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Objective: Endoscopic endonasal transsphenoidal surgery is an established
technique for the resection of sellar and suprasellar lesions. The approach is
technically challenging and has a steep learning curve. Simulation is a
growing training tool, allowing the acquisition of technical skills pre-clinically
and potentially resulting in a shorter clinical learning curve. We sought
validation of the UpSurgeOn Transsphenoidal (TNS) Box for the endoscopic
endonasal transsphenoidal approach to the pituitary fossa.
Methods: Novice, intermediate and expert neurosurgeons were recruited from
multiple centres. Participants were asked to perform a sphenoidotomy using
the TNS model. Face and content validity were evaluated using a post-task
questionnaire. Construct validity was assessed through post-hoc blinded
scoring of operative videos using a Modified Objective Structured
Assessment of Technical Skills (mOSAT) and a Task-Specific Technical Skill
scoring system.
Results: Fifteen participants were recruited of which n= 10 (66.6%) were
novices and n= 5 (33.3%) were intermediate and expert neurosurgeons.
Three intermediate and experts (60%) agreed that the model was realistic. All
intermediate and experts (n= 5) strongly agreed or agreed that the TNS
model was useful for teaching the endonasal transsphenoidal approach to
the pituitary fossa. The consensus-derived mOSAT score was 16/30 (IQR 14–
16.75) for novices and 29/30 (IQR 27–29) for intermediate and experts (p <
0.001, Mann–Whitney U ). The median Task-Specific Technical Skill score
was 10/20 (IQR 8.25–13) for novices and 18/20 (IQR 17.75–19) for
intermediate and experts (p < 0.001, Mann-Whitney U). Interrater reliability
was 0.949 (CI 0.983–0.853) for OSATS and 0.945 (CI 0.981–0.842) for Task-
Specific Technical Skills. Suggested improvements for the model included
the addition of neuro-vascular anatomy and arachnoid mater to simulate
bleeding vessels and CSF leak, respectively, as well as improvement in
materials to reproduce the consistency closer to that of human tissue and
bone.
Conclusion: The TNS Box simulation model has demonstrated face, content,
and construct validity as a simulator for the endoscopic endonasal
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transsphenoidal approach. With the steep learning curve associated with endoscopic
approaches, this simulation model has the potential as a valuable training tool in
neurosurgery with further improvements including advancing simulation materials,
dynamic models (e.g., with blood flow) and synergy with complementary
technologies (e.g., artificial intelligence and augmented reality).
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Introduction

Simulation-based training has gained widespread

acceptance within neurosurgery over the last decade. This has

primarily been driven by restrictions on trainee working

hours, increased sub-specialisation and the growing demands

to improve patient safety and quality of care (1). These

restrictions have meant it has become increasingly challenging

to gain wide exposure to neurosurgical procedures, develop

surgical skills and achieve the core clinical competencies.

These challenges have further been exacerbated by the recent

COVID-19 pandemic, which led to a reduction in elective and

non-elective cases and subsequently impacted neurosurgical

training (2, 3).

Simulation has been proposed as a potential solution to

these challenges by allowing for the acquisition and

development of technical and non-technical skills in a time-

effective manner (4). It provides a safe, realistic, controlled

environment where technically demanding tasks can be

performed to completion and errors can be made. It permits

trainees to enhance their understanding of complex anatomy

and reduces the learning curve of surgical procedures (5, 6).

High-fidelity simulation is emerging as a powerful, cost-

effective resource within surgical education and has gained

growth in sub-speciality areas in neurosurgery, such as

aneurysmal surgery (7–9) and neuro-oncology (10). With

minimally invasive approaches becoming a standard in the

neurosurgical armamentarium, the use of high-fidelity

simulation has become an increasingly important method to

overcome the steep learning curve associated with these

techniques. This is particularly relevant in endoscopic

endonasal transsphenoidal surgery due to the complex

anatomy, high risk of complications and difficult ergonomics

(11, 12). Additionally, there is heterogeneity in the way these

procedures are performed which may lead to variation in

outcomes (13). As such, dedicated fellowships in endoscopic

endonasal surgery are often required to achieve competencies.

However, gaining proficiency in endoscopic endonasal

techniques requires regular practice and cannot be achieved

by observation alone.

There are several simulators available for neuroendoscopic

approaches ranging from low fidelity bell pepper trainers to

augmented reality (AR)/virtual reality (VR) platforms (14).
02
Many of these have demonstrated validity and utility in

improving operative performance (15–18). VR/AR platforms

have several advantages within neurosurgery including their

low cost, ability to simulate a wide variety of cases and

unlimited repetition. However, a drawback of VR/AR

simulators is they often lack realistic haptic feedback. More

recently, a high-fidelity hybrid (physical and virtual) simulator

(UpSurgeOn, TNS Box) has been developed as means to

provide a realistic, hands-on experience and improve technical

skills in endoscopic endonasal transsphenoidal surgery.

Before implementation as a training tool, however,

simulation models require validation to assess their

effectiveness. Steps of validation include assessment for

realism (face validity), usefulness as a training tool as viewed

by experts (content validity) and the ability to differentiate

levels of surgical experience (construct validity) (19, 20). At

present, there are no validated studies for the UpSurgeOn

TNS model. Herein, we aim to determine if the UpSurgeOn

TNS Box is a valid education tool for endoscopic endonasal

transsphenoidal surgery by assessing its face, content and

construct validity.
Methods

Model

The Transsphenoidal Box (TNS) is a high-fidelity simulator

for the transsphenoidal endonasal approach to the pituitary

fossa (Figures 1, 2). The TNS box comprises of a nasal cavity

with a 3D face overlay and is manufactured using silicones

and resins through 3D printing. The model enables users to

explore the nasal cavity, identify anatomical landmarks and

resect pituitary tumours endoscopically through careful

dissection and drilling techniques.
Participants

Fifteen participants were enrolled in a prospective, single-

centre study. Participants were recruited from multiple

neurosurgical centres within the United Kingdom. Subjects

were categorised as novice- those in neurosurgical training, or
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FIGURE 1

Upsurgeon TNS Box simulator.
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intermediate/experts- senior neurosurgical residents and fellows

with prior dedicated pituitary training, and consultants. The

novice group had no experience in performing endoscopic

transsphenoidal approaches whilst the intermediate and expert

participants had varying experience. Participants completed a

pre-study questionnaire on demographics and self-report of

surgical experience (Appendix 1). Demographic data collected

included age, handedness, speciality, stage of training, number

of operations observed, assisted and performed, and number

of transsphenoidal cases observed, assisted and performed

(Tables 1, 2).
Surgical task

Participants were asked to perform a sphenoidotomy using

the TNS Box. The task was performed endoscopically using the

Olympus S200 visera elite endoscope and participants were

supplied with an instrument set. The task focused on the core

steps and specific technical skills required during the nasal

phase of the eTSA derived from an expert Delphi consensus

(13). The four key steps examined included:
(1) identification of the choana, septum and nasal turbinates

(2) lateral displacement of the superior and middle nasal

turbinate

(3) ability to identify and assess limits of the sphenoid ostium

and

(4) performing an anterior sphenoidotomy appropriately

whilst protecting nasoseptal pedicle.
Frontiers in Surgery 03
Step (1) on the TNS Box is demonstrated in Figure 3 and

anterior sphenoidotomy in Figure 4.
Face and content validity

Intermediate and expert participants completed a post-task

questionnaire to assess simulator realism (face validity) and its

usefulness as a training tool (content validity) based on a 5-

point Likert scale (1 = Strongly Disagree, 2 = Disagree, 3 =

Neither Agree nor Disagree, 4 = Agree, 5 = Strongly Agree)

(Appendix 2) (28).
Construct validity

Construct validity was assessed through a post-hoc

blinded review of recorded videos by two expert authors.

Both expert authors had assisted and performed >150 eTSA

procedures and have trainer roles in this sub-speciality.

Operative performance was assessed using the modified

Objective Structured Assessment of Technical Skills

(OSATS) criteria (Appendix 3) (29). Six metrics were

assessed, and each was ranked from 1 to 5. A Task-Specific

Technical Skill scoring system was generated using

published workflow analyses on endoscopic transsphenoidal

pituitary adenoma resection (13). Each of the four task steps

were ranked from 1 denoting completely inadequate to 5

denoting excellent (Appendix 3).
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FIGURE 2

Workstation set up with the UpSurgeOn TNS Box and endoscope.
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Statistical analysis

Median values for OSATS and Task-Specific Technical skills

were analysed for statistical differences between groups using

Mann-Whitney U test. Analysis was performed using

GraphPad (GraphPad Software Inc, California, USA) and
TABLE 1 Participant demographics.

Novice Intermediate and Expert

Number 10 5

Sex (F : M) 6 : 4 2 : 3

Age median (range) 30 (26–33 years) 39 (33–41 years)

Handedness (R : L) 9 : 1 5 : 0

Frontiers in Surgery 04
SPSS Version 28.0 (IBM, UK). Results with a p-value of <0.05

were considered a statistically significant difference.
Results

Participants

Fifteen participants (10 novices, 1 intermediate and 4

experts) completed the surgical task. The novice group

consisted of 10 neurosurgical trainees ranging from year one

of training to year six and had minimal endoscopic pituitary

experience. The intermediate and expert group were

combined and consisted of one consultant neurosurgeon,

three senior clinical pituitary fellows and one senior resident
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FIGURE 4

Anterior sphenoidotomy performed on the TNS Box.

TABLE 2 Participant experience.

Level Experience <5 5–10 11–20 >20

Novice (n = 10) Observed eTSA 8 1 1 0
Assisted eTSA 9 1 0 0
Performed eTSA
(supervisor scrubbed)

10 0 0 0

Performed eTSA
(supervisor unscrubbed)

10 0 0 0

Intermediate
(n = 1)

Observed eTSA 1 0 0 0
Assisted eTSA 0 0 1 0
Performed eTSA
(supervisor scrubbed)

0 0 0 1

Performed eTSA
(supervisor unscrubbed

1 0 0 0

Expert (n = 4) Observed eTSA 0 0 0 4
Assisted eTSA 0 0 0 4
Performed eTSA
(supervisor scrubbed)

0 0 0 4

Performed eTSA
(supervisor unscrubbed)

0 0 0 4

Newall et al. 10.3389/fsurg.2022.1049685
all of whom had dedicated sub-speciality experience. The

median age of the novice group was 30 years (range: 26–33

years), whereas the median age of the intermediate and expert

group was 39 years (range: 33–41 years). The group consisted

of 8 females (53.3%) and 7 (46.7%) males. Fourteen

participants (93.3%) were right-handed and one participant

(6.7%) was left-handed (Table 1).
Face and content validity

All intermediate and expert participants (n = 5, 100%)

completed the post-task questionnaire. Sixty percent (n = 3) of

intermediate and expert participants agreed that the TNS Box

was realistic, whilst forty percent (n = 2) were neutral.
FIGURE 3

Participant identifying choana and nasal turbinate’s on the TNS Box.

Frontiers in Surgery 05
Intermediate and expert participants strongly agreed (n = 3,

60%) or agreed (n = 2, 40%) that the TNS Box was useful as a

training tool.
Construct validity

The total OSATS and Task-Specific Technical Skills scores

were calculated for each participant. Median total OSATS
FIGURE 5

Total OSAT score for novice and intermediate and expert
participants. The horizontal solid line in the middle of the box is
the median value of the scores and the lower and upper
boundaries indicate the 25th and 75th percentiles, respectively.
The largest and smallest observed values are shown; lines
(whiskers) are drawn from the ends of the box to those values.
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score was 16/30 (IQR 14–16.75) for novices and 29/30 (IQR 27–

29) for intermediate and experts (p < 0.001, Mann-Whitney U)

(Figure 5). Median Task-Specific Technical Skills score was 10/

20 (IQR 8.25–13) for novices and 18/20 (IQR 17.75–19) for

intermediate and experts (p < 0.001, Mann- Whitney U)

(Figure 6). Six of ten novices did not complete sphenoidotomy

whilst all intermediate and experts completed the task.
Interrater reliability

Interrater reliability was used to assess the extent to which

the two raters agreed. Interrater reliability was 0.949 (CI

0.983–0.853) for OSATS and 0.945 (CI 0.981–0.842) for Task-

Specific Technical Skills.
Qualitative feedback

Intermediate and experts were asked to provide feedback on

the TNS model. Responses focused on suggested improvements

including making the models dynamic by introducing CSF and

blood as well as pulsatile vessels. Other responses focused on the

materials used suggesting changes to bone to make it less thick

as well as changes to soft tissue including the mucosa and

tumour. The mucosa was described as too elastic whilst the

tumour was too firm and not in keeping with that of human

tissue.
FIGURE 6

Total task specific technical skills score for novice and intermediate
and expert participants. The horizontal solid line in the middle of the
box is the median value of the scores and the lower and upper
boundaries indicate the 25th and 75th percentiles, respectively.
The largest and smallest observed values are shown; lines
(whiskers) are drawn from the ends of the box to those values.
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Discussion

Principal findings

In this study, we sought validation of the TNS Box for the

endoscopic endonasal transsphenoidal approach. The TNS

Box was validated according to 3 components: face, content

and construct validity. Face validity is a subjective

measurement used to determine if the model provides a

realistic demonstration of the task. In the context of surgical

simulation validation, expert opinions are sought to provide a

reliable measure of face validity. This is, in part, due to the

increased level of familiarity with the operative condition.

Therefore, face validity of the TNS Box in our study was

determined by assessing the responses of the intermediate and

expert neurosurgeons. Responses from intermediate and

experts were variable, with three agreeing the model was

realistic and two remaining neutral. On this basis, the TNS

Box showed moderate face validity.

A goal of simulation is to closely reproduce the advantages

offered by cadaveric training. However, formulating materials to

mimic real tissue and reproducing the haptics of the procedure

can often be challenging. Although realism of the simulator

may be useful for simulation-based training in surgery, several

studies have shown the degree of fidelity appears to be

independent of educational effectiveness, providing the model

meets the functional requirements of the clinical task (6, 30,

31). Other studies have also shown the effect of simulator

fidelity depends upon the experience of the user and goals of

the learner (32), where low-fidelity simulation is more suitable

for initial learning and performance improvement, and high-

fidelity simulation more suitable for the transfer of skills and

assessment (33). In our study, the TNS Box showed high

content validity with all intermediate and experts confirming its

utility as a training tool for the eTSA approach. Furthermore,

nine of ten novices ranked the TNS Box as a useful learning tool.

Finally, an important consideration when validating a

simulation model is its ability to discriminate between different

levels of surgical proficiency. For a simulator to have construct

validity, experts must outperform novices during standardised

simulated tasks. In our study, this was based on performance

scores which considered several parameters including technical

skills and ability to perform sphenoidotomy. Six of ten novices

were unable to perform opening of the sphenoid ostium, whilst

all intermediate and experts performed this task. The TNS

model showed a high construct validity with statistical

differences in both the OSATS and Task-Specific Technical

Skills score between the novice and the intermediate and expert

groups. The construct validity findings were further supported

by high interrater reliability.

Whilst the TNS Box has demonstrated face, content and

construct validity, it does however have several limitations. At
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present, it lacks important neurovascular anatomy including the

carotid arteries and sphenopalatine arteries. These are

important structures to be aware of whilst undertaking this

approach. Another limitation is the type of material used.

Compared to human tissue, the mucosa is more elastic and

the sella is thicker requiring a drill to access the tumour. As

well as that, the tumour is too firm. Due to these limitations,

phases beyond the nasal phase of the procedure were not

evaluated. These aforementioned features could be addressed

in order to reproduce the consistency close to that of human

soft tissue and bone and thus enabling evaluation of the

sphenoid, sellar and closure phases. Additional features to

make the simulator more sophisticated could be the addition

of arachnoid mater in order to simulate CSF leak.
Findings in context of existing literature

Endoscopic endonasal transsphenoidal surgery is a

technically demanding operation with a steep learning curve.

The procedures tend to be low volume but require a high

number to achieve surgical proficiency. As the use of this

approach to treat sellar and suprasellar lesions continues to

expand, there becomes a greater need for the use of training

tools to enhance the understanding of anterior skull base

anatomy and advance neuroendoscopy skills.

There are several challenges inherent to the endoscopic

endonasal transsphenoidal approach which make the use of

simulation models an ideal platform to develop surgical

techniques. Firstly, the endoscope can be technically challenging

to use due to its limited angulation and manoeuvrability.

Secondly, endoscopic transsphenoidal approach (eTSA) to the
TABLE 3 Examples of current simulation models for the endoscopic
endonasal approach.

Simulation
model

Procedure Study

Task trainers/3D
models

Endoscopic endonasal drilling
techniques

Tai et al., 2016
(18)

Pre-operative planning for pituitary
adenoma resection

Huang et al., 2019
(21)

Endoscopic transsphenoidal
pituitary adenoma resection

Okuda et al., 2011
(22)

Cadaveric trainers ICA injury Donoho et al.,
2019 (23)

CSF leak repair AlQahtani et al.,
2020 (24)

Tumour resection Gagliardi et al.,
2018 (25)

VR/AR models NeuroTouch: endoscopic endonasal
transsphenoidal approach

Rosseau et al.,
2013 (17)

Endoscopic endonasal
transsphenoidal approach

Kim et al., 2020
(26)

Pre-operative planning De Notaris et al.,
2014 (27)

Frontiers in Surgery 07
anterior skull base often requires extensive bone work adjacent

to critical neurovascular structures. Thirdly, access to the area is

through a narrow surgical corridor. Limited space, due to the

presence of the endoscope and surgical instruments in the field,

creates ergonomic challenges. Simulation models enable the

trainee to develop these technical skills and gain familiarity with

the instruments used. They enable performance feedback in a

safe environment and have the potential to create and develop

skills transferrable to the operating theatre.

A variety of simulators for training in endoscopic skull base

surgery have been produced (Table 3). Cadaveric models have

been used to simulate injury to the internal carotid artery

(ICA), a rare but life-threatening complication of the eTSA.

Donoho et al. perfused cadavers with artificial blood and

demonstrated face and construct validity, as well as utility as

an educational tool (23, 34). Other cadaveric studies have

looked at simulating CSF leak repair and demonstrated face,

content and construct validity (24).

Advances in 3D printing have allowed for simulation

models to be created for complex surgical pathology with

adequate tactile feedback. Studies have demonstrated their use

in anatomic education (35) and pre-operative planning of

endoscopic endonasal transsphenoidal surgery. Huang et al.

showed the potential of 3D printing to demonstrate adjacent

anatomical relationships and aid planning techniques for

tumour resection (21). Other studies have used 3D models to

improve eTSA technical skills including drilling techniques,

curetting, aspiration and navigation (36, 37). Although these

models have shown potential application, they have not

undergone validation. Other efforts at the simulation of

endoscopic endonasal skull base surgery have included VR

and AR simulation models (17, 26). Although VR/AR has the

potential as an effective educational tool, limitations in haptic

feedback remain a major concern.

In the future, surgical simulations will become more

sophisticated through the integration of high-fidelity haptic

feedback. This will offer several advantages including

improved tissue manipulation, better spatial awareness and a

reduction in surgical complications (38). The integration of

AR into high-fidelity simulators has been a promising new

development. AR overlays have the potential to simulate

variations in surgical anatomy, illustrate various surgical

approaches and develop complex surgical skills (39).

Furthermore, this provides a good solution for high-fidelity

neurosurgical training in low-middle income countries (40).

The application of AI to surgical simulation may prove to be

another useful addition by providing objective feedback on

performance and differentiating between skill levels (41).

Studies have shown its potential for improving operative

efficiency and patient outcomes through its ability to

recognise stages of the procedure, provide guidance on

instruments required and identify important anatomic

relations (42).
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Strengths and limitations

There are several strengths to our study. Construct validity

was assessed using the OSATS score which is a well-

established tool used to assess technical skills. This allowed

for a valid and reliable assessment of the participant’s

surgical skills. The task assessed was derived from an expert

Delphi consensus on the phases and core steps for

endoscopic transsphenoidal pituitary adenoma resection

(13). This provided a framework to assess knowledge of the

approach and surgical ability. Operative videos were

assessed blindly by two expert neurosurgeons. The inter-

rater reliability was high suggesting a high degree of

agreement between the two examiners.

This study however has several limitations. Firstly, we did

not assess predictive validity. This would be a useful measure

to determine improvement in skills and performance in the

operative theatre. However, this concept is difficult to evaluate

due to patient safety and ethical concerns. Secondly, the AR

overlay function for the TNS Box was not used in our study

in order to simplify the task. However, this is a useful

addition to the model which can be used to simulate

variations in anatomy and demonstrate various surgical

approaches. Thirdly, the number of participants involved in

the study was rather low, however this is in keeping with

existing validation studies (43). In addition, we combined

intermediate and expert surgeons within our study. This

meant there was some variation in surgical procedures

observed, assisted and performed. However, several studies

within the literature support this method for validation

studies (43). Lastly, the model had a few limitations including

the types of material used making it largely inconsistent with

that of human tissue, the lack of bleeding vessels and

important neurovascular structures, and the lack of arachnoid

mater to simulate CSF leak. As a result of the unrealistic

consistency of the tumour and the sphenoid sinus anatomy,

only the nasal phase of the procedure was examined. With

the iterative improvement of the TNS Box, the sphenoid,

sellar and closure phases can be evaluated.
Conclusions

This present study demonstrates face, content and

construct validity for the TNS Box and highlights the model

as a potentially useful surgical skills training tool for the

eTSA approach. Further improvements include advancing

simulation materials, dynamic models (e.g., with blood

flow), synergy with complimentary technologies (e.g., AI

and AR), and integration as a supplement to modern

surgical curricula.
Frontiers in Surgery 08
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Task: Perform nasal approach & access the sphenoid sinus

Objective Structured Assessment of Technical Skills

Respect for tissue

1. Frequently used unnecessary force on tissue or caused damage by inappropriate
use of instruments

5 Consistently handled tissue appropriately with minimal damage

Time and motion

1. Many unnecessary moves

5. Clear economy of movement and maximum efficiency

Instrument handling

1. Repeatedly makes tentative or awkward moves with instruments

5. Fluid moves with instruments and no awkwardness

Flow of operation

1. Frequently stopped operating or needed to discuss next move

5. Obviously planned course of operation with efficiency from one move to
another

Knowledge of instruments

1. Frequently asked for wrong instrument or used inappropriate instrument

5. Obviously familiar with the instruments and their names

Knowledge of procedure

1. Insufficient knowledge. Looked unsure and hesitant

5. Demonstrated familiarity with all steps of the operation

Task Specific Technical Skills

Able to identify choana, septum and turbinates

1: Completely inadequate

5: Excellent

Effective lateral displacement of middle turbinate and superior turbinate

1: Completely inadequate

5: Excellent

Able to identify and assess the limits of the sphenoid ostium

1: Completely inadequate

5: Excellent

Newall et al. 10.3389/fsurg.2022.1049685
Appendix 1 Pre-study questionnaire
on the demographics of each
participant

Name:

Age:

Handedness:

Speciality:

Stage of training:

Number of neurosurgical cases (of any sort)

(a) Observed

(b) Assisted

(c) Performed

Number of transsphenoidal cases (of any sort)

(a) Observed

(b) Assisted

(c) Performed

Appendix 2 Post-study questionnaire
examining the face and content
validity of the TNS Box

Face Validity

The model was realistic?

□ Strongly Agree

□ Agree

□ Neutral

□ Disagree

□ Strong Disagree

Content Validity

The model was useful?

□ Strongly Agree

□ Agree

□ Neutral

□ Disagree

□ Strongly Disagree
Frontiers in Surgery 11
Appendix 3 Score sheet used to
assess construct validity of the TNS
Box
Performs anterior sphenoidotomy appropriately whilst protecting nasoseptal
pedicle

1: Completely inadequate

5: Excellent
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