uncertainty 
about the quality of evidence and harness it in the argumentation so as to reflect how both object-level and meta-
level uncertainty are harnessed in the computational argumentation. Existing approaches to handling meta-level 
uncertainty in argumentation include the use of preferences (e.g. [3]), and the use of Dempster-Shafer theory (e.g. 
[63,91]), there is relatively little consideration of meta-level uncertainty of probabilistic evidence in argumentation.

The solution to the above challenges that we present in this paper is the following: (1) A collection of comprehensible 
inference rules for probabilistic logic with conditional probability statements that allows for individual inference steps to be 
clearly represented in the argumentation; and (2) A version of deductive argumentation that is based on probabilistic logic 
with conditional probability statements.

The advantage of our proposal is that we can develop applications where evidence is reasoned with automatically, 
and argument graphs can be constructed automatically, or existing arguments and counterarguments can be represented 
and checked for correctness. Furthermore, meta-level uncertainty can be represented and used to ensure that acceptable 
arguments are believed. By constructing arguments and counterarguments, where the premises are conditional probability 
statements, we can have processes for analyzing evidence that are transparent, systematic, and auditible.

We proceed as follows in the rest of the paper: In Section 2, we review the aspects of probabilistic logic that we 
require for our proposal, and we review abstract argumentation; In Section 3, we present a set of inference rules for 
probabilistic logic; In Section 4, we present our framework for deductive argumentation based on probabilistic logic with 
conditional probability statements, including the construction of arguments and attacks, and analysis of arguments graphs 
using dialectical semantics and via the epistemic approach to probabilistic argumentation; In Section 5, we compare with the 
related literature; And in Section 6, we revisit the goals set out in the introduction, and discuss some ideas for future work.

2. Preliminaries

In this section, we review a well-known approach to probabilistic logic, and we review the key definitions for abstract 
argumentation.
3
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2.1. Probabilistic logic

We assume classical propositional logic for describing aspects of the world, and we model uncertainty about the formulae 
using a probability distribution over models of the propositional formulae (as reviewed in [60,64]).

A classical propositional language L(A) of formulae is composed from a finite set of propositional atoms A and the 
logical connectives ∧, ∨, and ¬ in the usual way. We use α and β to denote arbitrary propositional formulae and we use 
⊥ to denote a contradictory formula and � to denote a tautological formula. We assume the usual machinery of classical 
propositional logic.

Given a language L(A), the set of models (i.e. interpretations) of the language is denoted M(A). Each model is an 
assignment of true or false to the propositional formulae of the language defined in the usual way for classical logic. We 
represent a model m by a set of atoms. So M(A) is the power set of atoms. For α ∈ A, and m ∈ M(A), we say that m
satisfies α and write m |= α iff α ∈ m. For each α ∈L(A), we let Models(α) = {m ∈M(A) | m |= α} denote the set of models
of α.

In order to assign probabilities to formulae, we consider probability distributions over the models of our language.

Definition 1. Let M(A) be the models of the language L(A). A probability distribution P on M(A) is a function P :
M(A) → [0, 1] such that 

∑
m∈M(A) P (m) = 1.

As usual, we extend the domain of P to formulae by defining the probability of formulae as the probability of their 
models.

Definition 2. Let M(A) be the models of the language L(A), and let P be a probability distribution on M(A). The belief 
in a formula α ∈L(A) w.r.t. P is P (α) = ∑

m∈Models(α) P (m).

Example 5. Let L(A) be the propositional language that can be formed from {a, b}. Now suppose P ({a, b}) = 0.8 and 
P ({a}) = 0.2. Then, P (a) = 1, P (a ∧ b) = 0.8, P (b ∨ ¬b) = 1, P (a ∧ ¬b) = 0.2, etc.

A probabilistic conditional formula, or conditional for short, is an expression of the form (α|β)[v, w] where α, β ∈
L(A) and v, w ∈ [0, 1] such that v ≤ w . Intuitively, (α|β)[v, w] expresses the belief that α holds given β is between v and 
w . Point-value formulae are obtained for the special case (α|β)[v, v], and these are abbreviated by (α|β)[v]. Unconditioned 
formulae are obtained for the special case (α|�)[v, w], where the condition is tautological, and these are abbreviated by 
(α)[v, w]. We use φ and ψ for arbitrary conditionals.

Example 6. Consider the conditional (flu|fever∧ache)[0.75, 0.85] which represents the probability of flu, denoted flu, 
is between 0.75 and 0.85 given the symptoms of fever, denoted fever, and muscle ache, denoted ache.

For a conditional φ = (α|β)[v, w], let Head(φ) = α, Body(φ) = β , Lower(φ) = v , and Upper(φ) = w . We let F(A) be the 
set of conditionals formed from L(A). A knowledgebase � is a finite set of conditionals.

Intuitively, a probability distribution P satisfies (β|α)[v, w] iff the conditional probability of β given α under P is 
between v and w . The conditional probability of β given α is usually defined as P (β|α) = P (α∧β)

P (α)
. However, since this 

expression is undefined when P (α) = 0, satisfaction of conditionals is often defined in a slightly different way [54].

Definition 3. A probability distribution P satisfies a conditional (β|α)[v, w], denoted P |= (β|α)[v, w], iff
P (α) · v ≤ P (α ∧ β) ≤ P (α) · w (1)

For a conditional φ, let Sat(φ) be the set of probability distributions satisfying φ (i.e. Sat(φ) = {P | P |= φ}). For a 
knowledgebase � ⊆ F(A), Sat(�) = ∩φ∈�Sat(φ).

Example 7. For � = {(a|b)[0.4, 0.6], (b|c)[0.6, 0.7], (c)[0.7, 0.8]}, a probability distribution where P (a ∧ b ∧ c) = 0.25, P (a ∧
¬b ∧ c) = 0.25, P (¬a ∧ b ∧ c) = 0.25, and P (¬a ∧ ¬b ∧ ¬c) = 0.25, satisfies �.

Note that when dividing every term in (1) by P (α), the equation just demands that the conditional probability is between 
v and w . However, the constraint is also defined if P (α) = 0. In this case, the constraint is satisfied even though the 
conditional probability is undefined. This can be seen as a generalization of the idea that the logical implication α → β is 
satisfied whenever α is false (no matter what β is).

Following [54], we define two notions of entailment from a knowledgebase.

Definition 4. Let � ⊂ F(A) be a knowledgebase and let φ ∈ F(A) be a conditional. We say that � entails φ and write 
� |= φ iff Sat(�) ⊆ Sat(φ). We say that � tightly entails (β|α)[v, w] and write � |=t (β|α)[v, w] iff Sat(�) = ∅ and � |=
(β|α)[v ′, w ′] implies that [v, w] ⊆ [v ′, w ′].
4



A. Hunter and N. Potyka Artificial Intelligence 321 (2023) 103934
Intuitively, a knowledgebase entails a conditional if every probability distribution that satisfies the knowledgebase 
also satisfies the conditional. However, this notion is not very strong because if a knowledgebase satisfies a conditional 
(β|α)[v, w], it also satisfies the conditional (β|α)[v ′, w ′] whenever [v, w] ⊆ [v ′, w ′]. In particular, every knowledgebase en-
tails (β|α)[0, 1] for arbitrary formulae α, β because probabilities are necessarily between 0 and 1. Tight entailment captures 
the tightest (and most informative) interval for which the entailment relation holds. Since this notion only makes sense 
when the knowledgebase is consistent, we also assume Sat(�) = ∅. If Sat(�) = ∅, tight entailment is not defined and we 
write � |= (β|α)∅. The tight entailment result is uniquely defined and can be computed by solving two linear optimization 
problems (one for the lower and one for the upper bound) [41]. More formally, tight entailment gives rise to the probabilis-
tic entailment problem: given a knowledgebase � ⊂ F(A) and formulae α, β ∈ F(A), solve the two optimization problems 
minP |=� / maxP |=� P (β | α), s.t.P (α) > 0. Strictly speaking, the optimization problems are fractional. However, they can be 
transformed into equivalent linear optimization problems [41]. The problem is feasible whenever there exists a probabil-
ity function P such that P |= �. Checking this property is called the probabilistic satisfiability problem and can be done by 
solving a linear optimization problem again. It is worth pointing out that we can also have “weak inconsistencies” in this 
context. These are the probabilistic analogue of “classical weak inconsistencies”. For example, the formulae α → β and 
α → ¬β are consistent even though their conclusion is clearly inconsistent. Intuitively, consistency is established by letting 
α be false. Similarly, the conditionals (b|a)[0.9] and (b|a)[0.1] are consistent. However, they entail (a)[0]. Just like in the 
classical setting, this can be undesirable in applications. The strict probabilistic satisfiability problem is a stronger form of the 
probabilistic satisfiability problem that also checks if there is a probability function that assigns non-zero probability to the 
condition of every conditional. This problem can again be solved by a linear optimization problem [76]. For future reference, 
we summarize the main results from the literature in the following proposition.

Proposition 1 (Probabilistic Reasoning with Linear Programming [32,41,76]). Let � ⊂F(A) be a finite knowledgebase over a finite set 
of propositional atoms A. Then the probabilistic satisfiability problem, the strict probabilistic satisfiability problem and the probabilistic 
entailment problem can be solved in worst-case exponential time with respect to the number of atoms.

For the explicit form of the corresponding linear programs and the correctness proofs, we refer to Proposition 4.24 
(probabilistic satisfiability problem), Proposition 4.30 and Proposition 4.37 in [76]. Let us note that while the worst-case 
runtime is exponential, the problems can often be solved significantly faster by applying column generation techniques [14,
27,32]. This often allows deciding the satisfiability of knowledge bases with hundreds of atoms in seconds. While classical 
SAT solvers can deal with significantly larger knowledge bases, this size is completely sufficient for our purposes.

2.2. Abstract argumentation

We provide a brief review of abstract argumentation as proposed by Dung [26]. In this approach, each argument is 
treated as an atom, and so no internal structure of the argument needs to be identified.

Definition 5. An argument graph is a pair G = (N , R) where N is a set and R is a binary relation over N (in symbols, 
R ⊆N ×N ). Let Nodes(G) be the set of nodes in G and let Arcs(G) ⊆ Nodes(G) × Nodes(G) be the set of arcs in G .

So an argument graph is a directed graph. Each element A ∈ N is called an argument and (Ai, A j) ∈ R means that Ai
attacks A j (accordingly, Ai is said to be an attacker of A j). So Ai is a counterargument for A j when (Ai, A j) ∈R holds.

Example 8. Consider arguments A1 = “Patient has hypertension so prescribe diuretics”, A2 = “Patient has hypertension so 
prescribe beta-blockers”, and A3 = “Patient has emphysema which is a contraindication for beta-blockers”. Here, we assume 
that A1 and A2 attack each other because we should only give one treatment and so giving one precludes the other, and 
we assume that A3 attacks A2 because it provides a counterargument to A2. Hence, we get the following abstract argument 
graph.

A1 = Patient has 
hypertension so pre-
scribe diuretics

A2= Patient has 
hypertension so pre-
scribe beta-blockers

A3= Patient has emphysema 
which is a contraindica-
tion for beta-blockers

Arguments can work together as a coalition by attacking other arguments and by defending their members from attack 
as follows.

Definition 6. Let S ⊆N be a set of arguments.

• S attacks A j ∈N iff there is an argument Ai ∈ S such that Ai attacks A j .
5
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• S defends Ai ∈N iff for each argument A j ∈N , if A j attacks Ai then S attacks A j .

The following gives a requirement that should hold for a coalition of arguments to make sense. If it holds, it means that 
the arguments in the set offer a consistent view on the topic of the argument graph.

Definition 7. A set S ⊆N of arguments is conflict-free iff there are no arguments Ai and A j in S such that Ai attacks A j .

Now, we consider how we can find an acceptable set of arguments from an abstract argument graph. The simplest case 
of arguments that can be accepted is as follows.

Definition 8. A set S ⊆N of arguments is admissible iff S is conflict-free and defends all its arguments.

The intuition here is that for a set of arguments to be accepted, we require that, if any one of them is challenged by 
a counterargument, then they offer grounds to challenge, in turn, the counterargument. There always exists at least one 
admissible set: The empty set is always admissible.

Clearly, the notion of admissible sets of arguments is the minimum requirement for a set of arguments to be accepted. 
We will focus on the following classes of acceptable arguments.

Definition 9. Let � be a conflict-free set of arguments, and let Defended : ℘(N ) �→ ℘(N ) be a function such that 
Defended(�) = {A | � defends A}.

1. � is a complete extension iff � = Defended(�)

2. � is a grounded extension iff it is the minimal (w.r.t. set inclusion) complete extension.
3. � is a preferred extension iff it is a maximal (w.r.t. set inclusion) complete extension.
4. � is a stable extension iff it is a preferred extension that attacks every argument that is not in the extension.

The grounded extension is always unique, whereas there may be multiple preferred extensions. We illustrate these 
definitions with the following examples. As can be seen from the examples, the grounded extension provides a skeptical 
view on which arguments can be accepted, whereas each preferred extension takes a credulous view on which arguments 
can be accepted.

Example 9. Continuing Example 8, there is only one complete set, and so this is both grounded and preferred. Note, {A1, A2}, 
{A2, A3}, and {A1, A2, A3} are not conflict-free subsets. Only the conflict-free subsets are given in the table.

Conflict Admissible Complete Grounded Preferred Stable
-free

{} � � × × × ×
{A1} � � × × × ×
{A2} � × × × × ×
{A3} � � × × × ×

{A1, A3} � � � � � �

Example 10. Consider the following argument graph. For this, there are two preferred sets, neither of which is grounded. 
Note {A4, A5} is not conflict-free. Only the conflict-free subsets are given in the table.

A4 A5

Conflict Admissible Complete Grounded Preferred Stable
-free

{} � � � � × ×
{A4} � � � × � �
{A5} � � � × � �
6
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The formalization we have reviewed in this section is abstract because both the nature of the arguments and the nature 
of the attack relation are ignored. In particular, the internal (logical) structure of each of the arguments is not made explicit. 
Nevertheless, Dung’s proposal for abstract argumentation is valuable for clearly representing arguments and counterargu-
ments, and for intuitively determining which arguments should be accepted (depending on whether we want to take a 
credulous or skeptical perspective).

Given an argument graph, let Extensionsσ (G) denote the set of extensions according to σ where σ = co denotes 
the complete extensions, σ = pr denotes the preferred extensions, σ = gr denotes the grounded extensions, and σ = st
denotes the stable extensions. So continuing Example 9, Extensionspr(G) = {{A1, A3}}, whereas continuing Example 10, 
Extensionspr(G) = {{A4}, {A5}}.

3. Inference rules for probabilistic argumentation

In this section, we present a set of sound inference rules for probabilistic logic. We can then use these rules, or a subset 
of them, as a proof system. This will allow us to construct arguments in a transparent way from a set of basic assumptions 
and proofs that derive interesting conclusions from them.

3.1. Probabilistic logical proof systems

State-of-the-art reasoning algorithms for the probabilistic entailment problem are based on solving linear optimization 
problems [14,27,43]. While this approach is computationally convenient, it is not well suited for probabilistic argumentation 
because the reasoning that leads to a conclusion is not transparent. A probabilistic proof system would be better suited 
for our needs. Unfortunately, to the best of our knowledge, there are currently no complete proof systems for probabilistic 
logic. However, 32 sound inference rules for probabilistic logic have been presented in [29]. The authors also showed that 
5 of the rules yield a complete calculus for the fragment that contains only probabilistic facts (α)[v, w] and deterministic 
conditionals (β | α)[1]. While this fragment is not sufficiently expressive for our purposes, we can also work with a sound, 
but incomplete calculus. Unfortunately, no correctness proofs have been given in [29] and the inference rules are rather 
abstract since they have been designed for being most general and not most comprehensible. Therefore, we will develop a 
small set of sound and intuitive inference rules that seem useful for probabilistic argumentation in this section, and then we 
will investigate how they can be harnessed in a form of deductive argumentation in Section 4. We will discuss relationships 
to the rules in [29] in Section 5.

3.2. A collection of sound inference rules

To begin with, we will develop some sound inference rules that seem useful for probabilistic argumentation. We repre-
sent inference rules in the following form, where ψ1, . . . , ψl are the premises of the rule and φ is its conclusion.

ψ1, . . . ,ψl

φ

For example, the classical inference rule Modus Ponens can be written as the following inference rule where A and A → B
are the premises and B is the conclusion.

A, A → B
B

Formally, an inference rule is sound if, for every set of assumptions � (including the empty set), � |= ψi for i = 1, . . . , l
implies that � |= φ. That is, the conclusion of the rule follows logically from its premises. Combinations of these rules can 
be used to construct different proof systems with different expressiveness and proof complexity. Since we focus on sound 
inference rules, all proof systems are sound in the sense that � �PS φ implies � |= φ, where �PS denotes the derivability 
relation with respect to our proof system. However, we do not attempt to get completeness. That is, we do not expect that 
� |= φ implies � �PS φ. To the best of our knowledge, there are no known complete proof systems for the probabilistic logic 
that we consider here.

Before designing some interesting rules, let us note some simple but useful calculation rules.

Lemma 1. Let α, β ∈L(A) and let P be a probability distribution on M(A). Then

1. P (α) = 1 − P (¬α).
2. P (α) = 1 if α ≡ � is a tautology and P (α) = 0 if α ≡ ⊥ is a contradiction.
3. P (α) = P (α ∧ β) + P (α ∧ ¬β).
4. P (α ∧ β) ≤ P (α).
5. P (α ∨ β) ≥ P (α).
7
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Proof. 1. We have P (α) + P (¬α) = ∑
m∈Models(α) P (m) +∑

m∈Models(¬α) P (m) = ∑
m∈M(A) P (m) = 1. Subtracting P (¬α) from 

both sides yields the claim.
2. Follows immediately by observing that Models(α) = M(A) if α is tautological and Models(¬α) = ∅ if α is a contra-

diction.
3. P (α) = ∑

m∈Models(α) P (m) = ∑
m∈Models(α∧β) P (m) + ∑

m∈Models(α∧¬β) P (m) = P (α ∧ β) + P (α ∧ ¬β).
4. Rewriting item 3, we get P (α ∧ β) = P (α) − P (α ∧ ¬β) ≤ P (α).
5. P (α ∨ β) = ∑

m∈Models(α∨β) P (m) ≥ ∑
m∈Models(α) P (m) = P (α). �

We will now list a number of soundness results. That is, results of the form “If � |= ψ1,..., � |= ψl , then � |= φ”. We will 
summarize the corresponding inference rules in a table at the end of this section.

We first note that item 1 from Lemma 1 can be generalized to conditionals. This gives us a first inference rule that we 
call Conditional Negation and abbreviate by CN.

Proposition 2 (CN). If � |= (β | α)[l, u], then � |= (¬β | α)[1 − u, 1 − l].

Proof. Consider an arbitrary probability function P such that P |= �. Then, we have P (α) · l ≤ P (α ∧ β) ≤ P (α) · u by 
definition. Since the models of α ∧ β , α ∧ ¬β , ¬α ∧ β , ¬α ∧ ¬β form a partition of all models in our language, we have

P (α ∧ ¬β) = 1 − P (α ∧ β) − P (¬α ∧ β) − P (¬α ∧ ¬β) = 1 − P (α ∧ β) − P (¬α).

From this, we first get the upper bound P (α ∧ ¬β) ≤ 1 − P (α) · l − (1 − P (α)) = P (α) · (1 − l). Symmetrically, we can derive 
the lower bound P (α ∧ ¬β) ≥ 1 − P (α) · u − (1 − P (α)) = P (α) · (1 − u). Hence, by definition, � |= (¬β | α)[1 − u, 1 − l]. �

Note that item 1 from Lemma 1 corresponds to the special case � |= (β)[p] of CN.
We can also generalize items 4 and 5 from Lemma 1. We call the rules Conjunction Elimination and Disjunction Elimination

and abbreviate them by CE and DE, respectively.

Proposition 3 (CE). If � |= (β ∧ γ | α)[l, u], then � |= (β | α)[l, 1].

Proof. Consider an arbitrary probability function P such that P |= �. Then, we have P (α ∧ β) ≥ P (α ∧ β ∧ γ ) ≥ l · P (α). �
Proposition 4 (DE). If � |= (β ∨ γ | α)[l, u], then � |= (β | α)[0, u].

Proof. Since β ∨ γ ≡ ¬(¬β ∧ ¬γ ), we have � |= (¬(¬β ∧ ¬γ ) | α)[l, u]. CN implies that � |= (¬β ∧ ¬γ | α)[1 − u, 1 − l]. 
Applying CE implies � |= (¬β | α)[1 − u, 1]. Finally, applying CN again implies � |= (β | α)[0, u]. �

It is often useful to go from two individual probabilities to their joint probability. For this purpose, we introduce the 
rules Conjunction Insertion and Disjunction Insertion that we abbreviate by CI and DI, respectively.

Proposition 5 (CI). If � |= (β | α)[l1, u1] and � |= (γ | α)[l2, u2] then � |= (β ∧ γ | α)[l3, u3], where l3 = max{0, l1 + l2 − 1} and 
u3 = min{u1, u2}.

Proof. Consider an arbitrary probability function P such that P |= �. Then, we have P (α ∧ β ∧ γ ) ≤ min{P (α ∧ β), P (α ∧
γ )} ≤ min{P (α) · u1, P (α) · u2} = P (α) · min{u1, u2}, which proves the upper bound.

For the lower bound, first note that P (α∧β) = P (α∧β∧γ ) + P (α∧β∧¬γ ) and P (α∧γ ) = P (α∧β∧γ ) + P (α∧¬β∧γ ). 
Adding both equations and reordering terms gives

2 · P (α ∧ β ∧ γ ) = P (α ∧ β) + P (α ∧ γ ) − P (α ∧ β ∧ ¬γ ) − P (α ∧ ¬β ∧ γ ). (2)

CN implies that � |= (¬β | α)[1 − u1, 1 − l1] and � |= (¬γ | α)[1 − u2, 1 − l2]. Therefore, P (α ∧β ∧¬γ ) ≤ P (α ∧¬γ ) ≤ (1 −
l2) · P (α) and P (α ∧ ¬β ∧ γ ) ≤ P (α ∧ ¬β) ≤ (1 − l1) · P (α). Using these inequalities and our assumptions � |= (β | α)[l1, u1]
and � |= (γ | α)[l2, u2] in (2), we get

2 · P (α ∧ β ∧ γ ) ≥ l1 · P (α) + l2 · P (α) − (1 − l2) · P (α) − (1 − l1) · P (α)

≥ (2 · l1 + 2 · l2 − 2) · P (α).

Dividing by 2 gives us P (α ∧ β ∧ γ ) ≥ (l1 + l2 − 1) · P (α). �
Proposition 6 (DI). If � |= (β | α)[l1, u1] and � |= (γ | α)[l2, u2] then � |= (β ∨ γ | α)[l3, u3], where l3 = max{l1, l2} and u3 =
min{1, u1 + u2}.
8
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Proof. CN implies that � |= (¬β | α)[1 − u1, 1 − l1] and � |= (¬γ | α)[1 − u2, 1 − l2]. From this, we can use CI to infer that 
� |= (¬β ∧ ¬γ | α)[l′3, u′

3], where l′3 = max{0, 1 − u1 − u2} and u′
3 = min{1 − l1, 1 − l2}. Using the fact that ¬(¬β ∧ ¬γ ) ≡

β ∨ γ and applying CN again implies that � |= (β ∨ γ | α)[l3, u3], where l3 = 1 − min{1 − l1, 1 − l2} = max{l1, l2} and 
u3 = 1 − max{0, 1 − u1 − u2} = min{1, u1 + u2}. �

Let us emphasize that CI and DI do not make use of any independency assumptions. To highlight the difference, we 
add a refinement of CI that assumes conditional independence between β and γ . Formally, β and γ are conditionally 
independent given α iff P (β ∧ γ | α) = P (β | α) · P (γ | α). This generalizes the basic notion of independence between two 
random variables. Under this assumption, we get simpler lower and upper bounds that correspond to the products of the 
individual lower and upper bounds. We call this refinement ICI in the following, where the I stands for the independency 
assumption that has been added to CI.

Proposition 7 (ICI). If β and γ are conditionally independent given α, � |= (β | α)[l1, u1] and � |= (γ | α)[l2, u2] then � |= (β ∧γ |
α)[l3, u3], where l3 = l1 · l2 and u3 = u1 · u2 .

Proof. Consider an arbitrary probability function P such that P |= �. If P (α) = 0, the claim is trivially true because all 
terms in the equation defining the satisfaction relation become 0.

Hence, we can assume P (α) > 0. Then, we have

P (α ∧ β ∧ γ ) = P (α) · P (β ∧ γ | α)

= P (α) · P (β | α) · P (γ | α)

= P (α ∧ β) · P (α ∧ γ )

P (α)

≤ u1 · P (α) · u2 · P (α)

P (α)

= (u1 · u2) · P (α).

The lower bound follows analogously. �
The classical modus ponens is a natural tool for classical argumentation. Recall that modus ponens states that if α and 

α → β are true, then β must be true as well. Therefore, another interesting inference rule for probabilistic argumentation 
is a probabilistic modus ponens that we abbreviate by PMP.

Proposition 8 (PMP). If � |= (α)[l1, u1] and � |= (β | α)[l2, u2], then � |= (β)[l3, u3] where l3 = l1 · l2 and u3 = min{1, u1 · u2 +
1 − l1}.

Proof. Consider an arbitrary probability function P such that P |= �. Then, for the lower bound, we have

P (β) = P (α ∧ β) + P (¬α ∧ β)

≥ l2 · P (α) + 0

≥ l2 · l1.

For the upper bound, we have

P (β) = P (α ∧ β) + P (¬α ∧ β)

≤ u2 · P (α) + P (¬α)

≤ u2 · u1 + (1 − l1).

Since we also have P (β) ≤ 1, we can conclude P |= (β)[l1 · l2, min{1, u1 · u2 + 1 − l1}]. �
Note that we obtain the classical modus ponens for l1 = u1 = l2 = u2 = 1. Then the statement is that if � |= (α)[1] and 

� |= (β | α)[1], then � |= (β)[1]. Note also that if � |= (α)[0], the claim becomes that � |= (β)[0, 1], which seems intuitively 
reasonable because the rule “if α then β” is not applicable and so there is nothing that we could conclude. We give some 
more examples to give a better intuition for the probabilistic modus ponens.
9
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Example 11. Consider the knowledgebase �1 = {(a)[0.9], (b | a)[0.9]}. Then PMP allows us to conclude that �1 |=
(b)[0.81, 0.91]. As this example illustrates, we can end up with an interval probability even when the original probabil-
ities were point probabilities. Intuitively, this is because our assumptions do not say anything about the probability of b
when a is false. To see that the interval cannot be tightened further, we give examples for probability functions that satisfy
all three conditionals. Pl with Pl({a, b}) = 0.81, Pl({a}) = 0.09 and Pl(∅) = 0.1 is an example for the lower bound, that is, 
we have Pl |= � and Pl |= (b)[0.81]. Pu with Pu({a, b}) = Pl({a, b}) = 0.81, Pu({a}) = Pl({a}) = 0.09 and Pl({b}) = 0.1 is an 
example for the upper bound, that is, we have Pu |= � and Pu |= (b)[0.91].

Example 12. Consider the knowledgebase �2 = {(a)[0.9], (b | a)[0.8]}, where we decreased the probability of (b | a). Then 
PMP allows us to conclude that �1 |= (b)[0.72, 0.82]. While the probability naturally decreases, let us note that the width 
of the interval remains the same.

Example 13. Consider the knowledgebase �3 = {(a)[0.8], (b | a)[0.9]}. We started again from �1, but decreased the proba-
bility of (a) this time. Then PMP allows us to conclude that �1 |= (b)[0.72, 0.92]. Note that, in this case, the interval also 
becomes wider because there is a bigger chance now that a is false (in which case we cannot say anything about the 
probability of b).

As the previous examples illustrate, our probability intervals can become wider when applying PMP. While this is for-
mally desirable because the uncertainty in our conclusions increases, it can be a practical problem because the intervals can 
become meaningless. Since a general statement about the evolution of the intervals along a reasoning chain becomes very 
technical and difficult to understand, we just illustrate the issue with an example.

Example 14. Consider the knowledgebase �4 = {(a)[0.9], (b | a)[0.9], (c | b)[0.9], (d | c)[0.9]}. Using, the first two condition-
als, we can conclude as before that �4 |= (b)[0.81, 0.91]. This derived conditional together with the third conditional in �4
then allows us to conclude that �4 |= (c)[0.73, 1] (probabilities rounded to two digits). We can then again use this derived 
conditional together with the fourth conditional in �4 to conclude that �4 |= (d)[0.66, 1].

As the example illustrates, the intervals along reasoning chains become wider and wider. The growth of the interval 
depends on the uncertainty in our conditionals. If all conditionals are deterministic (probability 0 or 1), we basically apply 
the classical modus ponens and do not introduce any uncertainty at all. Roughly speaking, the closer the probabilities are 
to 0.5 (complete uncertainty), the faster the intervals will grow.

Naturally, we can improve the guarantees by making additional assumptions. The following generalized probabilistic modus 
ponens adds knowledge about β when α is false. We abbreviate it by GPMP.

Proposition 9 (GPMP). If � |= (α)[l1, u1], � |= (β | α)[l2, u2] and � |= (β | ¬α)[l3, u3] then � |= (β)[l4, u4] where l4 = l1 · l2 +
(1 − u1) · l3 and u4 = min{1, u1 · u2 + u3 · (1 − l1)}.

Proof. Consider an arbitrary probability function P such that P |= �. Then, for the lower bound, we have

P (β) = P (α ∧ β) + P (¬α ∧ β)

≥ l2 · P (α) + l3 · P (¬α)

≥ l2 · l1 + l3 · (1 − u1).

For the upper bound, we have

P (β) = P (α ∧ β) + P (¬α ∧ β)

≤ u2 · P (α) + u3 · P (¬α)

≤ u2 · u1 + u3(̇1 − l1).

Since we also have P (β) ≤ 1, we can conclude P |= (β)[l1 · l2 + (1 − u1) · l3, min{1, u1 · u2 + u3(̇1 − l1)}]. �
We call GPMP the generalized PMP because we can always assume that � |= (β | ¬α)[0, 1]. In this case, GPMP just 

corresponds to PMP. The interesting case is when we actually have non-trivial guarantees for (β | ¬α).

Example 15. Consider the knowledgebase �5 = {(a)[0.9], (b | a)[0.9], (b | ¬a)[0.9]}, which is similar to �1, but now also 
contains the knowledge that b is very likely even if a is false. Then GPMP allows us to conclude that �5 |= (b)[0.9]. This 
makes intuitively sense, since a is either true or false and in both cases the probability of b must be 0.9.
10
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Example 16. To add some uncertainty, consider the knowledgebase �6 = {(a)[0.9], (b | a)[0.9], (b | ¬a)[0.6]}, where b is now 
less likely when a is false. In this case, GPMP allows us to conclude that �6 |= (b)[0.87].

In the previous examples, we were always able to derive point probabilities from point probabilities. This is no coinci-
dence, but follows immediately from GPMP.

Corollary 1 (GPMP for point probabilities). If � |= (α)[p1], � |= (β | α)[p2] and � |= (β | ¬α)[p3] then � |= (β)[p4] where p4 =
p1 · p2 + (1 − p1) · p3 .

Another useful rule for classical argumentation is Modus Tollens. Recall that Modus Tollens states that if α → β is true 
and β is false, then α must be false as well. We can also generalize the Modus Tollens slightly. The corresponding inference 
rule is called probabilistic modus tollens and abbreviated by PMT in the following.

Proposition 10 (PMT). If � |= (β | α)[l2, u2] and � |= (β)[l3, u3], then � |= (α)[0, u1] where u1 ≤ min{u2, u3} + (1 − l2).

Proof. Consider an arbitrary probability function P such that P |= �. We have P (α) = P (α ∧ β) + P (α ∧ ¬β). We can 
derive two upper bounds for P (α ∧ β). First, we have P (α ∧ β) ≤ u2 · P (α) ≤ u2 because � |= (β | α)[l2, u2]. Second, we 
have P (α ∧ β) ≤ P (β) ≤ u3 because � |= (β)[l3, u3]. Hence, P (α) ≤ min{u2, u3} + P (α ∧ ¬β). CN allows us to conclude that 
� |= (¬β | α)[1 − u2, 1 − l2]. Therefore, P (α) ≤ min{u2, u3} + 1 − l2 and P |= (α)[0, min{u2, u3} + 1 − l2]. �

We obtain the classical Modus Tollens for l2 = u2 = 1 and l3 = u3 = 0. In this case, the statement is that P |= (α)[0]. 
In general, if we have a strong positive rule (probability l2 close to 1) and its consequence has low probability, then the 
premise must also have a low probability.

Another rule that is frequently used in probabilistic reasoning is Bayes’ rule. It allows us to switch the condition and 
conclusion of a conditional if the individual marginal probabilities are known. A typical application is medical diagnosis, 
where often statistics exists about the frequency of symptoms when patients suffer from a particular disease. However, 
medical doctors typically want to reason in the other direction: given symptoms, what is the probability that the patient 
suffers from a particular disease? We can design a corresponding inference rule that we abbreviate by BR.

Proposition 11 (BR). If � |= (β | α)[l1, u1], � |= (α)[l2, u2] and � |= (β)[l3, u3] with l3 > 0, then � |= (α | β)[l4, u4], where 
l4 = l1·l2

u3
and u4 = u1·u2

l3
.

Proof. Consider an arbitrary probability function P such that P |= �. For the lower bound, we use the fact that P (β) ≤ u3, 
that is, P (β)

u3
≤ 1. We have

P (α ∧ β) ≥ l1 · P (α)

≥ l1 · P (α) · P (β)

u3

≥ l1 · l2
u3

· P (β).

Note that the fraction is well-defined because u3 ≥ l3 > 0. For the upper bound we use the fact that P (β)
l3

≥ 1 and get 
symmetrically

P (α ∧ β) ≤ u1 · P (α)

≤ u1 · P (α) · P (β)

l3

≤ u1 · u2

l3
· P (β). �

Example 17. Consider a test for a disease. Suppose the sensitivity of the test is 99%, and so for someone with the disease, 
the test is positive with probability 0.99, and suppose the specificity of the test is 98% and so for someone without the 
disease, the test is negative with probability 0.98. Also suppose that the prevalence of the disease is one in two hundred 
(i.e. the probability that someone has the disease is 0.005). And suppose that the probability of a positive test result is 0.02. 
We represent this by the following conditionals, where d denotes patient has disease, p/¬p denotes positive/negative test 
result (for simplicity, we assume that the test is never inconclusive).

(p|d)[0.99] (¬p|¬d)[0.98] (d)[0.005] (p)[0.02]

11
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We can apply BR to derive the probability that a patient with a positive/negative test result has the disease. Applying BR
to (p|d)[0.99], (d)[0.005] and (p)[0.02] yields (d|p)[0.2475]. That is, only around 25% of those who test positive have the 
disease (i.e. the positive predictive value is poor).

To understand the consequences of a negative test result, we first apply CN to our assumptions (p)[0.02] and (d)[0.005]
to derive (¬p)[0.98] and (¬d)[0.995]. Then we can apply BR to the derived conditionals and our assumption (¬p|¬d)[0.98]
to derive (¬d|¬p)[0.995]. That is, people who test negative almost never have the disease (i.e. the negative predictive value 
is very good).

In some applications, it can also be useful to have a rule that allows relaxing conditionals by increasing their probability 
intervals. One application of this is merging inconsistent beliefs of the form (F )[p1], (F )[p2], p1 < p2 by replacing them 
with the conditional (F )[p1, p2] that relaxes both. We call the rule Interval Relaxation and abbreviate it by IR.

Proposition 12 (IR). If � |= (β | α)[l1, u1], then � |= (β | α)[l2, u2] for all l2, u2 such that 0 ≤ l2 ≤ l1 ≤ u1 ≤ u2 ≤ 1.

Proof. Consider an arbitrary probability function P such that P |= �. Then, we have P (α) · l2 ≤ P (α) · l1 ≤ P (α ∧ β) ≤
P (α) · u1 ≤ P (α) · u2. Hence, P |= (β | α)[l2, u2]. �
3.3. Proof systems for probabilistic argumentation

We summarize our inference rules in Table 1.
Our soundness results from the previous section imply that we can use them to build up sound proof systems. The 

following definition summarizes some basic terminology and notation.

Definition 10 (Proof System, Proof, �).

1. A proof system PS = (Ax, R) for conditionals consists of a set Ax of conditionals whose elements are called axioms and 
a set R of (inference) rules for conditionals.

2. Let PS = (Ax, R) be a proof system for conditionals, let � be a set of conditionals and let φ be a conditional. A proof for 
φ in PS using the assumptions in � is a sequence φ1, . . . , φn of conditionals such that φn = φ and for all i = 1, . . . , n, 
we have
• φi ∈ Ax or
• φi ∈ � or

• there is a rule 
ψ1, . . . ,ψl

φi ∈ R such that {ψ1, . . . , ψl} ⊆ {φ1, . . . , φi−1}.
3. If there is a proof for φ in PS using �, we write � �PS φ. If � = ∅, we just write �PS φ.

In the following, we will use the following axiom set:

Ax = {(F )[0,1] | F ∈ L(A)} ∪ {(G|F )[0,1] | F , G ∈ L(A)}. (3)

The axioms basically state that all (conditional) probabilities are between 0 and 1. They are obviously sound. In the previous 
section, we also showed that our inference rules are sound. Therefore, we have the following guarantee.

Theorem 1 (Sound Proof Systems). Every proof system that uses the axioms (3) and any subset of the inference rules from Table 1 is 
sound.

In the following example, we illustrate the use of axioms.

Example 18. Consider a propositional language over A = {a, b}. Suppose that � = {(a)[0.5]} and that we are interested in 
the probability of a ∧ b. The only inference rules that allow us to infer something about the conjunction of two formulae 
are CI and ICI. If we do not want to make any independency assumptions, we can use only CI. Without axioms, we would 
not be able to infer anything. However, we can use the axiom (b)[0, 1]. Then applying CI to (a)[0.5] and (b)[0, 1] yields 
(a ∧ b)[0, 0.5].

In order to build up arguments from a set of assumptions automatically, we can consider proof systems of increasing 
complexity to build up increasingly complex arguments. In the remainder of this paper, we will consider the following 
examples of increasingly complex proof systems:

• SIMPLE = (Ax, {P M P }),
• STAR = (Ax, {P M P , C I}),
12
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Table 1
Summary of Inference Rules. We write β⊥γ | α for the assumption that β is conditionally 
independent of γ given α (ICI).

Name Rule Remarks

CN

(β | α)[l, u]
(¬β | α)[1 − u,1 − l]

CE

(β ∧ γ | α)[l, u]
(β | α)[l,1]

DE

(β ∨ γ | α)[l, u]
(β | α)[0, u]

CI

(β | α)[l1, u1] (γ | α)[l2, u2]
(β ∧ γ | α)[l3, u3] l3 = max{0, l1 + l2 − 1},

u3 = min{u1, u2}

DI

(β | α)[l1, u1] (γ | α)[l2, u2]
(β ∨ γ | α)[l3, u3] l3 = max{l1, l2},

u3 = min{1, u1 + u2}

ICI

(β | α)[l1, u1] (γ | α)[l2, u2]
(β ∧ γ | α)[l3, u3] assuming β⊥γ | α,

l3 = l1 · l2,
u3 = u1 · u2

PMP

(α)[l1, u1] (β | α)[l2, u2]
(β)[l3, u3] l3 = l1 · l2,

u3 = min{1, u1 · u2 + 1 − l1}

GPMP

(α)[l1, u1] (β | α)[l2, u2] (β | ¬α)[l3, u3]
(β)[l4, u4] l4 = l1 · l2 + (1 − l1) · l3,

u4 = min{1, u1 · u2 + u3 (̇1 − l1)}

GPMP

(α)[p1] (β | α)[p2] (β | ¬α)[p3]
(β)[p4] p4 = p1 · p2 + (1 − p1) · p3

for point probabilities

PMT

(β | α)[l2, u2] (β)[l3, u3]
(α)[0, u1] u1 ≤ min{u2, u3} + (1 − l2)

BR

(β | α)[l1, u1] (α)[l2, u2] (β)[l3, u3]
(α | β)[l4, u4] assuming l3 > 0,

l4 = l1 ·l2
u3

,
u4 = u1 ·u2

l3

IR

(β | α)[l1, u1]
(β | α)[l2, u2] for all l2, u2 such that

0 ≤ l2 ≤ l1 ≤ u1 ≤ u2 ≤ 1

• BRAN = (Ax, {P M P , C I, B R}).

The SIMPLE proof system provides a very simple way of drawing conclusions from conditionals using the probabilistic 
modus ponens. STAR extends SIMPLE with conjunction introduction, which is useful for combining atomic pieces of knowl-
edge. BRAN extends STAR with the ability to undertake Bayesian reasoning.

3.4. Computing proofs

Before moving to probabilistic argumentation, let us look at some interesting computational problems that occur in 
applications of our proof systems. Our focus is on problems that are useful for probabilistic argumentation and that can be 
solved in a more comprehensible way than when using the linear optimization approach.

One advantage of a proof system is that we can generate proofs that can be checked by the user to understand the 
inference. One very basic problem is thus to automatically verify that a proof generated by our system is correct.

Definition 11 (Proof Verification). Given a proof system PS, a set of conditionals � and a sequence of conditionals φ1, . . . , φn , 
the problem of deciding if φ1, . . . , φn is a proof for φn in PS using � is called Proof Verification.

The algorithm shown in Fig. 1 can solve the verification problem in polynomial time.
13
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Algorithm Verify((Ax, R), �, (φ1, . . . , φn)) :
for i =1 to n:

i f φi /∈ (
Ax ∪ �

)
:

i f there is no rule in R that allows inferring φi from {φ1, . . . , φi−1} :
return f a l s e

return true

Fig. 1. Verification algorithm that decides in polynomial-time if φ1, . . . , φn is a proof for φn .

Proposition 13. For each proof system that uses the axioms defined in (3) and inference rules from Table 1, Proof Verification can be 
solved in polynomial time. The worst-case runtime is O ((|Ax| + |�|) · n + |R| · nk+1), where k is the largest number of assumptions in 
a rule.

Proof. Consider the Algorithm shown in Fig. 1. It basically goes through the sequence of conditionals and verifies that 
they follow from the axioms, assumptions or rules using the previous conditionals. If one conditional does not follow, the 
algorithm returns false. So it is correct by definition.

Checking if a conditional corresponds to an axiom or an assumption can be done in time O (|Ax| + |�|). If this is not 
the case, in the worst-case, we have to check for every inference rule if it can be used to derive φn from φ1, . . . , φn−1. For 
this, we have to check at most 

(n
k

) = O (nk) possible instantiations of the assumptions. Doing this for all rules results in 
O (|R| · nk) time. The overall runtime is then O (

∑n
i=0 ·(|Ax| + |�| + |R| · nk)) = O ((|Ax| + |�|) · n + |R| · nk+1), where k is the 

largest number of assumptions in a rule. Dependent on the selected rules, we have k ∈ {1, 2, 3}. �
For example, we have k = 2 for SIMPLE and STAR and k = 3 for BRAN.
An important question is then, how can we find proofs? We can think about the search space as a layered directed 

graph where the first layer consists of the axioms and assumptions. The next layer is then formed by applying inference 
rules to the conditionals that occur in previous layers such that at least one conditional is from the immediately preceding 
layer. Edges indicate which conditionals have been used for the inference. However, in principle, it is possible that the same 
conditional can be derived from two different rules. To avoid ambiguity, we therefore consider a labeled graph, where edges 
are labeled with the rule that has been applied.

Definition 12 (Proof Graph). Given a proof system PS = (Ax, R) and a set of conditionals � (the assumptions), the associated 
proof graph is a layered, labeled directed graph (V , E, L), V = ⋃∞

i=0 V i , L : E → R that is inductively defined as follows:

1. V 0 = � ∪ Ax,
2. For all k ∈N0, Vk+1 is defined as the set of all conditionals φ = (β | α)[l, u] such that we have

Uniqueness φ /∈ ⋃k
j=0 V j and

Derivability there is a rule 
ψ1, . . . ,ψm

φ in R such that ψi ∈ ⋃k
j=0 V j for 1 ≤ i ≤ m.

3. For every rule r :
ψ1, . . . ,ψm

φ that has been used to add a conditional φ to Vk+1, we add corresponding edges {(ψi, φ) |
1 ≤ i ≤ m} to E and label all these edges with r.

We define the depth of the proof graph as the index of the last non-empty layer, that is, as sup{i ∈N0 | V i = ∅}.

By construction, the proof graph does not contain duplicates of conditionals (Uniqueness) and conditionals occur in order 
of their derivability (Derivability).

For every conditional φ ∈ V in the proof graph, we let JR(φ) = {r ∈ R | ∃(ψ, φ) ∈ E : L
(
(ψ, φ)

) = r} denote the rules 
that can be used to derive φ. By going backwards from φ following the edges that justify φ and its predecessors, we can 
construct one or multiple proofs for φ. We let Proofs(φ) denote the set of all proofs for φ that can be constructed in this 
way. Note that Proofs(φ) = {φ} (the only proof for φ in the proof graph is φ itself) if and only if φ ∈ V 0.

Let us make some simple observations about the structure of the proof graph that follow from the construction.

Proposition 14.

1. Non-triviality of derived conditionals: If (β | α)[l, u] ∈ V i for i > 0, then l > 0 or u < 1 (or both).
2. Layer-connectivity: If φ ∈ Vl+1 , then there is a ψ ∈ Vl such that (ψ, φ) ∈ E.
14
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(a)[0.8, 0.9] (a|b)[0.75] (b|a)[0.75] (b)[0.8, 0.9]

(a)[0, 0.875] (b)[0, 0.875]

(a)[0, 0.856] (b)[0, 0.856]

(a)[0, 0.8 + 0.1 · ( 3
4

)k] (b)[0, 0.8 + 0.1 · ( 3
4

)k]

Fig. 2. Infinite subgraph of the proof graph for Example 19.

Proof. 1. If l = 0 and u = 1, then (β | α)[0, 1] is an axiom and therefore contained in V 0. By Uniqueness, it cannot occur in 
V i for i > 0.

2. For the sake of contradiction, assume that there is no such ψ ∈ Vl . Then there must be an inference rule 
ψ1, . . . ,ψl

φ

such that ψi ∈ ⋃l−1
j=0 V j for 1 ≤ i ≤ l. But then φ is derivable in an earlier layer and we must have φ ∈ V j for some j ≤ l

contradicting Uniqueness. �
The first item states that only the first layer can contain trivial conditionals (because they are axioms). As we illustrated 

in Example 18, they can be useful in proofs, but should not be derived. The second item states that every conditional in a 
new layer must use some new information that has been added in the previous layer.

If the proof graph was always finite, it would be easy to generate upper bounds for the complexity of finding a proof. 
Unfortunately, this is not necessarily the case. Let us first note that the first layer of the proof graph is already infinitely 
large. This is because there is an infinite number of propositional formulae and we have an axiom for every formula that 
states that the probability is between 0 and 1. Subsequent layers can be infinitely large as well dependent on the inference 
rules that we consider. For example, IR allows deriving an infinite (even uncountable) number of inferences from every 
non-trivial inference in our proof graph. For example, consider a derived conditional (β | α)[l, u] such that l > 0. Then, IR
allows deriving all conditionals in the (uncountable) set {(β | α)[l′, u] | 0 < l′ < l}. Similarly, rules like CI and DI that extend 
formulae can result in an infinite number of inferences. For example, consider again a derived conditional (β | α)[l, u] with 
l > 0. Then, for every propositional formula γ , DI and the axiom (γ | α)[0, 1] allow inferring (β ∨ γ | α)[l, 1].

What is perhaps more surprising is that the proof graph can also be infinitely deep even if we do not apply any axioms 
and use only PMP as an inference rule. We illustrate this in the following example.

Example 19. Consider a propositional language over A = {a, b}. Suppose that

� = {(a)[0.8,0.9], (b)[0.8,0.9], (a | b)[0.75], (b | a)[0.75]}.
Note that we have completely symmetric knowledge about a and b. Therefore, everything that we can derive about a can 
be derived symmetrically for b.

V 0 contains �. We can apply PMP to (a)[0.8, 0.9] and (b | a)[0.75] to derive (b)[0, 0.875]. Symmetrically, we can derive 
(a)[0, 0.875] and add both to V 1.

In V 1, we can now use (a)[0, 0.875] and (b | a)[0.75] to derive (b)[0, 0.85625]. Symmetrically, we can derive 
(a)[0, 0.85625] and add both to V 2.

In this way, we are creating a sequence of conditionals (a)[0, uk] for Vk , where u0 = 0.9 and uk = 0.75 · uk−1 + 0.2 for 
k > 0. As we explain below, this sequence converges to 0.8. However, it will never actually take this value and so the proof 
graph is infinitely deep because every subsequent layer contains a tighter upper bound for a (and b). We illustrate the 
infinite subgraph in Fig. 2.

For completeness, we explain why the sequence converges to 0.8 without ever actually taking this value. This part can be 
skipped and is not important for the following. One can show by induction that uk = 0.9 · 0.75k + 0.2 ·∑k−1 0.75i . Note that 
i=0

15
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Sk = ∑k−1
i=0 0.75i is a geometric series and therefore Sk = 1−0.75k

1−0.75 = 4 ·(1 −0.75k). Hence, uk = 0.9 ·0.75k +0.2 ·4 ·(1 −0.75k) =
0.75k · (0.9 − 0.8) + 0.8 = 0.8 + 0.1 · 0.75k . Since 0.1 · 0.75k is strictly monotonically decreasing, uk is strictly monotonically 
decreasing. Furthermore, uk > 0.8 for all k ∈N and limk→∞ uk = 0.8.

We can apply a linear programming solver to confirm that the knowledgebase in the previous example entails (a)[0.8]. 
However, there does not exist a proof for this statement in SIMPLE, even though we can come arbitrarily close. The fact 
that a proof does not exist is not surprising since our proof systems are not complete. However, it is interesting to note that 
statements that can be proved can have arbitrarily long proofs. In order to derive the conditional (a)[0, uk] in our previous 
example, we need 2k − 1 inference steps. This means, in particular, that “short” proofs (e.g., with length polynomial in the 
size of the knowledge base) for a conditional may not exist even if it can be proved in the proof system. However, let 
us note that, by construction, the proofs in the proof graph are never unnecessarily verbose. That is, when removing any 
assumptions in the proof, it is no longer a proof.

Proposition 15. For every conditional φ in the proof graph and for every proof ψ1, . . . , ψn, φ in Proofs(φ), there does not exist another 
proof ψ ′

1, . . . , ψ
′
n′ , φ in Proofs(φ) such that {ψ ′

1, . . . , ψ
′
n′ } � {ψ1, . . . , ψn}.

Proof. The claim follows by induction over the depth d of φ. If d = 0, then φ must be an axiom or an assumption in � and 
the only proof is φ itself.

For the induction step, suppose that the claim is true for all d ≤ N and consider a conditional φ at depth N + 1. 
For the sake of contradiction, assume that there is another proof ψ ′

1, . . . , ψ ′
n′ , φ in Proofs(φ) such that {ψ ′

1, . . . , ψ
′
n′ } �

{ψ1, . . . , ψn}. Let k be the smallest index such that {ψ ′
1, . . . , ψ

′
k} = {ψ1, . . . , ψk} and {ψ ′

1, . . . , ψ
′
k+1} = {ψ1, . . . , ψk+1}. Then 

ψ ′
1, . . . , ψ

′
k, ψ

′
k+1 is a proof for ψ ′

k+1. By induction assumption, there can be no extension of this proof in the proof graph. 
Hence, we must have ψ ′

k+1 = ψk+1 and therefore {ψ ′
1, . . . , ψ

′
k+1} = {ψ1, . . . , ψk+1}, which is a contradiction. �

In order to build up probabilistic arguments from a given set of assumptions, we can consider a restricted forward 
search, where we start from the assumptions and generate new conditionals successively by applying selected inference 
rules. This corresponds to generating a subset of the proof graph. Axioms should not be generated explicitly, but only be 
used implicitly when they allow making a non-trivial inference as in Example 18. When applying forward search, we may 
also avoid creating longer and longer conditionals by excluding inference rules like CN, CI and DI and ICI or using them only 
in restricted ways. The way we restrict their use depends on the application and the structure of our assumptions �. For 
example, if � contains only Horn-like conditionals with a single literal in the head and a (possibly empty) conjunction of 
literals in the body, then we could allow only inferring conditionals whose head and body is a (possibly empty) conjunction 
of literals.

While forward search is well suited to build up arguments bottom-up, sometimes we may be interested in deriving a 
non-trivial bound for a particular qualitative conditional (β|α), that is, finding a probability interval [l, u] � [0, 1] such that 
� �PS (β|α)[l, u]. In this case, backward search is better suited. That is, we try to find an inference rule that allows us to 
infer something interesting about (β|α) and continue recursively with the premises of the rule until all non-instantiated 
conditionals have been replaced with assumptions or axioms, or we find that we cannot derive anything interesting.

However, as the proof graphs can, in general, be infinitely wide and deep, heuristics are needed for both forward and 
backward search. One natural idea is to order the inference rules by their comprehensibility and relevance for the appli-
cation. One way to do this is to start from a minimal proof systems and to extend it incrementally if more inferences are 
needed. For example, if we want to use BRAN in our application, we could start finding proofs for SIMPLE, then go to STAR
and then to BRAN if no proof can be found in the simpler proof systems.

4. Probabilistic argumentation

We now turn to probabilistic argumentation. In the following subsections, we consider a notion of a probabilistic argu-
ment, and how we can construct them using a proof system. We then consider types of argument graph and properties of 
them.

4.1. Arguments

From now on, we consider an argument as a set of consistent probability statements (premises) and an inference from 
the those premises (a claim).

Definition 13. Let � ⊆ L(A), and ψ ∈ L(A). 〈�, ψ〉 is a protoargument iff (1) � |= ψ and (2) Sat(�) = ∅. 〈�, ψ〉 is an
argument iff (1) 〈�, ψ〉 is a protoargument and (2) there is no �′ s.t. �′ ⊂ � and �′ |= ψ .

So a protoargument has premises that are sufficient to entail the claim and the premises are consistent, and an argument 
is a protoargument that also ensures that there is no subset of premises that already entails the claim.
16
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Example 20. If {(a|b)[p], (b)[q]} ⊆ �, then PMP for point probabilities implies that the following is a protoargument, where 
r = min{1, p · q + 1 − q}.

〈{(a|b)[p], (b)[q]}, (a)[p · q, r]〉
Clearly, both (a|b)[p] and (b)[q] are necessary to derive the claim, so the protoargument is also an argument.

Example 21. If {(a|b)[0.8], (b)[0.7]} ⊆ �, then, as in the previous example, PMP for point probabilities implies that the follow-
ing is an argument.

〈{(a|b)[0.8], (b)[0.7]}, (a)[0.56,0.86]〉

Let us note that every node in a proof graph corresponds to a protoargument.

Proposition 16. Let PS = (Ax, R) be a sound proof system and let � be a satisfiable set of conditionals. For every node φ in 
the associated proof graph (V , E, l), every proof (φ1, . . . , φn) ∈ Proofs(φ) (φ = φn) in the graph corresponds to a protoargument 
〈{φ1, . . . , φn−1}, φ〉.

Proof. The definition of a proof graph and soundness of PS imply that (φ1, . . . , φn) is a valid proof for φ, that is, 
{φ1, . . . , φn−1} |= φ. Furthermore, satisfiability of � and soundness of PS imply that {φ1, . . . , φn−1} is still satisfiable. Hence, 
〈{φ1, . . . , φn−1}, φ〉 is a protoargument. �

Conceptually, it is possible that Proofs(φ) contains two proofs such that one is a shorter version of the other (using 
different inference rules). In this case, the longer version is a protoargument, but not an argument. In fact, even the shortest 
proof may not correspond to an argument because it is possible that our inference rules are not sufficient to find a minimal 
set of conditionals that (semantically) entail φ. We illustrate this in the following example.

Example 22. Consider the knowledgebase � = {(a)[0.2], (¬a | a)[0]} and suppose that we use the proof system SIMPLE
that contains only the inference rule PMP. Then the proof graph contains the proof (a)[0.2], (¬a | a)[0], (¬a)[0, 0.8]. How-
ever, while 〈{(a)[0.2], (¬a | a)[0]}, (¬a)[0, 0.8]〉 is a protoargument, it is not an argument because (a)[0.2] already entails 
(¬a)[0.8] and therefore also (¬a)[0, 0.8]. Note that when we add the inference rule CN, the proof graph does indeed contain 
the shorter proof (a)[0.2], (¬a)[0, 0.8] instead of the previous one.

From the perspective of an agent who is only aware of some inference rules, an argument may not be comprehensible if 
it is not derivable in the corresponding proof system. Therefore, we introduce arguments relative to a proof system.

Definition 14. Let �PS be the consequence relation for a sound proof system PS. Also let � ⊆ L(A), and ψ ∈ L(A), 〈�, ψ〉
is a PS protoargument iff (1) � �PS ψ and (2) Sat(�) = ∅. 〈�, ψ〉 is a PS argument iff (1) 〈�, ψ〉 is a PS protoargument 
and (2) there is no �′ s.t. �′ ⊂ � and �′ �PS ψ .

Let us note that PS protoarguments are always protoarguments.

Proposition 17. For all sound proof systems PS and arguments A, if A is a PS protoargument, then A is a protoargument.

Proof. Let �PS be the consequence relation for PS. Assume A is a PS-protoargument. So � �PS ψ and Sat(�) = ∅. By 
soundness of PS, we have � |= ψ . Hence, A is a protoargument. �

However, not every protoargument is a PS protoargument. For instance, in Example 22, the following is a protoargument 
(and also an argument), but not a SIMPLE protoargument.

〈{(a)[0.2]}, (¬a)[0,0.8]〉
Let us also note that arguments and PS arguments are incomparable in the sense that none is a subset of the 

other. For instance, in Example 22, 〈{(a)[0.2], (¬a | a)[0]}, (¬a)[0, 0.8]〉 is a SIMPLE argument, but not an argument and 
〈{(a)[0.2]}, (¬a)[0, 0.8]〉 is an argument, but not a SIMPLE argument.

Proposition 15 implies that arguments for a given knowledgebase and proof system can be generated by building up the 
corresponding proof graph.

Corollary 2. Let PS = (Ax, R) be a sound proof system and let � be a satisfiable set of conditionals. For every node φ in the as-
sociated proof graph (V , E, l), every proof (φ1, . . . , φn) ∈ Proofs(φ) (φ = φn) in the graph corresponds to a PS protoargument 
〈{φ1, . . . , φn−1}, φ〉.
17



A. Hunter and N. Potyka Artificial Intelligence 321 (2023) 103934
We introduce some additional terminology that will be useful in the following. For an argument A = 〈�, ψ〉, we refer to 
� as the support of A and denote it by Support(A). We refer to ψ as the claim of A and denote it by Claim(A).

Example 23. For A = 〈{(a|b)[0.8], (b)[0.7]}, (a)[0.56, 0.86]〉, Support(A) = {(a|b)[0.8], (b)[0.7]}, and Claim(A) = (a)[0.56, 0.86].

A key advantage of using a proof system is that we can explain the inference of a claim of an argument from the support 
of the argument in terms of specific rules. If we use the linear programming approach, it can be difficult to understand how 
the claim follows from the support. Hence, using a proof system makes the argumentation process more transparent.

4.2. Argument graphs

We assume that a knowledgebase can be inconsistent. Therefore, we may obtain arguments from the knowledgebase 
that have supports that are inconsistent with each other. Therefore, we need to consider counterarguments. We define an 
argument being counterargument to another argument in terms of unsatisfiability.

Definition 15. The following are types of attack where A and B are arguments.

• A is a rebuttal of B if Sat({Claim(A), Claim(B)}) = ∅.
• A is a direct undercut of B if ∃ψ ∈ Support(B) s.t. Sat({Claim(A), ψ}) = ∅.
• A is an undercut of B if ∃� ⊆ Support(B) s.t. Sat({Claim(A)} ∪ �) = ∅.

We may refer to rebuttal by rb, to undercut by un, and to direct undercut by du.

So for a pair of arguments, an attack is either based on a conflict between the heads, or the head of one and the body 
of the other.

Example 24. The following are examples of counterarguments.

• 〈{(a|b)[0.8], (b)[0.7]}, (a)[0.56, 0.86]〉 is a rebuttal of 〈{(¬a|c)[0.9], (c)[0.9]}, (¬a)[0.81, 0.91]〉 because the claims are not 
satisfiable together.

• 〈{(a)[0.5, 0.8]}, (a)[0.5, 0.6]〉 is a rebuttal of 〈{(a)[0.7, 0.9]}, (a)[0.7, 0.9]〉 because the claims are not satisfiable together.
• 〈{(¬b)[0.8]}, (¬b)[0.8]〉 is a direct undercut of 〈{(a|b)[0.9], (b)[0.9]}, (a)[0.81, 0.91]〉 because the claim of the attacker is 

not satisfiable with the premise (b)[0.9] in the attackee.
• 〈{(a|b)[0.2]}, (a|b)[0.2]〉 is an undercut of 〈{(c|a)[1], (a|b)[1], (b)[1]}, (a)[1]〉 because the claim of the attacker is not 

satisfiable with the premises (a|b)[1] and (b)[1] in the attackee.
• 〈{(¬b|d)[0.9], (d)[0.9]}, (¬b)[0.81, 0.91]〉 is an undercut of 〈{(a|b)[1], (b|c)[1], (c)[1]}, (a)[1]〉 because the claim of the 

attacker is not satisfiable with the premises {(b|c)[1], (c)[1]} in the attackee, since these premises imply (b)[1] which is 
not satisfiable with the claim (¬b)[0.81, 0.91].

Let us note the following relationships between the different attack relations.

Proposition 18. Let A and B be arguments: (1) If A is a rebuttal of B, then A is an undercut of B; (2) If A is a direct undercut of B, 
then A is an undercut of B.

Based on our different types of attacks, we can associate every knowledgebase � consisting of probabilistic conditionals 
with an argument graph G = (N , R), where for each argument A ∈ N , Support(A) ⊆ �, and (A, B) ∈ R if there is an 
attack (rebuttal/(direct) undercut) from A to B . We do not impose the condition that for every subset of � ⊆ �, there is 
an argument A ∈ N , such that Support(A) = �. So a knowledgebase can be associated with more than one argument graph 
(e.g. Examples 25 and 28).

Example 25. The following is an argument graph constructed using SIMPLE arguments from � = {(a|b)[0.9], (b)[0.9],
(¬b)[0.7]}. Using dialectical semantics (Definition 9), the argument at the leaf is the only acceptable argument in grounded, 
preferred, and stable, extensions.

〈{(a|b)[0.9], (b)[0.9]}, (a)[0.81, 0.91]〉 〈{(¬b)[0.7]}, (¬b)[0.7]〉
du

Example 26. The following is an argument graph constructed using STAR arguments from � = {(a|b∧ c)[1], (b)[1], (c)[1],
(a)[1], (¬b)[0.7], (¬c)[0.8]}. Using dialectical semantics (Definition 9), the arguments at the leaves are the acceptable argu-
ments in grounded, preferred, and stable, extensions.
18
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〈{(a|b∧ c)[1], (b)[1], (c)[1]}, (a)[1]〉

〈{(¬b)[0.7]}, (¬b)[0.7]〉 〈{(¬c)[0.8]}, (¬c)[0.8]〉

du du

Given a knowledgebase, a type of argument (SIMPLE argument, STAR argument, etc), and a type of attack (rebuttal, 
undercut, direct undercut), we can use the following definition of an exhaustive argument graph which is an argument 
graph that contains every argument of the specified type from the knowledge and every attack of the specified type.

Definition 16. For proof system PS, let ArgsPS(�) be the set of PS arguments formed from � defined as follows.

ArgsPS(�) = {〈�,ψ〉 | � ⊆ � and � = ∅ and � �PS ψ and there is no �′ ⊂ � s.t. �′ �PS ψ}
For a proof system PS, and ρ ∈ {rb, du, un}, let AttacksPS

ρ (�) be the set of attacks of type ρ formed from � (i.e. 
AttacksPS

ρ (�) = {A, B ∈ ArgsPS(�) | A is a ρ attack of B}). An exhaustive graph formed from �, denoted GPS
ρ (�), is the ar-

gument graph (ArgsPS(�), AttacksPS
ρ (�)).

We assume that exhaustive graphs can be constructed by applying the inference rules for a proof system exhaustively. 
However, with some combinations of inference rules, and specific knowledgebases, there can be an infinite number of 
arguments (e.g., Example 19).

We illustrate exhaustive graphs with the following examples. Note, in the examples of exhaustive graphs, we will exclude 
arguments corresponding to axioms. So for example, we do not include ∅ �PS (φ | ψ)[0, 1]. We exclude them because they 
are not of relevance when considering conflicting evidence. They are tautologies and do not provide any useful information 
for the topic of discussion.

Example 27. For � = {(a)[0.9], (a)[0.7], (a)[0.5]}, the following is the exhaustive argument graph using STAR arguments, 
and rebuttal, or undercut, or direct undercut.

〈{(a)[0.9]}, (a)[0.9]〉

〈{(a)[0.7]}, (a)[0.7]〉 〈{(a)[0.5]}, (a)[0.5]〉

rb/du rb/du

rb/du

Example 28. For � = {(a|b)[0.9], (b)[0.9], (¬b)[0.7]}, the following is the exhaustive argument graph using STAR argu-
ments, and undercut, or direct undercut.

A1 = 〈{(a|b)[0.9], (b)[0.9]}, (a)[0.81, 0.91]〉

A2 = 〈{(¬b)[0.7]}, (¬b)[0.7]〉

A3 = 〈{(b)[0.9]}, (b)[0.9]〉

A4 = 〈{(a|b)[0.9]}, (a|b)[0.9]〉

du

rb/du rb/du

So the argument graph provides a transparent representation of the arguments and counterarguments whether they have 
produced exhaustively or through some selection process.

4.3. Analyzing argument graphs

In order to analyze the argument graphs, we can use dialectical semantics as we will discuss in Section 4.3.1 or we can 
use the epistemic approach as we will discuss in Section 4.3.2.

Whether we use the dialectical or epistemic approaches, there is a form of incompleteness when using a proof system 
PS (i.e. there may be inferences that are valid according to the semantics but that are not obtained by PS). This raises two 
issues that we would like to consider next.

The first issue is the potential incompleteness of the argument graph when using a proof system. When we construct an 
argument graph, then all the arguments in the graph are constructed using PS. So if PS is incomplete, then there may 
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be inferences that are valid according to the semantics but that are not obtained by a proof system PS. Hence there are 
arguments that can be obtained by the semantics but cannot be obtained as arguments when using PS. While a complete 
proof system would be interesting, we believe that even an incomplete system is useful for many applications. Let us first 
note that we can always perform complete reasoning by using the linear programming approach to solve the probabilistic 
satisfiability or entailment problem as highlighted in Proposition 1. Theoretically, it could be used to exhaustively test all 
potential arguments and to add them to the graph. However, since there is typically an (uncountably) infinite number 
of arguments, this is not a practical approach. Proof systems allow us to infer arguments in a more systematic manner 
by applying a forward search that successively extends the knowledge base with inferred conditionals. Since our proof 
systems are equipped with quite intuitive inference rules, the reasoning is, in particular, transparent for users with some 
background knowledge in probability theory. If the user is unsatisfied with the argumentation graph because it leaves an 
important question unanswered, we can still apply the linear programming approach in order to see if the knowledge base 
does allow entailing something interesting about the question (the derived interval is not the full probability interval [0, 1]) 
and to add corresponding arguments to the graph.

Let us also note that when human agents consider a problem in terms of arguments, they are not normally exhaustive 
in terms of the arguments they consider. Similarly, when human agents enter into a discussion, they are not exhaustive in 
the arguments they exchange in their dialogue. Rather, they consider or exchange sufficient arguments with which to get 
an understanding of a topic, and thereby draw any required conclusions. In the context of the healthcare applications we 
consider in this paper, such as the case studies in Section 4.4, we envisage that the process of constructing an argument 
graph is an interactive process whereby the user chooses the arguments to put into the argument graph, perhaps with 
prompts, suggestions, or checks by the automated reasoning machinery.

The second issue concerns the consistency of the extensions that are obtained from an argument graph constructed using 
a proof system PS. When we have an argument graph, whether it is exhaustive or not, we obtain a subset of the arguments 
as an extension, using Dung’s dialectical semantics, or using the epistemic approach. Given this extension, we may want to 
know whether the union of the claims of the arguments in the extension, or the union of the premises of the arguments 
in the extension, is consistent. In general, we do not rely on the structure of the argument graph to ensure consistency of 
the claims or premises of the extension. Rather, we see the primary role of the argument graph is to present arguments 
and counterarguments to a user so that they can see points of view in the knowledge, rather than to automatically check 
or resolve inconsistency. However, if the consistency of the claims or support of the arguments in an extension is not 
guaranteed to be consistent, then we employ consistency checking methods such as the one based on linear optimization 
explained in Proposition 1. We will expand on these issues in the following subsections.

4.3.1. Analyzing argument graphs with a dialectical approach
Given an argument graph G , we can apply the definitions for dialectical semantics that we reviewed in Section 2.2. For 

instance, if we consider Example 28, then we have the empty set as the grounded extension, we have {A1, A3, A4} and 
{A2, A4} as preferred extensions, and we have {A2, A4} as the stable extension.

In order to investigate the nature of the dialectical semantics for analyzing the argument graphs, we introduce the 
following properties which capture two ways to describe the consistency of an extension. The first property holds if for 
each extension, the support of the arguments in the extension constitutes a consistent set, and the second property holds if 
for each extension, the claims of the arguments in the extension constitute a consistent set.

Definition 17. For an argument graph G and a dialectical semantics σ , such as grounded, preferred, or stable, the dialectical 
support coherence (DSC) and dialectical claim coherence (DCC) properties are defined as follows.

for all � ∈ Extensionσ (G), Sat(∪A∈�Support(A)) = ∅ (DSC)

for all � ∈ Extensionσ (G), Sat(∪A∈�Claim(A)) = ∅ (DCC)

In the following, we consider examples to illustrate satisfaction and failure of the DSC and DCC properties.

Example 29. Consider the argument graph in Example 28. For this graph, and for each of grounded, preferred, and stable, 
semantics, the DSC and DCC properties hold.

Example 30. For � = {(a)[1], (b|a)[1], (a|b)[0.5], (b)[0.5]}, the following is the exhaustive argument graph using SIMPLE
arguments, and rebuttal. So there is a preferred extension where the union of the premises is �, which is unsatisfiable, and 
so the DSC property does not hold, whereas for the ground extension, the DSC property does hold.
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A1 = 〈{(a|b)[0.5]}, (a|b)[0.5]〉 A2 = 〈{(b|a)[1]}, (b|a)[1]〉

A3 = 〈{(b|a)[1], (a)[1]}, (b)[1]〉 A4 = 〈{(b)[0.5]}, (b)[0.5]〉

A5 = 〈{(a|b)[0.5], (b)[0.5]}, (a)[0.25, 0.75]〉 A6 = 〈{(a)[1]}, (a)[1]〉rb

rb

Example 31. For � = {(a)[1], (b∨ c)[1], (¬b|a)[1], (¬c|a)[1]}, the following is the exhaustive argument graph us-
ing SIMPLE arguments, and rebuttal, undercut, or direct undercut. The preferred and grounded extension contains 
all the arguments, but the union of the premises is �, which is unsatisfiable, and the union of the claims is 
{(¬b|a)[1], (¬c|a)[1], (b∨ c)[1], (a)[1], (¬b)[1], (¬c)[1]}, which is also unsatisfiable. So neither the DSC property nor the 
DCC property holds.

A1 = 〈{(¬b|a)[1]}, (¬b|a)[1]〉 A2 = 〈{(¬b|a)[1], (a)[1]}, (¬b)[1]〉

A3 = 〈{(¬c|a)[1]}, (¬c|a)[1]〉 A4 = 〈{(¬c|a)[1], (a)[1]}, (¬c)[1]〉

A5 = 〈{(b∨ c)[1]}, (b∨ c)[1]〉 A6 = 〈{(a)[1]}, (a)[1]〉

Despite the above examples, there are proof systems, with restrictions on the argumentation, for which we can show 
that the extensions are consistent. Since there are many proof systems we could consider, we illustrate this claim with 
the following straightforward result. For this, we restrict the arguments using the following definition: An argument A is a
literal argument iff Claim(A) is of the form (α)[u, v] and α is a literal.

Proposition 19. Let P S be the SIMPLE proof system, and let ρ be rebuttal. For a knowledgebase �, if G is the subgraph of GPS
ρ (�) that 

contains all the literal arguments and the arcs involving those literal arguments, then the DCC property holds with grounded, preferred, 
or stable, semantics.

Proof. The DCC property does not hold iff there is an extension � s.t. Sat(∪A∈�Claim(A)) = ∅. Each argument in G has a 
claim of the form (α)[u, v] where α is a literal. So ∪A∈�Claim(A) is a set of literals. So the DCC property does not hold 
iff there is a subset �′ of an extension such that �′ contains two arguments, and Sat(∪A∈�′ Claim(A)) = ∅. Since the attack 
relation is rebuttal, for each pair of arguments A and B in G , there is an arc from A to B iff {Claim(A), Claim(B)} � ⊥. So A
and B cannot both be in the same extension. So there is no subset �′ of an extension such that �′ contains two arguments, 
and Sat(∪A∈�′ Claim(A)) = ∅. So the DCC property holds. �

Another approach to ensuring consistency of an extension would be to use the approach of argumentation with sets 
of arguments [23,61]. For this, we can generalize the notion of attack (i.e. Definition 15) so that we allow attack relations 
to be from a set of arguments to an argument. For instance, the set of arguments {A1, . . . , An} is a set rebuttal of an 
argument B if Sat({Claim(A1), . . . , Claim(An), Claim(B)}) = ∅ and there is no subset {A′

1, . . . , A
′
m} ⊆ {A1, . . . , An} such that 

Sat({Claim(A′
1), . . . , Claim(A′

m), Claim(B)}) = ∅. Then we can use the definitions for extensions given in [23,61] that are 
a direct generalization of the definitions given in Section 2.2. Using set rebuttal, the claims in an extension would be 
consistent, and using set undercut, the supports in an extension would be consistent, for any proof system P S . We leave 
the development of this alternative to future work.

To recap, in general, we do not rely on analyzing argument graphs (exhaustive or non-exhaustive) with the dialectical 
approach to ensure that the union of support of the arguments in an extension, or set of the claims of the arguments in 
the extension, is consistent (i.e. the DCC and DSC properties). As we can see from the above examples, DCC and DSC are not 
guaranteed to hold. However, for some specific cases of proof systems and argumentation, we can guarantee that analyzing
exhaustive graphs with dialectical semantics does ensure consistency of claims or supports in the extensions, as illustrated 
by Proposition 19.

4.3.2. Analyzing argument graphs with the epistemic approach
In the epistemic approach to probabilistic argumentation, a probability is assigned to each argument to denote the 

probability that it is acceptable [46,89]. For an argument A, π(A) represents the degree of belief that A is acceptable. We 
assume that there is an underlying probability distribution over the set of arguments. In other words, there is a probability 
assignment to each element in the powerset of arguments such that the sum is 1, and then π(A) is the marginal distribution 
for {A}. The probability distribution can be assigned so that π is a function of the belief in the composition of the argument 
itself (for example, as a function of the belief in its premises, belief in its claim, and belief in the derivation of the claim from 
the premises), and the belief in the acceptability of other relevant arguments (e.g. directly/indirectly supporting or attacking). 
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How we might formalize this depends on the kinds of arguments we are dealing with and the kinds of application. We give 
one option for defining π later in this subsection.

The epistemic approach provides a finer grained assessment of an argument graph than given by Dung’s definition of 
extensions. By adopting constraints on the distribution, the epistemic approach subsumes Dung’s approach [44,89]. However, 
there is also a need for a non-standard view where we adopt alternative constraints on the distribution. For instance, we 
may wish to represent disbelief in arguments even when they are unattacked [68]. This might be because we disbelieve an 
argument but do not have the evidence for a counterargument.

Constraints on the probability function π can take account of the structure of the graph such as COH, RAT, and OPT 
below [46,89]. The COH and RAT constraints model the general requirement that, if belief in an argument is high, then the 
belief in an argument attacked by it should be low. While RAT captures a rather crisp version of the requirement, COH 
is a continuous version. The OPT constraint states the degree of belief in an argument should be bounded from below by 
one minus the sum of the beliefs in the attackers. There is a range of possible constraints [44,50,69], and a number of 
interrelationships identified between them (e.g. COH is a special case of RAT). So ensuring the probability function satisfies 
one or more of postulates such as these would mean that the attack relation is respected by the probability function.

COH π is coherent w.r.t. G if for all (A, B) ∈ Arcs(G) then π(A) ≤ 1 − π(B).
RAT π is rational w.r.t. G if for all (A, B) ∈ Arcs(G) then π(A) > 0.5 implies π(B) ≤ 0.5.
OPT π is optimistic w.r.t. G if π(A) ≥ 1 − ∑

B s.t. (B,A)∈Arcs(G) π(B) for every A ∈ Nodes(G).

As explained above, there are various ways that a probability function π can be defined. Here, we will assume that 
the probability is a function of the belief in the premises being correct. We can therefore view this probability as a meta-
level representation of uncertainty, and so it is orthogonal to the object-level uncertainty represented by the conditional 
statements in the premises. To obtain this, we start with the following definition of a meta-level probability function that 
assigns a probability value to each subset of the knowledgebase.

Definition 18. For a knowledgebase �, a meta-level probability function for � is π : ℘(�) → [0, 1] such that: ∑
�⊆� π(�) = 1.

In the above definition, the mass assigned to the subsets sums to 1. We regard the assignment as the probability that 
the subset is the correct knowledgebase (i.e. the subset that contains the formulae that are correct). We then use this in 
the following definition for the probability of acceptability of an argument. It sums the probability assigned to the subsets 
of the knowledgebase that contain the premises of the argument. So the more mass assigned to subsets that contain the 
support of the argument, the higher the probability of acceptability of the argument.

Definition 19. For an argument A where Support(A) ⊆ �, and a meta-level probability function π for �, the probability of 
acceptability of A is

π(A) =
∑

�⊆� s.t. Support(A)⊆�

π(�)

Given a meta-level probability function π , we can then identify the arguments in the graph that have a probability of 
acceptability greater than 0.5. This gives us the epistemic extension according to π .

Definition 20. For an argument graph G , and a meta-level probability function π for �, the epistemic extension is

Extensionπ (G) = {A ∈ Nodes(G) | π(A) > 0.5}

Example 32. For � = {(a|b)[0.9], (b)[0.9], (¬b)[0.7]}, consider the exhaustive argument graph in Example 28. Let the meta-
level probability function π be specified as below. For sets � that are not listed below, π(�) = 0.

π({(b)[0.9]}) = 0.1 π({(a|b)[0.9], (b)[0.9]}) = 0.2 π({(¬b)[0.7]) = 0.7

So π(A1) = 0.2, π(A2) = 0.7, and π(A3) = 0.3. So Extensionπ (G) = {A2}.

Next, we consider optional constraints on meta-level probability functions. The first constraint below ensures that no 
mass is assigned to inconsistent subsets.

Definition 21. For a knowledgebase �, and a meta-level probability function π for �, the consistency constraint is that for 
all � ⊆ �, if Sat(�) = ∅, then π(�) = 0.
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Whilst the above consistency constraint may be desirable, we do not want to always impose it since there are situations 
where we have some belief in an inconsistent set of formulae since we are unable to isolate a consistent subset that we 
believe. So in the worst case, we would assign a probability of 1 to the whole knowledgebase, and in the best case, we 
would have isolated a consistent subset of the knowledge to which we would assign a probability of 1. In between these 
extremes, we would assign mass to multiple sets, which would preferably be consistent, though may be inconsistent. When 
we construct arguments from a knowledgebase �, we accept that � could be inconsistent. Indeed, if it is consistent, then 
there will be no counterarguments from �. Without the meta-level probability function, we treat all the formulae as equally 
likely. So the use of a meta-level probability function is just a refinement of this. Furthermore, we would imagine when 
an argument graph is constructed from �, the meta-level probability function could be refined incrementally, perhaps in 
parallel with adding conditional statements to � so that an increasingly informed analysis of the information is made, and 
that eventually the users can indeed isolate a consistent subset of the knowledge with a probability assignment of 1.

Definition 22. For a knowledgebase �, and a meta-level probability function π for �, the entailment constraint is: If 
Sat(�) ⊆ Sat(�′), then π(�) ≤ π(�′), for �, �′ ⊆ �.

The above property ensures that, for example, belief in (a)[0, 1] should be greater than belief in (a)[0.4, 0.7] or belief in 
(a ∨ b)[0.4, 0.7] should be greater than belief in (a)[0.4, 0.7].

Example 33. Consider the meta-level probability function specified as below. This meta-level probability function satisfies 
the entailment constraint.

π({(b∨ c)[0.6,0.9]}) = 0.14
π({(b)[0.6,0.9]}) = 0.09
π({(b)[0.8,0.9]}) = 0.07

π({(d|e)[0.6,0.9], (e)[0.5,0.9]}) = 0.49
π({(d|e)[0.6,0.9], (¬e)[0.6,0.7]) = 0.21

Proposition 20. For a knowledgebase �, and a meta-level probability function π for �, the entailment constraint implies the following 
property: If {φ} |= ψ , then π(φ) ≤ π(ψ), for φ, ψ ∈ �

Proof. Assume {φ} |= ψ . So by definition of the entailment relation, Sat({φ}) ⊆ Sat({ψ}). So the entailment constraint im-
plies π(φ) ≤ π(ψ). �

We now present two properties concerning the union of the support (respectively union of the claims) of arguments in 
the epistemic extension of an argument graph.

Definition 23. For an argument graph G and a meta-level probability function π , the epistemic support coherence (ESC)
and epistemic claim coherence (ECC) properties are defined as follows.

Sat(∪A∈Extensionπ (G)Support(A)) = ∅ (ESC)

Sat(∪A∈Extensionπ (G)Claim(A)) = ∅ (ECC)

To illustrate these properties, we give two examples where the properties hold, and then an example where the property 
fails.

Example 34. From Example 28, consider � = {(a|b)[0.9], (b)[0.9], (¬b)[0.7]}. Let π be a meta-level probability function 
where π({(a|b)[0.9], (b)[0.9]}) = 0.9 and π({(¬b)[0.7]}) = 0.1. For the exhaustive argument graph G in Example 28, 
Extensionπ (G) = {A1, A3, A4}. So the ESC and ECC properties hold for this graph.

Example 35. From Example 30, consider � = {(a)[1], (b|a)[1], (a|b)[0.5], (b)[0.5]}. Let π be a meta-level probability func-
tion where π({(a)[1], (b|a)[1]}) = 0.6 and π({(a|b)[0.5], (b)[0.5]}) = 0.4. For the exhaustive argument graph G in Exam-
ple 30, Extensionπ (G) = {A2, A3, A6}. So the ESC and ECC properties hold for this graph.

Example 36. Continuing Example 35, we consider an alternative meta-level probability function π ′ where π ′({(a)[1],
(b|a)[1]}, (a|b)[0.5], (b)[0.5]}) = 1. For the exhaustive argument graph G in Example 30, Extensionπ (G) = {A1, A2, A3, A4,

A5, A6}. Because we have used a meta-level probability function that violates the consistency constraint (Definition 21), the 
ESC and ECC properties do not hold for this argument graph. Furthermore, π violates the COH and RAT constraints, and 
therefore it ignores the structure of the argument graph. So the choice of this meta-level probability function is questionable 
for this argument graph.
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For the following results, we use the following definition where A is an argument and π is a meta-level probability 
function for �: Supportersπ (A) = {� ⊆ � | Support(A) ⊆ � and π(�) > 0}.

Proposition 21. For an argument graph G and a meta-level probability function π , if π satisfies the consistency constraint (Defini-
tion 21), then the epistemic support coherence (ESC) and epistemic claim coherence (ECC) properties hold.

Proof. To show epistemic support coherence, we assume Sat(∪A∈Extensionπ (G)Support(A)) = ∅, and derive a contradic-
tion as follows. From Sat(∪A∈Extensionπ (G)Support(A)) = ∅, there is one or more subsets � of ∪A∈Extensionπ (G)Support(A)

that is a minimal inconsistent subset (i.e. Sat(�) = ∅, and for all �′ ⊂ �, Sat(�′) = ∅). So for each minimal incon-
sistent subset �, there are arguments Ai, A j ∈ Extensionπ (G), and there are φi, φ j ∈ � such that φi ∈ Ai and φi /∈ A j
and φ j /∈ Ai and φ j ∈ A j . Recall the consistency constraint holds. So for all � ⊆ �, where π(�) > 0, if Support(Ai) ⊆ �, 
then Support(A j) � �, and if Support(A j) ⊆ �, then Support(Ai) � �. So Supportersπ (Ai) ∩ Supportersπ (A j) = ∅. So ∑

�∈Supportersπ (Ai)
π(�) + ∑

�∈Supportersπ (A j)
π(�) ≤ 1. So π(Ai) ≤ 0.5 or π(A j) ≤ 0.5. So this contradicts Ai and A j being 

in Extensionπ (G). From this contradiction, we infer Sat(∪A∈Extensionπ (G)Support(A)) = ∅. To show epistemic claim coherence, 
we assume epistemic support coherence holds. Since each argument A is such that Support(A) �P S Claim(A), it is the case 
that Sat(∪A∈Extensionπ (G)Claim(A)) = ∅. �

The following result shows that COH and RAT hold when π satisfies the consistency constraint. We would aim for the 
consistency constraint to hold, and so if it holds, we get the desirable properties of COH and RAT which ensure that the 
epistemic extension respects the structure of the graph (i.e. the extension does not contain both an attacker and attackee).

Proposition 22. For an argument graph G and a meta-level probability function π , if π satisfies the consistency constraint (Defini-
tion 21), then π is coherent and rational.

Proof. Assume that (A, B) ∈ Arcs(G). So A attacks B , and so Sat(Support(A) ∪ Support(B)) = ∅. But since A and B are 
arguments, Sat(Support(A)) = ∅ and Sat(Support(B)) = ∅. So there are φ, ψ such that φ ∈ A and φ /∈ B and ψ /∈ A and 
ψ ∈ B . Recall the consistency constraint holds. So for all � ⊆ �, where π(�) > 0, if Support(A) ⊆ �, then Support(B) �
�, and if Support(A) ⊆ �, then Support(B) � �. So Supporters(A) ∩ Supporters(B) = ∅. So 

∑
�∈Supporters(A) π(�) +∑

�∈Supporters(B) π(�) ≤ 1. So π(A) ≤ 1 − π(B). So COH holds. Since, COH implies RAT, RAT also holds. �
Example 32 shows that OPT does not hold in general (for instance, π(A1) = 0.2, π(A2) = 0.7, and (A2, A1) holds, so 

π(A1) � 1 − π(A2), and hence OPT fails). Whilst OPT is an interesting property for investigating argumentation systems, 
and in some applications it is a desirable property, we do not believe that it essential for our purposes in this paper. Indeed, 
in the epistemic approach, as discussed in [44], we want the flexibility to disbelieve an argument, even if there is not an 
attacker of it that is believed. For instance, if we are analyzing medical evidence, we may have an unattacked argument that 
is based on evidence that we do not believe, but we do not have evidence to construct a counterargument, and so we may 
choose to disbelieve the argument even though it is unattacked.

For applications of analyzing conflicting evidence, the epistemic approach allows for the representation of meta-level 
uncertainty, and this can then be used to identify the arguments that have a probability of acceptability above a certain 
threshold such as 0.5. So the individual arguments, counterarguments, and supporting arguments, capture the object-level 
uncertainty in the evidence (using the conditionals), and then the epistemic approach captures the meta-level uncertainty.

In order to ensure that the ESC and ECC properties hold, we can seek a meta-level probability function that satisfies the 
consistency constraint. Since we are dealing with inconsistent knowledge, we are likely to have an incomplete understanding 
of which formulae are correct (otherwise, we would be able to select a consistent subset with total confidence and eliminate 
the rest). From the incomplete understanding of the formulae, we might be able to identify some of the formulae that we 
either have strong belief or strong disbelief, and then select the maximum entropy distribution that is consistent with these 
beliefs.

4.4. Case studies

For our case studies, we consider the adequacy of our proposals for managing evidence in healthcare via the following 
examples.

Example 37. Consider a scenario where we have three studies concerning patients with a specific disease and treatment. 
Two of the studies have similar results about the efficacy being 0.91 and 0.87 respectively whereas one study has a much 
lower value of 0.24. We use the following atoms.

c the patient is cured of the disease
d the patient has the disease
t the patient has the drug treatment
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The argument graph below is obtained using a variant of the STAR consequence relation that also includes the IR inference 
rule. The premises of A1 imply (c)[0.91] and the premises of A2 imply (c)[0.87]. From these, we infer (c)[0.87, 0.91] using 
interval relaxation. So the claims of A1 and A2 both rebut the claim of A3.

A1 = 〈{(c|d∧ t)[0.91], (d∧ t)[1]}, (c)[0.87, 0.91]〉

A2 = 〈{(c|d∧ t)[0.87], (d∧ t)[1]}, (c)[0.87, 0.91]〉

A3 = 〈{(c|d∧ t)[0.24], (d∧ t)[1]}, (c)[0.24]〉

rb

rb

Also suppose the first two studies were reliable large studies whereas the third was a smaller less reliable study. Given that 
the first two studies were large reliable studies, the belief in the premises could be much higher than for the third study. 
For this, we use the following meta-level probability function π . Hence, the belief in the first two arguments is higher than 
the third.

π(�)({(c|d∧ t)[0.91], (c|d∧ t)[0.87], (d∧ t)[1]}) = 0.9
π({(c|d∧ t)[0.24], (d∧ t)[1]}) = 0.1

This example shows how clinical evidence can naturally be represented as conditionals, and these used in arguments to 
reason about efficacy of treatments. The premises and claim of each argument are explicitly presented, and the derivation 
of the claim from the premises is straightforward to identify. Furthermore, similar results from clinical studies can give 
multiple arguments with the same claim, and results that are substantially different can give rebutting arguments.

Note, in the above example, the meta-level probability function assigns non-zero mass to the first set and that set is 
inconsistent. Recall that the meta-level probability function assigns a value to indicate the probability that the subset of 
the knowledgebase is the correct subset. Whilst in general, it is desirable that mass is not assigned to an inconsistent set, 
we can see that there is only small difference in the two conditionals, and so the inconsistency could be viewed as minor. 
In future work, we will investigate using inconsistency measures to analyze inconsistent subsets, and set a threshold for 
tolerable inconsistency.

In our next example, we consider how we can we use the meta-level probability function to capture a preference for 
arguments based on more specialized information.

Example 38. Consider a scenario where we have three studies concerning observable hypertension in people over 80 years 
of age. The first study is the prevalence in the population in this age group, the second study is prevalence in those that have 
a treatment for hypertension, and the third study is the prevalence in those that are treated with angiotensin-2 receptor 
blocker which is a common specific treatment for hypertension. We use the following atoms.

o a random individual who is over 80 years
h the blood pressure is above the normal range (hypertension is observable)
t treated with a medicine for hypertension
a treated with angiotensin-2 receptor blocker

We represent this scenario in Fig. 3. If we want to express a preference for the more specific information, we can use the 
meta-level probability distribution below. Hence, the belief in the third argument is highest, and it is the only argument in 
the epistemic extension.

π({(h|o)[0.72], (0)[1]}) = 0.1
π({(h|o∧ t)[0.25], (0∧ t)[1]}) = 0.2
π({(h|o∧ a)[0.12], (o∧ a)[1]}) = 0.7

This example shows how different observational studies (studies that track classes of patient) give rebutting arguments. 
Each observational study can be naturally represented as a conditional. Furthermore, we see different studies are based on 
different criteria. By using a meta-level distribution, we can obtain the argument based on the most specific evidence.

In the following examples, we introduce the notion of supporting argument. This allows for larger arguments to be split 
into multiple subsidiary arguments. Furthermore, it allows for transparency in the probabilistic reasoning as we can break 
up the reasoning so that there is only one or two inference steps per argument.

Definition 24. For arguments A and B , if Sat(Support(A) ∪ Support(B)) = ∅, and Claim(A) ∈ Support(B) then A is a direct 
support of B .
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A1 = 〈{(h|o)[0.72], (o)[1]}, (h)[0.72]〉

A2 = 〈{(h|o∧ t)[0.25], (o∧ t)[1]}, (h)[0.25]〉

A3 = 〈{(h|o∧ a)[0.12], (o∧ a)[1]}, (h)[0.12]〉

rb

rb

rb

Fig. 3. Argument graph for Example 38.

When an argument A supports and an argument B , we call A a supporting argument for B . When we present argument 
graphs, we will use a dashed line as illustrated in the following example.

Example 39. Consider a scenario that involves identifying the diagnosis and appropriate treatment of appendicitis. We use 
the following atoms.

a the patient has appendicitis
p the patient has pain from appendix
e the patient has eaten a large meal in the past 4 hours
pa the patient has pain in the abdomen
i the patient has indigestion
ia the patient has an inflamed appendix
es the patient has swelling around appendix in a scan
ea the patient has enlarged appendix
ks the patient has keyhole surgery
r the patient has recovered in 2 weeks

We represent this scenario in Fig. 4. We explain the conditionals in the arguments as follows: A1 concerns the probability 
that a patient does not have pain from appendix when they have had a large meal and they are likely to be suffering from 
indigestion; A2 concerns the probability that a patient has an inflamed appendix when they have pain from the appendix; 
A3 concerns the probability that a patient has an enlarged appendix when they have swelling around appendix in a scan; 
A4 concerns the probability of the conjunction of probability of inflamed appendix and enlarged appendix; A5 concerns the 
probability that a patient has appendicitis given they have an inflamed appendix and enlarged appendix; And A6 concerns 
the probability that a patient has recovered within 2 weeks given that they have appendicitis, and they have had keyhole 
surgery. We assume a meta-level probability function over the formulae such that the belief in A1 is below 0.5, and the 
belief in the other arguments is above 0.5.

This example shows how we might use conditionals that come from observational studies, or from analysis of patient 
records, in order to capture supporting and attacking arguments relevant to a prognosis.

In the next example, we see an issue that arises when using conditional probabilities for considering statistical informa-
tion about populations and epistemic information about individuals. Since we want to use argumentation as a means for 
bringing together both statistical and epistemic usage of probabilities, we need ways to deal with this multi-modal usage. 
[38] proposed a first-order probabilistic logic that allows reasoning about both types of probabilities, but many reasoning 
problems are undecidable in this language. Therefore, we use an extra-logic solution here.

Essentially, in our extra-logical solution, we will adopt a policy where we use different propositional letters to distinguish 
between using a probability to represent statistical information and using a probability to represent epistemic information. 
For instance, in the following example, we use pp to denote that a random individual tests positive, and p to denote that 
the patient we are concerned with tests positive. Similarly, we use pd to denote that a random individual has the disease, 
and d to denote that the patient we are concerned with has the disease. Note, there is nothing in particular in this policy 
about the population level proposition to start with pp. We can use any name for any proposition.

Next, we make a connection between the symbols so that we can for instance reason about conditionals concerning 
the population in general, and reason about conditionals concerning a specified individual. So for instance in the following 
example, A1 involves statistical reasoning to infer the claim (pd|pp)[0.495] which says that the probability that a randomly 
selected member of the population has the disease given that they have tested positive is 0.495, and A2 which involves 
empirical reasoning with the premise (d|p)[0.495] which says that the probability that the specific patient has the disease 
given that they have tested positive is 0.495. Since, A1 is a supporting argument to A2, we make the connection explicit by 
adding a label to the arc between A1 and A2 in the graph specifying which atoms are connected going from the population 
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A1 = 〈{(¬p|i)[0.7], (i|e∧ pa)[0.95], (e ∧ pa)[1]}, (¬p)[0.67, 0.72]〉

A2 = 〈{(ia|p)[0.7], (p)[0.8]}, (ia)[0.56, 0.76]〉

du

A3 = 〈{(ea|es)[0.8], (es)[0.95]}, (ea)[0.76, 0.81]〉

A4 = 〈{(ia)[0.56, 0.76], (ea)[0.76, 0.81]}, (ia ∧ ea)[0.32, 0.76]〉

A5 = 〈{(a|ia ∧ ea)[0.99], (ia ∧ ea)[0.32, 0.76]}, (a)[0.32, 1]〉

A6 = 〈{(r|ks)[0.99], (ks|a)[1], (a)[0.32, 1]}, (r)[0.32, 1]〉

Fig. 4. Argument graph for Example 39.

level to the individual level. So for this example, we add the label composed of pd �→ d and pp �→ p. By using this explicit 
mapping, we clearly specify that the claim of A1 can be used as a premise in A2.

In order to capture this connection, we expand the definition of support (as follows) so that it makes explicit how the 
symbols in the claim of the supporting argument are related to the symbols in the supported premise.

Definition 25. Let � = {α1 �→ β1, . . . , αn �→ βn} be a set of mappings from a propositional atom to another propositional 
atom, and for a formula φ, let φ ◦ � denote the result of replacing each occurrence of αi in the formula φ by βi for each 
αi �→ βi ∈ �, and for a set of formulae �, let � ◦ � denote {φ ◦ � | φ ∈ �}. For arguments A and B , if Sat((Support(A) ◦
�) ∪ Support(B)) = ∅, and (Claim(A) ◦ �) ∈ Support(B) then A is an instantiated support of B .

This policy does not affect the individual arguments as they are a set of premises that imply the claim using the specific 
inference rules. However, the policy is in effect generalizing the definition of a support relationship. Essentially, for an 
argument A to support an argument B , instead of stipulating that the claim of A is a premise of B, we now stipulate that 
the formulae obtained by applying the mapping to the claim of A is a premise of B .

Example 40. Consider a diagnosis where we have a specific test and from this diagnosis and a treatment, we want to infer 
the probability that they will be cured. The sensitivity of the test is 99% and the probability of a positive test result is 0.2. 
Suppose that the prevalence of the disease is such that the probability that someone has the disease is 0.1. Also suppose 
that the probability someone is cured from the disease given the diagnosis and the treatment is 0.83.

The argument graph in Fig. 5 is obtained using the BRAN consequence relation, and it uses the following atoms.

pp a random individual in the population tests positive
pd a random individual in the population has the disease
p the patient we are concerned with tests positive
d the patient we are concerned with has the disease
t the patient we are concerned with has the treatment
c the patient we are concerned with is cured

This example shows how we can harness Bayesian reasoning in arguments about tests and diagnosis. Furthermore, it il-
lustrates a way of connecting reasoning about specific individuals and reasoning about classes of individuals which can be 
important for argumentation with evidence in healthcare.

Whilst there are substantial proposals for first-order probabilistic logics that combine reasoning about classes of indi-
viduals and reasoning about specific individuals (see for example [7,38]), they involve more complex formalisms that go 
beyond what we require. They provide logics that combine statistical statements, and default statements, to give rich and 
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A1 = 〈{(pd)[0.1], (pp)[0.2], (pp|pd)[0.99]}, (pd|pp)[0.495]〉

A2 = 〈{(d|p)[0.495], (p)[1]}, (d)[0.495]〉

A3 = 〈{(d)[0.495], (t)[1]}, (d∧ t)[0.495]〉

A4 = 〈{(c|d ∧ t)[0.83], (d∧ t)[0.495]}, (c)[0.41, 0.92]〉

{pd �→ d,pp �→ p}

Fig. 5. Argument graph for Example 40.

expressive formalisms. Furthermore, the reasoning problems in Halpern’s logic are undecidable. We have taken a different 
approach that is a policy to relate symbols as used in different arguments. This simpler approach is decidable and sufficient 
for our purposes. At the level of the argument graph, our approach allows for a transparent method for relating specific 
individuals to randomly selected individuals.

The use of Bayes rule is common in analyzing healthcare evidence. In the previous example, we considered how the 
BRAN consequence relation, which incorporates the BR proof rule, can be used for argumentation about diagnosis. In the 
next example, we consider using it in arguments about prognosis.

Example 41. Consider diagnosis scenario where we have a specific test and a specific prognostic indicator such as a pre-
existing condition. Suppose the probability of a positive result given the person has the disease is 0.9, and the probability 
of the prognositic indicator given the person the disease is 0.7. Suppose that the prevalence of the disease is such that 
the probability that someone has the disease is 0.1. Also suppose the prevalence of having a positive test result and the 
prognositic indicator is 0.1. We use the following atoms.

d a randomly selected patient has the disease
p a randomly selected patient has a positive test result
i a randomly selected patient has the prognostic indicator

The following is the argument graph obtained using the BRAN consequence relation.

A1 = 〈{(p|d)[0.9], (i|d)[0.85]}, (p ∧ i|d)[0.75, 0.85]〉

A2 = 〈{(p ∧ i|d)[0.75, 0.85](d)[0.1], (p ∧ i)[0.1]}, (d|p ∧ i)[0.75, 0.85]〉

This example illustrates how we can use Bayesian reasoning in reasoning with both a clinical test and a prognostic indicator 
in order to construct an argument for a prognosis.

Example 42. Consider a scenario where we have two studies concerning patients with a specific disease and two treatments 
with the same specific side-effect. The first study is for T1 that shows a very high efficacy (0.91) but also a reasonably 
high probability of the side-effect (0.23), and the second study is for T2 that show a high efficacy (0.79) but a very low 
probability of the side-effect (0.0001). We use the following atoms.

c the patient is cured
d the patient has the disease
t1 the patient has drug treatment T1
t2 the patient has drug treatment T2
se the patient has a serious side-effect
a1 treatment T1 is assumed to be safe
a2 treatment T2 is assumed to be safe
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The following is the argument graph for treatment T1 obtained using the STAR consequence relation and direct undercut.

A1 = 〈{(¬a1|se∧ t1)[1], (se|d∧ t1)[0.23], (d∧ t1)[1]}, (¬a1)[0.23]〉

A2 = 〈{(c|d∧ t1)[0.91], (d∧ t1)[1]}, (c)[0.91]〉

A3 = 〈{(a1)[1], (c)[0.91]}, (a1 ∧ c)[0.91]〉

du

Given the claim of A1 has a quite high probability that the treatment is not assumed to be safe (i.e. ¬a1[0.23]), then we 
may wish to regard the argument as having a high probability of acceptability. So we could assume a meta-level probability 
function over the formulae such that the belief in A1 is above 0.5, and the belief in A2 and A3 is below 0.5.

The following is the argument graph for treatment T2 obtained using the STAR consequence relation and direct undercut.

A′
1 = 〈{(¬a2|se∧ t2)[1], (se|d∧ t2)[0.0001], (d∧ t2)[1]}, (¬a2)[0.0001]〉

A′
2 = 〈{(c|d∧ t2)[0.79], (d∧ t2)[1]}, (c)[0.79]〉

A′
3 = 〈{(a2)[1], (c)[0.79]}, (a2 ∧ c)[0.79]〉

du

Given the claim of A′
1 has a very low probability that the treatment is not assumed to be safe (i.e. ¬as[0.0001]), then we 

may wish to regard the argument as having a low probability of acceptability. So we could assume a meta-level probability 
function over the formulae such that the belief in A′

1 is below 0.5, and the belief in the other arguments is above 0.5.
So we have made explicit the supporting and counterarguments for each treatment. Then using the epistemic approach to 

probabilistic argumentation, we determine that the argument A3 is not acceptable (and so treatment T1 cannot be assumed 
to be safe as a cure) whereas the argument A′

3 is acceptable (and so treatment T2 can be assumed to be safe as a cure).
This example illustrates how we can present arguments (supporting and attacking) concerning the benefits and problems 

for specific treatments. This makes explicit the evidence and how it is used.

Part of the aim of argumentation is to highlight important inconsistencies, and hence we might want to suppress minor 
inconsistencies. There are various ways we may wish to suppress minor inconsistencies, depending in the information we 
are dealing with. For instance, we could use IR which would give a single claim with a probability interval. However, we 
may wish to keep two conflicting claims, and thereby see the two points of view on the claim but ignore the attack between 
them. For instance, in the above example, we see that the difference in the probabilities of the inferences from A1 and A2 
is small. In such a case, we may wish to ignore the inconsistencies, and therefore ignore the attack relationship. We will 
explore how we decide to suppress inconsistencies, and with what mechanisms, in future work.

As we explained in Section 4.3, we do not use dialectical semantics, or the epistemic approach to argumentation, to 
ensure that the union of the support of the arguments, or the union of the claims of the arguments, in an extension to be 
consistent. In other words, we do not assume that the DSC, DCC, ESC, or ECC properties hold in general, though, as we have 
shown, the DSC and DCC properties hold for some proof systems and forms of argumentation, and the ESC and ECC property 
hold if the meta-level probability function satisfies the consistency constraint. So when we want to ensure these properties 
hold, we use consistency checking. For the kinds of healthcare case studies we have considered in this section, when the 
ESC or ECC properties do not hold for an argument graph, it means that we need to investigate the knowledgebase (or seek 
more information, do further data analytics on patient records, or even do more experimental/clinical studies) in order to 
revise the meta-level probability function and/or knowledgebase. As an interim step, constructing an argument graph for 
which the ESC or ECC properties fail may be useful to help revise the meta-level probability function and perhaps to add to 
the knowledgebase.

5. Comparison with the literature

The proposal in this paper is related to work in abstract argumentation, structured argumentation, and probabilistic 
logics as we discuss in the following subsections.

5.1. Abstract argumentation

Two key approaches to probabilistic abstract argumentation are the constellations and the epistemic approaches [46]: 
In the constellations approach, there is uncertainty over the structure of the graph (e.g. [24,45,53]) and in the epistemic 
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approach there is uncertainty about whether an argument is believed to be acceptable [10,33,44,46,89]. A further approach 
is based on labellings for arguments using in, out, and undecided, from [15], augmented with off for arguments not occurring 
in the graph [82]. A probability distribution over labellings gives a form of probabilistic argumentation that overlaps with 
the constellations and epistemic approaches. These approaches provide some clear and intuitive options for conceptualizing 
uncertainty in abstract argumentation. However, the arguments are abstract, and therefore the structure of them is not 
considered.

An alternative to probabilistic abstract argumentation is graded and ranking–based semantics proposed for a number of 
argumentation frameworks [1,2,8,12,13,17,25,71,72,77,78,86]. An interesting aspect of these approaches is the proposal of 
a range of postulates for how the strength of an argument is influenced by the strength of other arguments. Many assign 
a value in the unit interval to arguments, though without a probabilistic interpretation. The postulates offer natural and 
intuitive behaviors for non-probabilistic interpretation, but often are not consistent with the laws of probability theory. 
Furthermore, since the arguments are abstract, there is no internal structure.

5.2. Probabilistic argumentation

At the structured level, Haenni [36] proposed an approach to probabilistic argumentation in which pros and cons are 
generated from a classical logic knowledgebase, and then a probability distribution over models of the language is used to 
assign a belief in each argument. Subsequently, this was generalized by Hunter to arbitrary argument graphs [46] in which 
various kinds of counterargument can be accommodated. Probabilistic extensions of ABA and ASPIC+ have been discussed 
in [16,24] and [79]. In other logic-based proposals, Verheij has combined probabilities with non-monotonic inference [93], 
and separately, he has combined qualitative reasoning in terms of reasons and defeaters (adapting Pollock’s definitions [73]), 
with quantitative reasoning using argument strength, modeled as the conditional probability of the conclusions given the 
premises [94]. In another proposal, that extends the use of a probability distribution over possible worlds, Verheij [95] has 
presented a framework for argumentation that allows for the strength of logical arguments to be determined in terms of 
conditional probabilities.

The epistemic approach to probabilistic argumentation has been harnessed in a framework that allows for the generation 
of all possible arguments based in the language, then arguments are selected for presentation in an argument based on 
the probability distribution and the requirements for the graph (i.e. rather than exhaustively present all arguments, present 
those that are useful to a purpose according to some specified criteria) [47]. In all these proposals at the structured level 
(discussed in this section), the language is a form of propositional language, rather than a probabilistic language, the in-
ference relation is for rules or propositional formulae, rather than inference for the probabilistic formulae. These proposals 
provide means for quantifying uncertainty in logical reasoning in structured arguments, but they do not provide the ability 
for representing and reasoning directly with conditional probability statements in structured arguments.

Other logics have been used in forms of probabilistic argumentation. In a rule-based system for dialogical argumentation, 
the belief in the premises of an argument is used to calculate the belief in the argument, though the nature of this belief 
is not investigated [85]. More recently, a probabilistic formulae of the form P (α)#v where α is a propositional formula, 
# ∈ {<, ≤, =, ≥, >}, and v ∈ [0, 1] has been used in a form of deductive argumentation [48]. This proposal also considered 
how sets of formulae could be relaxed to allow for the identification of a probability distribution for the epistemic approach 
to probabilistic argumentation to be used. However, this proposal does not provide the ability for representing and reasoning 
directly with conditional probability statements in structured arguments.

Conditional probabilities have been considered as an approach to quantifying argument strength but this work did not 
consider reasoning with conditions nor how they can be used in instantiating argument graphs [67]. More recently, con-
ditional probabilities have been captured in a form of defeasible rule in defeasible logic programming which limits the 
reasoning to a form of modus ponens [21]. This enables uncertainty in logic programming to be quantified. However, it does 
not provide the richer reasoning with conditional probability statements that is required for instance for reasoning with 
evidence as discussed in this paper.

Conditional probabilities have also been used to interpret an attack by one argument on another [66]. The premise ψ
attacks the claim φ when P (¬φ | ψ) ≥ t for some threshold t . Various properties of this interpretation are then investi-
gated theoretically and with participants. However, this proposal does not consider how to construct arguments based on 
conditional probability statements.

5.3. Probabilistic logics

Our probabilistic argumentation approach is founded on probabilistic conditional logic [37,60]. The original propositional 
setting has been extended to more expressive logical languages [30,51,55] and to higher-order probabilities and nested 
conditionals [19,88]. State-of-the art reasoners are usually based on a linear programming formulation of the probabilistic 
entailment problem that uses column generation techniques [14,27,32]. As we mentioned before, a proof system for prob-
abilistic conditional logic has been presented in [29]. The linear programming approach receives more attention because it 
is easier to implement. However, it has also been suggested to combine proof systems with linear programming approaches 
[43]. As we mentioned before, [29] presented 32 sound inference rules for probabilistic logic. In contrast to our work, the 
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rules have been designed with short proofs in mind, whereas our focus is on rules that are close to logical and basic prob-
abilistic reasoning rules with focus on comprehensibility rather than generality and conciseness. Also, the soundness proofs 
of the rules in [29] have been left to the reader, whereas we give all soundness proofs for our rules in this paper. We could 
add some of the rules in [29] to our proof system to make it stronger. However, some of the rules are very specific and 
perhaps more interesting for a general logical setting than an argumentation setting where we are interested in modeling 
the reasoning of human experts like medical doctors or lawyers. For example, rule (i) in [29] has the form

(α | δ)[x, y] (α ∨ β | δ)[u, v] (α ∧ β | δ)[w, z]
(β | δ)[s, t]

where s = max{w, u − y + w} and t = max{v, v − x + z}. However, some of our rules also occur in [29]. Our rule CN
corresponds to rule (iv), our axioms to rule (xvi), IR to rule (xix), CI to (xxv), CE to (xxvi), DI to (xxvii) and DE to (xxvii). 
As the rules in [29] are quite general, it may be possible to derive our remaining rules from them. However, we did not 
check this as our focus is not on finding a compact proof system, but one that is well suited for transparent probabilistic 
argumentation. For example, Bayes’ rule is probably well known to most people applying probabilistic models so that a 
proof that uses BR is more comprehensible than one that derives the conclusion of BR using more primitive rules. What 
seems more interesting for our purpose are the rules from [29] that include classical logical assumptions, which may also 
be interesting for the argumentation setting and for reasoning about causality. However, we leave the discussion of these 
issues for future work.

Another (incomplete) set of inference rules has been presented in [70]. The motivation of this work is closer to ours 
in that it tries to capture human inference by these rules. The paper presents 14 inference rules. As opposed to our rules, 
these rules allow only point probabilities (rather than probability intervals) in the premises. Our rule CI corresponds to And
in [70]. There is also an Or-rule in [70], but it allows connecting the conditions disjunctively rather than the consequents of 
conditionals. The authors present a Probabilistic Modus Ponens and Probabilistic Modus Tollens. While the former correspond 
to the special case of our PMP for point probabilities, the latter has the form

(β | α)[p2] (β)[p3]
(¬α)[p1,1]

where l1 = max{ 1−p2−p3
1−p1

, p1+p2−1
p1

}, u1 = 1 for the Probabilistic Modus Tollens. Note that the reason that they derived a lower, 
while we derived an upper bound for PMT is simply that PMT speaks about the probability of α, not about the probability of 
¬α. The remaining rules in [70] are inspired by classical logic rules as well and include probabilistic variants of Left Logical 
Equivalence, Right Weakening and Cautious Monotonicity. Generalizing these rules to interval probabilities and including 
them in our proof system is another interesting task for future work.

There has been some other work on restricted proof systems. Another Generalized Modus Ponens has been presented 
in [88]. As opposed to our GPMP, it generalizes PMP by allowing not only conditioning on a formula, but conditioning 
on another conditional. Adam’s probability logic [22] allows to derive some statements about the probability of formulae 
based on classical rules that they are involved in and the probabilities of their premises. That is, given a classical rule, 
B1, . . . , Bn → H , one can derive some bounds on P (H) based on the probabilities of P (B1), . . . , P (Bn).

Proof systems have also been considered for probabilistic inference processes [81]. As opposed to our setting, where 
we reason over all probability distributions that satisfy our conditionals, an inference process picks a particular probability 
distribution. One popular example is choosing the distribution that maximizes entropy.

To the best of our knowledge, larger proof systems for probabilistic logic have not yet been applied to argumentation 
problems. However, let us note that a structured probabilistic argumentation approach that uses one variant of the Proba-
bilistic Modus Ponens has recently been applied to planning under uncertainty [56].

6. Discussion

In this paper, we have proposed a set of sound inference rules for probabilistic logic that can be used within a frame-
work for probabilistic argumentation. We can choose the set of inference rules we use according to the application. Each 
probabilistic argument provides a set of premises and a claim following from those premises. We have defined three types 
of attack relation (rebut, undercut, and direct undercut), and a type of support relation.

These proposals allow us to meet the requirements for argumentation with conditional probabilities that we presented 
in the introduction. We are able to provide transparent reasoning with conditional probabilities where each argument is 
based on one or two inference steps, and then sequences of inference step are captured by the support relation. This allows 
us to see how the more complex arguments are composed from simpler arguments, and to see which inference rules are 
used. We are also able to represent meta-level uncertainty over conditional probabilities using the epistemic approach to 
probabilistic argumentation, and hence we can represent and reason with both object-level and meta-level uncertainty in 
the computational argumentation.

Not all inconsistencies between conditionals are the same, which raises the question of how close do probabilities need 
to be for inconsistency to be void? For example, (a)[0.8] and (a)[0.81] are close and seem almost “consistent” together. 
Also if one proposition has a wide interval then it denotes lower confidence. For example, in the formula (a)[0, 0.8], there 
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is a wide interval, and so there is little confidence in what the probability of a is. We can apply methods for measuring 
inconsistency in probabilistic logics [20,74,90] and inconsistency-tolerant probabilistic reasoning [4,59,75,80] to analyze and 
to deal with inconsistencies. From an argumentation viewpoint, we may also tolerate (i.e. ignore) an attack by one argument 
when the degree of inconsistency is low (e.g. when the entailed probabilities are different but close). In addition, we want to 
investigate robustness analysis by finding probability distributions that flip an epistemic extension (i.e. change the acceptable 
arguments), and we want to investigate how evidence can be aggregated so that arguments can combine evidence from 
multiple sources (e.g. if there are multiple randomized clinical trials involving the same treatments, and they have similar 
outcomes as represented by the conditionals, how can they be aggregated).

Also in future work, we want to extend the language so that we can consider Boolean combinations of conditionals (in-
cluding propositional formulae that abbreviate conditionals of the form (φ)[1]) which will allow a richer range of evidence 
to be represented. We also want to extend the framework to allow representation of statements concerning utility, and allow 
for the construction of utility theoretic arguments. To do so, we can build up on earlier combinations of probabilistic logic 
and decision theory [5,65]. This could then offer a more sophisticated approach to argument-based decision making. Utilities 
appear to play an important role in some kinds of arguments, and even though there are a variety of papers that touch on 
utility theory in computational models of argument (e.g. [39,58,62,83–85]), how utilities are used within arguments remains 
to be captured in computational models of argument.

Also, in future work, we want to undertake further analysis of dialectical and epistemic semantics. For the former, we 
would like to investigate connections between extensions and maximal consistent subsets of an inconsistent knowledgebase 
following the analyzes for classical logic [96] and for the latter, we would like to investigate further properties for constrain-
ing probability assignments based on axioms for epistemic approach to probabilistic argumentation [44]. The latter might 
also involve introducing support (e.g. if A supports B , then P (A) ≥ P (B), because Claim(A) ∈ Support(B)).
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