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Abstract  

There is a rapidly growing awareness of the influence of global change processes 

such as land-use, climate change and socioeconomic factors on the burden of 

mosquito-borne disease (MBD). Although individual effects of different processes on 

MBD risk have been studied widely, a holistic approach that considers the combined 

influence of different global change processes has rarely been implemented. Here, I 

evaluate the effects of different global change processes on MBD risk, both 

generally, and in a series of modelling studies using the understudied MBD, 

Japanese encephalitis (JE) as a case study. I integrate different data types and 

approaches from ecology and epidemiology, with the aim of informing public health 

decision-makers in the era of accelerating global change. Firstly, I synthesise current 

knowledge on relative and interacting effects of global change processes on MBD 

risk and examine how these factors have been incorporated into existing analyses, 

highlighting how future research could be improved. Secondly, I compile a vector 

surveillance database for the predominant vector of JE (Culex tritaeniorhynchus). I 

use a novel approach that leverages information from sparse vector surveillance data 

to predict seasonal vector abundance over large spatial scales, that has the potential 

to be used to provide guidance for the targeting of suitable interventions. I use this 

information in an epidemiological study of JE case surveillance data and show that 

human JE incidence is associated with climate, land-use and socioeconomic factors, 

and these factors can be used to predict JE outbreaks in north-eastern India. Thirdly, 

I examine possible trends in JE epidemiology by projecting into the future under 

various scenarios of global change to show divergence in JE risk and burden under 

different socioeconomic and environmental policy scenarios. Finally, I integrate the 

implications of these results into our understanding of the effects of global change 

processes on MBD, the epidemiology and control of JE, and a holistic approach to 

the understanding and prediction of MBD risk. 
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Impact statement 

The latest Intergovernmental Panel on Climate Change (IPCC) report (IPCC, 2022) 

provides a stark overview of the effects of human-induced environmental change on 

the health of nature and humans, signalling that the “people and ecosystems least 

able to cope are being hardest hit”. Mosquito-borne diseases (MBDs) are an example 

of a negative health outcome that results from changing environmental conditions 

that disproportionately affect economically vulnerable populations (Colón-González, 

et al., 2021a; IPCC, 2022). Despite the growing threat MBDs pose to global public 

health, a lack of evidence on the drivers of these diseases has hindered our 

understanding of present-day burdens and how disease risk may vary under future 

scenarios of global change (Campbell-Lendrum et al., 2015).   

This thesis applies tools and concepts from ecological and epidemiological modelling 

to understand how socio-ecological factors affect MBD risk, both in general and for a 

case study of Japanese encephalitis (JE) in India. Understanding the effects of 

different global change processes on understudied MBDs such as JE is hindered by 

the lack of reliable, high quality surveillance data on mosquito vectors. In Chapter 3, I 

addressed gaps in vector surveillance data using a novel modelling approach to 

estimate seasonal vector abundance for the main vector for JE across India. This 

work was published in 2022 in PLOS Neglected Tropical Diseases and details a 

methodology that is easily adaptable for other MBDs that have limited vector 

surveillance data. Consequently, the findings from this Chapter will be of significant 

interest for academic research and policy audiences in ecology and public health 

sectors.  

The findings from Chapters 3 to 5 will contribute significantly to public health efforts 

to prevent and control JE, the leading cause of viral encephalopathy in Asia. This 

work improves understanding of current and future potential endemic areas of JE and 

the important underlying drivers of this disease in India. These findings will help 

public health practitioners and policymakers to communicate and develop effective 

and efficient interventions to safeguard public health with ongoing global changes. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

 

5 
 

In Chapter 2, I reviewed MBD modelling studies and found that there has been 

significant research on the role of climate change. This review was published in 2019 

in Lancet Infectious Diseases and concludes that MBD research should not only 

focus on the role of climate change but consider growing evidence for additional 

factors that modulate disease risk. Chapter 5 address this gap by evaluating how 

future climatic, agricultural, and socioeconomic change may impact JE risk in 

northeast India over the coming decades. This work represents a step towards 

incorporating MBD risk into public health and environmental policy decisions to 

identify trade-offs across land-use, climate, food security and human health. 

Consequently, the subject matter and findings will be of significant interest for 

academic research and policymakers across public health, agricultural and 

environmental sectors, as well as being of broader public interest. 
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Thesis outline of contents and collaborators 

Chapter 1 

Introduction 

This chapter reviews current knowledge of the effects of climate, land-use and 

socioeconomic change on mosquito-borne disease (MBD) risk. Some of the material 

from this introduction and the discussion (Chapter 6) is published in an Analysis 

article at BMJ under the title “Ecosystem perspectives are needed to manage 

zoonotic disease risks in a changing climate”. 

Chapter 2 

The impact of global change on mosquito-borne disease 

In this chapter, I review and synthesise the current state of knowledge on the impact 

of global change processes on MBD risk to identify knowledge and data gaps for 

later chapters. This work was conducted in collaboration with Ibrahim Abubakar, Kate 

E. Jones, and David W. Redding. I undertook the literature review and wrote the 

paper with feedback from all co-authors. This chapter was published in 2019 in the 

journal Lancet Infectious Diseases under the title ‘The impact of global change on 

mosquito-borne disease’ (Franklinos, et al., 2019), and the typeset published paper is 

provided in Appendix 5. I have presented this chapter at the 2018 Planetary Health 

Meeting (Edinburgh). Additional thanks to R. Gibb, S. Daly, and F. Spooner.  

 
Chapter 3 

Joint spatiotemporal modelling reveals seasonally dynamic patterns of 

Japanese encephalitis vector abundance across India  

In this chapter, I develop a novel modelling approach to predict seasonal vector 

abundance for the predominant Japanese encephalitis (JE) vector across India, as 

well as to examine the environmental drivers of these patterns. The work was 

conducted in collaboration with DWR, KEJ, IA, Rory J. Gibb, and Tim C.D. Lucas. 

This work was published in PLOS Neglected Tropical Diseases under the title ‘Joint 

spatiotemporal modelling reveals seasonally dynamic patterns of Japanese 
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encephalitis vector abundance across India’, and the typeset published paper is 

provided in Appendix 5. Additional thanks to L. Enright, E. Browning, and S. Daly.  

Chapter 4 

Climate, land-use and socioeconomic factors predict spatiotemporal dynamics 

of Japanese encephalitis risk 

In this chapter, I conduct spatial and temporal epidemiological analyses of the socio-

ecological drivers of JE in northeast India, predict endemic areas of transmission, 

and evaluate whether environmental factors and vaccination coverage can be used 

to predict temporal trends in JE incidence. The work was conducted in collaboration 

with RJG, TCDL, DWR and KEJ. Additional thanks to S. Daly.  

Chapter 5 

Predicting Japanese encephalitis risk under different scenarios of global 

change 

In this chapter, I evaluate how future climatic, agricultural, and socioeconomic 

change may impact JE risk in northeast India. The work was conducted in 

collaboration with RJG and KEJ. Additional thanks to S. Daly.  

Chapter 6 

Discussion 

In this chapter I review and discuss the key conclusions and contributions of the 

thesis, and propose recommendations for future research, with an emphasis on the 

importance of adopting a holistic approach to the understanding and prediction of 

MBD risk.  
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Chapter 1:  

Introduction 

1.1 Understanding the effects of global change on human health 

There is a rapidly growing awareness of the connection between human health and 

the state of natural systems on which societies depend (Whitmee et al., 2015). 

Humans rely on nature to provide essential services such as food, water, shelter, 

medicine, and to mitigate climatic extremes and emerging diseases (IPBES, 2019). 

However, human exploitation of the environment has resulted in natural systems 

being degraded to an unprecedented extent (Whitmee et al., 2015), leading to 

dramatic environmental changes that include deforestation, agricultural and urban 

expansion, and climate change. Indeed, it is suggested that the planetary boundaries 

within which humans can thrive have already been transgressed (Steffen et al., 

2015). Human health is an increasingly apparent outcome of environmental 

degradation, characterised by wide-ranging changes in food and water security, 

climate regulation, and dynamics of emerging and endemic diseases (Hassell et al., 

2021a). Several holistic approaches have emerged to identify and address ways in 

which anthropogenic impacts on natural systems are adversely affecting human and 

animal health (Lerner and Berg, 2017). Whereas One Health advocates an 

interdisciplinary health sciences approach to safeguard health at the interface 

between humans, animals, and their environment, the EcoHealth concept focuses on 

the relationship between health, ecosystems, and sustainable development (Lerner 

and Berg, 2017). Planetary Health has been put forward as an alternative to these 

approaches which have suffered from siloed thinking (Manlove et al., 2016), and 

instead promotes a systems approach to understanding how human health outcomes 

are influenced by complex interactions between social and natural systems (Pongsiri 

et al., 2017).  

Infectious diseases are emerging at an increasing rate globally (Smith et al., 2014). 

Importantly, approximately two thirds of emerging infectious diseases are zoonoses, 

diseases of animals that can be transmitted to humans (CDC, 2017), and the majority 

(72%) of these have a wildlife origin (Jones et al., 2008; Allen et al., 2017). As 
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illustrated with the emergence of SARS-CoV-2 virus, zoonotic emerging infectious 

diseases pose a significant threat to global health, global economy and global 

security (Grace et al., 2012a; Morens and Fauci, 2012; Heymann et al., 2015). Given 

that the increased incidence of outbreaks has occurred in tandem with habitat 

degradation,  environmental change is suggested to impact human health (Gibb, 

Moses, Redding and Jones, 2017; Hassell et al., 2017; MacDonald and Mordecai, 

2019; Plowright et al., 2021). Indeed, many drivers of the global infectious disease 

emergence have been linked to the increasing rate of human impact on the 

environment and ecosystems (Whitmee et al., 2015; Hassell et al., 2021a). For 

example, land-use change, such as deforestation, urbanisation, agricultural land 

conversion and intensification, increases the risk of zoonotic disease emergence by 

altering species composition in ecological communities to favour wildlife hosts and 

increasing contact between people, vectors (e.g., mosquitoes, ticks), domestic 

animals and wildlife (Romanelli et al., 2015; Hassell et al., 2017; Gibb et al., 2020a; 

Plowright et al., 2021). In addition, climate change further impacts infectious disease 

emergence either directly by promoting climate-sensitive diseases such as those 

transmitted by vectors, or indirectly via effects on human vulnerability to disease 

(e.g., nutrition, poverty) (Watts et al., 2021) and biodiversity (Romanelli et al., 2015). 

 

Viewing infectious disease systems from an ecological perspective whereby  the 

diseases are situated at the nexus between environmental change, ecosystems, and 

health, could significantly improve understanding of how global change impacts 

human health  (Gibb et al., 2020b). For instance, ecological theories and 

perspectives have already been embedded in public health management of many 

zoonoses, and have been influential in existing disease control programmes such as 

the eradication of rabies in wildlife in Western Europe (Smith et al., 2008) and 

management of leptospirosis and dengue in urban centers (Reis et al., 2008; 

Seidahmed et al., 2018). In particular, knowledge of the strong influence of 

environmental conditions on vector life histories (Patz et al., 2000; Ciota et al., 2014; 

Verhoef, Venter and Weldon, 2014; Ladeau et al., 2015; Paul et al., 2016; Mordecai 

et al., 2019) has enabled the prediction of climatic and land-use-associated 

geographic and seasonal trends in estimates of vector-borne disease (VBD) risk 

(Baeza, et al., 2011; Baeza et al., 2017; Leta et al., 2019; Purse et al., 2020; Colón-

González et al., 2021a; Diuk-Wasser, VanAcker and Fernandez, 2021; Lowe et al., 
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2021; Peralbo-Moreno et al., 2022). Modelling approaches that incorporate 

ecological processes are gaining traction in VBD research (Sokolow et al., 2015, 

2017; Childs et al., 2019; Ryan et al., 2019), for example, seasonal climatic variations 

have been used to predict outbreaks of Rift Valley fever in East Africa (Anyamba, 

Chretien, Small and Tucker, 2009), dengue in South America (Lowe et al., 2017a) 

and cutaneous leishmaniasis in South America (Lewnard et al., 2014), helping to 

inform mitigation actions. 

In order to fully understand the impact of environmental processes, it is also critical to 

account for other influences such as the socioeconomic factors that drive human 

exposure and vulnerability to infection (Parham et al., 2015). For instance, climate-

based predictions of dengue outbreaks are improved when information on population 

immunity is included in the models (McGough et al., 2021). In the future, changing 

climates, widespread anthropogenic transformations of natural landscapes (e.g., 

urbanization, agricultural expansion and intensification) and socioeconomic change 

will lead to shifts in the way reservoir hosts, vectors and humans interact, and impact 

disease systems (Lafferty, 2009; Dahlgren et al., 2016; Ryan et al., 2019; Gibb et al., 

2020a). Recent modeling advances that incorporate ecology and epidemiology show 

great potential for predicting future disease risk and for testing the effects of 

interventions within projected scenarios of global change (Iacono et al., 2018; Li et 

al., 2019; Childs et al., 2019; Redding et al., 2019; Lund et al., 2021).  

Although the link between human health and natural and anthropological systems is 

becoming clearer (Whitmee et al., 2015), major gaps in knowledge remain in the 

underlying mechanisms by which environmental degradation endangers human 

health (Hassell et al., 2021a; Plowright et al., 2021). Therefore, it has been difficult to 

clearly communicate the importance and impact of environmental change on human 

health to policymakers. As a result, current global health policy often does not 

adequately consider the importance of natural systems in promoting health, and the 

negative impact their disruption can have (Waugh, Lam and Sonne, 2020; Hassell et 

al., 2021a). The One Health concept, has attempted to strengthen the links between 

human, animal and ecosystem health (Lerner and Berg, 2015; One Health 

Commission, 2021) and to guide research and policy in the field of emerging 

infectious diseases (Galaz et al., 2015). Although this approach has been widely 
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embraced by public health communities and policymakers (WHO, FAO and OIE, 

2019), in practice it has tended to focus mainly on human-livestock interactions on a 

relatively local scale (Falzon et al., 2018). It has been concluded that safeguarding 

human health in the era of dramatic global change requires a considerable 

framework shift together with the integration of the broader Planetary Health concept 

across scientific fields and policy (Waugh, Lam and Sonne, 2020).  

1.2 Understanding mosquito-borne disease through a socio-ecological lens 

More than 17% of the global burden of infectious disease is attributable to VBDs and 

over 80% of the global population is at risk of one of more vector-borne pathogens 

(WHO, 2017). Researchers have concluded that diseases transmitted by arthropod 

vectors such as mosquitoes, ticks and midges pose an increasing threat to human 

health (National Academies of Sciences, Engineering and Medicine, 2016; James et 

al., 2018). In particular, diseases transmitted by mosquito vectors account for the 

highest number of reported VBD-associated cases, deaths, and disability-adjusted 

life years worldwide (WHO, 2017). This is partly due to the wide variety of pathogens 

that they can transmit, ranging from parasites such as malaria and lymphatic filariasis 

to multiple viruses, including West Nile, yellow fever, dengue, chikungunya and Zika 

(Reiter, 2001; Tolle, 2009). Many mosquito-borne diseases (MBDs) are zoonotic and 

exist within sylvatic cycles that perpetuate new outbreaks through spillover from 

animal host populations into humans (Gould and Solomon, 2008; Fornace et al., 

2016; Ali et al., 2017; Pandit et al., 2018).  

Globally, MBDs have been reported to be increasing in incidence and have 

expanded their geographic distribution emerging in new areas (Stanaway et al., 

2016; Ali et al., 2017; Paixão, Teixeira and Rodrigues, 2017) and re-emerging in non-

endemic regions (Buonsenso et al., 2014; Grobbelaar et al., 2016). This is 

exemplified by the dramatic geographic expansion of Zika virus in the Americas since 

2015 (Ali et al., 2017) and the global emergence and resurgence of dengue virus that 

has resulted in a 30-fold increase in disease incidence since the 1980s (Gubler, 

2011; Bhatt et al., 2013; Stanaway et al., 2016). Climate change, land-use change 

and socioeconomic factors (e.g., poverty, trade and travel) have all been implicated 
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in the increasing threat of MBDs on global health (Jones et al., 2008; Kilpatrick and 

Randolph, 2012; Roche et al., 2013; Parham et al., 2015). Although the impact of 

global change processes on MBD transmission is undoubtedly important, it is also 

highly uncertain due to limitations in knowledge, data and methodological 

approaches that can integrate the diverse epidemiological, ecological and 

socioeconomic factors driving disease risk (Parham et al., 2015).  

The changing pattern of MBD risk is substantially determined by the relationship 

between mosquito vectors and their environment which may vary spatially and 

temporally (Ladeau et al., 2015; Tjaden et al., 2018). Since mosquitoes are 

ectothermic, ambient temperatures influence epidemiologically significant life history 

traits, such as survival, dispersion, feeding, reproduction and development (Mordecai 

et al., 2019). Precipitation can positively impact mosquito populations by creating 

aquatic habitats for their breeding (Morin, Comrie and Ernst, 2013). However, excess 

rainfall can result in larval habitats being destroyed (Stewart Ibarra et al., 2013). 

Mosquito breeding habitat availability also depends on species-specific preferences 

and other factors that influence the development of water bodies, such as land-use 

type and intensity (Erlanger et al., 2005; Keiser et al., 2005a; Day and Shaman, 

2008; Baeza et al., 2011).  

Interactions between land-use and climate can also influence MBD risk (Lowe et al., 

2021). Since mosquito ecology is dependent on the environment, any change in 

habitat due to land-use conversion will have a significant effect on populations 

(Ladeau et al., 2015). For instance, deforestation is reported to influence mosquito 

populations by providing ideal vector breeding habitats (Vittor et al., 2009), reducing 

competition and predation (Burkett-Cadena and Vittor, 2017) and increasing 

interactions between vectors and hosts (Despommier, Ellis and Wilcox, 2006; Gibb et 

al., 2020a). This has been demonstrated by the strong association between MBD 

incidence and practices associated with deforestation, such as mining, logging and 

road construction (Vasconcelos et al., 2001; Hahn et al., 2014; Fornace et al., 2016; 

Chaves et al., 2018; Brock et al., 2019; Fletcher et al., 2019). Increasing urbanisation 

has promoted the emergence and spread of MBDs such as dengue, Zika virus 

disease and chikungunya due to the proliferation of urban-adapted Aedes 

mosquitoes (Gubler, 2011; Li et al., 2014; Baker et al., 2021). Furthermore, water 
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management practices such as irrigated agriculture have been reported to promote 

MBD risk globally (Ijumba and Lindsay, 2001; Erlanger et al., 2005; Keiser et al., 

2005b; Baeza et al., 2011; Kibret et al., 2016).  

Land-use change may also interact with socioeconomic factors which can further 

influence MBD dynamics. For example, it has been observed that the introduction of 

irrigation systems into an area leads to an initial increase in MBD risk followed by a 

decline. This phenomenon known as the ‘paddies paradox’, has been reported for 

malaria in Africa (Ijumba and Lindsay, 2001) and Asia (Mukhtar et al., 2003; Baeza et 

al., 2011). The effect is thought to reflect the increasing socioeconomic status of 

people who live near irrigation schemes as they can afford improved education, 

housing conditions, or other types of protection from mosquitoes (Ijumba and 

Lindsay, 2001). Bidirectional feedback between land-use conversion and MBD 

incidence has also been reported in the Amazon, where deforestation was found to 

significantly increase malaria transmission and high malaria burdens reduced 

deforestation, likely mediated by human behaviour or economic development 

(MacDonald and Mordecai, 2019). 

Socioeconomic factors such as poverty, public infrastructure, human behaviour, trade 

and travel are recognised as important drivers of MBD risk (Reiter et al., 2003; Ali et 

al., 2017; Oviedo-Pastrana et al., 2017; WHO, 2020a; Athni et al., 2021; Baker et al., 

2021). Poverty can increases the risk of MBDs since it determines the quality and 

accessibility of health care, affects education, access to running water and reduces 

ameliorative measures such as limiting outdoor activities, vector protection and 

vaccination (Reiter et al., 2003; Lambin et al., 2010; Oviedo-Pastrana et al., 2017). In 

addition, poverty greatly impacts the lifestyle and regional environment of 

populations, which have been reported as important drivers of morbidity and mortality 

(Ye et al., 2023). For example, housing conditions which are an indicator of poverty 

(UNDP and OPHI, 2021), can influence the number of infected vectors via sanitation 

conditions that promote mosquito breeding sites (e.g., inadequate water supply 

leading to water storage and refuse collection services) (Russell et al., 2009; Lowe et 

al., 2021) and can influence exposure to pathogens via protective measures such as 

mosquito screens (Reiter et al., 2003). In addition, poverty influences exposure to 

pathogens since the capital of impoverished people is often biological (e.g., crops, 
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livestock, forests, wildlife) and this capital is embedded within systems of ecological 

interactions that include human pathogens (Godfrey and Randolph, 2011; Ngonghala 

et al., 2014, 2017). Accordingly, a strong association between poverty and MBD risk 

has been reported for neglected tropical diseases (NTDs) such as Zika (Hotez, 2016; 

Ali et al., 2017; WHO, 2020a). Vector-borne NTDs disproportionately affect 

economically deprived populations and can lead to ‘poverty traps’; a self-reinforcing 

mechanism enabling poverty and diseases to persist (Bowles, Durlauf and Hoff, 

2006; Hotez et al., 2009). In affected countries, MBDs impose a great burden on 

maternal and child health, population growth, investment, productivity, and labour 

and impede socioeconomic development (Sachs and Malaney, 2002; Hotez et al., 

2009; Sarma et al., 2019). However, some studies have suggested that since 

evidence linking poverty and MBD risk is mainly observational and does not account 

for co-morbidities or inequalities in care-seeking behaviour, it is too weak to support 

causal relationships (Utzinger and Tanner, 2013; Mulligan et al., 2015). Advances in 

the modelling of coupled economic–epidemiological systems have improved 

understanding of the structural relationship between disease risk and economic 

growth (Ngonghala et al., 2014, 2017; Baeza et al., 2017; Sokolow et al., 2022). A 

study investigated how socioeconomic processes that occur during land-change 

affect malaria epidemiology and included poverty in their model by having poverty 

influenced by capital (e.g. products) which affects access to disease protection and 

treatment (Baeza et al., 2017). Therefore, in this model economic prosperity reduces 

the vulnerability of populations to malaria by reducing the possibility that exposure to 

infected vectors will result in disease. Studies on other VBDs have described 

mechanisms by which poverty influences disease vulnerability via reduced resistance 

to infection associated with stress and limited access to vaccination (Godfrey and 

Randolph, 2011). Furthermore, VBDs may influence the dynamics of poverty via their 

effect on labour, leading to shocks in agricultural yield (Rinaldo et al., 2021). The 

geographic spread of MBDs may also be related to increasing wealth associated with 

globalisation (IOM, 2008) which has resulted in an expansion of movement of people, 

animals and commodities, together with pathogens and vectors (Githeko et al., 2000; 

Gubler, 2011; Nunes et al., 2014; Kampen et al., 2016; Baker et al., 2021). Indeed, 

human factors such as behaviour, population immunity, and age distribution are 

critical in shaping patterns of disease risk (Funk, Salathé and Jansen, 2010). 

Behavioural risk factors for VBDs include protective practices (Dutta et al., 2011; 
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Aerts et al., 2020; Bron et al., 2020), human movement (Stoddard et al., 2009), 

recreational behaviour (Trienekens et al., 2022), housing conditions (Seidahmed et 

al., 2018; Chastonay and Chastonay, 2022), and scepticism surrounding 

immunisation (Saikia, 2017; Sakamoto et al., 2019). The age distribution of the 

population, age-related behaviours and the associated seroprevalence in different 

age groups also has a major impact on the spatiotemporal distribution of VBD risk (Li 

et al., 2016; Kwak, Hong and Kim, 2021; Kugeler et al., 2022; Trienekens et al., 

2022). Additionally, socioeconomic factors may influence MBD risk in a way that 

complicates understanding of environmental drivers (Béguin et al., 2011; Parham et 

al., 2015). For example, following natural disasters changes in public infrastructure, 

healthcare access, water storage and housing quality can expose people to a high 

density of infected mosquitoes (Ali et al., 2017). Furthermore, the international export 

of commodities such as timber, tobacco, cocoa, coffee and cotton has been 

estimated to drive approximately 20% of the risk of malaria in deforestation hotspots 

(Chaves et al., 2020). 

Identifying hotspots of MBD risk is critical for informing effective interventions and 

safeguarding public health (Smith, Dushoff and McKenzie, 2004). However, 

definitions of risk remain inconsistent (Johnson, Escobar and Zambrana-Torrelio, 

2019). This can confound the different processes contributing to risk and hinder 

accurate quantification and comparisons between studies (Hosseini et al., 2017). The 

field of quantitative risk analysis can be used to understand risk by breaking down 

the different processes into hazard, exposure and vulnerability of the risk (Stamatis, 

2014). Using this framework, ‘hazard’ is the relative number of available pathogens 

acting as potential sources of risk to a target population; ‘exposure’ is the likelihood 

of contact between a target population and the hazards; ‘vulnerability’ is the 

possibility of a given exposure to a hazard that results in harm (Hosseini et al., 2017; 

Johnson, Escobar and Zambrana-Torrelio, 2019) (Figure 1.1). Exposure factors may 

include labour (e.g., agricultural work) or cultural (e.g., behavioural practices) factors 

that influence physical exposure to the hazard. Vulnerability factors may include 

socioeconomic (e.g., poverty, age, inequality, immunocompromised people, 

displaced people) or infrastructure (e.g., healthcare access, road density) factors 

influencing the possibility that a given exposure to a hazard results in harm. For 

example, populations that live in areas of economic insecurity and/or political 
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instability will be more vulnerable to disease outbreaks since they may have reduced 

access to healthcare infrastructure and less trust of public health resources (Hosseini 

et al., 2017). Other infectious disease risk frameworks combine hazard and exposure 

and separate vulnerability which includes socioeconomic factors (e.g., inequality, 

poverty) and vulnerable groups (e.g., children, displaced people, food insecurity, 

health conditions), from coping capacity which considers the availability of resources 

such as physical infrastructure (e.g., road density, sanitation), governance, 

communication (e.g., internet use, adult literacy rates) and healthcare access  

(Marin-Ferrer, Vernaccini and Poljansek, 2017; Wong et al., 2020). A recent study on 

tick-borne disease risk included coping capacity in simulation models via effects of 

tick removal due to public awareness and found that awareness in high hazard areas 

had a strong impact on tick bite incidence (Vanwambeke and Schimit, 2021). 

However, awareness also modified the areas and populations at the highest risk, 

revealing the dynamic nature of coping capacity. Overall, separating the different 

components of risk will help to determine how global change drivers may act 

differently on each (Hosseini et al., 2017). Indeed, environmental changes such as 

agricultural expansion, rapid urbanisation and increases in extreme weather can both 

exacerbate the hazards (e.g., presence and abundance of mosquito vectors and 

hosts which comprise MBD hazard (Kilpatrick and Pape, 2013)), and amplify existing 

vulnerabilities (e.g., food and water insecurity, social inequalities) (Cardona et al., 

2012; Hosseini et al., 2017). Considering the different component of risk in model-

based analyses could also help to disentangle the consensus and discord between 

different future climate, land-use and disease models (Caminade et al., 2014), 

supporting long-term strategic planning in both health and environmental sectors. 
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Figure 1.1. Mosquito-borne disease risk conceptual model.  

MBD risk can be broken down into ‘hazard’ which is the available infected vectors acting as potential sources of risk to a target population; 
‘exposure’ which is the likelihood of contact between a target population and the hazards and ‘vulnerability’ which is the possibility of a given 
exposure to a hazard that results in harm. Coping capacity (i.e., resources available to alleviate the impact of disease outbreaks) is included 
within the vulnerability component of this framework.   
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1.3 Challenges in the understanding and prediction of the effects of global 

change on mosquito-borne disease risk 

Considering the complexities of how different global change processes act and 

interact to influence MBD risk highlights the limitations of previous approaches to 

understanding disease systems which have concentrated on epidemiology and public 

health perspectives (Bedford et al., 2019). MBD research conducted through an 

epidemiological or public health lens primarily focuses on transmission dynamics of 

the infection in host and vector populations (Mandal, Sarkar and Sinha, 2011; Amaku 

et al., 2016) and rarely integrates ecological understanding (Gibb et al., 2020b). 

Moreover, when ecological information is incorporated into the studies, the focus is 

often on the role of climate in shaping the geographic range of potential MBD 

transmission related to climate-sensitive traits of the mosquitoes (Caminade et al., 

2014; Parham et al., 2015; Tjaden et al., 2018; Rocklöv and Dubrow, 2020). This is 

also true for other VBDs  such as those transmitted by ticks and biting midges 

(González et al., 2010; Moo-Llanes et al., 2013; Ogden et al., 2014a; Parham et al., 

2015; Williams et al., 2015; Alkishe, Peterson and Samy, 2017; McPherson et al., 

2017). Although research on the impact of climate change on the risk and distribution 

of MBDs has been recognised and has informed many policy briefs worldwide (IPCC, 

2014a; Watts et al., 2021) sole focus on the effects of climate have reinforced 

knowledge gaps on the impact of different global change drivers and how they might 

interact to influence MBD risk (Campbell-Lendrum et al., 2015).  

Quantifying and predicting the effects of different global change processes on MBD 

risk is hindered by the complexity of how these relationships and interactions may 

vary across different disease systems, landscapes, and timeframes (Campbell-

Lendrum et al., 2015). For example, while climate change is implicated in driving the 

geographic distribution and increasing burdens of many MBDs and their vectors 

(Caminade et al., 2014; Feachem et al., 2019; Ryan et al., 2019; Iwamura, Guzman-

Holst and Murray, 2020; Colón-González et al., 2021a), it is unclear whether this 

trend is consistent when the effects of non-climatic global change processes such as 

environmental, social, economic and demographic factors are also considered 

(Parham et al., 2015). Knowledge of MBD drivers also varies depending on the 
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disease, with underlying drivers remaining poorly defined for many diseases (Gibb et 

al., 2020b; Swei et al., 2020), especially for understudied MBDs (e.g., NTDs) that 

often do not have sufficient resources or available long-term systematic surveillance 

data (Malecela, 2019; WHO, 2020a).  

There is a paucity of reliable, high quality surveillance data on vectors (ECDC and 

EFSA, 2018; Rund et al., 2019), reservoir host populations (Britch et al., 2013; Lord, 

Gurley and Pulliam, 2015; DeCarlo et al., 2017; Pandit et al., 2018) and human 

incidence, especially for marginalised communities (Lowe et al., 2020) and NTDs 

(WHO, 2020a). This has led to the popularity of correlative models such as ecological 

niche models (ENMs; otherwise known as species distribution models) in MBD 

research to predict vector, pathogen and MBD risk distributions (Kraemer et al., 

2016; Tjaden et al., 2018; Johnson, Escobar and Zambrana-Torrelio, 2019). Although 

useful in instances of incomplete data or undefined environmental associations 

(Phillips, Anderson and Schapire, 2006; Redding et al., 2016), these correlative 

models do not enable the identification of underlying causal relationships (Kraemer, 

Reiner and Bhatt, 2019) and tend to assume linear and non-hierarchical relationships 

for covariates, reducing their applicability to novel settings (Washburne et al., 2019). 

Furthermore, ubiquitous sampling biases in surveillance data and a lack of ecological 

information on the vector, pathogen and reservoir hosts within a disease system may 

impede the ability of models to predict distributions correctly (Johnson, Escobar and 

Zambrana-Torrelio, 2019). In addition, surveillance data are often aggregated at 

coarse spatial scales which results in a loss of local socio-ecological information 

associated with the outbreak (Allen et al., 2017). These issues confound 

interpretation of spatial patterns and trends, and impede the ability of these models to 

predict current and future scenarios of MBD risk and the opportunity to inform public 

health interventions (Campbell-Lendrum et al., 2015; Parham et al., 2015).  

Gaps in data and knowledge of underlying drivers hinders understanding of present-

day MBD burdens and how disease risk may vary under future scenarios of global 

change (Campbell-Lendrum et al., 2015). Furthermore, reliance on simple correlative 

models such as ENMs to define risk without considering the complexity of disease 

systems may compound this lack of understanding (Johnson, Escobar and 

Zambrana-Torrelio, 2019). Instead, separating the different components of MBD risk 
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and considering how global change processes may act on each separately, may 

provide a solution in the study of complex MBD systems and inform which 

interventions to use and crucially, where, when, and how to implement them 

(Hosseini et al., 2017). A recent study on VBD schistosomiasis in Senegal  used this 

approach to disentangle and identify the impacts of social (i.e., exposure and 

vulnerability) and environmental (i.e., hazard) processes on disease risk, and 

highlighted the importance of including both social and environmental interventions in 

the model (Lund et al., 2021). This methodology is complemented by conceptual 

developments that have distilled the complex mechanisms underpinning zoonotic 

pathogen spillover (Plowright et al., 2017). The conceptual framework proposed by 

Plowright et al., (2017) provides a clear structure with which to model and interpret 

the effect of different drivers on the separate components of risk for diverse disease 

systems. Recent VBD studies have used this framework to show the importance of 

ecological interactions between environment, vectors and hosts in determining 

disease risk (Childs et al., 2019; Burthe et al., 2021). Such approaches emphasise 

the connection between natural and social systems and provide insights into 

opportunities to safeguard human and environmental health simultaneously. 

1.4 Opportunities for a socio-ecological/holistic approach in the 

understanding and prediction of mosquito-borne disease risk 

In this thesis, I use a socio-ecological systems-based approach to assess and predict 

the effects of global change on MBD. While, climate, land-use and socioeconomic 

factors are key drivers of MBD, the relative and combined effect of these processes 

is unclear (Sutherst, 2004; Tabachnick, 2010; Parham et al., 2015).  By adopting an 

integrative approach and considering the influence of different global change 

processes, I aim to challenge previous siloed-thinking and help to inform best policy 

practices for public health, land planning and environmental policy decision-makers.  

I use Japanese encephalitis (JE) in India as a case study since it is a relatively 

understudied MBD (LaBeaud, 2008) despite it being a leading cause of viral 

encephalopathy in Asia (Campbell et al., 2011; Quan et al., 2020). The causative 

pathogen, Japanese encephalitis virus (JEV), is maintained in an enzootic 
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transmission cycle  between Culex mosquitoes (van den Hurk, Ritchie and 

Mackenzie, 2009; Pearce et al., 2018) and vertebrate hosts including domestic pigs 

and ardeid wading birds (e.g. herons and egrets) (Buescher et al., 1959; van den 

Hurk, Ritchie and Mackenzie, 2009; Le Flohic et al., 2013) (Figure 1.2). Although 

susceptible to the virus, humans, and other mammals such as cattle and horses are 

considered ‘dead-end’ hosts because they do not mount sufficient viraemia to infect 

mosquitoes. Since first described in Japan in 1935, JEV has spread across the 

region (Mackenzie, Gubler, and Petersen 2004) and now is endemic in 24 Asian and 

Western Pacific countries (Erlanger et al. 2009; Campbell et al. 2011). Since JE is 

not notifiable in most Asian countries, the true burden of the disease remains 

unknown and instead has been estimated by systematic reviews (Campbell et al., 

2011; Quan et al., 2020). A 2020 systematic review of JE disease burden estimated 

that approximately 100,000 cases and 25,000 deaths occur globally each year, 

primarily affecting children and those living in rural, agricultural areas (Baig et al., 

2013; Quan et al., 2020). However, 87% of JE cases in Asia come from just four 

countries; India, Nepal, China, and Vietnam (Heffelfinger et al., 2017; Lindquist, 

2018).  

 

Figure 1.2. Graphical representation of the Japanese encephalitis virus transmission 
cycle. 

The virus is maintained in an enzootic cycle between amplifiers (pigs and wild birds) and 
mosquito vectors and may spill-over to dead-end hosts which include humans, horses and 
cattle [taken from (Morita, Nabeshima and Buerano, 2015)]. 
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In endemic areas, JE primarily affects children under 15 years of age, while most 

adults have protective immunity after natural exposure to the virus (Potula, Badrinath 

and Srinivasan, 2003; Bista and Shrestha, 2005; Kari et al., 2006; Yen et al., 2010; Li 

et al., 2016). Conversely, in regions with childhood JE vaccination programmes, most 

cases occur among unvaccinated adults (Hombach et al., 2005; Arai et al., 2008; Lee 

et al., 2012; Gurav et al., 2016; Li et al., 2016; Sunwoo et al., 2016). The duration of 

protection provided by both natural immunity and vaccines remains uncertain and 

requires further research with improved surveillance (SAGE Working Group on 

Japanese encephalitis vaccines, 2014). While most JEV infections are asymptomatic, 

clinical disease occurs in approximately 1 in 250 infections (Fischer et al., 2008; 

SAGE Working Group on Japanese encephalitis vaccines, 2014). Symptoms are 

non-specific and may include headache, fever, vomiting, myalgia, mental confusion 

and seizures (Solomon and Vaughn, 2002). For symptomatic cases, the mortality 

rate can be as high as 30% and 20-30% of survivors experience permanent 

neurologic and psychiatric sequelae such as paralysis, recurrent seizures, or inability 

to speak  (Fischer et al., 2008). There is no specific treatment for JE however, 

supportive care can improve health outcomes.  

Japanese encephalitis is an important paediatric health issue in India. Since the first 

case was recorded in 1955 in Tamil Nadu, JE outbreaks have been reported in most 

states (Government of India, 2014; Kulkarni et al., 2018). A major JE outbreak in 

Uttar Pradesh in 2005 lead to approximately 6000 cases and 1400 deaths (Parida et 

al., 2006) and resulted in the Indian Government introducing a vaccination 

programme targeting districts with high numbers of reported cases (Government of 

India, 2014). More recently, there have been large outbreaks reported in the state of 

Odisha in 2012, Bihar in 2014 and in Manipur in 2016 (Bagcchi, 2014; Kulkarni et al., 

2018). National surveillance case data collected from endemic states during 2008 to 

2013 revealed that children under the age of 15 years were most vulnerable and 

cases general occur from July with a peak in September to October (Government of 

India, 2014). Whereas in Assam state, cases occur from February and peak in July.   

The estimated population seroprevalence for JEV across Asia remains uncertain due 

to the lack of seroepidemiological studies (Ramli et al., 2022) which have been 

hindered by serological assays that are unable to account for cross-reactivity with 
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other flaviviruses (Nealon et al., 2019). Of the few seroprevalence studies in Asia, 

most have detected high seropositivity in adolescents (range: 61% - >75%), relatively 

low seropositivity in adults (range: <25% - 43%) and high seropositivity in older 

adults/elderly (range: 52% - 86%) (Arai et al., 2008; Hsu et al., 2014; Sudjaritruk et 

al., 2022). This trend may be attributable to childhood vaccination in adolescents and 

historical natural infection in older adults/elderly. However in India, a population-

based cross-sectional serosurvey conducted in the district of Alappuzha in Kerala 

state in 2012 reported JE seropositivity rates of 15.6%, 15.4%, 18.1% and 12.9% for 

children, adults, older adults, and elderly, respectively (Balakrishnan et al., 2017). 

This low estimated seroprevalence may have resulted from the exclusion of 

vaccinated children from the study and the fact that Alappuzha is a non-endemic 

region (Government of India, 2014). Nonetheless, if the estimated population 

seroprevalence is representative of regions nationally, this would mean a high 

proportion of the population remain susceptible to JEV infection.  

India first introduced a JE vaccination campaign in 2006 using a single dose of the 

SA 14-14-2 live attenuated JE vaccine, targeting children aged 1–15 years 

(Government of India, 2014). A two-dose vaccine regime was introduced in 2013 with 

the first administered in children aged nine months and the second in children aged 

16-24 months (Government of India, 2014). Though the vaccine efficacy is reported 

to be 97.5% for a two-dose regimen (Hennessy et al., 1996), studies have reported 

vaccine efficacy of 30% - 40% in India (Vashishtha and Ramachandran, 2015; 

Tandale et al., 2018). Possible explanations for this may include challenges with cold 

chain transport (Saikia, 2017), differences in circulating JEV genotypes in India 

(Schuh et al., 2013) or cross-reactive immunity to other flaviviruses. In addition, 

India’s vaccination programme is only reported to occur in 40–50% of JE-endemic 

districts (Vannice et al., 2021) and studies have shown vaccination coverage is lower 

than reported (Murhekar et al., 2017). Poor JE surveillance data and a lack of trust in 

the Indian public health system are substantial challenges to the success of the 

national vaccination strategy (Government of India, 2014; Singh et al., 2015; Saikia, 

2017).  

Limited surveillance data have also hindered the understanding of JE incidence, its 

potential geographic distribution, and important drivers of disease risk (Lord, Gurley 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

 

31 
 

and Pulliam, 2015; Longbottom et al., 2017). Although climate and land-use have 

been cited as major drivers of JE risk  due to their impact on the dynamics of 

mosquito populations (Figure 1.3) (Keiser et al., 2005b; Le Flohic et al., 2013), the 

relative importance of different socio-ecological factors and their potential interactions 

remains uncertain (Lord, Gurley and Pulliam, 2015). Indeed, climate change is 

predicted to influence JE risk (Pearce et al., 2018) but the impact of projected 

irrigated agricultural expansion (IRRI, 1988; Alexandratos and Bruinsma, 2012) and 

potential future socioeconomic scenarios (Riahi et al., 2017) has not been explored. 

JE risk in India serves as an excellent case study because of the high burden of 

disease as a consequence of  large outbreaks over  recent years (Heffelfinger et al., 

2017; Kulkarni et al., 2018; Lindquist, 2018), and India’s biologically diverse 

landscapes (MOEF, 2019), high proportion of irrigated agriculture (Alexandratos and 

Bruinsma, 2012) and its recognition as a global infectious disease hotspot (Gupta 

and Guin, 2010; Grace et al., 2012b). An improved understanding of the distribution, 

drivers, and dynamics of JE in India is needed to formulate public health measures 

that will minimise risk by preventing or mitigating conditions that drive JE outbreaks. 
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Figure 1.3.  Conceptual framework underpinning approach to modelling Japanese 
encephalitis transmission. 

The blocks indicate major system components, the arrows show links, and key 
subcomponents are in smaller font. Ecological factors (indicated by yellow blocks) such as 
climate and land-use determine the host and vector niches, their temporal dynamics and 
contact, resulting in the infected vector niche. Socioeconomic factors (indicated by blue 
blocks) determine the susceptible human population, and disease transmission occurs when 
infected vectors (hazard), susceptible people (vulnerability) and spill-over factors (exposure) 
overlap, resulting in infected human populations (risk). Of these, only a proportion will be 
reported cases. The diagram provides a conceptual framework for how different socio-
ecological factors interact to promote disease risk however, the relative importance of these 
components and their potential interactions remains uncertain for JE (Lord, Gurley and 
Pulliam, 2015).  

In Chapter 2, I review current knowledge on the relative effect of global change 

processes on MBD risk in general and investigate how these processes have been 

previously incorporated into existing analyses. I consider whether the focus on the 

effects of climate change in MBD research without accounting for the effects of other 

drivers is justified, and how the ability to predict and forecast risk might be improved 

in the future. I then apply this understanding in the following chapters which focus on 

quantitative modelling approaches to capture JE risk in India.  
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Previously, process-based mechanistic models have been used to reproduce 

complex interactions  and predict pathogen spillover for multiple MBDs (Tompkins 

and Ermert, 2013; Laneri et al., 2015; Iacono et al., 2018; Tennant et al., 2021). 

However, these models are often difficult to parameterise due to the vast amount of 

data they require (Tjaden et al., 2018). At the other end of the spectrum, correlative 

models such as ENMs require less information to predict the geographic distributions 

of pathogens, vectors or MBD risk (Tjaden et al., 2018; Johnson, Escobar and 

Zambrana-Torrelio, 2019) but they often fail to consider ecological interactions 

(Johnson, Escobar and Zambrana-Torrelio, 2019), socioeconomic, and land-use 

factors (Tjaden et al., 2018). By contrast, Bayesian  hierarchical modelling 

approaches have a superior ability to model complex interactions (McElreath, 2020c) 

and compensate for data biases (Redding et al., 2017a). This has led to their 

increasing use in defining the relationship between socio-ecological drivers and 

disease risk (Redding et al., 2017b; Childs et al., 2019; Lowe et al., 2021) and in 

assessing potential disease spread with future global change (Redding et al., 2019; 

Ryan et al., 2019). 

In Chapter 3, I use a novel modelling approach to address data and knowledge gaps 

in the spatiotemporal patterns and drivers of JE vector abundance - a key component 

of JE hazard. To do this, I assemble a database of JE vector occurrence and 

abundance records from India (340 unique records from 24 published studies) and 

use a joint-likelihood modelling technique that leverages information from sparse 

vector surveillance data. I aim to determine which environmental factors drive 

seasonal JE vector abundance and highlight areas to target future surveillance effort 

to reduce sampling bias and improve surveillance data. I also consider whether 

vector abundance alone may be used as a proxy for JE hazard. 

https://en.wikipedia.org/wiki/Bayesian
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Figure 1.4. Conceptual framework underpinning approach to Chapter 3 

In Chapter 3, I aim to predict seasonal JE vector abundance (i.e., vector species temporal 
dynamics) using ecological factors. I also consider whether seasonal vector abundance may 
be used as a proxy for JE hazard (i.e., infected vector niche). However, my correlative 
analysis will be limited by a lack of  mechanistic understanding behind the effects of climate 
and land use factors on the occurrence and abundance of JE vectors. Furthermore, I will not 
include reservoir host-vector contact or infection data in my analysis and so seasonal vector 
abundance will be considered as a proxy for JE hazard (i.e., infected vector abundance). 

In Chapter 4 I perform a spatiotemporal epidemiological analysis of passive JE 

human case surveillance data from 2009-2019 to analyse the impact of socio-

ecological drivers in shaping the spatial and seasonal dynamics of JE risk. I 

investigate the relative importance of different environmental and socioeconomic 

factors in driving spatial patterns of JE risk and determine if these factors can be 

used to predict endemic areas of JE transmission and seasonal patterns in JE cases. 

I aim to improving understanding of this understudied disease and define potential 

areas of underreporting with a view to informing future surveillance efforts and public 

health interventions. 
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Figure 1.5. Conceptual framework underpinning approach to Chapter 4 

In Chapter 4, I investigate the relative importance of different ecological and socioeconomic 
factors in driving spatial and temporal patterns of JE risk. Owing to data paucity, I do not 
consider the components of human population movement, temporal dynamics of host and 
vector species or the infected vector niche in my models. Instead, I use ecological factors to 
define the vector and host species niches and socioeconomic factors to determine the 
susceptible human population. This correlative approach is limited by a lack of  mechanistic 
understanding behind the effects of ecological and socioeconomic factors on JE disease risk.  

In Chapter 5, I extend the JE risk model developed in Chapter 4 to test scenarios of 

global change on JE risk. I explore how different climatic, agricultural, and 

socioeconomic change scenarios might influence JE risk in north-east India over the 

coming decades. My goal in this chapter is a first step towards incorporating MBD 

risk into not only public health but also environmental policy decisions to identify 

trade-offs across land-use, climate, food security and human health. Finally, in 

Chapter 6, I review and discuss my key conclusions, evaluate any limitations, and 

provide insights from the thesis. In addition, I propose recommendations for future 

research and highlight possible global health and environmental policy relevance.  
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Chapter 2:  

The impact of global change on mosquito-borne disease  

In this chapter, I review and synthesise the current state of knowledge on the impact 

of global change on mosquito-borne disease risk, to ask: is current research focus on 

the effects of climate change justified, and what are the key knowledge gaps from the 

perspective of improving our ability to project disease risk and target interventions? 

2.1 Abstract 

Over 80% of the global population is at risk of a vector-borne disease, with mosquito-

borne diseases (MBDs) being the largest contributor to human disease burden. 

Although many global processes such as land-use and socioeconomic change are 

thought to influence MBD dynamics, research to-date has strongly focused on the 

role of climate change. I show, through a review of contemporary modelling studies, 

that there is no clear consensus on how future changes in climatic conditions will 

impact MBDs, possibly because of the interacting effects of other global change 

processes which are often excluded from the analyses. I conclude that research 

should not only focus on the role of climate change but consider growing evidence for 

additional factors that modulate disease risk. Furthermore, future research should 

adopt new technologies, including developments in remote sensing and system 

dynamics modelling techniques, enabling a better understanding and mitigation of 

MBDs in a changing world.  

2.2 Introduction 

Diseases transmitted by arthropod vectors such as mosquitoes and ticks are major 

contributors to the global burden of infectious disease (WHO, 2017), with nearly half 

the world’s human population being infected with a vector-borne pathogen at any 

moment (WHO, 2014). In particular, MBDs are a key group of concern, as they 

include both very high burden and important emerging diseases such as: Human 

malaria (~212 million cases per year), Dengue (~96 million cases per year), 
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Chikungunya (~693 000 cases per year) and Zika virus disease (~500,000 cases per 

year) (Table 2.1) (Kilpatrick and Randolph, 2012). 

Table 2.1. Number of cases per annum for the major mosquito-borne diseases of 
global health significance and the genera of associated mosquito vectors. 

Adapted from WHO ‘A global brief on vector-borne diseases’,(WHO, 2014) and ‘Global 
vector control response 2017–2030’ (WHO, 2017). 

Disease Mosquito vectors  Estimated or reported 
number of cases per annum 

Malaria Anopheles 212 million (148–304 million) 

Dengue Aedes 96 million (67–136 million) 

Lymphatic filariasis Aedes, Anopheles, 
Culex 

38.5 million (31.3–46.7 
million) 

Chikungunya Aedes, Anopheles, 
Culex, Mansonia 

693 000  
(Americas) 

Zika virus disease Aedes 500 000  
(Americas) 

Yellow fever Aedes, Haemagogus 130 000 (84 000–170 000)  
(Africa) 

Japanese encephalitis Culex 42 500 (35 000–50 000) 

West Nile fever Culex 2 588  

Globally, many MBDs are thought to be increasing in incidence and geographic 

distribution,  both emerging in new areas (Stanaway et al., 2016; Paixão, Teixeira 

and Rodrigues, 2017), and re-emerging in previously eradicated regions (Grobbelaar 

et al., 2016; WHO, 2017). For example, there has been a 30-fold increase in the 

global incidence of dengue over the past 50 years, following its expansion into many 

new countries (Gubler, 2011; Bhatt et al., 2013; Stanaway et al., 2016), while yellow 

fever cases are reported to be increasing again in many endemic countries after 

previous dramatic declines (Grobbelaar et al., 2016). These diseases, with their 

corresponding high levels of morbidity and mortality, have the potential to exert 

significant negative financial and societal effects and can dramatically inhibit the 

development and structure of economies, societies and politics (WHO, 2017). As a 

consequence, much research has been targeted at understanding the current and 

future geographic distributions of disease risk, in the context of on-going global 
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change, to help guide interventions and safeguard public health (Campbell et al., 

2015; Kraemer et al., 2015; Longbottom et al., 2017). 

In this context, there has previously been a strong research focus on modelling the 

direct effects of climate change on spatial and temporal disease risk (Brady et al., 

2014; Christiansen-Jucht et al., 2014; Mordecai et al., 2017), paying less attention to 

other factors that are already known to interact with both climate change and vector-

borne diseases, such as land-use and socioeconomics (e.g. poverty, trade and 

travel) (Kilpatrick and Randolph, 2012; Gottdenker et al., 2014; Parham et al., 2015). 

Indeed, these additional global processes, and the interactions between them, may 

reasonably be shown to have a stronger immediate impact on future MBD burden 

than climate change effects (Newbold, 2018). This  would mean a more complete 

understanding of the role of global change in modulating the spatial and temporal 

distributions of MBDs will be essential for the successful prediction and management 

of disease risk in the future (Whitmee et al., 2015). In this review, I synthesise current 

knowledge on the relative impact of global change processes on MBD risk and 

critically examine how these have been incorporated into existing analyses. I argue 

that the current focus on the effects of climate change is insufficient, considering 

growing evidence for the key role of other global change processes in modulating 

MBD risk. I suggest an alternative approach to modelling MBD risk and recommend 

future directions for research.   

2.3 Climate change as a driver of mosquito-borne disease 

2.3.1 Review of current literature 

I reviewed the scope and outcome of climate-based MBD modelling studies, 

structuring the search to explore two main axes. Firstly, I considered different 

mechanisms examined by each study as climate and climate change may affect 

MBD epidemiology via different pathways, such as influencing pathogen 

development within the mosquito, and vector population dynamics (Ladeau et al., 

2015; Lounibos and Juliano, 2018). Secondly, I examined how different modelling 

approaches, such as mechanistic and correlation-based methods, have been used to 
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predict the effect of climate on the risk of multiple MBDs over different geographic 

and temporal scales (Tjaden et al., 2018).  

Owing to time limitations, I conducted a rapid review in which components of the 

systematic review process are simplified or omitted (Tricco et al., 2015). This 

included limiting the search to literature published in English within two databases, 

PubMed and Web of Science, between 1st January 2014 to 28th March 2018 

inclusive. This time period was selected to reflect the field since the publication in 

2014 of the WHO document, ‘A global brief on vector-borne diseases’ which called 

for further research on this topic (WHO 2014). In addition, only one person screened 

the literature search results and quality appraisal of the studies was not conducted. 

Search terms were related to models of human MBDs and climate change: 

(“mosquito*” or "mosquito-borne disease*" or "mosquito borne disease*") AND 

("climate chang*" or “climat* change*" or "climat* warm*" or "chang* climat*") AND 

(“model*” or “modelling”). I excluded treatment papers, reviews, case studies and 

surveillance reports and focused on modelling studies that evaluated the effect of 

climate change on MBDs and their vectors. Climate change was defined as an 

alteration (either observed or projected) in climatic parameters over several decades, 

with changes in MBD risk being inferred from variations in disease incidence or 

vector populations.  

Of the 234 papers identified, 46 met the inclusion criteria (Appendix 1 Table S2.1). 

Overall, 54% of studies demonstrated a positive relationship between climate change 

and MBD risk, with increased variations in meteorological values associated with 

increased vector abundance or disease incidence. However, the proportion of studies 

showing this positive relationship varied depending on the geographic scale of the 

study (Figure 2.1A). Of those studies that predicted increased disease risk with 

climate change, less than half included key biological information, such as vector 

critical climatic thresholds and 28% considered other global processes (Figure 2.1B). 

Global change processes examined in the 46 studies included land-use in 17%, 

human population density in 11%, of which less than half considered future human 

density projections, and socioeconomics in 7%.  
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Temperature, precipitation and humidity were the main parameters used to model 

climate change (Appendix 1 Table S2.1). Over 97% of studies included the effect of 

temperature change in their analyses, whereas 78% included precipitation and 22% 

considered humidity. Temperature has been a predominant research focus since 

mosquitoes are ectothermic and so ambient temperature strongly influences 

important epidemiological processes including vector development, biting rates and 

pathogen development rate within the vector (Reiter 2001; Mordecai et al. 2017). 

Precipitation is regularly included as parameters in models of MBD risk as water 

pools are required for mosquito development and associated humidity levels 

influence mosquito survival and flight (Bates, 1949; Iacono et al., 2018). 

Changes in these meteorological variables were determined from recorded climatic 

data or from projected climatic values using different scenarios of climate change 

(e.g. IPCC emissions) (IPCC, 2014b). Regarding modelling approaches, over 50% of 

the studies used correlative models to investigate statistical associations between 

MBD risk and explanatory variables (Tjaden et al., 2018). Other studies used 

mechanistic models which incorporated biological or environmental mechanisms 

assumed to drive disease dynamics (e.g., increased rainfall providing water pools for 

vector development). In addition, a few studies combined correlative and mechanistic 

approaches in hybrid correlative models. Mechanistic models were used more 

commonly for small geographic area analyses such as zonal and national, compared 

with correlative methods which tended to be used for large-scale regional or global 

analyses. Most studies were prospective (i.e., predicting to into future) but a few were 

retrospective or theoretical. 
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Figure 2.1. Rapid review of the impact of climate change on MBD risk. 

(A) Percentage of studies predicting a positive (light green), negative or equivocal (dark 
green) relationship between climate change and MBD risk per geographic region; number of 
studies reviewed per region are indicated in parenthesis. (B) Number of positive studies that 
consider the influence of other global change drivers in their models and/or critical climatic 
thresholds affecting the vector competence of mosquitos, per by geographic region. 

The overall results indicate that there is no clear consensus on how changes in 

climatic conditions impact MBD risk. This equivocal conclusion may reflect the choice 

of modelling parameters (i.e., selected climatic variables), the use of spatial or 

temporal scales in the analyses, the modelling approach and/or, exclusion of 

important factors or biological processes from the analyses.  
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2.3.2 Narrative review of current literature 

The strong focus on the effects of temperature change in the field of MBD research 

(Caminade et al., 2014; Campbell et al., 2015; Paz, 2015; Tjaden et al., 2017) 

appears to have led to a body of international scientific reports that conclude that 

MBD expansion will likely occur in parallel with climate change (IPCC, 2014b; Watts 

et al., 2017). However, these conclusions are based on the assumption that 

temperature is a robust predictor of mosquito population dynamics, despite many 

temperature-dependent relationships and interactions remaining poorly defined 

(Paaijmans et al., 2012; Christiansen-Jucht et al., 2014; Ewing et al., 2016). For 

example, the effect of increasing temperature on physiological traits in ectotherms 

has been shown to be generally non-linear (Paaijmans et al., 2013; Mordecai et al., 

2017), and can result in negative outcomes such as reduced survivorship 

(Christiansen-Jucht et al., 2014), and fast larval development, resulting in small adult 

mosquitoes (Westbrook et al., 2010). Small mosquito body size has been associated 

with reductions in fecundity, bloodmeal size and immunocompetence (Murdock et al., 

2012). Therefore, paradoxically, climate change may actually reduce the risk of 

transmission in certain regions via the negative effects of increasing temperatures on 

vector competence (i.e., the ability of vectors to become infectious).  

Temperature also influences the time taken for pathogen development within the 

mosquito (i.e., extrinsic incubation period [EIP]) (Paaijmans et al., 2012; Mordecai, et 

al., 2017). The EIP has a major impact on disease transmission because small 

changes in this parameter can greatly affect the number of mosquitoes that live long 

enough to become infectious. However, most climate-based MBD models do not 

include this parameter and when it is included, it is often based on out-dated, 

temperature-dependent models developed from a single mosquito species that do 

not consider the influence of other abiotic (e.g., larval habitat quality) or biotic (e.g., 

parasite competition within the mosquito) factors (Ohm et al., 2018). Studies have 

typically demonstrated EIP to be shortened with increasing temperatures, and 

suggested related high infection and transmission rates (Reisen, Fang and Martinez, 

2006; Barbazan et al., 2010; Tjaden et al., 2013). However, this effect may vary 

considerably depending on the specific vector and pathogen (Ohm et al., 2018). For 

example, in Aedes vectors, low temperatures have been shown to shorten EIPs and 
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cause high viral infection rates by suppressing mosquito antiviral immunity 

(Westbrook et al., 2010). Other studies have found large temperature fluctuations at 

low mean temperatures cause shorter EIPs and higher infection in vectors of dengue 

virus (Lambrechts et al., 2011; Carrington et al., 2013) and malaria (Paaijmans et al., 

2010), when compared with more consistent conditions. The lack of clarity about the 

relationship between EIP and temperature is a critical knowledge gap that requires 

further empirical research to inform accurate forecasting of MBD risk.  

There is considerable debate about how future climate change will impact 

precipitation trends (IPCC, 2013; Harris et al., 2014), but the consensus is that an 

increasing frequency of extreme precipitation levels is likely (Booth, 2018). With 

regard to MBDs, increased variation in precipitation may either augment vector 

breeding habitat formation or reduce it via detrimental periods of drought and 

extreme flooding. Similar to the effects of temperature, the relationship between 

precipitation and MBD risk is non-linear (Paz, 2015; Davis et al., 2017). Several 

lagged effects (i.e., time-lags between water pooling and adult mosquito emergence) 

need to be considered in any analysis (Stewart Ibarra et al., 2013). Furthermore, 

precipitation alone does not account for the presence of vector breeding habitat; this 

will also depend on species-specific preferences (i.e., water depth) and hydrological 

factors (e.g., as soil type, vegetation) that control temporary water body development 

(Day and Shaman, 2008; Davis et al., 2017). A few studies have incorporated 

hydrological processes into their regional disease risk models (Day and Shaman, 

2008; Soti et al., 2012; Asare, Tompkins and Bomblies, 2016), but the practice has 

not been widely adopted possibly because of the increased complexity needed to 

model these processes or lack of collaboration between disease researchers and 

hydrological experts.  

Although climate-based models have proved useful in understanding MBD risk at 

local scales (Siraj et al., 2014) and short timescales (Lowe et al., 2017b), models 

based solely on approximating the impacts of climatic factors are unlikely to be as 

effective over large spatial and temporal scales. Other important mechanisms that 

influence the geographic distributions of vector populations, such as dispersal (e.g., 

via host movement, wind and trade routes), and biotic interactions (e.g., competition 

and predation) (Peterson, 2008; Dobson, 2009; Lounibos and Juliano, 2018) are 
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already known. For instance, although West Nile Virus was theoretically able to exist 

in the Americas due to climatic suitability, it was not until 1999 that it spread from its 

original range in Africa, southern Europe, and Southwest Asia, to the whole of North 

America, likely due to dispersal by migratory birds (Peterson, 2008). Likewise, Aedes 

aegypti was expected to occupy rural habitats of southern USA due to climatic 

suitability, but these predictions proved inaccurate when competitor, Aedes 

albopictus was present (Lounibos and Juliano, 2018). 

Therefore, the burden of disease from MBDs felt by human populations is probably 

an emergent property from a set of interacting processes which vary at different 

spatiotemporal scales. For instance, although climate change is likely to cause some 

predictable range shifts in vector species (Warren et al., 2018), the precise impact of 

these changes can only be understood in the wider context of a set of non-biological 

factors, such as land-use change and socioeconomic development (Dobson, 2009). 

Such interactions may be additive as demonstrated by the synergistic effects of 

climate change, urbanisation, international trade and travel that have promoted the 

global expansion in dengue transmission risk (Campbell-Lendrum et al., 2015). 

Alternatively, they may be subtractive as seen with the global malaria recession 

which has occurred in parallel with increasing urbanisation (Tatem et al., 2013) and 

economic development (Sachs and Malaney, 2002). However, the usefulness of 

climate-based models of MBD risk should not be underestimated. There is a need for 

more complex models that consider multiple global change processes to predict 

distributions of MBD risk in the context of on-going global change (Caminade et al., 

2014).   

2.4 The impact of land-use changes on mosquito-borne disease 

Land-use change, from natural to human-dominated landscapes, is a key signature 

of the Anthropocene (Steffen et al., 2011) and can alter disease risk by influencing 

the interactions between people, pathogens, vectors and vertebrate hosts (Lambin et 

al., 2010; Kilpatrick and Randolph, 2012; Gottdenker et al., 2014; Johnson, de Roode 

and Fenton, 2015; Gibb, Moses, Redding and Kate E. Jones, 2017; Hassell et al., 

2017). The immediacy and strength of land-use change impacts on local ecology 
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(Hudson et al., 2014) supports the argument that it may prove to be the most 

important driver of recent disease emergence and global spread (Jones et al., 2008; 

Lambin et al., 2010; Kilpatrick and Randolph, 2012). However, the impact of land-use 

change on MBD risk will depend on several factors such as its geographic region and 

mode of the change (i.e., whether it was due to deforestation, agriculture, irrigation, 

and/or urbanisation). Each of these types of change are discussed below.  

2.4.1 Deforestation 

Deforestation has been associated with increased human exposure to MBDs 

(Fornace et al., 2016; Chaves et al., 2018) via its effect on the ecology of vertebrate 

hosts of zoonotic pathogens, vectors, and vector-host interactions. For example, 

biodiversity declines are associated with primary forest clearance (Newbold et al., 

2015) and may result in shifts in the community composition of wildlife hosts 

(Kilpatrick and Randolph, 2012; Roche et al., 2013; Hassell et al., 2017) and 

emergence of infectious diseases (Jones et al., 2008). It is postulated that in 

biodiverse regions, multi-host community structures may be able to buffer against 

disease outbreaks since pathogen transmission may be diluted (Ostfeld and Keesing, 

2000; Wilcox and Gubler, 2005; Civitello et al., 2015). Despite the theoretical and 

empirical evidence for this ‘dilution effect’ being strongest for vector-borne pathogen 

transmission (Ostfeld and Keesing, 2000; Faust et al., 2017), the generality of this 

theory remains disputed (Randolph and Dobson, 2012; Faust et al., 2017; Luis, 

Kuenzi and Mills, 2018). 

Since mosquito ecology is dependent on abiotic and biotic environmental conditions, 

land-use changes will have a significant effect on populations (Ladeau et al., 2015) 

via altering microclimates, biotic interactions (e.g., predation and competition), and 

nutrient availability (Burkett-Cadena and Vittor, 2017). Deforestation promotes the 

growth of certain mosquito populations due to changes in sunlight and pH of  water 

pools in cleared areas (Patz et al., 2000). For instance, increased sunlight has been 

shown to assist mosquito survival by providing nutrients for larvae (Brouard et al., 

2011), and limiting entomophagic fungi growth (Rueda Páramo, López Lastra and 

García, 2015). Nevertheless, the effect of these changes on mosquito populations 

will vary depending on the specific microclimate created and the species’ ecology 
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(Ladeau et al., 2015). Frequently, deforestation has been associated with an 

increased abundance of mosquitoes that act as vectors of disease, with non-vector 

species favouring undisturbed forest (Burkett-Cadena and Vittor, 2017; Loaiza et al., 

2017). The mechanisms behind this remain unclear, but may reflect evolutionary 

processes that, due to a history of human-mosquito co-occurrence, have enabled 

pathogens carried by disturbance-specialist mosquito species to adapt to infect 

humans and proliferate in anthropogenic landscapes (Loaiza et al., 2017). 

2.4.2 Agriculture 

Agricultural land including cropland, livestock production and irrigated land, accounts 

for more than 30% of the world’s land-use cover (Hurtt et al., 2011). Although 

agricultural land conversion has led to enhanced global food production and 

economic development, there has been an associated increase in MBD risk (WHO in 

collaboration with FAO, UNEP, 1996; Lindblade et al., 2000; Ijumba and Lindsay, 

2001; Erlanger et al., 2005; Keiser et al., 2005a; Baeza et al., 2011; Jaleta et al., 

2013; WHO, 2014). Agricultural land has specific localised impacts on important 

MBD correlates such as livestock numbers and water management practices (Hurtt 

et al., 2011). In particular, livestock production, may modify MBD dynamics by 

increasing blood meal availability for the vectors (Service, 1991) and provide 

competent reservoir hosts to maintain (Patz et al., 2000; Le Flohic et al., 2013) and 

even amplify (Patz et al., 2000) zoonotic pathogens.  For instance, domestic pigs are 

‘amplification’ hosts for Japanese encephalitis virus (JEV) since they mount high 

levels of the virus in their blood which augments the proportion of infected vectors 

(Scherer and Buescher, 1959; Le Flohic et al., 2013). Indeed, pig farming is reported 

to be a key correlate in the prevalence of JEV in Asia (Erlanger et al., 2009). 

Furthermore, livestock production may influence MBD risk via its interaction with 

climate change since it significantly contributes to global greenhouse gas emissions; 

conversely, climate change may influence disease transmission in domestic animal 

populations (Booth, 2018). 

Irrigation and dam creation have led to marked changes in the risk of global MBDs 

such as JE, lymphatic filariasis (LF) and malaria (Ijumba and Lindsay, 2001; Erlanger 

et al., 2005; Keiser et al., 2005b; Baeza et al., 2011; Kibret et al., 2016). These 
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practices lead to a dramatic expansion in vector breeding habitat (Patz et al., 2004) 

and may extend disease transmission seasons (Ijumba and Lindsay, 2001), alter 

seasonal transmission dynamics in endemic areas (Baeza et al., 2011) and enable 

pathogen spread into non-endemic areas (Erlanger et al., 2009; van den Hurk, 

Ritchie and Mackenzie, 2009; Fuller et al., 2012). However, the effects of these 

schemes on vector populations are complex and will also depend on vector species-

specific life-history traits (Ladeau et al., 2015). For example, Culex quinquefasciatus, 

a major vector of LF in Asia, prefers to breed in clean water whereas conspecific, 

Culex tritaeniorhynchus, principal vector of JEV, favours stagnant water (Bashar et 

al., 2016). 

Importantly, irrigation practices may also affect the socioeconomic status of a region 

which can influence MBD dynamics. The ‘paddies paradox’, whereby land conversion 

for irrigation leads to an initial increase and then decrease in MBD risk, has been 

reported for malaria in Africa (Ijumba and Lindsay, 2001) and Asia (Baeza et al., 

2011). This phenomenon is postulated to reflect increasing socioeconomic status in 

the region associated with improved crop production. Other possible mechanisms 

include changes in ecology which limit vector abundance (Chase and Knight, 2003) 

and reduce pathogen spread over time (Moore, Borer and Hosseini, 2010). With 

future expansion of irrigation practices and dam construction expected (Alexandratos 

and Bruinsma, 2012; Kibret et al., 2016; Anderson et al., 2018), their influence on 

disease risk requires consideration. 

2.4.3 Urbanisation 

The majority of recent urbanisation has occurred in developing countries, where rapid 

and unregulated urban settlements have caused a huge strain on public health 

programmes. In 2016, 54% of the global population was reported to reside in urban 

areas; a significant increase from 34% in 1960. This trend looks set to continue (The 

World Bank, 2016) with 2.5 billion people predicted to augment the world’s urban 

population by 2050, predominantly in Asia and Africa (United Nations, Department of 

Economic and Social Affairs, 2014). Increasing numbers of people living in high 

densities may lead to higher overall pathogen transmission risk for some MBDs 

(Weaver and Reisen, 2010), while high levels of travel and trade in urban hubs can 
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enable the spread of vectors and pathogens between population centres (Saker et 

al., 2004; Weaver and Reisen, 2010; Gubler, 2011; Weaver, 2013). Nevertheless, the 

impact of urbanisation on MBD risk is complex since evidence suggests both an 

expansion of some diseases and contraction of others.  

For instance, urban expansion has promoted the emergence of arboviruses 

transmitted by Ae. aegypti, such as dengue, chikungunya and zika (Kwa, 2008; 

Gubler, 2011; Weaver, 2013; Hotez, 2017) (Table 2.1), by influencing resource 

availability and climatic factors that alter mosquito community ecology (Ladeau et al., 

2015). The phenomenon known as the urban heat island (UHI), whereby urban areas 

experience warmer temperatures than surrounding rural areas (Imhoff et al., 2010), 

may increase the speed of vector development (Ladeau et al., 2015). In addition, the 

interplay between the structural complexity of urban landscapes and precipitation has 

been associated with greater vector numbers and several dengue outbreaks in Asia 

(Booth, 2018). Vectors such as Ae. aegypti and Ae. albopictus, are well-adapted to 

urban areas (Brown et al., 2011), and breed in water containers, drains and gutters, 

with limited competition or predation (Ladeau et al., 2015). However, the relative 

impact of urbanisation on vector populations is unlikely to be geographically uniform 

since urban environments represent a diverse spectrum of habitat mosaics which 

vary in microclimatic features (Murdock et al., 2017) and socioeconomic status 

(Ladeau et al., 2015). 

In contrast, increased urban development has also been associated with the global 

decrease in malaria over the past century (Qi et al., 2012; Tatem et al., 2013). 

However, the underlying mechanisms remains unclear. Urbanisation has been 

shown to reduce infectious disease burdens, likely via improved health care, 

education and employment when compared with rural areas (Wood et al., 2017). 

Nevertheless, reductions in disease risk may mask strong inequalities that exist 

within urban populations, especially in low and middle-income countries where urban 

communities with high levels of poverty show higher disease transmission than 

nearby rural communities (Saker et al., 2004). 
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2.5 Socioeconomics and mosquito-borne disease risk 

Socioeconomic factors, are increasingly recognised as further important drivers of 

MBD risk (Gallup and Sachs, 2001; Mulligan et al., 2015; Oviedo-Pastrana et al., 

2017). For malaria, there is a strong negative association between reported disease 

risk and national gross domestic product per capita (GDPpc) (Gallup and Sachs, 

2001). This association may reflect either high rates of malaria transmission in 

impoverished settings or the development of poverty due to the burden of malaria on 

economic growth, or a combination of the two processes (Gallup and Sachs, 2001; 

Sachs and Malaney, 2002). Although poverty has been cited as an important factor in 

the spread of several arboviruses (WHO, 2010; Oviedo-Pastrana et al., 2017), there 

is a paucity of literature on this topic to support this hypothesis (Mulligan et al., 2015). 

The economic burden associated with MBDs includes direct costs of health provision 

and control programmes (i.e., vaccination and vector control), and indirect costs (i.e., 

impacts on education, demographics and human movement) (Gallup and Sachs, 

2001; Sachs and Malaney, 2002). Furthermore, macroeconomic costs may occur 

due to the influence of disease on foreign investment, trade and tourism (Sachs and 

Malaney, 2002). 

Sometimes these factors combine to impede economic development and strengthen 

the relationship between poverty and disease (Sachs and Malaney, 2002; Alsan et 

al., 2012; Ngonghala et al., 2017) leading to ‘poverty traps’; a self-reinforcing 

mechanism enabling poverty and diseases to persist (Bowles, Durlauf and Hoff, 

2006). This may be accelerated by the development of synergistic diseases referred 

to as syndemics, as seen with LF and HIV in East Africa (Singer and Bulled, 2013). 

Escaping from these traps is particularly difficult for underprivileged rural populations 

who generally rely on subsistence agriculture, have poor access to healthcare and 

suffer high rates of infectious diseases. A further complexity arises when disease risk 

is a function of underlying production systems, e.g., livestock are a major feeding 

resource for Rift Valley Fever vectors and rice paddies are a major habitat 

component for JEV vectors. Since the currency of the rural poor is often biological 

(i.e., crops and livestock, human health and nutrition) and the dynamics of this 

currency can exist within ecological systems, economic development may be tied to 

ecological processes (Ngonghala et al., 2017). Models representing this relationship 
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show that ‘poverty traps’ are features of coupled ecological–economic systems and 

within these systems, infectious diseases can limit economic growth (Ngonghala et 

al., 2017). 

External intervention (e.g., use of federal funds or international aid) can allow areas 

with high endemic disease burden to escape disease-poverty feedbacks (Bloom, 

Canning and Sevilla, 2004). This economic development may then act to reduce 

contact between people and mosquitoes via vector protection, improved housing and 

environmental management (e.g., larvicide treatment, vector habitat destruction) 

(Tolle, 2009; Kilpatrick and Randolph, 2012). Moreover, there is often a reduction in 

hazardous behaviours such as accessing high risk areas for resource exploitation or 

settlement (Lambin et al., 2010). While the weight of evidence suggests economic 

growth reduces MBD risk, it also results in increased movement of people, animals 

and commodities, with accompanying pathogens and vectors via travel and trade 

(Patz et al., 2000; Gubler, 2011; Nunes et al., 2014; Kampen et al., 2016). 

2.6 The interplay between global change processes  

Despite growing convergence in the field of MBD research that considers interactions 

between global change processes (Campbell-Lendrum et al., 2015), these dynamics 

and potential resulting trade-offs that either positively or negatively impact global 

health (Whitmee et al., 2015), are often not represented in models. Below, I outline 

the impact of these interactions on the global distribution of dengue which has 

dramatically expanded over the last 30 years and malaria which has contracted in the 

same period (Figure 2.2). This comparison helps to illustrate the fact that climate is 

just one part of an overall mechanism that is changing the epidemiology of MBDs. 
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The figure demonstrates that despite changes in temperature over the period 1993-2013, 
disease risk for two mosquito-borne diseases diverged. This simple graphical interpretation 
emphasises that climate is not the only factor driving mosquito-borne disease risk however, 
the metrics of disease risk (i.e., cases versus deaths) used are different and differences in 
disease system ecology (e.g., ecology of pathogens and vectors) are not considered. WHO 
regions include Latin America, Caribbean, North America, North Africa and Middle East, 
South and Southeast Asia, Central and East Asia, Oceania, Sub-Saharan Africa. Climatic 
data was accessed via the Climatic Research Unit and case data retrieved from the Global 
Burden of Disease Survey 2013 (Stanaway et al., 2016; Abajobir et al., 2017).  

2.6.1 Dengue 

Although climate change is known to directly influence dengue transmission, Messina 

et al. (2015) suggested that other global change processes and their interactions with 

climate are likely to have a greater effect in the more immediate future. The rapid 

global emergence of dengue within the past 50 years (WHO, 2012) is related to 

interacting drivers including urbanisation, socioeconomics, climate change, travel and 

Figure 2.2. Percentage change in dengue cases and malaria deaths between 1993 and 

2013 per WHO region overlaying annual mean land temperature (C) change within the 
same period. 
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trade (Guzman and Harris, 2015; Ebi and Nealon, 2016). For instance, the significant 

expansion of urban areas after World War II, especially in Asia, meant large numbers 

of people migrated into cities, often residing in housing with no sanitation or running 

water (Gubler, 2011). These factors, combined with poor health-care infrastructure 

meant that by the 1980s, dengue virus had escalated from causing sporadic 

epidemics to being a leading cause of morbidity and mortality in Southeast Asia 

(Gubler, 2011). However, the expansion of dengue was preceded by the spread of its 

principal vectors, Ae. aegypti and Ae. albopictus. Originally zoophilic and sylvatic, 

these mosquitoes became domesticated and were introduced to global urban hubs 

via travel and trade (Brown et al., 2011; Kraemer et al., 2015). Local populations of 

dengue vectors then increased in urban landscapes due to the higher numbers of 

human hosts and the abundance of suitable breeding habitats (Kraemer et al., 2015; 

Ladeau et al., 2015). Furthermore, complex interplay between UHI, pesticide use and 

vector competition have been reported to impact vector competence and influence 

dengue transmission (Ladeau et al., 2015). 

2.6.2 Malaria 

Much research has pointed to interactions between malaria transmission, land 

conversion, socioeconomics and human movement (Stratton et al., 2008; Baeza et 

al., 2011; Baeza et al., 2017). For instance, a recent study coupled MBD dynamics 

with socioeconomic outcomes that occurred during land transitions (Baeza et al., 

2017) and found it was common for an initial increase in malaria transmission to 

occur after land-use change, followed by either a further rise or a decline in 

transmission. This is postulated to arise due to ecological changes that promote 

transmission (e.g., altered breeding sites and human-vector contact rates) occurring 

at a much faster rate than economic changes which can reduce transmission risk 

(e.g., improved housing and public health infrastructure). This analysis provided a 

theoretical explanation for empirical observations of higher malaria risk during the 

early stages of irrigation schemes compared with well-established irrigated land 

(Lindblade et al., 2000; Baeza et al., 2011) and highlighted the need to consider both 

wide-ranging sets of underlying drivers and appropriate timescales on which each 

driver acts on a system.  
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The interacting effects of climate change and socioeconomic factors are also 

predicted to dramatically influence malaria risk over longer timescales. A study found 

that the projected population at risk in 2050 was estimated to be 5.2 billion when only 

climatic effects were considered, 1.74 billion when only GDP effects were considered 

and 1.95 billion when both factors were considered (Béguin et al., 2011). This 

indicates that climate change may act to negate the continued contraction in malaria 

expected with economic development. However, feedback loops between climate 

change and economic development need to be better understood to improve 

predictions.  

2.7 Recommendations for future research  

Although the effects of climate change on MBD risk are significant, the influence of 

other global change processes and their interactions occur over shorter timescales 

and therefore are likely to have greater impact in the immediate future (Millennium 

Ecosystem Assessment, 2005). Considering the effect of climate change in isolation 

may result in inaccurate predictions of MBD risk which may influence the formulation 

of robust policy recommendations for these emerging diseases. This is compounded 

by the fact that many studies do not account for the multiple sources of uncertainty in 

their predictions (Caminade et al., 2014; Harris et al., 2014) including the data (e.g., 

health, environmental and socioeconomic), future global change scenarios (e.g., 

climate emission scenarios), and the structure of models and their outputs.  
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Figure 2.3. A system dynamics approach to understanding MBD risk. 

A conceptual model to show a system approach to understanding MBD risk whereby public 
health outcomes are influenced by complex interactions between environmental and 
socioeconomic systems. For disease transmission to occur requires the environmental niche 
of the pathogen, vector and vertebrate host to overlap. The environmental niches of these 
groups are influenced by the wider physical environment which varies in habitat quality and 
composition of vector and host (animal and human) communities. Acting on these 
environmental systems are major global change drivers such as land-use type, climate 
change, socioeconomic conditions, travel, and trade that interact to influence MBD risk. 

I advocate future research to adopt a holistic system dynamics approach (Figure 2.3) 

whereby the relationships and the feedbacks between socioeconomic and 

environmental systems are considered (Pongsiri et al., 2017). However, to achieve 

this, several research gaps need to be addressed: Firstly, enhanced surveillance and 

evaluation of public health measures is needed to improve health data and define the 
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factors that promote disease risk. Secondly, empirical research is required to 

describe the relationships between vectors, pathogens and global change processes 

to improve parameterisation of MBD risk models. Thirdly, more high resolution, large-

scale datasets for other global change processes are needed to match the quantity of 

climatic data available. Further, research is required to understand the scale at which 

different global change processes influence MBD risk, and how to incorporate 

multiple scales into MBD transmission models (Caminade et al., 2014; Parham et al., 

2015; Booth, 2018). Addressing these gaps requires improved funding for empirical 

research and long-term surveillance at varying geographic scales, and enhanced 

collaboration between researchers working within different disciplines of MBD 

research. In addition, greater funding for transdisciplinary studies is required to 

overcome unilateral modelling approaches and improve our understanding of disease 

risk. The ever-increasing availability of ‘big data’, sensor technology and innovative 

software, means researchers have the ability to understand environmental 

heterogeneity and global change over multiple spatial and temporal scales, including 

from real-time perspectives (Hay et al., 2013; Kraemer et al., 2016; Fleming et al., 

2017). High-resolution satellite remote sensing (RS) data are available for variables 

including land-use, climate and human populations at a global scale over large time 

periods. For example, current Sentinel satellite RS data products are available 

weekly at 10 metre resolution and can be produced into environmental datasets such 

as land cover products via machine learning approaches (Chen et al., 2020; 

European Space Agency, 2022). Mobile phone data has also been used to map 

patterns and processes in human populations (Deville et al., 2014; Lai et al., 2019), 

and to examine the effect of human movement on disease transmission data 

(Wesolowski et al., 2015; Engebretsen et al., 2020). For example, human mobility 

estimates generated from mobile phone data can accurately predict the distribution 

and timing of dengue epidemics in Pakistan (Wesolowski et al., 2015). In addition, 

citizen science projects are engaging members of the public to record data such as 

mosquito occurrence via applications on their mobile phones (Mukundarajan et al., 

2017; Vasconcelos et al., 2019; Sinka et al., 2021). 
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2.8 Conclusion  

Previous MBD research has tended to focus on unilateral climate change analyses 

despite the growing evidence that other global change processes are important 

determinants of disease risk. Adopting a system dynamics approach, whereby 

relationships between socioeconomic and environmental drivers are considered, may 

improve future MBD projections and facilitate stakeholder engagement by 

demonstrating the effectiveness of common goals in a changing world. Enhanced 

funding for transdisciplinary research and new opportunities in data availability and 

analyses will enable a better understanding of the interacting mechanisms that drive 

disease transmission which will help to guide interventions and safeguard global 

health (Pongsiri et al., 2017). 
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Chapter 3:  

Joint spatiotemporal modelling reveals seasonally dynamic 

patterns of Japanese encephalitis vector abundance across India 

The rest of the thesis focuses on a case study disease, Japanese encephalitis (JE), 

an important mosquito-borne disease which is a leading cause of viral 

encephalopathy in Asia. In this chapter I develop a novel modelling approach to 

predict seasonal vector abundance for the predominant JE vector across India, as 

well as to examine the environmental drivers of these patterns.  

3.1 Abstract 

Predicting vector abundance and seasonality, key components of mosquito-borne 

disease (MBD) hazard, is essential in the identification of the hotspots of MBD risk 

and the effective implementation of targeted interventions. Japanese encephalitis 

(JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 

100,000 cases estimated annually, but data on the principal vector Culex 

tritaeniorhynchus is lacking. I developed a Bayesian joint-likelihood model that 

combined information from available vector occurrence and abundance data to 

predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE 

hazard) across India, as well as to examine the environmental drivers of these 

patterns. Using data collated from 57 locations from 24 studies, I find distinct 

seasonal and spatial patterns of JE vector abundance are influenced by climatic and 

land-use factors. Lagged precipitation, temperature and land-use intensity metrics for 

rice crop cultivation were the main drivers of vector abundance, independent of 

seasonal, or spatial variation. The inclusion of environmental factors and a seasonal 

term improved model prediction accuracy (mean absolute error [MAE] for random 

cross validation = 0.42) compared to a baseline model representative of static hazard 

predictions (MAE = 0.51), signalling the importance of seasonal environmental 

conditions in predicting JE vector abundance. Vector abundance varied widely 

across India with high abundance predicted in northern, north-eastern, eastern, and 

southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West 

Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector 
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abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% 

confidence interval: 1.52-4.08), highlighting the possible development of vector 

abundance as a proxy for JE hazard. I demonstrate a novel approach that leverages 

information from sparse vector surveillance data to predict seasonal vector 

abundance (a key component of JE hazard) over large spatial scales, and thereby 

provided decision-makers with improved guidance for targeting vector surveillance 

and control efforts.  

3.2 Introduction 

Mosquito-borne diseases (MBDs) pose a substantial global health concern due to 

their ongoing geographic expansion and increasing incidence (WHO, 2017; 

Franklinos et al., 2019). Identifying hotspots of MBD risk is critical in informing 

effective interventions and safeguarding public health (Smith, Dushoff and McKenzie, 

2004). This is particularly important for understudied diseases, such as neglected 

tropical diseases, because resources for disease surveillance and control are often 

limited (World Health Organization and Department of Control of Neglected Tropical 

Diseases, 2017). MBD risk can be understood as the likelihood of an outbreak due to 

exposure of a susceptible population to an infected mosquito vector (hazard) 

(Hosseini et al., 2017). Defining areas of MBD hazard requires knowledge of 

pathogen prevalence in reservoir host and vector populations but these data are 

often not available. Therefore, models that predict how vector populations may vary 

over space and time, thereby estimating a key component of hazard, have become 

vital tools in MBD epidemiology (Kraemer et al., 2016; Tjaden et al., 2018). 

Nevertheless, considerable costs associated with vector sampling (ECDC and EFSA, 

2018) have resulted in the limited availability of long-term vector surveillance 

datasets over large spatial scales, hindering the ability to predict vector abundance 

accurately and inform interventions.  

Vector abundance (i.e., the number of individuals in a site at a given time) and 

seasonality ( i.e., intra-annual change in abundance) are important contributors to 

pathogen establishment, persistence and transmission (ECDC and EFSA, 2018; 

Tjaden et al., 2018; Liu-Helmersson et al., 2019). For example, regions with high 
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vector abundance and a low seasonality (i.e., long periods when adult vectors are 

active) will lead to increased likelihood of pathogen establishment and persistence 

(ECDC and EFSA, 2018). Long periods of high vector abundance may also increase 

the likelihood of pathogen transmission between vectors and hosts due to increased 

contact rates that could lead to pathogen exposure ( e.g., via vector feeding) (White 

et al., 2017; ECDC and EFSA, 2018). Despite the epidemiological importance of 

vector abundance, most commonly available vector surveillance data consist of 

categorical information on occurrence (i.e., presence/absence) and rarely provide 

quantitative information on abundance (Rund et al., 2019).  

The relative availability of vector occurrence data has contributed to the popularity of 

species distribution models (SDMs) in MBD research (Kraemer et al., 2016; Tjaden 

et al., 2018; Johnson, Escobar and Zambrana-Torrelio, 2019). These statistical 

models typically correlate the presence of a species at multiple locations with 

environmental covariates to predict species distributions (Elith and Leathwick, 2009). 

Although they provide valuable information on potential vector geographic 

distributions, knowledge of where vectors can occur is insufficient to provide an 

accurate estimation of MBD hazard (ECDC and EFSA, 2018) particularly because 

these models do not consider spatial and temporal dynamics (Becker et al., 2010). In 

addition, for widely-used SDM approaches such as boosted regression tree (BRT) 

models and MaxEnt, uncertainty estimates are produced by bootstrapping data which 

can be computationally prohibitive (Elith, Burgman and Regan, 2002; Golding and 

Purse, 2016). Without predictive uncertainty metrics, results may be misleading for 

decision-makers since it may be difficult to distinguish between regions with accurate 

predictions and those that have a high degree of uncertainty (Messina et al., 2019). 

Alternatively, seasonal vector abundance has been estimated using mechanistic 

models of vector populations based on a system of differential equations depicting 

each life stage (White et al., 2017; Ewing et al., 2019). However, these models rely 

on large amounts of experimental or empirical data (Tjaden et al., 2018) which can 

be expensive to obtain and are often sparse for many vector species (Mordecai et al., 

2019). The lack of long-term abundance data (WHO, 2017; Liu-Helmersson et al., 

2019) has also meant that statistical models of seasonal vector abundance often 

exist for local (Walsh et al., 2008; Chaves et al., 2012; Jian et al., 2014) rather than 

for national or regional geographic scales. Overall, there is a need for improved 
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estimates of components of MBD hazard which also account for uncertainty to 

enable a better understanding of seasonal patterns in the risk of disease 

transmission. 

One of the most important yet relatively understudied MBDs is Japanese encephalitis 

(JE), the leading cause of viral encephalopathy in Asia (LaBeaud, 2008; G. L. 

Campbell et al., 2011; Quan et al., 2020). JE accounts for over 100,000 human 

cases and 25,000 deaths annually, primarily affecting children and those living in 

rural, agricultural areas (Baig et al., 2013; Quan et al., 2020). Although the disease is 

endemic in 24 countries (Quan et al., 2020), the majority (87%) of cases in Asia are 

reported from India, Nepal, China and Vietnam (Heffelfinger et al., 2017; Lindquist, 

2018). The causative pathogen, Japanese encephalitis virus (JEV) is maintained in 

an enzootic transmission cycle between mosquitoes and a range of amplifying hosts 

including domestic pigs and ardeid wading birds (e.g., herons and egrets) (Le Flohic 

et al., 2013). Agricultural practices such as rice cultivation and pig breeding provide 

an ideal environment for human exposure to JEV, but other factors such as 

population immunity due to vaccination will also influence the risk of disease 

outbreaks (Tian et al., 2015). The virus is predominantly transmitted by the mosquito 

vector Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) (Pearce et al., 2018) 

and JE outbreaks are reported to be strongly associated with vector abundance 

(Wada et al., 1975; Matsuzaki, 1990; Kim et al., 2014). Despite C. tritaeniorhynchus 

being a major threat to human health and wellbeing, there are limited surveillance 

data for this species (Longbottom et al., 2017) which has impeded knowledge on 

spatiotemporal trends in vector abundance, a constituent of JE hazard.  

C. tritaeniorhynchus population dynamics are strongly linked to climatic conditions, 

such as temperature and rainfall (Suryanarayana Murty et al., 2002; Suryanarayana 

Murty, Srinivasa Rao and Arunachalam, 2010), and to anthropogenic activities that 

increase standing water, such as irrigated agriculture (Keiser et al., 2005b; Sabesan, 

Raju Konuganti and Perumal, 2008; Raju et al., 2016, 2018). Experimental studies on 

other Culex species have found important life history traits such as development rate 

and survival generally peak at 15.7–38.0°C (mean thermal optimum = 28.4°C) and 

then decline to zero for thermal minima (mean = 9.5°C) and maxima (mean = 39.5°C) 

(Mordecai et al., 2019). Rainfall can both positively influence C. tritaeniorhynchus 
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abundance via the creation of standing water for vector breeding (Reisen, Aslamkhan 

and Basia, 1976; Vythilingam et al., 1997; Suryanarayana Murty, Srinivasa Rao and 

Arunachalam, 2010) and negatively impact abundance during the monsoon 

(Balasubramanian and Nikhil, 2015) via the destruction of breeding sites (ICMR, 

2001). Irrigated agriculture provides suitable habitat for vector development and C. 

tritaeniorhynchus is reported to breed preferentially in rice paddy fields (Keiser et al., 

2005b; Sabesan, Raju Konuganti and Perumal, 2008). Indeed, previous studies have 

shown that vector abundance is positively associated with rice field density (Richards 

et al., 2010), rice crop growth stage (Raju et al., 2016, 2018) and standing water 

availability (Rajagopalan and Panicker, 1978; Keiser et al., 2005b). Interestingly, the 

availability of standing water due to irrigation practices may lead to a reduction in 

vector seasonality (i.e., by extending vector breeding seasons), especially in arid 

regions which would otherwise be unable to sustain vector development during 

summer months (Mukhtar et al., 2003; Baeza et al., 2011; Bashar et al., 2016; Raju 

et al., 2016, 2018). Although environmental conditions are known to underpin the 

seasonal dynamics of many vector populations (Lord, 2004; Ewing et al., 2019), the 

importance of these factors in driving broad-scale spatial and temporal patterns of JE 

vector populations remains poorly defined.  

Previous studies have investigated the spatial distribution of C. tritaeniorhynchus 

occurrence using SDMs (Masuoka et al., 2010; Miller et al., 2012; Longbottom et al., 

2017; Samy et al., 2018) but, there is a paucity of data on seasonal vector 

abundance. Bayesian hierarchical modelling approaches have been used widely for 

other animal species to estimate biodiversity trends by integrating multiple data types 

in a single estimator (Pagel et al., 2014; Humphreys et al., 2019). This joint-likelihood 

approach has also been used in MBD research to explicitly account for differences in 

data quality and structure (i.e., different probability distributions) and can handle and 

quantify sources of uncertainty associated with each data type (Amoah, Diggle and 

Giorgi, 2020; Lucas et al., 2021). Here, I use this approach to develop a joint-

likelihood Bayesian hierarchical model that leverages spatial information from vector 

occurrence probability to estimate seasonal vector abundance for principal JE vector, 

C. tritaeniorhynchus across India. Firstly, my study aims to quantify the importance of 

different environmental drivers of C. tritaeniorhynchus abundance – a key component 

of JE hazard. I hypothesise that a critical driver of vector abundance is standing 
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water provided by rice crop irrigation practices and periods of heavy rainfall during 

the winter and monsoon seasons. Secondly, I aim to construct seasonal vector 

abundance maps for India that account for uncertainty in predictions. Thirdly, I use 

logistic regression to test whether there is a relationship between mosquito 

abundance estimates and JE cases and discuss the potential for vector abundance 

to be used as a proxy for JE hazard. The purpose of this research is to provide 

decision-makers with useful information that will assist in their resource allocation for 

intervention strategies and highlight areas to target for future vector surveillance. 

India is used as a case study since it has one of the highest JE burdens in Asia (Baig 

et al., 2013; Heffelfinger et al., 2017; Lindquist, 2018) and reports both endemic and 

epidemic epidemiological patterns (Vaughn and Hoke, 1992; Misra and Kalita, 2010). 

3.3 Materials and methods 

3.3.1 Datasets 

3.3.1.1 Vector data 

I assembled a database of geo-referenced, spatially, and temporally unique C. 

tritaeniorhynchus vector occurrence and abundance records in India from published 

literature. A systematic literature search was conducted in PubMed and Web of 

Science using the search terms “Culex tritaeniorhynchus” and “India”. The search 

was limited to articles published in English between 1st January 1990 and 31st 

December 2017 and returned 101 unique citations. Article abstracts were screened 

to meet the following criteria for inclusion; (i) the reported study was undertaken after 

1990, (ii) surveys provided species-level information at the studied location, and (iii) 

the surveys were conducted in the mainland of India. The full text articles were then 

reviewed and excluded if they pooled observations for more than one month since 

this would increase uncertainty in the associations between vector occurrence and 

abundance and predictor variables. The resulting 24 studies that met the inclusion 

criteria were used to build the dataset. The database included 340 unique records of 

adult vectors which ranged from 1990-2012 from 57 sampling locations resulting in 

data from 352 location-months (see Appendix 2 Table S3.1). Of the 340 unique 

records, 73 were occurrence-only records and 267 included occurrence and 

abundance data (Figure 3.1). Records that included occurrence and abundance data 
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were used twice in the analysis; once as occurrence data and once as abundance 

data (total occurrence data n= 340, total abundance data n= 267) (see Appendix 2 

Table S3.1). The study period was chosen to maximise the number of vector 

surveillance records whilst enabling the use of high-resolution land cover datasets 

that were available from 1990s. I built on previous C. tritaeniorhynchus occurrence 

datasets developed by Miller et al., (2012) and Longbottom et al., (Longbottom et al., 

2017) to include information on mosquito presence, absence, and abundance, 

collection method, collection year and month, and habitat descriptions. Mosquito 

sampling locations in each study were identified as point locations. I calculated effort‐

corrected abundance values of C. tritaeniorhynchus from the raw measurement 

values by aggregating monthly counts and standardising them to survey effort (one 

survey hour) abundance measure for each month. Most abundance data (86%; 

n=228) were recorded from the state of Tamil Nadu (Figure 3.1A) and only four 

studies performed continuous abundance measurements over consecutive months 

(see Appendix 2 Table S3.1). Survey effort (one survey hour) vector abundance 

measures were transformed to logscale to conform to normality and ranged from 0 to 

6.49 (0 to 655 true scale) with a mean of 3.61. The occurrence and abundance data 

used in the models were evenly distributed across all study months (Figure 3.1B). 

However, there is a lack of vector data from 1992 to 1998 and most abundance data 

were recorded from 2006 to 2012 (Figure 3.1C).  

3.3.1.2 Additional inferred absence vector data 

I randomly generated additional absence data for regions above 3500m since to my 

knowledge, this is above the altitude that C. tritaeniorhynchus mosquitoes have been 

recorded (Devi and Jauhari, 2004). To limit artefactual spatial and temporal 

autocorrelation in model residuals, I limited these data to a total of 20 records from 

12 locations which were randomly selected from high altitude regions in the states of 

Arunachal Pradesh, Himachal Pradesh, Jammu and Kashmir, and Sikkim (Figure 

3.1A) and randomly assigned a date from the study period.  
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Figure 3.1. Spatial and temporal distribution of vector surveillance dataset used in 
model. 

(A) Points show the geographical sampling locations (n= 57) of the C. tritaeniorhynchus 
records across India*, with occurrence-only records coloured orange (n = 74), records which 
included occurrence and abundance data in green (n = 266), and pseudoabsence records in 
purple (n = 20). Stacked barplots show the temporal distribution of the total vector 
occurrence (orange) and abundance data (green) used in the analysis per month (B) and 
year (C). *Abbreviations for Indian states and union territories: AP - Andhra Pradesh,  AR - 
Arunachal Pradesh, AS - Assam, BR - Bihar, CH – Chandigarh, CT- Chhattisgarh, DD - 
Daman and Diu, DL - Delhi, DN - Dadra and Nagar Haveli, GA – Goa, GJ – Gujarat, HP - 
Himachal Pradesh, HR - Haryana, JH - Jharkhand, JK - Jammu and Kashmir, KA - 
Karnataka, KL – Kerala, MH - Maharashtra, ML - Meghalaya, MN - Manipur, MP - Madhya 
Pradesh, MZ - Mizoram, NL - Nagaland, OR - Odisha, PJ - Punjab, PY - Puducherry, RJ - 
Rajasthan, SK - Sikkim, TL – Telangana, TN – Tamil Nadu, TR - Tripura, UP - Uttar Pradesh, 
UT - Uttarakhand, WB – West Bengal.  
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3.3.1.3 Seasonal, environmental, and land-use data 

I selected environmental variables hypothesised or reported to influence the 

presence or abundance of C. tritaeniorhynchus populations (see Appendix 2 Table 

S3.2 and Figure S3.1). For instance, temperature is known to influence the 

development and survival rates of mosquito vectors and the availability of standing 

water provided from precipitation or irrigated agricultural practices is required for 

mosquito breeding (Niaz and Reisen, 1981; Bashar et al., 2016; Raju et al., 2018). 

The full suite of covariates tested across all analyses, data sources and associated 

hypotheses, including those considered but then dropped from the model, are 

described as follows:  

Climate variability was incorporated through inclusion of TerraClimate (Abatzoglou et 

al., 2018) high-spatial resolution rasters (1/24°, ~4-km) for monthly cumulative 

precipitation (mm), monthly maximum and minimum temperatures (⁰C). I calculated 

monthly mean temperature (⁰C) from the maximum and minimum temperature 

datasets. Mean monthly precipitation was log transformed to represent the nonlinear 

effect reported between rainfall and vector abundance (L D Valdez et al., 2017). To 

represent the lag association between weather conditions and mosquito abundance 

(Tian et al., 2015), I also calculated average temperature and precipitation data for 

the two months prior to the vector observation (henceforth referred to as two-month 

lagged variables in this study) to account for the period for mosquito larval habitat to 

increase and the development period of the mosquito.  

I obtained annual land cover data from the European Space Agency (ESA) Climate 

Change Initiative Land Cover dataset (version 3.14) for 1992-2012 (ESA; 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php) with a spatial resolution of 300m. 

The 37 original land cover classes were reclassified into six broad groups 

(agricultural, mixed agricultural, forest, mixed vegetation, urban and water) since the 

land cover types associated with the vector surveillance data were not varied enough 

to evaluate the importance of more diverse land classes (i.e., rainfed versus irrigated 

cropland). Zonal statistics function was used to determine the percent cover of each 

of land cover class within 1km buffer around each location, with the buffer size based 

on previous analyses (Trawinski and Mackay, 2010). Since ESA land cover data 

were missing for 1990 and 1991, I assessed changes in the proportion of land cover 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php
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classes for the period 1992 to 1995 and found strong significant correlation between 

the years (Mantel statistic R: 0.99, p = 0.001), so I used land cover data for 1992 for 

the missing years. Agricultural land-use intensity can be assessed via three 

categories: input metrics (e.g., irrigation), output metrics (e.g., yields) and system 

level metrics (e.g., actual vs. attainable yield) (Kehoe et al., 2015). Due to the strong 

positive associations reported between C. tritaeniorhynchus abundance and rice 

paddy cultivation, I used the RiceAtlas database of global rice production (Laborte et 

al., 2017) to extract district-level data for the agricultural intensification input metric of 

total annual rice area cultivated (hectares) and for the output metrics of total annual 

rice produced (tonnes) and average number of crops harvested per year. To assess 

seasonal variation in rice cropping practices, district-level data on the rice planting 

and harvesting months were also extracted from the RiceAtlas dataset.  

All raster data layers were manipulated and resampled to a 0.208⁰  (~23km) grid cell 

size using a World Geodetic System 84 projection using the raster package in R 

(Hijmans and van Etten, 2014). I examined all covariates for collinearity and excluded 

covariates that were collinear with one or more others (Pearson correlation 

coefficient >0.8).  

3.3.1.4 Japanese encephalitis human case data 

Monthly JE human cases recorded were retrieved from the Indian Government’s 

Ministry of Health and Family Welfare (Ministry of Health & Family Welfare, 

Government of India, 2020). Data were obtained for the period January 2009 to 

December 2015 and were converted to geographic point locations (n= 123) from their 

village level description using online gazetteers (e.g., Google Maps). The data 

comprised of the number of confirmed cases rather than suspected cases since 

clinical signs for JE may overlap with several other diseases (Solomon et al., 2000). 

Confirmed cases correspond to those confirmed by laboratory tests using JE- 

Enzyme-linked immunosorbent assay (ELISA) on serum or cerebrospinal fluid 

samples.   
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3.3.2 Statistical analysis 

Statistical modelling was conducted using Bayesian hierarchical regression using 

Integrated Nested Laplace Approximation (INLA). This framework enables the 

development of spatiotemporal models that address data sparsity and spatial bias 

whilst also being computationally tractable (Rue, Martino and Chopin, 2009; Redding, 

Lucas, Blackburn and Jones, 2017).  

3.3.2.1 Model specification 

I developed a joint-likelihood Bayesian spatiotemporal model of C. tritaeniorhynchus 

with separate likelihoods for occurrence and abundance data. The first model tier 

estimates vector occurrence probability with species presence/absence (0, 1) as 

response 𝑦pa using a Binomial distribution with a logit link function, such that 𝑝𝑖 

denotes the expected probability of vector occurrence and 𝑛𝑖 is the observed survey 

sample size at observation 𝑖: 

(1)   𝑦pa ~ Binom(𝑝𝑖,𝑛𝑖 ) 

𝑝𝑖 is modelled as a function of environmental covariates and spatial, seasonal, and 

random effects: 

(2)  logit(𝑝𝑖) =  𝛼 + 𝛼𝑝𝑎 + ∑ 𝛽𝑘𝑋𝑘,𝑖 +  𝑡𝑖 +𝐾
𝑘=1  γ𝑖 +  𝑢𝑖 +  𝑣𝑖  + 𝛿𝑖 

where 𝛼 is the intercept; 𝛼𝑝𝑎 is an occurrence data specific intercept; 𝑋 is a matrix of 

the environmental covariates at each observation, with vector of linear coefficients 𝛽; 

𝑡𝑖 is a nonlinear effect for mean monthly temperature smoothed using a second-order 

random walk to represent expected nonlinear relationships between temperature and 

vector occurrence and abundance (Mordecai et al., 2019); seasonality was included 

as an effect of reporting month specified as a second-order random walk ( γ𝑖); and 

spatial variation was included using state-level spatially-structured (conditional 

autoregressive; 𝑣𝑖) and unstructured i.i.d. (𝑢𝑖) effects jointly specified as a Besag-

York-Mollie (BYM) model (Besag, York and Mollié, 1991).  Finally, 𝛿𝑖 is an 

independent, identically distributed (i.i.d.) random effect of source study to enable the 
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model to account for between-study variation in sampling effort that might otherwise 

confound inferences. 

The second tier in the joint-likelihood model estimated relative vector abundance as 

response variable 𝑦abun using a Gaussian distribution such that 𝜇𝑖 denotes the 

expected mean of vector abundance with standard deviation, 𝜎: 

(3)  𝑦abun ~ Norm(𝜇𝑖,𝜎 ) 

The same shared covariates and spatial, seasonal, and random effects parameters 

were included as for the first-tier model apart from the occurrence specific intercept:  

(4)  exp(𝜇𝑖) =  𝛼 + ∑ 𝛽𝑘𝑋𝑘,𝑖 + 𝑡𝑖 +𝐾
𝑘=1  γ𝑖 +  𝑢𝑖 +  𝑣𝑖  + 𝛿𝑖  

Prior to being included in the model, all continuous predictor covariates were 

standardised (to mean= 0, standard deviation [SD] =1) and log vector abundance 

was rescaled from 0-1 (to preserve zero as a reference point) to help with assigning 

model priors (McElreath, 2020a). Weakly informative prior probability distributions 

(priors) were assigned for the intercept,  𝛼 ~ N (0,0.6) and fixed effects, 𝛽 ~ N (0,0.3) 

to constrain the position and scale of the outcome of interest (𝑦abun) to fall within a 

reasonable range. The intercept for occurrence data 𝛼𝑝𝑎 is a single, fixed parameter 

that was only added in the first tier of the model when modelling occurrence data. It 

acts as a varying intercept so that all occurrence data are modelled as a separate 

cluster to abundance data and therefore allows some flexibility in the joint modelling 

of both data types. Fixed effects priors were centred on 0 to allow for positive or 

negative relationships between environmental covariates and vector abundance. I 

assigned penalized complexity (PC) priors (Simpson et al., 2017) to hyperparameters 

of the month, state-level and study-level effects. PC priors were used to penalise the 

complexity resulting from deviating from a simple base model. The PC priors are 

defined such that the probability that a given hyperparameter (ρ) exceeds an upper 

limit (ρ0) is χ (i.e., P(ρ> ρ0) = χ). The PC priors in the model include: 

Seasonal effects:    P (𝜌𝑖> 0.05) = 0.01 
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Unstructured state-level effects:  P (𝑢𝑖>0.175) = 0.01 

Study-level random effects:  P (𝛿𝑖 >0.175) = 0.01 

These values were chosen by comparing the variance of the effect variables and the 

resulting difference in log vector abundance observed. For example, an i.i.d. effect 

with a SD of 0.175 would typically (95% probability interval) yield intercepts between 

-0.34 and 0.34. Transforming these values through a log link gives abundances 

between 0.71 and 1.4 and therefore the effect allows a variation in abundance of 

about 100%. I based the values on assumptions from the data that log vector 

abundance may vary by up to 33% between one month and the previous two months 

(order‐two random walk), whereas it may vary by 100% between studies. A 

conservative PC prior (mean 0.5, precision 0.667) was assigned to the structured 

state-level effect to account for the assumption that the unstructured effect accounts 

for more of the variability than the spatially structured effect. 

3.3.2.2 Model selection 

Collinearity was detected between temperature variables therefore only monthly 

mean temperature was used in the final model to capture long term associations with 

vector abundance (i.e., reduced effect of temperature extremes). I conducted model 

selection on model covariates (all fixed and spatial, seasonal and study-level random 

effects), evaluating their contribution to the model fit by removing each component in 

turn from the full model and examining the effect on the Bayesian pointwise 

diagnostic metric Watanabe-Akaike Information Criterion (WAIC) (Hooten and 

Hobbs, 2015). I tested 17 environmental variables (see Appendix 2 Table S3.2). I 

screened variables using a single pass whereby I removed each variable in turn from 

the model and assessed the change in WAIC. Covariates that did not improve model 

parsimony by a threshold of at least 2 WAIC units were excluded. I used this 

screening procedure to remove variables which were not improving model parsimony 

rather than searching for a best subset of variables as is performed in stepwise 

selection. The models were examined for fit and adherence to assumptions which 

included testing the model residuals for spatial autocorrelation using Moran’s I (Cliff 

and Ord, 1973). Temporal autocorrelation could not be assessed since the data were 

not sampled at regular intervals over the whole study period. In addition, to assess 
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the influence of additional inferred absence data on model fit, I repeated the process 

of randomly selecting 20 inferred absence data points 25 times and examined the 

impact on WAIC.  

I further evaluated the predictive ability of the models using random (10-fold) cross-

validation which involved fitting separate models holding out data from each fold in 

turn. The random assignment of data to folds was chosen to represent the 

spatiotemporal variation in predictor space in all folds. The spatial clustering in 

abundance data meant that spatially structured cross-validation by state was not 

used for model evaluation (Roberts et al., 2017). The final model was selected by 

comparing models of increasing complexity, in terms of input variables and model 

structure, to a baseline model which only included spatial effects and study-level 

random effects. This baseline model represents static vector abundance predictions 

that do not account for seasonality. I compared the baseline model to a seasonal 

model which also included the addition of a seasonal effect to account for seasonality 

in vector abundance and an environmental model which included spatial, seasonal, 

and random effects and environmental covariates. The ability of the models to predict 

log vector abundance (unscaled) was compared using the mean absolute error 

(MAE) between the predicted posterior mean values and the corresponding observed 

log vector abundance (Willmott and Matsuura, 2005) where lower values indicate a 

smaller difference between the predictions and the observations. In addition, I used 

conditional predictive ordinates (CPO) (Pettit, 1990) and predictive integral transform 

(PIT) (Marshall and Spiegelhalter, 2003) as cross-validatory criterion for model 

assessment. For CPO, a value is computed for each observation with small values 

indicating a bad fitting of the model to that observation and the potential for it to be an 

outlier. Predictive integral transform provides a version of CPO that is calibrated so 

that values like between 0 and 1. A histogram of PIT values that appears 

approximately uniform indicates the model represents the observation well. I also 

compared the direction and magnitude of fixed effects for hold-out models to 

examine the robustness of vector-environment relationships. The fixed effects 

parameter estimates were assessed using the posterior mean and 95% credible 

interval which is interpreted as the interval that covers the true parameter value with 

a probability of 95%, given the evidence provided by the observed data.  
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3.3.2.3 Spatiotemporal predictions of JE vector abundance and uncertainty  

The best-fitting model was used to predict seasonal relative vector abundance 

(logscale) per (0.208⁰) grid cell across India for the three main seasons: winter 

(October to February), summer (March to May), monsoon (June to September). The 

seasons were chosen for their distinct climatic characteristics with heavy rainfall in 

central regions and the eastern coast  during the winter, heavy rainfall in 

southwestern and north-eastern India during monsoon and high temperatures with 

little to no rainfall during summer (Kingwell-Banham, 2019). I evaluated the 

uncertainty in model predictions by mapping the SD in estimated vector abundance 

per grid cell for each season. A narrow SD (SD < 1) indicated low uncertainty and a 

wide SD (SD > 1) indicated high uncertainty. 

3.3.2.4 Model-outbreak data comparison  

To examine whether predicted mosquito abundance is correlated to JE cases, I 

compared observed human outbreaks of JE with model predictions for vector 

abundance at the same geographic location and calendar month. I define a JE 

outbreak as one or more confirmed or suspects cases of JE occurring in the same 

village within the same month. I converted JE outbreak data to binomial 

(presence/absence) data that a JE outbreak occurred in a particular geographic 

location and calendar month. I randomly generated pseudoabsence JE case data for 

1000 locations for the 12 months (n=12000) to assess the ability of the model to 

correctly predict the probability that an outbreak occurred (which I describe as JE 

outbreak probability). I fitted a logistic regression of the probability of JE outbreak 

occurrence as a function of model-predicted vector abundance with and without a 

one-month lag using glm in R (R Core Team, 2020) . A null model (i.e., intercept 

only) was developed to represent predictions expected at random so that the effect of 

vector abundance predictions in explaining JE outbreaks could be assessed via 

comparing model Akaike Information Criterion (AIC) values. All data processing was 

conducted in R v.4.0.3 (R Core Team, 2020) with the packages R-INLA 

(http://r.inla.org) (Lindgren and Rue, 2015) and raster (Hijmans and van Etten, 2014).  
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3.3.3 Data availability 

The vector data underlying the results presented in this chapter are archived at 

Figshare (https://figshare.com/s/377b76b6b79ffa2561cf). This dataset includes all 

vector data collected including records that pooled observations for more than one 

month. Sources for all freely available environmental datasets are described in 

Appendix 2 Table S3.2. Health data are available from the Ministry of Health & 

Family Welfare, Government of India: 

https://www.idsp.nic.in/index4.php?lang=1&level=0&linkid=406&lid=3689. 

 

  

https://figshare.com/s/377b76b6b79ffa2561cf
https://www.idsp.nic.in/index4.php?lang=1&level=0&linkid=406&lid=3689
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3.4 Results 

3.4.1 Model selection 

Table 1 shows model predictive accuracy statistics for a series of models of 

increasing complexity. The most complex model structure (Model 3), which contained 

spatial, seasonal, and random effects and environmental factors, achieved superior 

model fit (∆WAIC from baseline model = -77.53) (and see Appendix 2 Figure S3.2). 

Comparison of out-of-sample predictive ability showed that the inclusion of 

seasonality in the model (Model 2) improved predictions of vector abundance by 

decreasing MAE by 15% (∆MAE = -0.14) when compared to the baseline model 

(Model 1). The addition of environmental covariates (Model 3) led to a further 40% 

decrease in MAE when compared to seasonal Model 2 (∆MAE = -0.32). As well as 

spatial, seasonal, and random effects, the final selected environmental model (Model 

3) included six covariates after accounting for collinearity and covariate selection as 

described. The fixed effects in the final model included two-month lagged 

precipitation, proportion of land under agricultural use in 1km radius, annual number 

of rice crops, rice area cultivated, and rice produced per district and a nonlinear 

function for mean temperature. The CPO and PIT histograms demonstrated that 

addition of environmental covariates in Model 3 led to a better fit of the model to the 

data and a superior representation of the observations when compared to the other 

models (Appendix 2 Figure S3.3). Model residuals displayed no significant (p <0.05) 

spatial autocorrelation among sites. The random selection of inferred absence data 

points was found to have no substantial impact on the ∆WAIC values for the different 

models (Appendix 2 Table S3.3).  
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Table 3.1. Model selection results for models of increasing complexity. 

The table details the structure of the joint-likelihood models and their corresponding within-
sample predictive accuracy assessed on Watanabe-Akaike Information Criterion (WAIC) 
values. Best models were selected based on minimising WAIC while adhering to model 
assumptions. Out-of-sample predictive accuracy was compared using mean absolute error 
(MAE) statistic for random cross validation. Fixed effects included two-month lagged 
precipitation, proportion of land under agricultural use in 1km radius and district-level 
measures for annual number of rice crops and total rice area cultivated and rice produced 
per year. Mean temperature was included as a second-order random walk function to 
represent the nonlinear relationship between temperature and vector population dynamics. 
Non-environmental effects considered were for month (M) and state-level spatial (ST) effects 
specified as a BYM model and study-level (S) random effects.  

Model Non-
environmental 
effects 

Environmental effects WAIC MAE  

1 Baseline 
model 

 

ST, S - 722.15 0.95 

2 Seasonal 
model 

 

M, ST, S - 

 

651.14 0.81 

3 Environmen
tal model 

 

M, ST, S Precipitation, 
Agricultural land 
proportion, 
Annual rice crops, 
Annual rice area, 
Annual rice production, 
Nonlinear temperature 
function 

644.62 0.48 

 

3.4.2 Associations between environmental variables and vector abundance 

I found that C. tritaeniorhynchus abundance was associated with climatic and land-

use factors (Figure 3.2B). I found positive associations between vector abundance 

and two-month lagged precipitation, number of rice crops and annual rice production. 

The annual area under rice cultivation had a negative relationship with vector 

abundance and the proportion of land under agricultural use had a weakly positive 

but uncertain association. Annual rice area and annual rice production had relatively 
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wide credible intervals (CIs) for their parameter estimates when compared to the 

other covariates making the effect of these parameters on vector abundance more 

uncertain. These fixed-effects estimates were robust to randomly structured 

sensitivity tests (Appendix 2 Figure S3.4). I found that the inclusion of a nonlinear 

effect for mean monthly temperature without a lag improved model predictive ability 

when compared to the nonlinear effect with two-month lagged temperature (∆WAIC = 

-81.83). The resulting temperature function suggests an increase in vector 

abundance from 9⁰C with a peak at around 23⁰C (Figure 3.2C). CI widths were 

narrow for this function at high temperature values.  
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Figure 3.2. Spatiotemporal correlates of JE vector abundance across India averaged 
over the period 1990–2012. 

Map to show predicted C. tritaeniorhynchus abundance (maximum annual value) and vector 
seasonality (intra-annual variance in abundance) (A). These measures were calculated from 
the scaled abundance predictions and ranged from 0 to 7 logscale for maximum abundance 
and 0 to 3 logscale for seasonality. The map displays areas of high perennial vector 
abundance as orange, high seasonal vector abundance as pink, low perennial vector 
abundance as green and low seasonal vector abundance as blue. The fixed-effect parameter 
estimates and 95% credible intervals for the joint likelihood model (B) show that vector 
abundance is associated with climatic and land-use variables. The nonlinear relationship 
between monthly mean temperature and vector abundance for the observed range of 
temperatures (⁰C) where 95% CI is shown shaded and peaks at around 23⁰C and then 

declines. The reported thermal minima (9.5⁰C) for important Culex species life history traits 

(Mordecai et al., 2019) is indicated with a dashed line. 
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3.4.3 Spatiotemporal predictions of JE vector abundance and uncertainty  

Spatially projecting the final model predictions revealed differences in predicted 

areas of high (i.e., hotspots) or low (i.e., coldspots) C. tritaeniorhynchus abundance 

between seasons (Figure 3.3). Peaks in vector abundance were found in the 

northern, eastern, north-eastern, and southern regions, with highest levels predicted 

during the winter months (October to February) and lowest levels during the summer 

months (March to May). Hotspots of vector abundance were predicted with low 

uncertainty (i.e., narrow SD) in northern, southern, and north-eastern India during the 

winter (Figure 3.3A) and in north-eastern and southern India during the summer 

(Figure 3.3B) and monsoon (June to September) seasons (Figure 3.3C). By contrast, 

hotspots were predicted with high uncertainty (i.e., wide SD) for all seasons in the 

northern state of Punjab, the eastern state of West Bengal and the south-eastern 

state of Andhra Pradesh. Areas predicted with low vector abundance (i.e., coldspots) 

were predicted throughout the year in the Himalayas, and in central and north-

western states, and eastern state of Odisha. Uncertainty in coldspot predictions was 

low for the Himalayas throughout the year (likely as a result of inferred absence data) 

whereas summer predictions for Odisha, central and north-western states and 

monsoon predictions for Rajasthan were more uncertain (represented as increased 

transparency in Figure 3.3). Assessing vector abundance and seasonality 

simultaneously reveals hotspots of high perennial vector abundance in north-eastern 

areas and the southern tip of the country (Figure 3.2A). Conversely, high seasonal 

vector abundance is predicted in northern and southern regions (Figure 3.2A). 
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Figure 3.3. Predicted seasonal abundance of C. tritaeniorhynchus across India for the 
period 1990–2012. 

Average vector abundance (logscale) for the (A) winter (October to February), (B) summer 
(March to May) and (C) monsoon (June to September) seasons. The figure legend is scaled 
from 0 to 7 logscale, with light yellow colours signifying low vector abundance and dark 
purple emphasising high abundance. Uncertainty in predictions was estimated from standard 
deviation (range 0-2 SD) and is represented in the maps by transparency (high uncertainty is 
more transparent). The black circles represent the location and magnitude (i.e., number of 
cases) for JE human outbreaks per season during the period 2009-2015 across India 
(Ministry of Health & Family Welfare, Government of India, 2020). 
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3.4.4 Model-outbreak data comparison 

The results for the comparison between predicted mosquito abundance and JE 

cases is summarised in Appendix 2 Table S3.4. Logistic regression of JE outbreak 

probability as a function of model predicted vector abundance with a one-month lag 

month showed superior predictive ability (AIC = 144.17) when compared to the same 

analysis with vector abundance predicted in the same month as the outbreak (AIC = 

147.66) and to the null model (AIC= 168.02). Both model-predicted vector abundance 

with and without a one-month lag had a significant positive effect on human JE 

outbreaks however, the lagged variable had a stronger association (odds ratio [OR] 

2.45, 95% confidence interval: 1.52-4.08) than the variable without a lag (OR 2.25, 

95% confidence interval: 1.35 -3.74) (see Appendix 2 Table S3.4). Plotting predicted 

JE outbreak probability against log‐scaled vector abundance for the best-fitting model 

(Appendix 2 Figure S3.5) illustrates that the strong association between these 

variables is non‐linear and plateaus at high levels of vector abundance lagged by one 

month. 

3.5 Discussion  

This study describes a novel approach for the prediction of spatiotemporal patterns in 

C. tritaeniorhynchus abundance – a key component of JE hazard - using a joint-

likelihood modelling technique that leverages information from sparse vector 

surveillance data. I show that the addition of environmental covariates in the model 

substantially improved out-of-sample predictive ability, highlighting the importance of 

environmental and climate data in driving JE vector abundance. This provides a 

strong justification for producing spatiotemporal vector predictions to help focus 

future work efforts and build towards accurate forecasts of JE risk. This framework 

provides a powerful and flexible method which will help to define seasonal JE vector 

abundance over large spatial scales and assist in guiding future surveillance efforts 

where long-term and large spatial scale data are not available or cannot be 

practically acquired. This analysis builds on previous correlative studies of C. 

tritaeniorhynchus which have mapped vector occurrence but have overlooked 

seasonal variation in population dynamics and have not accounted for uncertainty 
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within the predictions (Masuoka et al., 2010; Miller et al., 2012; Longbottom et al., 

2017; Samy et al., 2018).  

A distinct temporal pattern was observed across India in predicted vector abundance, 

with peaks in the winter (October to February), reductions during the summer (March 

to May) and increased vector abundance again during the monsoon (June to 

September). This temporal pattern can be explained by seasonality in climatic factors 

during the year which supports findings in previous studies (Reisen, Aslamkhan and 

Basia, 1976; Murty, Rao and Arunachalam, 2010; Kumari and Joshi, 2012) and my 

hypothesis that vector abundance will be strongly influenced by seasonal rainfall. 

During the monsoon, heavy rainfall moving in a south-westerly direction across the 

country has been reported to enhance the availability of vector breeding habitats 

(Balasubramanian and Nikhil, 2015) and causes a reduction in local temperatures 

(Das Bhowmik, Suchetana and Lu, 2019) which provides suitable environments for 

vector development. The peaks in vector abundance observed during the winter 

months probably reflect the post-monsoon rice cultivation period when water 

availability is high in the paddy fields (Shukla, Chakraborty and Joshi, 2017). This 

translates to the strong positive association between lagged precipitation and JE 

vector abundance found in this analysis and in other studies (Tian et al., 2015). 

Conversely, high temperatures and low rainfall during the summer months probably 

limits vector survival and breeding (Murty, Rao and Arunachalam, 2010), especially 

in areas with low levels of irrigated agriculture. Climatic conditions will also influence 

areas with predicted low perennial vector abundance such as arid regions in the 

northwest and northern states in the Himalayas which record temperatures beyond 

the thermal limit for Culex species vectors (Mordecai et al., 2019).  

In addition to precipitation and temperature, land-use and rice cultivation metrics 

were identified as important drivers of broad-scale spatiotemporal patterns of vector 

abundance. The importance of land-use factors is illustrated by comparing hotspots 

of JE vector abundance in southern and north-eastern India which have high levels of 

irrigated agriculture despite differing climates (i.e., tropical in south, temperate in 

northeast) (Beck et al., 2018). Regions with high proportions of agricultural land 

allocated to intensive irrigated agriculture provide suitable vector breeding habitats 

for extended periods which undoubtedly influence vector abundance and seasonality. 
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Indeed, regions that cultivate rice biannually report lower vector seasonality 

compared with those that have a single annual crop (Gajanana et al., 1997). The 

positive relationship between land-use intensity metrics for rice crop cultivation (i.e., 

number of rice crops cultivated and amount of rice produced per year) and vector 

abundance detected in this study, supports previous research that has found a strong 

positive association between vector abundance and rice irrigation practices at local 

scales (Kanojia, Shetty and Geevarghese, 2003; Keiser et al., 2005b; Richards et al., 

2010; Raju et al., 2018). Surprisingly, I found that the annual area under rice 

cultivation was negatively associated with vector abundance, albeit with wide CIs. 

This result may be spurious due to data quality issues or could be explained by 

unmeasured underlying factors such as agrichemical use (i.e., fertilisers and 

pesticides) (Kibuthu et al., 2016), methods of irrigation (i.e., surface, sprinkler or drip 

irrigation) or use of fallow periods between crops which may lead to changes in local 

ecology (e.g., biotic interactions such as competition and predation) (Ohba, Matsuo 

and Takagi, 2013). Indeed, local changes in ecology due to rice crop phenology are 

also likely to influence the presence of JE hosts since wading bird use irrigated rice 

paddies as feeding habitat (Elphick, 2015) and fallow fields may be used to graze 

livestock. Understanding these relationships would require improved understanding 

of rice crop phenology together with biodiversity monitoring in rice fields. My findings 

highlight the strong association between land-use practices and JE vector 

abundance which may have implications for the predicted expansion of flooded areas 

for rice cultivation needed to improve food security (Keiser et al., 2005b; 

Alexandratos and Bruinsma, 2012) and the ongoing intensification of rice production 

in India (Song et al., 2018). 

Spatiotemporal patterns in JE vector abundance varied widely across India with 

seasonal hotspots predicted in northern, eastern, and southern regions and perennial 

hotspots predicted in north-eastern regions and the southern tip of India (Figure 3.2). 

These results support the spatial pattern in endemic regions of India which report 

particularly high endemicity in the states of Uttar Pradesh in the north, Bihar and 

West Bengal in the east, Assam in the northeast, and Tamil Nadu in the south 

(Government of India, 2014). In addition, vector abundance predictions reflected the 

described seasonality in JE transmission with increased outbreaks reported during 

the monsoon and winter seasons (Figure 3.3). However, predicted seasonal hotspots 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

 

82 
 

in the southeast did not correspond to high cases, which could reflect factors not 

accounted for in the analysis such as unmeasured environmental factors affecting 

transmission, spatial biases in different datasets or differing vaccination and vector 

control measures. In addition, it may also reflect the importance of vertical 

transmission for this disease which is selected for when there is seasonality in vector 

abundance (Lequime, Paul and Lambrechts, 2016). I found a positive correlation 

between one-month lagged vector abundance predictions and the occurrence of 

human JE outbreaks when using a simple correlative analysis. This analysis 

assumes that the location of the vector abundance will also be the location in which 

exposure occurred which may be inaccurate. Indeed, to fully gauge the strength of 

this association and assess the usefulness of vector abundance as potential proxy 

for JE hazard would require a more complex model that accounts for temporal and 

spatial autocorrelation in model residuals and uncertainty in the model. The 

development of a reliable proxy for JE hazard would be invaluable since data on 

pathogen prevalence in both animal reservoir host populations and vector 

populations that is required to define areas of JE hazard remains scarce. The further 

translation of hazard to disease risk requires additional knowledge about the potential 

exposure and susceptibility of human populations. For example, data on human 

demography, socioeconomics and vaccination coverage will provide information on 

contact with pathogens (exposure) and likelihood of infection (susceptibility) 

(Hosseini et al., 2017). Furthermore, potential lags between peak vector abundance 

and human cases that occur due to transmission dynamics or timeliness of reporting 

need to be considered (Parham et al., 2015). Indeed, future studies could extend this 

analysis by including further information on hazard, exposure, and vulnerability of 

human populations as well as any potential time lags to determine spatiotemporal 

predictions of JE risk (Johnson, Escobar and Zambrana-Torrelio, 2019). 

A significant limitation of this study was related to the spatial and temporal biases of 

available C. tritaeniorhynchus surveillance data which is probably connected to the 

high costs associated with vector sampling studies (ECDC and EFSA, 2018). 

Although data paucity leads to less accurate predictions in data-poor regions, I 

accounted for this by presenting the level of uncertainty within predictions on the 

vector abundance maps. Furthermore, it should be acknowledged that model 

predictions will not provide accurate data at the local level, instead they reveal broad 
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scale ecological patterns that can help to direct future research efforts. In addition, 

the generation of additional absence data assumes that vectors do not occur at 

altitudes above 3500m which may need to be reviewed overtime in future 

surveillance studies and the influence of expected climate change (Rocklöv and 

Dubrow, 2020). This study highlights the need for improved vector surveillance for 

JE, with the potential for future surveillance efforts to be targeted in those areas with 

high predicted vector abundance. This would help validate my results with the use of 

independent data and improve predictions in areas that have not been surveyed. In 

addition, I found that despite JE vector abundance predictions being relatively focal 

(Figure 3.2), the spatiotemporal distribution of vector sampling in the data were more 

evenly distributed across India (Figure 3.1), suggesting that spatial bias is not driving 

model predictions (Figure 3.3).  

A further limitation of this study was the coarse spatial resolution of rice cultivation 

data used in the model (Laborte et al., 2017). The data were provided at district-level 

which may have been too coarse to detect an accurate relationship between land-

use intensity metrics and vector abundance (Parham et al., 2015) and may have 

prevented the detection of a correlation between vector abundance and rice cropping 

calendar data (Raju et al., 2016). Future studies could explore the use of vegetation 

datasets such as normalized difference vegetation index (NDVI) at high spatial and 

temporal resolution to provide more accurate information on rice cultivation metrics 

(Huang et al., 2014) and rice crop phenology (Onojeghuo et al., 2018) in India. 

Investigating the lagged effects of these land-use factors on vector abundance (Tian 

et al., 2015) may also help to elucidate the unexpected negative association between 

area for rice crop cultivation and vector abundance. In addition, despite the results of 

this study highlight the importance of environmental factors on vector abundance, the 

observational datasets and correlative analytic methods used do not enable the 

identification of underlying causal mechanisms (Hernán, 2018; Kraemer, Reiner and 

Bhatt, 2019). This means the generalisability of these ecological associations across 

time and space may be inaccurate (Washburne et al., 2019) and it precluded the 

ability to investigate the effects of insecticide control (White et al., 2017).  

Despite these limitations, this work provides a framework to help monitor and predict 

the seasonal abundance of JE vectors which will be crucial for public health bodies in 
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their objective “to strengthen surveillance, (and) vector control” (Government of India, 

2014). In line with other vector studies, this analysis combines datasets from multiple 

sources to address issues of limited data coverage and to produce maps for public 

health decision-making (Ribeiro et al., 2019). Current management for JE varies 

regionally across India depending on socioeconomic factors and whether areas have 

historically recorded high cases (Government of India, 2014). With ongoing 

environmental change, I believe the Indian public health bodies cannot afford to 

continue to focus their vector surveillance efforts on currently endemic regions, and 

instead need to establish a broader scanning surveillance system which can assist in 

the development of early warning signals for the prediction and mitigation of JE 

outbreaks nationally. The maps produced in this study will be especially useful for the 

guidance of public health actions in targeting future vector surveillance in 

understudied regions previously predicted, with varying uncertainty, to have high 

vector abundance. My data could be used to inform the model and improve and 

update predictions. My work may also be used to improve the effectiveness of vector 

control measures especially in areas predicted to have high seasonal vector 

abundance, instead of being employed solely during JE outbreaks, as is current 

practice (Government of India, 2014)..  

In this study I provided estimates of the variation in vector abundance across space 

and time by leveraging different types of data sources for C. tritaeniorhynchus, an 

understudied JE vector. I showed that distinct spatiotemporal patterns of JE vector 

abundance were driven by seasonality and environmental factors and so 

demonstrated the limitations of previously available static vector distribution maps 

estimating vector occurrence across large geographic ranges (Miller et al., 2012; 

Longbottom et al., 2017; Samy et al., 2018). In addition, I showed that model 

predictions of vector abundance were positively correlated with JE outbreaks, 

highlighting the possible development of vector abundance as a proxy for JE hazard. 

I propose that the joint-likelihood model used in my research will be easily adaptable 

for other mosquito vectors and enable other vector abundance estimations to be 

made from limited vector surveillance data. Furthermore, this novel approach can be 

used to help guide future vector surveillance programmes by targeting data 

collection. Understanding the timing and drivers of patterns in vector abundance and 

seasonality offers important insights into how and when intervention measures 
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should be applied to reduce JE risk and how disease risk may vary with future 

environmental changes.  
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Chapter 4:  

Climate, land-use and socioeconomic factors predict 

spatiotemporal dynamics of Japanese encephalitis risk 

In this chapter I conduct spatial and temporal epidemiological analyses of systematic, 

multiyear Japanese encephalitis (JE) surveillance data (northeast India 2009-2019), 

to identify the socio-ecological correlates of observed JE occurrence, predict 

endemic areas of JE transmission, and evaluate whether environmental factors and 

vaccination coverage can be used to predict temporal trends in JE incidence.  

4.1 Abstract 

Japanese encephalitis (JE) is the leading cause of child viral encephalopathy in Asia 

however, public health interventions remain hampered by limited understanding of 

the geographic distribution, timing and intensity of outbreaks and its underlying 

drivers. In this chapter, I used a spatial Bayesian hierarchical model to determine the 

association between socio-ecological variables and JE outbreak occurrence and to 

predict areas of endemic transmission. The model was applied to a binary outbreak 

indicator for 115 districts in northeast India between 2009 and 2019. I also extended 

the model temporally to predict the magnitude and timing of JE incidence in four 

endemic districts using environmental variables. I found that the spatial pattern of JE 

outbreak occurrence was significantly associated with the proportion of agricultural 

land, the poverty prevalence and the temperature suitability. The best-performing 

predictive spatial model of JE outbreak occurrence included linear effects of the 

proportion of agricultural land, precipitation, poverty, and healthcare access, and, a 

nonlinear effect of maximum temperature. The inclusion of these covariates improved 

out-of-sample (OOS) predictive error (Brier score = 0.063) when compared to a 

baseline model including just random effects (Brier score = 0.065). Twenty-four 

districts were predicted endemic despite low or absent reported cases and would 

benefit from an increased surveillance effort. Temporal predictive models of JE 

incidence in endemic states showed that the inclusion of nonlinear lagged climatic 

and land-use variables improved predictive accuracy (Root mean square error 

[RMSE] for random cross validation = 33.83) over a baseline model (RMSE = 53.37). 
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The inclusion of vaccination coverage information with a two-month lag further 

improved model predictive accuracy (RMSE = 28.80), suggesting that it has the 

potential for forecasting JE incidence in endemic areas and may be useful in 

informing vaccination programmes. This study emphasises the sensitivity of JE to 

environmental and socioeconomic conditions and highlights the importance of 

focusing surveillance efforts in areas outside established JE transmission zones to 

further our understanding of this understudied disease and help inform effective 

public health interventions. 

4.2 Introduction  

Japanese encephalitis is the leading cause of viral encephalopathy in children, 

accounting for over 100,000 cases and 25,000 deaths annually, and primarily affects 

people living in rural, economically deprived areas (Baig et al., 2013; Quan et al., 

2020). The causative pathogen, Japanese encephalitis virus (JEV), is maintained in 

an enzootic transmission cycle between mosquito vectors (van den Hurk, Ritchie and 

Mackenzie, 2009; Pearce et al., 2018) and vertebrate reservoir hosts including 

domestic pigs and ardeid wading birds (e.g. herons and egrets) (Buescher et al., 

1959; van den Hurk, Ritchie and Mackenzie, 2009; Le Flohic et al., 2013). The 

dynamics of JEV transmission are influenced by ecological interactions involving the 

environment, vectors and reservoir hosts and human socioeconomic factors that 

determine pathogen exposure and susceptibility to infection. Although susceptible to 

the virus, humans are considered ‘dead-end’ hosts since they do not mount sufficient 

viraemia to infect mosquitoes. Since JEV was first isolated in Japan in 1935, it has 

spread across the region (Mackenzie, Gubler and Petersen, 2004) and now is 

endemic in 24 Asian and Western Pacific countries, exposing over 3 billion people to 

infection risk (Erlanger et al., 2009; G. L. Campbell et al., 2011; WHO, 2015a). 

However, 87% of JE cases in Asia are reported from just four countries: India, Nepal, 

China, and Vietnam (Heffelfinger et al., 2017; Lindquist, 2018). In India, increasing 

JE incidence has been reported regionally over the past few decades particularly in 

the northeast (Sabesan, Raju Konuganti and Perumal, 2008; Kumari and Joshi, 

2012; Dhiman, 2014; Ahmad et al., 2015; Dev, Sharma and Barman, 2015; Kulkarni 
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et al., 2018) despite national vaccination efforts, prompting the classification of JE as 

a national emerging public health problem (Government of India, 2014).   

India introduced a JE vaccination campaign in 2006 which first targeted 11 districts 

with high reported cases in the states of West Bengal, Assam, Karnataka and Uttar 

Pradesh (Government of India, 2014). From 2006 to 2011 the vaccination campaign 

gradually integrated into the Universal Immunisation Programme and increased its 

remit to cover 113 districts in 15 states that reported JE transmission (Government of 

India, 2014). Children in both rural and urban areas of the operational districts were 

targeted and the campaign achieved an average reported vaccination coverage rate 

of 82% (Ghosh, Haldar and Jacobson, 2022). From 2011, JE vaccination has been 

expanded to target further districts that are identified as endemic using the criteria of 

number of cases reported (i.e., suspected or confirmed JE), incidence of JE, 

serological evidence or epidemiological links to known areas of transmission 

(Government of India, 2014). The SA 14-14-2 live attenuated JE vaccine was 

originally administered as a single dose to children aged 1–15 years (Tandale et al., 

2018) and from 2013 it was administered in two-doses to children at nine months and 

then at 16-24 months (Government of India, 2014). Though the vaccine is reported to 

be 97.5% for a two-dose regimen (Hennessy et al., 1996), studies have reported 

vaccine efficacy of 30% - 40% in India (Vashishtha and Ramachandran, 2015; 

Tandale et al., 2018). Possible explanations for this may include challenges with cold 

chain transport (Saikia, 2017), differences in circulating JEV genotypes in India 

(Schuh et al., 2013) or cross-reactive immunity to other flaviviruses. In addition, 

studies have shown JE vaccination coverage is lower than reported (Murhekar et al., 

2017). Poor JE surveillance data and a lack of trust in the Indian public health system 

are substantial challenges to the success of the national vaccination strategy 

(Government of India, 2014; Singh et al., 2015; Saikia, 2017).  

Risk factors for JE include environmental conditions due to their influence on the 

ecology of the vectors and hosts (Keiser et al., 2005b; Erlanger et al., 2009; Borah et 

al., 2013; Le Flohic et al., 2013) and socioeconomic factors due to their impact on 

human exposure and susceptibility to disease (Badari, 1985; Luo et al., 1995; Sarkar 

et al., 2012; Hosseini et al., 2017). Climatic conditions are reported to contribute to 

the timing and magnitude of JE transmission (Dev, Sharma and Barman, 2015; 
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Medhi et al., 2017; Tu et al., 2021), due to the influence on mosquito vector 

abundance and seasonality (Le Flohic et al., 2013) (Chapter 3). For example, 

ambient temperature can impact mosquito-borne disease (MBD) transmission in 

multiple ways including effects on mosquito lifespan and the extrinsic incubation 

period (i.e., period between mosquito ingesting an infectious blood meal and 

becoming infectious) (Mordecai et al., 2019). Although thermal response data have 

been generated for several vector species and their pathogens (Mordecai et al., 

2019), this information is not readily available for JE vectors which limits our ability to 

understand the effect of temperature on the disease. One recent study investigated 

the impact of temperature on JEV infection of UK Culex pipiens vectors however, this 

laboratory-estimated thermal performance was not validated by measurements in the 

field (Folly et al., 2021).  

In India, JE outbreaks typically coincide with the monsoon (June to September) and 

winter periods (October to February) (Dev, Sharma and Barman, 2015; Medhi et al., 

2017; Kulkarni et al., 2018). Increased rainfall during the monsoon promotes vector 

and wading bird habitats particularly in rural areas (Sabesan, Raju Konuganti and 

Perumal, 2008). Conversely, heavy rainfall can result in vector larvae being washed 

away (ICMR, 2001). Another risk factor for JE transmission is agricultural land-use, 

specifically rice paddy cultivation (Keiser et al., 2005b; Sabesan, Raju Konuganti and 

Perumal, 2008) since it provides the preferred breeding habitat for JE vectors 

(Rajagopalan and Panicker, 1978; Richards et al., 2010; Raju et al., 2016, 2018), 

wildlife host feeding habitat (Solomon, 2006; Misra and Kalita, 2010; Le Flohic et al., 

2013; Elphick, 2015) and human exposure to infected vectors (Richards et al., 2010; 

Shah et al., 2019). In addition, studies have shown that pig farming is associated with 

increased JE transmission since pigs are an important reservoir and an amplifying 

host (Keiser et al., 2005b; Datey et al., 2020). However, studies on the importance of 

various hosts in India remain limited (Desingu et al., 2016; Datey et al., 2020). 

Moreover, current knowledge on JEV transmission ecology is strongly influenced by 

the first investigations undertaken in the 1950s in Japan (Buescher, Scherer, 

Rosenberg, et al., 1959; Scherer and Buescher, 1959; Scherer, Buescher and 

McClure, 1959). For example, it was during this research that Cx. tritaeniorhynchus 

was implied as the primary vector (Lord, Gurley and Pulliam, 2015) which has 

resulted in irrigated agriculture being regarded as an important driver since it is the 
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preferred habitat for this species. The results from this initial research are a product 

of that location and time and therefore may not be generalisable to other contexts 

(Lord, Gurley and Pulliam, 2015). 

Socioeconomic status, religion (i.e., prohibition of pork) and living conditions are also 

reported risk factors for the disease, with increased cases being reported in 

economically deprived populations (Luo et al., 1995; Halstead and Jacobson, 2003; 

Sarkar et al., 2012). However, these associations have been detected from 

retrospective observational studies without controlling for confounding factors or 

identifying underlying mechanisms. One potential mechanism linking economic 

status with JE risk is that increased resources enable the funding of interventions and 

vaccination programs leading to a reduction in JE risk as seen in Japan, Korea and 

Taiwan (Halstead and Jacobson, 2003). Although vaccination programmes and 

public health interventions are important determinants of JE transmission (Muniaraj 

and Rajamannar, 2019; Quan et al., 2020), their success also relies on effective 

targeting; something which has been disputed in India (Bagcchi, 2014; Vashishtha 

and Ramachandran, 2015; Murhekar et al., 2017). Overall, the complexity and 

variability of socioeconomic factors and insufficient knowledge of the scale at which 

these processes act (Caminade et al., 2014; Parham et al., 2015; Booth, 2018) has 

impaired understanding of their impact on JE risk. 

Despite improvements in JE surveillance data, comprehensive records are not widely 

available and laboratory confirmation has proved difficult. Therefore, the exact global 

incidence and burden of disease are not fully understood (Sabesan, Raju Konuganti 

and Perumal, 2008; WHO, 2015b; Quan et al., 2020). In 2007, the Indian 

Government initiated a national JE surveillance programme (Government of India, 

2014) but, the high ratio of clinical to subclinical infections (1:250) (WHO, 2015b) 

means reported cases are not likely to represent the true number of infections 

(Government of India, 2014). Furthermore, since JE cannot be distinguished clinically 

from other causes of encephalitis (e.g., malaria, dengue, scrub typhus), 

underreporting of cases in non-endemic areas is thought to occur, especially where 

the other diseases are common (McNaughton, Singh and Khan, 2018). This scenario 

is further impacted by the limited healthcare resources in India, which results in a 

high proportion of health costs having to be met by the patient (WHO, 2020b) and so 
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comprehensive diagnostic tests may not be performed. The paucity of JE 

surveillance data from India has impacted our understanding of potential endemic 

areas (Sabesan, Raju Konuganti and Perumal, 2008) and important drivers of this 

disease. Consequently, the national goal of “reducing morbidity, mortality and 

disability in children due to JE” has been compromised (Government of India, 2014).  

In this study, I aim to address these gaps in data by using a long-term JE 

surveillance dataset to identify socio-ecological drivers of spatial JE outbreak 

occurrence and to predict the endemic area of JE transmission in northeast India 

between 2009 and 2019. Additionally, I aim to evaluate whether climatic variability, 

land-use factors and vaccination coverage can be used to predict the timing and 

magnitude of JE incidence in a subset of endemic districts. 

4.3 Materials and methods 

4.3.1 Study area 

India is the second most populous country in the world, with a population of over 1.3 

billion people. The country consists of 28 states and eight union territories (Figure 

4.1) and currently has 742 districts, which have increased from the 640 districts listed 

in the last census (Government of India, 2011). India experiences a wide range of 

biomes and climate systems including tropical areas in the south and temperate and 

alpine (Himalayas) areas in the north (Zhang et al., 2017) (Appendix 3 Figure S4.1). 

Although monsoon rainfall contributes to approximately 75% of the annual 

precipitation across India, there is considerable spatiotemporal variability 

(Guhathakurta and Rajeevan, 2008; Kishore et al., 2016). Rainfall patterns are 

modulated by the topography of the western Ghats and the Himalayas (Kishore et al., 

2016), leading to high precipitation along the west coast and northeast regions of 

India and minimal precipitation in the northwest and southeast (Hrudya, Varikoden 

and Vishnu, 2021). Comparatively, the east coast (i.e., states of Odisha, Andhra 

Pradesh and Tamil Nadu) has two rainfall peaks, one in July–August and one in 

October–November (Kishore et al., 2016). The second peak is due to the northeast 

monsoon (during October–December) which predominantly affects the east coast 

districts of India, providing 30–60% of their annual rainfall (Rajeevan et al., 2012). 
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I focused my research in the endemic region of northeast India (Government of India, 

2014) which is projected to undergo substantial changes in climate and land-use 

(Ravindranath et al., 2011; Dutta, 2014; Prokop, 2020). The region includes the 

states of West Bengal, Sikkim, Assam, Arunachal Pradesh, Meghalaya, Nagaland, 

Tripura, Mizoram and Manipur (Figure 1), and shares international borders with Tibet, 

Bhutan, Nepal, Myanmar and Bangladesh. The region is divided into tropical, 

temperate and cold climates (Beck et al., 2018) (Appendix 3 Figure S4.1A) and is 

recognised for its social marginality, inaccessibility, cultural and ethnical diversity, 

and rich biodiversity (Roy et al., 2015). It is predominantly agrarian with paddy rice 

the primary crop, and over 70% of the population are engaged in the agricultural 

sector (Roy et al., 2015; FAO, 2020). 
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Figure 4.1. Map of India indicating states and union territories*. 

The northeast region described in this study (nine states) is highlight in brown.  

*Abbreviations for Indian states and union territories: AP - Andhra Pradesh,  AR - Arunachal 
Pradesh, AS - Assam, BR - Bihar, CH – Chandigarh, CT- Chhattisgarh, DD - Daman and 
Diu, DL - Delhi, DN - Dadra and Nagar Haveli, GA – Goa, GJ – Gujarat, HP - Himachal 
Pradesh, HR - Haryana, JH - Jharkhand, JK - Jammu and Kashmir, KA - Karnataka, KL – 
Kerala, MH - Maharashtra, ML - Meghalaya, MN - Manipur, MP - Madhya Pradesh, MZ - 
Mizoram, NL - Nagaland, OR - Odisha, PJ - Punjab, PY - Puducherry, RJ - Rajasthan, SK - 
Sikkim, TL – Telangana, TN – Tamil Nadu, TR - Tripura, UP - Uttar Pradesh, UT - 
Uttarakhand, WB – West Bengal.  
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4.3.2 Datasets 

4.3.2.1 Human Japanese encephalitis surveillance data 

I obtained reported counts of suspected and confirmed human cases and deaths 

attributed to JE between 1st January 2009 and 31st December 2019, from across 

India (n=388). Weekly reports were provided at district level under the Indian 

government’s Integrated Disease Surveillance Programme (IDSP) (Government of 

India, 2021b). IDSP requires weekly online reporting of suspected and confirmed 

cases of selected diseases, including JE, from each district; the information is 

reported by health workers, medical officers and laboratory technicians and is 

reviewed by a committee of epidemiologists and experts (Government of India, 

2022). Prior to clinical confirmation of JE, suspected cases are reported under the 

umbrella term ‘acute encephalitis syndrome’ (AES) which is defined by the National 

Vector Borne Disease Control Programme as a person of any age, at any time of 

year with the acute onset of fever and a change in mental status and/or new onset of 

seizures (Kumari and Joshi, 2012). The clinical confirmation of the presence of JEV 

is done by testing the serum and/or cerebrospinal fluid samples of suspected cases 

by immunoglobulin (Ig)M enzyme-linked immunosorbent assay (ELISA) (Kumari and 

Joshi, 2012). Cases were aggregated by month of first symptom and district of 

residence to reduce zero-inflation in the data. I calculated JE incidence per 100,000 

by dividing the monthly cases by population estimates for each district reported in the 

most recent census (Government of India, 2011).  

Due to the systematic form-based reporting of JE cases (Government of India, 2022) 

and the classification of JE as a notifiable disease (i.e., required by law to be 

reported to government authorities) since 2016 (Kulkarni et al., 2018), I assumed that 

no new cases had been detected when a district did not report any information for 

JE. To ensure I had monthly reported measures, reports were excluded if cases were 

reported as a cumulative number over a month duration from the start of outbreak 

date (n=102). In addition, data were only included if they provided district-wise case 

information (i.e., data reported at the level of state or multiple districts were 

excluded). Therefore another 21 reports were excluded (i.e., total = 265 [388 – (102 

+ 21)]). Reports of suspected JE which were later confirmed as negative for the virus 

were included in the dataset as confirmed negative cases. Between 2009 and 2019, 
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several new districts were created in India. To ensure data were consistent over the 

study period, I aggregated data to the 640 districts that were present in 2011 by 

combining the new districts with their parent districts  

Since JE cases are relatively focal in India (Appendix 3 Figure S4.2), I decided to 

focus my analysis on the northeast region (nine states, 115 districts) of the country 

where many cases are reported (n=138/265), to better understand the processes 

driving transmission. Additional sources of human JE surveillance data for the 

northeast region of India were obtained from National Centre for Disease Control’s 

(NCDC) Media Scanning and Verification Cell which monitors global and national 

media for health alerts (Sharma et al., 2012), the India Health Management 

Information System (HMIS) data (Government of India, 2021a) and ProMED 

(International Society for Infectious Diseases, 2021). I also supplemented the data 

with published literature on JE outbreaks in the region. I performed a systematic 

literature search on PubMed using the search terms “Japanese encephalitis + 

(Arunachal Pradesh and/or Assam and/or Manipur and/or Meghalaya and/or 

Mizoram and/or Nagaland and/or Sikkim and/or Tripura and/or West Bengal” and 

selected a published data range from 2009 to present day, selecting journal articles 

published in English. These search terms provided 43 unique results, of which five 

articles were relevant after review. Case data were collected from all supplementary 

sources in the same method as described for the original surveillance data (Appendix 

3 Table S4.1).   

Due to the issue of variation in sampling effort when using multiple sources, I decided 

to use the single source of IDSP data to model spatial JE outbreak occurrence since 

fewer data were required to specify an outbreak occurrence. However, this single 

source did not provide enough non-zero data to model the seasonal JE incidence. 

Therefore, for the temporal model I first selected four neighbouring districts with the 

most data (i.e., Dibrugarh, Jorhat, Sivasagar and Tinsukia in Assam). I then 

supplemented IDSP data with data from supplementary sources for these districts. 

To reduce the potential for double counting and inflation of case numbers when using 

multiple sources, I only included supplementary data from a single source for months 

in which no data were reported in the IDSP dataset. The source of supplementary 

data was selected according to perceived case standardisation with Indian 
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government sources (i.e., HMIS data, NCDC data), followed by ProMED data and 

finally, published literature. The resulting temporal dataset of reported cases for the 

four districts of Assam included n=103 datapoints (IDSP [n=19], HMIS [n=32], NCDC 

[n=2], MED [n=15] and published studies [n=35]). 

4.3.2.2 Meteorological data 

Monthly mean daily minimum temperature (Tmin, °C), maximum temperature (Tmax, 

°C), precipitation (mm) and the Palmer drought severity index (PDSI) were obtained 

from Terraclimate (Abatzoglou et al., 2018) for the period January 2009 to December 

2019. The raster datasets were aggregated to each district using the exactextractr 

package in R (version 0.7.1) (Baston, 2021), by calculating the mean of the grid cells 

within each district, weighted by the fraction of the cell that lay within the district. The 

northeast region of India has clear seasonality in temperatures with cool winters, 

often falling below the thermal optima for Flavivirus transmission (between 23.9–

26.4°C for Culex  species. (Mordecai et al., 2019) and below temperatures reported 

for optimal JEV transmission for predominant vector Culex tritaeniorhynchus (Tu et 

al., 2021). The region receives an average annual rainfall of 2000 mm, accounting for 

about 10% of the country’s total precipitation (Roy et al., 2015) which primarily occurs 

during the summer monsoon (Guhathakurta and Rajeevan, 2008; Mahanta, Sarma 

and Choudhury, 2013). I used PDSI to determine the effect of unusually wet or dry 

periods on JE transmission since it provides a measure of drought or wetness 

conditions relative to the historical average by using soil moisture levels, expected 

evapotranspiration rate and precipitation (Alley, 1984; The National Center for 

Atmospheric Research, 2020).  

4.3.2.3 Land-use type 

I obtained annual land cover data from the European Space Agency (ESA) Climate 

Change Initiative Land Cover dataset (version 2.1.1) for 2009–2019 (ESA; 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php). Data on the proportion of individual 

agricultural and natural land cover classes were extracted for each district from the 

datasets using the raster package in R (version 3.4.5) (Hijmans et al., 2020). I also 

extracted data on seasonal proportion of land under rice paddy cultivation for 

northeast India in 2017 (Singha et al., 2019). To provide more accurate information 

on natural vegetation and crop cultivation dynamics (Onojeghuo et al., 2018), 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

 

97 
 

monthly mean Normalized Difference Vegetation Index (NDVI) data were extracted 

from MODIS (Didan, 2015) for the period January 2009 to December 2019. The 

raster datasets were aggregated to each district using the exactextractr package as 

described for meteorological variables.  

4.3.2.4 Animal reservoir host data 

I used Gridded Livestock of the World (version 3) data for domestic pig population 

density in 2010 (Gilbert et al., 2018) to calculate the mean number of pigs per grid 

cell in each district using the raster package. To estimate the geographical 

distribution of sylvatic reservoir host presence, I fitted species distribution models 

with Bayesian additive regression trees (Carlson, 2020) to Intermediate egret (Ardea 

intermedia), Little egret (Egretta garzetta), Cattle egret (Bubulcus ibis), Indian pond 

heron (Ardeola grayii) , and Black-crowned night heron (Nycticorax nycticorax) 

occurrence data from January 2009 to December 2019 identified from ebird (eBird, 

2021) and Global Biodiversity Information Facility (GBIF) (GBIF, 2021f, 2021d, 

2021b, 2021i, 2021e, 2021g, 2021h, 2021a, 2021c), using the embarcadero package 

in R (Carlson, 2021) (see Appendix 3 Text S4.1. for full method and Figures S4.3, 

S4.3, S4.5, S4.6 and S4.7 for results). I then extracted the mean predicted probability 

of presence for each species per district using the raster package.  

4.3.2.5 Human socioeconomic and vaccine coverage data 

I retrieved data on human socioeconomic factors hypothesised to influence JE 

transmission (see Appendix 3 Table S4.2). District-level data on the total human 

population of residents, the population living in rural areas, the number of children 

under six years old and the population practicing major religions (i.e., Hindus, 

Muslims, Sikh, Buddhists, Jain, Christians) were obtained from the 2011 census 

(Government of India, 2011). I retrieved data on the number of residents in each 

district living in poverty as defined by the Multidimensional Poverty Index (MPI) 

recorded for India in 2016 (Alkire, Oldiges and Kanagaratnam, 2018) which tracks 

poverty across several indicators of health, education and living standards. These 

socioeconomic covariates were then converted to proportions of the total population 

per district in 2011 (e.g., proportion of the population living in rural areas per district, 

proportion of the population under 6 years old) to make interpretation and 

comparison of model coefficients easier. Data on healthcare access (i.e., number of 
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primary health centres and first referral units) were retrieved from annual district-wise 

estimates for 2010-2018, reported by the Indian Government’s HMIS (Institute for 

Health Metrics and Evaluation, 2021). I calculated average healthcare access per 

capita for each district by dividing the number of healthcare centres per district by 

district-wise data on the total human population of residents from the 2011 census. I 

used data from 2010 to represent missing healthcare access data for 2009, and data 

from 2018 were used for missing data in 2019.  

Vaccination is predominantly administered during routine childhood immunisation 

targeting infants aged around nine months old in at-risk endemic states (Muniaraj 

and Rajamannar, 2019). Data on routine infant vaccination coverage were retrieved 

from annual district-wise estimates for 2009-2019, reported by the Indian 

Government’s HMIS (Institute for Health Metrics and Evaluation, 2021). I used this 

data to calculate the proportion of the population who had received a JE vaccine for 

each district per year. I used data from 2010 to represent missing data for 2009, and 

data from 2018 were used for missing data in 2019.  

The full suite of covariates considered in this analysis, data sources and associated 

hypotheses are described in Appendix 3 Table S4.2. All calculations were made 

using a World Geodetic (WGS84) geographic coordinate system and R software 

version 4.0.3 (R Core Team, 2020) through RStudio (RStudio Team, 2020).  

4.3.2.6 Data availability 

The case data underlying the results presented in this chapter are archived at 

Figshare (https://figshare.com/s/e24f74c13f934a82c689). Sources for all freely 

available environmental datasets are described in Appendix 3 Table S4.2. Health 

data are available from the Ministry of Health & Family Welfare, Government of India: 

https://www.idsp.nic.in/index4.php?lang=1&level=0&linkid=406&lid=3689. 

 

 

https://figshare.com/s/e24f74c13f934a82c689
https://www.idsp.nic.in/index4.php?lang=1&level=0&linkid=406&lid=3689
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4.3.3 Statistical analysis 

Statistical model inference and selection were conducted using Bayesian hierarchical 

regression using Integrated Nested Laplace Approximation (INLA) in R (Rue, Martino 

and Chopin, 2009; Lindgren and Rue, 2015). This framework enables the 

development of spatially and temporally-structured regression models that address 

data sparsity and spatial bias whilst also being computationally tractable (Rue, 

Martino and Chopin, 2009; Redding et al., 2017). 

4.3.3.1 Evaluative spatial model of JE outbreak occurrence in northeast India 

To define the endemic area for JE and determine the spatial, socio-ecological 

correlates of disease in northeast India, I aggregated JE cases by districts and 

created a binary JE outbreak indicator. Initially I used a threshold of one per district-

year to define a JE outbreak occurrence. I also modelled an alternative outbreak 

threshold of three confirmed cases per district-year. I developed a binomial spatial 

Bayesian hierarchical model using the binary outbreak indicator as the response 

variable for 115 districts in nine states in the northeast of India from January 2009 to 

December 2019. I modelled annual JE outbreak occurrence (n=115 districts over 11 

years) where 𝑌𝑖,𝑡 is the binary presence (1) or absence (0) of a JE outbreak in district 

i during year t, and 𝑝𝑖,𝑡 denotes the probability of JE outbreak occurrence, such that: 

𝑌𝑖,𝑡 ~ Bern(𝑝𝑖,𝑡) (1) 

JE outbreak occurrence (𝑝𝑖,𝑡) is modelled as a function of socio-ecological covariates 

and random effects: 

logit(𝑝𝑖,𝑡) =  𝛼 + ∑ βj𝑋𝑗,𝑖
𝑗

+ ∑ 𝛿𝑘,𝑖
𝑘

+ γ𝑖 +  𝑢𝑖 +  𝑣𝑖  (2) 

where, 𝛼 is the intercept; X is a matrix of socio-ecological covariates with linear 

coefficients given by 𝛽; 𝛿𝑘,𝑖 are nonlinear effects for climatic predictors (specified as 

second-order random walks); interannual variability is included as an effect of 

reporting year specified as a first-order random walk (γ𝑖); and spatial reporting trends 

at district level are accounted for using spatially-structured (conditional 

autoregressive;(𝑣𝑖) and unstructured i.i.d. (independent and identically distributed) 
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(𝑢𝑖) random effects jointly specified as a Besag-York-Mollie model. I considered the 

following linear coefficients (𝛽) that are hypothesised to influence JE transmission 

(see Appendix 3 Table S4.2): annual mean precipitation, annual mean Tmax, annual 

mean Tmin, probability of presence for sylvatic reservoir hosts (for individual species 

and combined), mean pig population density, proportion rainfed and irrigated 

agricultural land cover, proportion water bodies land cover, proportion mosaic 

vegetation land cover, proportion of the human population living in rural areas, 

proportion of population working in agriculture, proportion of the population under 6 

years old, healthcare access per capita and proportion of the population living in 

poverty. I also considered nonlinear (random walk) terms for temperature and 

precipitation covariates because past studies of climatic factors and JE incidence 

suggest that these relationships may be nonlinear (Liu et al., 2020; Tu et al., 2021). 

Continuous covariates were rescaled using the z-score (to mean 0, s.d. 1) prior to 

fitting linear fixed effects. Weakly informative prior probability distributions (priors) 

were assigned for the intercept,  𝛼 ~ N (0,1.5) and fixed effects, 𝛽 ~ N (0,0.5) to 

constrain the position and scale of the outcome to fall within a reasonable range. I 

assigned penalized complexity (PC) priors (Simpson et al., 2017) to hyperparameters 

of the year and district-level effects and the nonlinear climatic covariates to penalise 

the complexity resulting from deviating from a simple base model. 

I first constructed a baseline model comprising year and district-level spatial random 

effects to allow for interannual variability in unobserved factors (e.g., public health 

funding, vector control measures) and dependency structures (e.g., shared 

environmental and socioeconomic factors) between districts. I then conducted 

univariate selection on model covariates, examining the effect of each covariate on 

model adequacy measures, including the widely-applicable information criterion 

(WAIC) which balances model accuracy with complexity by penalising for the number 

of effective parameters in the model (McElreath, 2020b), and the mean cross-

validated log score which measures the predictive power of the model when 

excluding each datapoint in turn (Gneiting and Raftery, 2007). For both measures, 

smaller values indicate better fitting models. Any covariates that did not improve both 

measures of model adequacy when compared to the baseline were excluded. For 

temperature and precipitation variables, I included linear and nonlinear effects in the 

univariate analysis to see which effects would perform best. I excluded covariates 
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that were highly collinear with one or more other others (Pearson correlation 

coefficient >0.8) and omitted potential collider variables (i.e., causally influenced by 

two or more variables) which might block associations between other variables. The 

remaining covariates were included in a full model on which I conducted multivariate 

selection by removing each covariate in turn and excluding any that did not improve 

fit by a threshold of at least five WAIC units. All posterior parameter distributions and 

residuals were examined for adherence to distributional assumptions. The fixed 

effects parameter estimates were assessed using the posterior mean and 95% 

credible intervals (CIs) which represents the interval that covers the true parameter 

value with a probability of 95%, given the evidence provided by the observed data. I 

examined the robustness of the relationships by evaluating the sensitivity of the 

model to k-fold cross validation by comparing the direction and magnitude of fixed 

and nonlinear effects for hold-out models. This involved randomly dividing the data 

into five folds (i.e., 20% of data), then fitting separate models holding out data from 

each fold in turn and extracting out of sample (OOS) predicted JE outbreak 

occurrence probability for the holdout fold (Valavi et al., 2019). Despite the spatial 

structure in the data, spatial cross validation was not suitable (Roberts et al., 2017), 

because data paucity in certain states  caused substantial variation in the training 

data fold size. 

4.3.3.2 Predictive spatial model of JE outbreak occurrence in northeast India 

Compared to the goal of identifying socio-ecological drivers of JE outbreak 

occurrence, the goal of predicting endemic areas of JE transmission focuses on 

producing predictions that generalise well without explicit concern in understanding 

relationships between quantities of interest (Hofman et al., 2021). Therefore, to 

accurately predict endemic areas, I subset the JE outbreak occurrence data to the 

last six years of the study period (i.e., 2014 to 2019) when most outbreaks were 

reported (Appendix 3 Figure S4.8). I conducted model selection on OOS prediction 

by identifying the model that minimised OOS predictive error using the same 5-fold 

split as described for the evaluative model. Model OOS predictive error for the whole 

region was calculated using the Brier score which is the mean squared difference 

between the observed outcome and the predicted probability of the outcome (Brier, 

1950), whereby smaller values indicate better predictions. The final model was 

selected by comparing models of increasing complexity (with regard to input 
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covariates) to the baseline model and selecting the model with the lowest Brier score. 

Predictive ability was also evaluated by assessing the spatial variation in the Brier 

score (Colón-González et al., 2021b) per district to understand areas where the 

model had improved outbreak detection ability. To determine the potential endemic 

areas of JE transmission using the JE outbreak occurrence probability, a threshold 

was defined by the value that maximized sensitivity and specificity when classifying 

outbreak occurrence and background data. This was calculated using a receiver 

operating characteristic (ROC) curve which plots the true positive rate against the 

true negative rate at different thresholds to select the threshold that maximises 

sensitivity and specificity. Any district with a predicted JE outbreak occurrence value 

above 0.08 was considered endemic.   

4.3.3.3 Temporal model of JE incidence in endemic districts of Assam 

I developed a temporal model to quantify the lagged climatic and environmental 

conditions that predict JE incidence (monthly confirmed case counts) in four 

neighbouring endemic districts in the state of Assam (i.e., Dibrugarh, Jorhat, 

Sivasagar and Tinsukia) from January 2009 to December 2019. I focused my 

analysis on these districts since they reported the most cases (Appendix 3 Figure 

S4.9) and Assam is a known endemic state with high surveillance effort relative to 

other states in the region. A zero-inflated negative binomial distribution was assumed 

to account for potential overdispersion in JE case counts and the generation of zeros 

from two processes (McElreath, 2020c): true JE absence and undetected cases. 

Data source-level and temporal random effects were included to account for 

unobserved and unmeasured sources of variation and temporal dependency 

structures. I included variables lagged at 0 to 3 months before reporting to account 

for exposure-lag response associations between environmental conditions and JE 

incidence (Liu et al., 2020; Tu et al., 2021). I did not include the other temporally 

invariant covariates included in the spatial models, since the focus on one state in 

this phase of the analysis provides low comparative power to detect any spatial 

effects on incidence.  

I modelled monthly JE confirmed case counts in four districts of Assam 𝑍𝑖 (n=4 

districts over 11 years; total 528 observations) as a zero-inflated negative binomial 

process (which models zero observations as a mixture of true and false negatives): 
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𝑦𝑖  ~ ZINegBin(𝜇𝑖, 𝜋𝑖 , 𝜑 ) (3) 

where 𝜋𝑖 is the zero-inflation probability, 𝜇𝑖 is the expected number of cases during 

month i, and 𝜑 is the overdispersion parameter. I used the “zeroinflatednbinomial1” 

distribution in R-INLA (https://inla.r-inla-download.org/r-

inla.org/doc/likelihood/zeroinflated.pdf ) which considers multiple sources of zero-

inflation (i.e., structural zeros and excessive zeros). I selected a zero-inflated 

negative binomial model since it very flexible by allowing for over-dispersion arising 

from excess zeros and heterogeneity in count data, whereas a zero-inflated Poisson 

model only accommodates over-dispersion from excess zeros (Feng, 2021). 

Population effects were accounted for by including log population per 100 000 in the 

model as an offset at the linear predictor scale to give JE incidence rate per 100 000 

population. I modelled JE incidence as a log-link function of a linear combination of 

temporally structured random effects and environmental covariates: 

log(𝜇𝑖) =  𝛼 + 𝑃𝑖 + ϒ𝑟𝑖 + 𝑡𝑖 + 𝑠𝑖 + ∑ 𝛿𝑘,𝑖
𝑘

 (4) 

where, 𝛼 is the intercept, 𝑃𝑖 is log human population included as an offset, and 

several random effects are included: ϒ𝑟𝑖 is a temporal effect of year (first order 

random walk to account for ongoing changes in reporting effort and other interannual 

variability), 𝑡𝑖 is a temporal effect of epidemiological month to account for seasonality 

(second order random walk to capture dependency between months) and, 𝑠𝑖 is an 

i.i.d. random effect of data source to enable the model to account for between-source 

variation in sampling effort that might otherwise confound inferences. Additionally, 

𝛿𝑘,𝑖 are nonlinear effects of climatic predictor variables (specified as second-order 

random walks). I assigned weakly informative priors for the intercept,  𝛼 ~ N (2,0.5) 

and fixed effects, 𝛽 ~ N (0,0.07) and PC priors to hyperparameters of the month, 

source, and nonlinear climatic effects. 

I considered candidate models for lagged combinations of all covariates and 

identified the model that minimised OOS predictive error compared to the baseline 

model containing only random (year, month and source) effects. I performed 

temporal cross-validation by refitting the selected model 22 times, excluding all 

https://inla.r-inla-download.org/r-inla.org/doc/likelihood/zeroinflated.pdf
https://inla.r-inla-download.org/r-inla.org/doc/likelihood/zeroinflated.pdf
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observations for sequential six-month holdout windows across the study period and 

compared observations to OOS predicted case counts for the holdout window. Model 

predictive error was calculated as root mean square error (RMSE) of the difference 

between observed and OOS predicted case counts across the whole time series 

(2009–2019). 

4.4 Results 

4.4.1 Trends in JE surveillance data 

Between January 2009 and December 2019, there were 2293 suspected and 1259 

confirmed cases of JE reported by the Indian government’s IDSP from 115 districts in 

northeast India. Over the 11-year period, significant outbreaks (i.e., outbreaks of 

more than 10 confirmed cases reported in one month) were reported from 2013 to 

2016, particularly in the states of Assam, West Bengal and Meghalaya (Figure 4.2). 

Outbreaks were more widespread across the region from 2014 to 2019 (Appendix 3 

Figure S4.8) with around 19% (22/115) of districts experiencing more than one 

outbreak throughout the study period (Figure 4.3). Most outbreaks occurred in the 

states of Assam and West Bengal, with a few outbreaks reported in Arunachal 

Pradesh, Meghalaya, Manipur, and Tripura (Figures 4.2, 4.3). No outbreaks were 

reported in the states of Sikkim, Nagaland, and Mizoram.  
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Figure 4.2. Reported confirmed Japanese encephalitis cases by state in northeast 
India 2009–2019. 

 

 

 

Figure 4.3 The number of years each district experienced a Japanese encephalitis 
outbreak (threshold of one confirmed case) between 2009 and 2019 in northeast India. 
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Although Assam had the highest number of JE cases over the 11-year study period, 

reports were concentrated in a small number of districts, particularly in the east (i.e., 

Dibrugarh, Jorhat, Sivasagar and Tinsukia) (Appendix 3 Figure S4.9). Focusing on 

JE cases from these four neighbouring districts showed that peak transmission 

generally occurred in the middle of the year and the largest outbreaks were reported 

in 2013, 2015 and 2017; of these, the outbreak in 2017 was the most significant 

(Figure 4.4).  

 

 

Figure 4.4. Monthly suspected and confirmed Japanese encephalitis cases in four 
endemic districts of Assam (i.e., Dibrugarh, Jorhat, Sivasagar and Tinsukia), 2009–
2019. 
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4.4.2 Evaluating the spatial correlates of JE outbreak occurrence in northeast 

India 

The results of the univariate (Appendix 3 Table S4.3) and multivariate selection 

(Appendix 3 Table S4.4) indicated that the best-fitting spatial model of JE outbreak 

occurrence included linear effects of agricultural land proportion, mean annual 

precipitation, mean pig population density, healthcare access per capita, proportion 

of the population living in poverty (Figure 4.5A) and a nonlinear effect of mean Tmax 

(Figure 4.5B). Districts with a high proportion of agricultural land (irrigated and 

rainfed) and a high poverty prevalence had a significantly increased probability of an 

outbreak (Figure 4.5A, Appendix 3 Table S4.7). Analysis showed that JE outbreak 

occurrence was influenced by climatic conditions, peaking in areas with mean Tmax 

levels around 26–28⁰C, and declining sharply above 30⁰C (Figure 4.5B). Although 

non-significant, mean precipitation was negatively associated with JE outbreak 

occurrence and pig density positively influenced JE outbreak occurrence (Appendix 3 

Table S4.7). Despite their non-significant effects, mean precipitation, pig density and 

healthcare access were included in the model since they were considered important 

a priori factors. The covariate relationships were consistent under sensitivity analysis 

using an alternative outbreak threshold of three confirmed cases (Appendix 3 Figure 

S4.10). However, the nonlinear effect for mean Tmax appeared different with higher 

JE outbreak occurrence associated with low temperatures (Appendix 3 Figure 

S4.10C). The individual and combined presence of the sylvatic reservoir hosts were 

highly correlated (Pearson correlation coefficient r >0.8) with temperature and 

cropland covariates so these variables were not included in the model despite their a 

priori relevance. 

The socio-ecological model explained substantially more of the variation in the data 

relative to a random effects-only baseline model (ΔWAIC= -40.58; Δlog score= -0.09; 

Table 4.1)  Fixed and nonlinear effects direction and magnitude were robust in all 

hold-out models (Appendix 3 Figure S4.11).  
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Figure 4.5. Correlates of annual Japanese encephalitis occurrence in northeast India 
2009–2019. 

(A) The mean and 95% credible interval (CI) of the posterior distribution for each model 
covariate for the best fitting model with a threshold of one confirmed case. The linear fixed 
effects are displayed on the standardised z-score scale, so parameters measure the effect of 
1 scaled unit change in the covariate (1 standard deviation) on log odds of occurrence. (B) 
Curve shows nonlinear effects of mean Tmax on JE outbreak occurrence (odds ratio). 

 

  



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

 

109 
 

Table 4.1. Model selection results for models determining socio-ecological drivers of 
spatial Japanese encephalitis outbreak occurrence in northeast India. 

The table shows the differences in structure and within-sample model fit (WAIC and log 
score) for the baseline (random effects only) and best-fitting socio-ecological model.  

Model Random 

effects 

Socio-ecological effects WAIC Log 

score 

Baseline Year, district-

level spatial 

random 

effects 

 -  226.20 0.49 

Socio-ecological  Year, district-

level spatial 

random 

effects 

Precipitation, 

Pig population density 

Proportion of the population 

living in poverty,  

Healthcare access per capita, 

Agricultural land proportion, 

Nonlinear Tmax function 

185.62 0.40 

 

4.4.3 Predicting the spatial distribution of JE endemic areas in northeast India 

The results of the model selection (Appendix 3 Table S4.5) indicated that the best 

performing predictive spatial model of JE outbreak occurrence included linear effects 

of agricultural land proportion, mean annual precipitation, proportion of the population 

living in poverty, healthcare access per capita, and a nonlinear effect of mean Tmax. 

The inclusion of these covariates marginally improved OOS predictive error 

according to the Brier score when compared to a baseline (random effects only) 

model (Table 4.2). These findings were consistent when modelling an alternative 

outbreak threshold of three confirmed cases (Appendix 3 Table S4.8). When 

comparing the difference in Brier score between the baseline and socio-ecological 

model per district (Appendix 3 Figure S4.12), the socio-ecological model performed 

better in many known ‘high JE priority’ districts of Assam (Government of India, 

2014), suggesting the ability of the socio-ecological model to define high JE risk 

areas.   
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Table 4.2. Model selection results for models predicting spatial Japanese encephalitis 
outbreak occurrence in northeast India. 

The table shows the differences in structure and out-of-sample model fit (Brier score) for the 
baseline (random effects only) and best-fitting socio-ecological model of JE outbreak 
occurrence.  

Outbreak 

threshold 

Model Random effects Socio-ecological effects Brier 

score 

1 confirmed 

case 

Baseline Year, district-

level spatial 

random effects 

 -  0.065 

Socio-

ecological  

Year, district-

level spatial 

random effects 

Precipitation, 

Proportion of the population 

living in poverty,  

Healthcare access per 

capita, 

Agricultural land proportion, 

Nonlinear Tmax function 

0.063 

 

Spatially projecting the predicted probability of JE outbreak occurrence suggests that 

large areas of northeast India are suitable for JE transmission especially in the states 

of Assam and West Bengal (Figure 4.6A). The predictive model identified likely 

endemic districts (i.e., with the average probability of an outbreak above 0.08) across 

most of Assam and localised regions in Manipur, Meghalaya, Nagaland, Tripura, 

Arunachal Pradesh, and West Bengal (Figure 4.6B). When compared to the Indian 

Government’s ‘high JE  priority’ district list (Government of India, 2014), the model 

predicted several districts in these states that are not currently considered to be a 

priority for JE surveillance or intervention (Figure 4.6B).  However, the model did not 

predict endemicity in the some districts considered high JE priority by the Indian 

government (Government of India, 2014) (Figure 4.6B).   
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Figure 4.6 Maps of predicted Japanese encephalitis outbreak probability and endemic 
districts for northeast India, 2009–2019 (see Figure 1 for delineation of states).  

(A) Map of predicted probability of JE outbreak occurrence for the region. (B) Map of 
predicted endemic states (i.e., with JE outbreak occurrence probability >0.08), whereby dark 
purple signifies predicted endemic districts that are reported “JE high priority” districts by the 
Indian Government (Government of India, 2014), red signifies predicted endemic districts 
that are not reported “JE high priority”, grey signifies “JE high priority” districts that were not 
predicted endemic and pale pink signifies districts that are not predicted endemic or reported 
“JE high priority”.  
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4.4.4 Predicting seasonal JE incidence in endemic districts of Assam 

Model selection results (Appendix 3 Table S4.6) indicated that the best combination 

of environmental predictors included nonlinear effects of Tmean (1 month lag), 

precipitation (1 month lag), PDSI (1 month lag), and a linear effect for area of land 

under rice cultivation. This environment-driven model (Model 2) reduced OOS 

predictive error relative to the random effects only baseline model (36.6% reduction 

in RMSE; Table 5). The inclusion of vaccination data at a two-month lag in the 

environment and vaccine-driven model (Model 3) further improved OOS predictive 

error relative to the baseline model (46.0% reduction in RMSE; Table 5). When 

evaluating the added predictive accuracy of including vaccine data in the 

environment and vaccine-driven model, the RMSE was clearly optimised at a two-

month lag (Appendix 3, Figure S4.13).  
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Table 4.3. Predictive accuracy of Japanese encephalitis incidence models. 

The table shows the differences in structure and out-of-sample (OOS) model fit (root mean 
square error; RMSE) for the baseline (random effects only), the best-fitting environment-
driven model and best-fitting environment and vaccine-driven model of JE incidence.  

Model Random 

effects 

Environmental 

covariates 

Posterior 

mean (95% 

CI) of linear 

effects 

RMSE ∆ 

RMSE 

1 Baseline Data 

source 

Month 

Year 

- - 53.37 - 

2 Environment-

driven  

Data 

source 

Month 

Year 

Nonlinear precipitation 1-

month lag function, 

Nonlinear PDSI 1-month 

lag function, 

Nonlinear Tmean 1-month 

lag function, 

Rice area under cultivation 

- 

 

- 

 

- 

 

-0.72 

(-1.55, 0.19) 

33.83 -19.54 

3 Environment 

and vaccine- 

driven  

Data 

source 

Month 

Year 

Nonlinear precipitation 1-

month lag function, 

Nonlinear PDSI 1-month 

lag function, 

Nonlinear Tmean 1-month 

lag function, 

Rice area under 

cultivation, 

Vaccination 2-month lag 

- 

 

- 

 

- 

 

-0.88 

(-1.66, 0.00) 

-0.47  

(-0.96, 0.00) 

28.80 -24.57 

 

Model 2 and 3 accurately predicted the timing of JE incidence across the districts. 

However, neither model captured the magnitude of the large outbreaks in 2013 and 

2015 (Figure 4.7A and B). Overall, both models overestimated the magnitude of 

outbreaks, especially for 2009, 2017, 2018 and 2019 but the disparity between 

reported confirmed cases and predicted cases may reflect underreporting during 

these periods. The inclusion of vaccination data in Model 3 dampened some of high 

predicted peaks (maximum OOS posterior mean predicted cases = 400) when 

compared to Model 2 (maximum OOS posterior mean predicted cases = 287) (Figure 

4.7A and B).  

Results from Models 2 and 3 suggest that seasonal JE risk in the four endemic 

districts of Assam (i.e., Dibrugarh, Jorhat, Sivasagar and Tinsukia) is linked to the 
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distribution of rainfall (both non-extreme conditions [as determined from PDSI], and 

mean precipitation), mean temperature in the preceding month (Figure 4C-D), area of 

rice-cropland under cultivation and vaccination coverage in the preceding two 

months. Incidence relative risk was highest when PDSI in the preceding month was 

between -2 and 0 (Figure 4.7C), indicating non-extreme precipitation conditions, and 

when mean monthly precipitation was approximately 400mm in the preceding month 

(Figure 4.7D). JE risk was influenced by average monthly mean temperature in the 

preceding month with a peak around 20⁰C and then a steady incline above 28⁰C. 

However, the relationship had large CIs which infers a large margin of error (Figure 

4.7E). In addition, the area of rice-cropland under cultivation and vaccination 

coverage in the preceding two months were both negatively associated with JE risk 

in Model 3 (Table 4.3). Together with the spatial models of JE outbreak occurrence, 

these results indicate a substantial association between environmental factors and 

patterns of JE occurrence and incidence across northeast India. Furthermore, the 

results suggest that vector and host ecology – which constitute the hazard 

component of JE risk - play a significant role in JE transmission. In addition, seasonal 

rice cultivation appears to be an important factor in JE transmission which may be 

due to its influence on exposure to JE hazard.  
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Figure 4.7. Modelled temporal dynamics and drivers of confirmed Japanese 
encephalitis cases in endemic districts of northeast India, 2009–2019.  

Case time series show observed and out-of-sample (OOS) predicted monthly case counts 
from (A) an environment-driven model, and (B) an environment and vaccine-driven model. 
Time series graphs (A-B) show observed counts summed across four neighbouring endemic 
districts in Assam (i.e., Dibrugarh, Jorhat, Sivasagar, and Tinsukia) from 2009 to 2019 (grey 
bars), OOS posterior mean predicted cases (red line) and OOS 95% (orange shading) 
posterior predictive intervals. OOS predictions were made while holding out sequential 6-
month windows across the full time series. Panels show nonlinear fitted effects of (C) Palmer 
Drought Severity Index (PDSI) at 1 month lag, (D) average monthly precipitation at 1 month 
lag, and (E) average monthly mean temperature at 1 month lag on relative risk, showing 
posterior mean and 95% credible interval.  
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4.5 Discussion 

I found that JE outbreak occurrence is associated with climatic suitability, agricultural 

practices, healthcare access and poverty and that potential JE endemic areas in 

northeast India may be more extensive than previously thought. Highest JE outbreak 

occurrences appear to be in areas experiencing mean maximum annual 

temperatures of approximately 26–28⁰C with a high proportion of land dedicated to 

rainfed and irrigated crops and a high poverty prevalence. The inclusion of climatic 

suitability, agricultural practices, poverty, and healthcare access in the predictive 

model of JE outbreak occurrence improved OOS predictive ability when compared to 

a baseline (random effects only) model, highlighting the importance of these socio-

ecological factors in defining the JE endemic region in northeast India. In several 

districts of Assam, West Bengal, Meghalaya, Tripura, and Manipur, I identified areas 

that may experience underreporting of JE outbreaks and highlighted potential 

endemic districts that are currently not perceived to be of high JE priority. 

Furthermore, in a subset of endemic districts in Assam, I found that lagged climatic 

conditions, cultivated rice area, and lagged vaccination coverage could be used to 

predict the temporal dynamics of JE incidence. These findings substantiate the 

description of JE as an environmentally sensitive disease (Erlanger et al., 2009; van 

den Hurk, Ritchie and Mackenzie, 2009; Le Flohic et al., 2013; Tian et al., 2015; 

Pearce et al., 2018) and support the prospect of developing an early warning system 

for JE incidence which would inform public health efforts  in endemic areas 

(Government of India, 2014). 

JE outbreak occurrence is positively associated with increasing agricultural land-use, 

which may influence the populations of vectors and reservoir hosts (Keiser et al., 

2005b; Sabesan, Raju Konuganti and Perumal, 2008; Erlanger et al., 2009; Borah et 

al., 2013; Le Flohic et al., 2013) and human exposure to infected vectors as a 

consequence of the large numbers of people engaged in agricultural work in the 

region (Roy et al., 2015; FAO, 2020). This current study is in agreement with 

previous findings that have shown a strong positive association between agricultural 

land-use and JE transmission in northeast India (Phukan, Borah and Mahanta, 2004; 

Sarkar et al., 2012; Borah et al., 2013) and in surrounding countries (Cao et al., 

2010; Impoinvil et al., 2011; Robertson et al., 2013). This association has 
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implications for the projected irrigated agricultural expansion in Asia required to 

improve food security (Keiser et al., 2005b; Alexandratos and Bruinsma, 2012). I 

found annual mean maximum temperatures of approximately 26–28⁰C are 

associated with JE outbreak occurrence, which support the findings from previous 

studies (Bi et al., 2003) and reflect the thermal optima reported for the transmission 

of other flaviviruses by Culex  spp (Mordecai et al., 2019) and optimal JEV vector 

temperatures reported in India (Murty, Rao and Arunachalam, 2010; Borah et al., 

2013). Poverty prevalence determined by the MPI (Alkire, Oldiges and 

Kanagaratnam, 2018) is also positively associated with JE outbreak occurrence, and 

is in agreement with previous studies that have reported JE as a disease of poverty 

(Badari, 1985; Luo et al., 1995; Sarkar et al., 2012). Therefore, public programmes 

aimed at poverty alleviation may have a positive impact in terms of reducing JE risk. 

However, since MPI is a compound metric (UNDP and OPHI, 2021), the effect of 

poverty on JE occurrence will likely be mediated by several factors which may vary 

by district (i.e., health, education and living standards).  

Interestingly, the best-fitting predictive model used to define endemic areas did not 

include pig density which suggests that the influence of this covariate on JE outbreak 

occurrence may be regional and not generalisable across northeast India. Indeed, 

extensive serosurveillance data are required to better understand the epidemiological 

significance of pigs as a reservoir host for JEV in India (Desingu et al., 2016; Datey 

et al., 2020). Unfortunately, data on the presence of the sylvatic reservoir hosts were 

not included in this study due to high correlation with environmental variables. 

However, other studies have reported a strong association between habitat suitability 

of ardeid birds and JE outbreak risk in India, highlighting the importance of 

considering both irrigated agriculture and water bodies when predicting risk (Walsh et 

al., 2021). Although there was a trend for a negative relationship between 

precipitation and JE outbreak occurrence, the results were non-significant. This 

finding was surprising since rainfall facilitates vector habitat formation.  Nevertheless, 

other studies have reported similar results (Impoinvil et al., 2011; Bai et al., 2014). 

One study found that the effect of precipitation on JE risk was positive up to 350 

mm/day, above which vector habitats were likely destroyed (Chen et al., 2012). 

Therefore, my results may have reflected the high average annual rainfall received in 

this region (2000mm; 10% of India’s total precipitation) (Roy et al., 2015; Singha et 
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al., 2019) and the influence of heavy monsoon rainfall (Guhathakurta and Rajeevan, 

2008; Mahanta, Sarma and Choudhury, 2013) which may have resulted in the 

destruction of vector habitats.  

The predicted spatial pattern of JE outbreak occurrence (Figure 5A) mirrored the 

pattern of reported JE outbreaks (Figure 2), with high outbreak probability predicted 

across the majority of Assam, the western regions and Dakshin Dinajpur district in 

West Bengal and localised districts of Manipur and Meghalaya. Many of these 

districts border with neighbouring countries such as Bhutan, Nepal and Bangladesh 

where JE cases are often reported (Hossain et al., 2010; Impoinvil et al., 2011; Paul 

et al., 2011; Robertson et al., 2013; Khan et al., 2014; Wangchuk et al., 2020). Owing 

to the difficulty of classifying JE endemic areas (Sabesan, Raju Konuganti and 

Perumal, 2008), I decided to define districts as endemic when the average probability 

of an outbreak throughout the study period was above a threshold of 0.08, as 

determined by ROC curve. This classification led to the identification of 24 potentially 

endemic districts across seven states that are not currently considered by the Indian 

government to be high priority for JE surveillance or interventions (Government of 

India, 2014) (Figure 5B). However, there is substantial evidence to support the 

classification of these districts as endemic and requiring increased surveillance. For 

example, predicted endemic districts in the west, south and central region of Assam 

have reported increased cases of JE over the last few years (Malakar and 

Choudhury, 2014; Ahmad et al., 2015, 2017; Dev, Sharma and Barman, 2015; 

Government of India, 2021b) and Purulia district in West Bengal (Chatterjee et al., 

2004; Das et al., 2016) and the central districts of Manipur have reported significant 

seropositivity in the population (Singh et al., 2019).  

Despite the majority of predicted endemic districts corresponding to the Indian 

government’s reported ‘high JE priority’ districts (Government of India, 2014), the 

model did not predict endemicity in four districts in West Bengal that were previously 

considered high priority. This disparity may relate to the reduced predictive 

performance of the spatial model in this state (as determined spatial variation in the 

Brier score) when compared to its superior predictive ability in the high priority 

districts of Assam. Furthermore, the selected threshold for endemicity may have 

been too conservative to identify all endemic areas. This threshold was selected to 
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maximise sensitivity (i.e., the chance of detecting a true positive) and specificity (i.e., 

the chance of detecting a true negative) and therefore prevent overestimation. 

However, for an underreported disease, maximising these values may not be 

desirable since it is valuable to predict occurrence when it has not been observed.  

Overall, predicted JE endemic areas in northeast India appear to be associated with 

environmental conditions that influence vector and host ecology (i.e., components of 

JE hazard) and facilitate human contact with infected vectors such as irrigated 

agricultural systems (i.e., components of JE exposure). Indeed, the majority of 

predicted endemic districts have a warm and humid climate, with higher precipitation 

during the monsoon (CWA and AW types in Köppen climate classification) (Appendix 

3 Figure S4.1). They also have a large proportion of irrigated agricultural land (Roy et 

al., 2015) owing to the Brahmaputra river that flows through Assam (Immerzeel, van 

Beek and Bierkens, 2010; Samaranayake, Limaye and Wuthnow, 2016) and the 

Damodar river in West Bengal (Singh et al., 2020). Dependence on the agricultural 

sector (Roy et al., 2015; FAO, 2020) and projected expansion in irrigated agriculture 

(Keiser et al., 2005b; Alexandratos and Bruinsma, 2012) may result in public health 

interventions focused on reducing human-vector contact not being effective in 

northeast India. Instead, targeted vaccination programmes may be more beneficial at 

reducing JE risk in this region.  

The temporal model of JE incidence in the four endemic districts of Assam showed 

substantial improvement in OOS predictive error with the inclusion of environmental 

variables when compared to the random effects only baseline model. Moreover, the 

inclusion of vaccination coverage data lagged by two months further improved model 

predictive ability, dampening the predicted peaks in JE cases to more reasonable 

levels. This suggests the possibility of developing an environment-driven forecasting 

model for JE incidence for endemic areas of India which can be used to pre-

emptively inform when to target vaccination drives and therefore reduce JE risk. This 

may help to address the low vaccine efficacy (Vashishtha and Ramachandran, 2015; 

Tandale et al., 2018) and coverage (Murhekar et al., 2017; Vannice et al., 2021) 

reported in India by facilitating management of vaccines cold chain logistics (Saikia, 

2017). With the exception of underestimating peaks in cases in 2013 and 2015, the 

environment and vaccine-driven model was able to predict the accurate timing of JE 
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cases across the endemic area but often overestimated their magnitude. The 

disparity between the magnitude of confirmed and predicted cases may be explained 

by underreporting which is possibly due to several factors that include: the high 

subclinical to clinical ratio of disease presentation (WHO, 2015b); non-specific clinical 

symptoms associated with JE (McNaughton, Singh and Khan, 2018); high incidence 

of other encephalitis aetiologies in the region (Khan et al., 2011; Chowdhury et al., 

2014; Dev, Sharma and Barman, 2015); possible test cross reactivity with other 

flaviviruses and vaccines (Maeki et al., 2019; Quan et al., 2020); limited healthcare 

resources (WHO, 2020b).  

Climatic factors including temperature, precipitation and PDSI at one month lag 

appear to be important for predicting JE incidence as confirmed by other studies 

(Borah et al., 2013; Singh, Singh and Mall, 2020; Tu et al., 2021). The lag period 

probably reflects the time taken for vector development (7-10 days for Culex spp.) 

(CDC, 2020), the extrinsic incubation period (i.e., the time period for the virus to 

develop within a vector and become transmissible; 7-14 days) (Schuh et al., 2014; Tu 

et al., 2021), and the human incubation period (median of 8.4 days) (Turtle and 

Solomon, 2018). There may also be a time lag between the onset of clinical 

symptoms and healthcare access, which has been reported to vary between 1–12 

days in Assam (Kakoti et al., 2013). I found that rice area cultivated was also an 

important predictor of JE incidence reflecting the importance of rice paddy agriculture 

to the JE disease system (Keiser et al., 2005b; Erlanger et al., 2009; Pearce et al., 

2018).  

Although this study extends our understanding of endemic areas and important 

drivers of JE in northeast India, it has several limitations. For example, the 

predominant source of JE case data used in the analysis was obtained from the 

Indian government’s IDSP, which may be influenced by the differences in reporting 

efforts of the various districts depending on whether JE is considered a high priority 

disease or not (Government of India, 2014). This will have meant JE incidence 

calculations will be subject to substantial underreporting and heterogeneity in 

reporting effort. Furthermore, 2011 census data was used to calculate incidence 

which will mean calculations are increasingly inaccurate over time. To overcome the 

significant zero-inflation in the data and reduce the impact of reporting bias in the 
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model, I used a JE outbreak indicator rather than case data as a response variable in 

the spatial models. An outbreak indicator of one confirmed case per district year was 

chosen to capture JE occurrence despite the relative underreporting of the disease 

(Quan et al., 2020) and to achieve consistency with previous definitions of endemicity 

in India (Sabesan, Raju Konuganti and Perumal, 2008). The outbreak may not be 

conservative enough to capture the accurate relationships between JE occurrence 

and spatial drivers or the endemic areas. However, when compared to a higher 

threshold of three confirmed cases per district year, I found the direction and 

magnitude of spatial drivers and the ability of the model to predict outbreaks was 

consistent with the lower threshold. While the inclusion of socio-ecological variables 

improved the OOS predictive error (i.e., Brier score) of the spatial model when 

compared to the baseline (random effects only) model, the overall improvement was 

modest. This may have resulted from the fact that the Brier score penalises 

deviations from the observed outcome, therefore predictions of occurrence in 

unobserved areas (e.g., potential areas of underreporting) will result in higher 

predictive error. Nevertheless, assessing the spatial variation in OOS predictive error 

revealed that the socio-ecological model performed better than the baseline in many 

reported JE priority districts of Assam (Government of India, 2014).  

The use of observational datasets and correlative analytic methods in this study 

precluded the identification of underlying causal mechanisms (Hernán, 2018; 

Kraemer, Reiner and Bhatt, 2019) which may limit the generalisability of the results 

across time and space (Washburne et al., 2019). To infer causal relationships 

requires further empirical research investigating underlying socioecological 

processes that influence JE risk. Another limitation was that the temporal model 

failed to predict some trends in the data, which may have reflected the inability of the 

coarse scale of predictors (i.e., mean monthly values per district) to capture important 

statistical associations (Parham et al., 2015) required to forecast accurate outcomes. 

Indeed, it is possible that JE risk is highly discontinuous and localised and so future 

research would benefit from modelling case data at finer resolutions to describe 

heterogeneity in JE incidence. Owing to limited data, this study did not consider the 

role of human factors which are critical in shaping patterns of disease risk such as 

behaviour, population immunity, and age distribution (Funk, Salathé and Jansen, 

2010). Behavioural risk factors for JE include the proximity of dwellings to rice 
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paddies and livestock (Borah et al., 2013), the use of insecticide-treated mosquito 

nets (Dutta et al., 2011), and scepticism surrounding immunisation (Saikia, 2017; 

Sakamoto et al., 2019). Since JE is predominantly a disease of childhood, the age 

distribution of the population and the associated JEV seroprevalence in different age 

groups also has a major impact on the spatiotemporal distribution of JE cases (Li et 

al., 2016; Kwak, Hong and Kim, 2021). Future research would benefit from analysing 

targeted serosurveillance data stratified by age and vaccination status which would 

capture subclinical cases and reduce data biases associated with the effects of test 

cross-reactivity, variations in healthcare diagnostics and differences in reporting 

effort.  

Despite these limitations, I have shown that JE outbreak occurrence is driven by 

environmental and socioeconomic factors that influence the different components of 

disease risk (i.e., hazard, exposure and vulnerability) (Hosseini et al., 2017). Using 

passive surveillance data, I have predicted potential areas for endemic JE 

transmission in northeast India and identified districts that are likely to be 

experiencing underreporting and would benefit from increased surveillance effort. 

Targeting future surveys outside of the current ‘high JE priority’ districts (Government 

of India, 2014) will also provide further information on the importance of 

environmental and socioeconomic factors influencing JE risk. I also demonstrated 

that climatic variability and land-use factors can be used to predict the temporal 

pattern of JE incidence in endemic areas, revealing the potential to develop a desired 

early warning system to inform public health efforts (Government of India, 2014). In 

this study I have shown the sensitivity of JE to environmental and socioeconomic 

conditions and highlighted the importance of focusing surveillance efforts in areas 

outside of the established JE transmission zone. Improved knowledge on the burden 

and drivers of JE in India will help policymakers to communicate and develop 

effective and efficient interventions to safeguard public health with ongoing global 

changes. 
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Chapter 5:  

Predicting Japanese encephalitis risk under different scenarios of 

global change 

This chapter focuses on medium-to-long term forecasting, applying the spatial 

predictive model of JE outbreak occurrence developed in the previous chapter to 

evaluate how future climatic, agricultural, and socioeconomic change may 

differentially impact trends in JE risk in northeast India. My goal in this chapter is to 

move towards incorporating MBD risk into not only public health but also 

environmental policy decisions to identify trade-offs across land-use, climate, food 

security and human health.  

5.1 Abstract  

Forecasting the impacts of global change on mosquito-borne disease (MBD) risk is a 

key component of public health preparedness. Japanese encephalitis (JE) is a MBD 

that has spread throughout Asia and the West Pacific over the past 70 years, 

exposing more than 3 billion people to risk of infection. Environmental and 

socioeconomic drivers impact JE risk but knowledge on how these processes may 

influence disease risk in the future remains unclear. I applied a Bayesian model of JE 

outbreak spatial occurrence to project the spatial extent of JE risk across northeast 

India in 2030, 2050 and 2070 based on different global change scenarios. 

Specifically, JE outbreak occurrence probability and human population at risk were 

projected using four alternate socioeconomic and greenhouse gas concentration 

pathways (Shared Socioeconomic Pathways and Representative Concentration 

Pathways [SSP-RCPs]) and compared to a 2009-2019 reference period. The 

population at risk of JE is projected to substantially diverge from present-day levels 

under different SSP-RCP scenarios. By 2070, the population at risk is predicted to 

increase by over 45,000 for SSP3-RCP6.0 (i.e., ‘regional rivalry’ scenario) and by 

3500 for SSP2-RCP4.5 (i.e., ‘middle of the road’ scenario). By contrast, when 

compared with present-day, declines in population at risk are predicted for SSP1-

RCP2.6 (i.e., sustainability scenario) and SSP5-RCP8.5 (i.e., rapid growth scenario) 

resulting in reductions of over 22,000 and 25,000 people at risk, respectively. I 
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showed scenario differences in the contraction, stability, and expansion of the 

population at risk for different states in the region. The currently “high JE priority” 

states of Assam and West Bengal show the greatest between-scenario differences, 

justifying the ongoing public health focus in these regions. My study provides 

evidence for the changing threat of JE risk in northeast India under future global 

change. The projections can be used to inform future surveillance and public health 

efforts (e.g., vaccination) and to evaluate the consequences of different policy 

pathways for JE risk and burden across the region. 

5.2 Introduction 

Global change processes such as climatic, land-use and socioeconomic change are 

significant drivers of global mosquito-borne disease (MBD) risk. While environmental 

factors, such as temperature, precipitation, and land-use predominantly influence the 

ecology of vectors, hosts, and pathogens (Keiser et al., 2005b; Erlanger et al., 2009; 

Borah et al., 2013; Le Flohic et al., 2013; Mordecai et al., 2019), socioeconomic 

factors (e.g., travel, demographics and poverty) impact human exposure and 

susceptibility to disease (Badari, 1985; Luo et al., 1995; Sarkar et al., 2012; Hosseini 

et al., 2017). The recent Intergovernmental Panel on Climate Change (IPCC) report 

provides overwhelming evidence for the strong links climate has to land-use and 

socioeconomics, and their combined effects on environmentally sensitive diseases 

such as MBDs (IPCC, 2022). Therefore, these global change processes need to be 

considered simultaneously when tackling complex problems such as the burden of 

MBD. Although many studies have reported the predicted effects of individual global 

change processes on future MBD distributions and populations at risk (Caminade et 

al., 2014; Ryan et al., 2015; Monaghan et al., 2018; Colón-González et al., 2018; 

Ryan, Colin J. Carlson, et al., 2019; Iwamura, Guzman-Holst and Murray, 2020), 

there is limited analysis of their combined effects (Chapter 2; Franklinos et al., 2019). 

This is true for other vector-borne diseases (VBDs) such as those transmitted by 

ticks or sandflies, whereby projections of disease risk are often based on climate-

driven models with other drivers of change less explored (González et al., 2010; 

Moo-Llanes et al., 2013; Ogden et al., 2014a; Parham et al., 2015; Williams et al., 

2015; Alkishe, Peterson and Samy, 2017; McPherson et al., 2017). Understanding 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

 

125 
 

how VBD risk may vary under future global change scenarios is critical for effective 

public health and environmental decision making (Campbell-Lendrum et al., 2015; 

Moritz U. G. Kraemer et al., 2019a; Messina et al., 2019).  

Japanese encephalitis (JE) is a MBD of high public health concern in Asia and the 

West Pacific, where more than 3 billion people are exposed to risk of infection 

(Erlanger et al., 2009; G. L. Campbell et al., 2011; WHO, 2015a). Spatiotemporal 

trends in JE risk are associated with socio-ecological factors (i.e., climate, agricultural 

practices, poverty, healthcare access) that affect vector and host populations and 

human-vector contact (see Chapter 4). Therefore, the geographic distribution and 

population at risk of JE is likely to be impacted by future environmental and 

socioeconomic changes over the coming decades (Metelka, Robertson and Stephen, 

2015; Pearce et al., 2018). India may be particularly susceptible because it already 

has a high burden of JE (Heffelfinger et al., 2017; Kulkarni et al., 2018; Lindquist, 

2018), diverse bioclimatic zones (MOEF, 2019) and is predicted to expand its 

irrigated agriculture (Alexandratos and Bruinsma, 2012). Although some anecdotal 

reports suggest JE incidence will increase with climate change (Rahman, 2016), 

there has been limited research into the future effects of global change processes on 

JE risk. A recent modelling study suggested that overlapping human population 

expansion and growth in pig populations in Asia may lead to significant geographical 

expansion of JE risk by 2050 (Metelka, Robertson and Stephen, 2015). However, the 

consequences of different climatic, land-use or socioeconomic scenarios for JE risk 

were not explored in that research. 

The paucity of knowledge on future trends of JE risk under alternative policy 

scenarios hinders the ability of decision-makers to target effective adaptation options 

(e.g., vaccination, surveillance, early warning systems) and plan mitigation strategies 

(IPCC, 2022). In this present study, I use a statistical model of outbreak risk to 

project the combined effects of future climatic, agricultural, and socioeconomic 

change on JE risk. I focus my research in the endemic region of northeast India 

which is projected to undergo substantial changes in climate and land-use 

(Ravindranath et al., 2011; Dutta, 2014; Prokop, 2020). Building on the methods I 

developed in Chapter 4, I implemented a spatial Bayesian hierarchical model to 

predict present-day (i.e., 2014-2019) geographic distribution of JE outbreak 
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occurrence probability (henceforth referred to as JE risk). Using present-day data as 

baseline, I then used this model to project the distribution of JE risk across northeast 

India in 2030, 2050 and 2070 under four socioeconomic-climatic scenarios with 

projections based on Representative Concentration Pathway (RCP) scenarios and 

Shared Socioeconomic Pathways (SSPs) (O’Neill et al., 2016). I aim to evaluate the 

degree to which projected pathways may impact the population at risk of JE in 

northeast India. In addition, I aim to identify which areas are consistently projected to 

expand or contract in their suitability for JE transmission across all global change 

scenarios. This information can be used to inform future surveillance and public 

health efforts to reduce the burden of JE. 

5.3 Materials and methods 

5.3.1 Scenario narratives  

Scenarios form an essential part of global change research and assessment. The 

RCPs are a set of four future emission pathways developed as a basis for the 

development of new climate change projections (van Vuuren et al., 2011). The four 

RCPs span the range of end-of-century radiative forcing values (2.6, 4.5, 6.0, and 

8.5 W m2) by accounting for altering future greenhouse gas emissions and changing 

underlying socioeconomic projections (van Vuuren et al., 2011). The SSPs are a set 

of five future scenarios (SSP1 to SSP5) which span a range of future socioeconomic 

narratives (Riahi et al., 2017). SSP1 (‘sustainability scenario’) represents a world of 

sustainable growth and equality with low challenges to mitigation and adaptation; 

SSP2 (‘middle of the road’ scenario) represents a world where trends follow the 

status quo with medium challenges to mitigation and adaptation; SSP3 (‘regional 

rivalry’ scenario) is a fragmented, nationalist world with high challenges to mitigation 

and adaptation; SSP4 (inequality’ scenario) represents an increasingly inequitable 

world with low challenges to mitigation but high challenges to adaptation; and SSP5 

(‘rapid growth’ scenario) represents a world of rapid and unconstrained economic 

growth with high challenges to mitigation and low challenges to adaptation (i.e., due 

to rapid technological progress). Socioeconomic and land-use projections provided 

for these different scenarios represent plausible outcomes under the assumptions of 

each scenario narrative. The RCP-SSP framework combines RCP scenarios with 
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SSPs to form a set of future global change scenarios which provide the basis to 

explore the space of future mitigation pathways in terms of different levels of 

mitigation stringency and different assumptions about socioeconomic development 

(O’Neill et al., 2016). In this study, I selected four SSP-RCP pathways that represent 

varying climate and socioeconomic assumptions: SSP1-RCP2.6 (low challenges for 

mitigation and adaptation, low climate impacts, low population growth, high equity, 

‘sustainability’ scenario), SSP2-RCP4.5 (medium challenges and medium-high 

climate change, moderate equity, ‘middle of the road’ scenario), SSP3-RCP6.0 (high 

challenges, medium-high climate change, high population growth, low equity, 

‘regional rivalry’ scenario), and SSP5-RCP8.5 (high challenges to mitigation, low 

challenges to adaptation, high climate change, low population growth, high equity, 

‘rapid growth’ scenario) (Table 5.1). 
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Table 5.1. Key features of the socioeconomic and climatic scenarios (RCP-SSPs). 

Information derived from studies on the RCP and SSP scenarios (van Vuuren et al., 2011; Popp et al., 2017; Riahi et al., 2017). 

SSP RCP SSP socioeconomic 
narrative  

Climate policy 
features 

Agricultural and land-use features Population by 
2050 in 
northeast India 
(100,000) 

Population 
economic 
vulnerability 

1 2.6 Sustainability Low challenges to 
mitigation and 
adaptation, strongly 
declining emissions 
 

Strong regulation of land-use change 
(e.g., deforestation) to reduce 
environmental trade-offs. High 
improvements in agricultural productivity 
shared across countries. Moderate 
international trade. 
 

15.0 Low 

2 4.5 Middle of the road Medium challenges 
to mitigation and 
adaptation, slowly 
declining emissions 
 

Medium regulation of land-use change 
with slow declines in rate of deforestation. 
Medium improvements in agricultural 
productivity. Moderate international trade.  
 

16.6 Moderate  

3 6.0 Regional rivalry High challenges to 
mitigation and 
adaptation, 
stabilising 
emissions 
 

Limited regulation of land-use change 
with high rates of deforestation. Low 
improvements in agricultural productivity. 
Low international trade.  
 

18.6 High 

5 8.5 Rapid growth/ fossil-
fuelled development 

High challenges to 
mitigation, low 
challenges to 
adaptation, rising 
emissions 
 

Medium regulation of land-use change 
with slow declines in rate of deforestation. 
Highly managed and intensive practices 
with rapid improvements in agricultural 
productivity. High international trade. 
Increased livestock and feed crop 
production. 

14.9 Low 
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5.3.2 Datasets 

5.3.2.1 Human Japanese encephalitis case data  

I obtained the Indian government’s Integrated Disease Surveillance 

Programme (IDSP) (Government of India, 2021b) human JE surveillance 

data for the period between 1st January 2009 to 31st December 2019 and 

processed the data as described in Chapter 4 (see Chapter 4 methods for 

further details). I used monthly confirmed JE case data from the last six years 

(2014-2019) from the full dataset because this is when most cases were 

reported (see Appendix 3 in Chapter 4 Figure S4.8). Since the case data 

were zero-inflated and overdispersed, I aggregated JE cases by year at the 

district level and created a binary JE outbreak indicator. I used a threshold of 

one confirmed case per district per year to define a JE outbreak occurrence. I 

believe this low threshold of outbreak occurrence is justified because of the 

high levels of underreporting predominantly due to the high subclinical to 

clinical ratio of disease presentation (WHO, 2015b). The resulting dataset 

included district-wise annual JE outbreak occurrence data for the northeast 

region of India (nine states, 115 districts) (Appendix 4 Figure S5.1) between 

2014 and 2019.  

5.3.2.2 Present-day environmental and socioeconomic covariates 

In this analysis, I used the same suite of environmental and socioeconomic 

covariates as described in Chapter 4. However, instead of using European 

Space Agency Climate Change Initiative (ESA-CCI) land cover data, I used 

land-use data for 2020 derived from the Global Change Analysis Model 

(GCAM) and a land-use spatial downscaling model (Demeter) (Chen et al., 

2020) to follow the same land-use scheme as used for future projections. 

ESA-CCI land cover data were found to be highly collinear with GCAM-

Demeter land-use data (Pearson correlation coefficient >0.8), justifying the 

use of this dataset. Terraclimate data used in Chapter 4 were also used in 

this analysis for present-day meteorological variables since the data are 

compatible with future climate projections provided by Worldclim (Abatzoglou 

et al., 2018). I also explored the inclusion of gross domestic product (GDP) 

data in the model as a measure of poverty since GDP projections that are 
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compatible with the different SSPs are available for this dataset (Murakami, 

Yoshida and Yamagata, 2021).  

5.3.2.3 Climate and land-use and poverty projections under different 

socioeconomic and climate adaption scenarios 

Land-use projections were obtained from the GCAM-Demeter land-use 

dataset (Chen et al., 2020). The data includes projected land cover for the 

period of 2015-2100 at five-year time steps produced for 15 SSP-RCP 

scenarios driven by five general circulation models (GCMs) (i.e., gfdl, 

hadgem, ipsl, miroc, and noresm). I obtained land-use projection data driven 

by the five GCMs for each of my four specified SSP-RCP scenarios for 2030, 

2050 and 2070. I obtained data on the land-use classes of rainfed and 

irrigated rice-cropland to match the covariates selected in the best-fitting 

model of present-day JE outbreak occurrence. 

Monthly average values for minimum temperature (Tmin, °C), maximum 

temperature (Tmax, °C), and precipitation (mm) were obtained from 

WorldClim v2.1 (https://www.worldclim.org/data/cmip6/cmip6_clim10m.html) 

for the time periods: 2021-2040, 2041-2060 and 2061-2080. The Worldclim 

data are downscaled projections from the 6th climate model intercomparison 

project (CMIP6) (O’Neill et al., 2016) for nine GCMs and four SSP-RCP 

scenarios (i.e., SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP6.0 and SSP5-

RCP8.5). I obtained climate projection data for each of the four SSP-RCP 

scenarios for the same five GCMs used for the land-use projection data 

(Chen et al., 2020).  

Poverty projections were obtained from a global gridded GDP dataset 

(Murakami, Yoshida and Yamagata, 2021). The data includes projected GDP 

for the period of 2010-2100 at 10-year time steps produced for five SSP 

scenarios. I obtained GDP projection data for each of my four specified SSP 

scenarios for 2030, 2050 and 2070.  

https://www.worldclim.org/data/cmip6/cmip6_clim10m.html
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5.3.2.4 Human population projections under different socioeconomic 

scenarios 

To quantify a measure of population at risk comparable between current and 

future global change scenarios, I obtained spatially explicit global population 

scenarios consistent with SSP scenarios (Jones and O’Neill, 2016). The data 

includes projected human populations for the period of 2010-2100 at 10-year 

time steps produced for five SSP scenarios. I obtained human population 

projection data for each of my four specified SSP scenarios for 2030, 2050 

and 2070 (Appendix 4 Table S5.1).  

All raster datasets used in this study were aggregated to each district using 

the exactextractr package in R (version 0.7.1) (Baston, 2021) by calculating 

the mean of the grid cells within each district, weighted by the fraction of the 

cell that lay within the district. Then mean district-level values for the whole 

study period were calculated for all data. All calculations were using R 

software version 4.0.3 (R Core Team, 2020) through RStudio (RStudio 

Team, 2020).  

5.3.3 Statistical analysis 

5.3.3.1 Predictive spatial model of present-day JE outbreak occurrence in 

northeast India 

I developed a binomial spatial Bayesian hierarchical model using the binary 

outbreak indicator as the response variable for 115 districts in nine states in 

the northeast of India from January 2014 to December 2019. I modelled JE 

outbreak occurrence (n=115 districts over six years) where 𝑌𝑖 is the binary 

presence (1) or absence (0) of a JE outbreak in district i and 𝑝𝑖 denotes the 

probability of JE outbreak occurrence, such that: 

𝑌𝑖 ~ Bern(𝑝𝑖) (1) 

JE outbreak occurrence (𝑝𝑖) is modelled as a function of socio-ecological 

covariates and random effects: 
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logit(𝑝𝑖) =  𝛼 + ∑ βj𝑋𝑗
𝑗

+ ∑ 𝛿𝑘,𝑖
𝑘

+  𝑢𝑖 +  𝑣𝑖  (2) 

where, 𝛼 is the intercept; X is a matrix of socio-ecological covariates with 

linear coefficients given by 𝛽; 𝛿𝑘,𝑖 is a nonlinear climatic effect (specified as 

second-order random walk); and reporting trends at district level are 

accounted for using a spatially-structured (conditional autoregressive;(𝑣𝑖) and 

unstructured i.i.d. (independent and identically distributed) (𝑢𝑖) random 

effects jointly specified as a Besag-York-Mollie (BYM) model (Besag, York 

and Mollié, 1991). I considered the same linear coefficients (𝛽) as described 

in Chapter 4 that are hypothesised to influence JE transmission (see 

Appendix 3 Table S4.2). In addition, I used different land-use data than in 

Chapter 4 to follow the same land-use scheme as used for future projections 

and I considered GDP as a covariate to represent poverty. Continuous 

covariates were rescaled using the z-score (to mean 0, s.d. 1) prior to fitting 

linear fixed effects. Present-day and future projection data were combined 

before rescaling the continuous covariate data and before specifying 

nonlinear climatic effects to ensure that future covariate data were on the 

same scale when performing projections. Weakly informative prior probability 

distributions (priors) were assigned for the intercept,  𝛼 ~ N (0,1.5) and fixed 

effects, 𝛽 ~ N (0,0.5) to constrain the position and scale of the outcome to fall 

within a reasonable range. I assigned penalized complexity (PC) priors 

(Simpson et al., 2017) to hyperparameters of the district-level effects and 

nonlinear climatic covariates to penalise the complexity resulting from 

deviating from a simple base model. 

I conducted model selection on ‘out of sample’ (OOS) prediction by 

identifying the model that minimised OOS predictive error when compared to 

a baseline (i.e., random effects only) model, as described in Chapter 4. 

Model predictive error for the whole region was calculated using the Brier 

score which is the mean squared difference between the observed outcome 

and the predicted probability of the outcome (Brier, 1950), whereby a lower 

score represents superior model fit.  
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5.3.3.2 Projection of JE risk across future global change scenarios  

I used the projected climate, land-use, poverty, and human population 

datasets (as described above) as input data for the best-fitting predictive 

spatial model of JE outbreak occurrence, and projected district-level JE risk 

(e.g., probability of JE outbreak occurrence) for each of the four SSP-RCP 

scenarios and three epochs (2030, 2050 and 2070). I propagated uncertainty 

in future climate and land-use data into the JE risk predictions by using data 

for the different epoch and SSP-RCP combinations from each of the five 

GCMs. I made separate model predictions for each GCM and then calculated 

the mean and uncertainty bounds (95% credible intervals [CIs]) across all the 

GCMs within each scenario-epoch combination. To calculate the change in 

population at risk, JE outbreak occurrence probability predictions were 

multiplied by total population per district for each scenario and epoch and 

compared to present-day predictions. The projected human population data 

used for these calculations did not consider the proportion of the population 

moving in (inflow migration) or out (outflow migration) of a district. Since 

outflow migration will affect the number of people at risk of JE transmission, I 

calculated migration inflow and outflow proportions per state from the latest 

census which provides data on movement of people within India between 

states (Government of India, 2011). I then subtracted the proportion of 

migration outflow from the population projections and multiplied these 

projections by predicted JE outbreak occurrence probability to calculate the 

minimum projected population at risk. 

5.4 Results 

5.4.1 Predicting the present-day spatial distribution of JE risk in 

northeast India 

The best performing predictive spatial model of JE outbreak occurrence 

included linear effects of rice (irrigated and rainfed) cropland proportion, 

mean precipitation, poverty prevalence, and a nonlinear effect of mean 

Tmax. Districts with a high proportion of rice-cropland (irrigated and rainfed) 

had a significantly increased probability of an outbreak (Figure 5.1A). 
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Analysis showed that JE outbreak occurrence probability was associated with 

climatic conditions, increasing with mean Tmax levels however, this 

relationship was relatively uncertain (Figure 5.1B). The inclusion of these 

covariates improved OOS predictive error according to the Brier score (Brier 

score = 0.061) when compared to a baseline (random effects only) model 

(Brier score = 0.064) (Appendix 4 Table S5.2). The inclusion of GDP as an 

indicator for poverty prevalence did not improve model predictive ability 

which precluded the use of future poverty projection data in this study. 

 

 

Figure 5.1. Temporal correlates of Japanese encephalitis outbreak occurrence 
across northeast India for the period 2009-2019. 

(A) The fixed-effect parameter estimates and 95% credible intervals (CIs) for the 
spatial model of present-day JE outbreak occurrence. (B) The nonlinear relationship 
between mean maximum temperature and probability of JE outbreak occurrence 
where 95% CI is shown shaded. 
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5.4.2 Projected changes in environmental drivers by the 2070s under combined climate and socioeconomic scenarios 

 

Figure 5.2. Projected change with 95% credible intervals in (A) average rice cropland extent (%), (B) average maximum temperature 
(⁰C), and (C) average precipitation (mm) per state from present-day (dashed line) to 2070 for each RCP-SSP scenario. 
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Taking averaged projections for each SSP-RCP scenario, rice cropland 

proportion is predicted to decline in NE India under most scenarios apart 

from marginal increases in some states under SSP3-RCP6.0 and SSP2-

RCP4.5  (Figure 5.2A). Declines in rice cropland proportion are especially 

high for the states of Assam and West Bengal which have high levels of 

present-day rice cropland. The increase in rice cropland under SSP3-RCP6.0 

was simulated because this scenario favours further land-use conversation 

for agricultural use and low improvements in agricultural productivity (Table 

5.1). Combined with a higher population and reduced food imports, this 

would result in more land area being needed for food production under this 

scenario. Comparatively, the decrease in rice cropland extent under SSP1-

RCP2.5 and RCP5-RCP8.5 scenarios relates to projected improvements in 

agricultural productivity and moderate to high international trade which 

reduces the need for agricultural land expansion (Table 5.1). In comparison, 

the average maximum temperature is expected to increase for all states 

under all SSP-RCP scenarios with the most dramatic increases under SSP5- 

RCP8.5 and the lowest increase under SSP1-RCP2.5 (Figure 5.2B). For the 

states of Assam, Tripura and West Bengal which report present-day average 

maximum temperatures at around 30°C, all projected temperatures are 

significantly higher than the thermal optima for Flavivirus transmission for 

Culex species (between 23.9–26.4°C) (Mordecai et al., 2019). Projected 

increases precipitation occurred in all states under all scenarios, with the 

greatest increases predicted for Meghalaya (Figure 5.2C).  

5.4.3 Projected change in population at risk of JE under different 

scenarios 

The population at risk of JE in northeast India is projected to substantially 

diverge from present-day levels under different SSP-RCP scenarios (Figure 

5.3A, Appendix 4 Table S5.3). For all scenarios except SSP3-RCP6.0, the 

population at risk will fall below present-day levels by 2030. By 2050, further 

declines are projected for SSP1-RCP2.6 and SSP5-RCP8.5, whereas a 

dramatic increase in population at risk is reported for SSP3-RCP6.0, and a 

more modest increase for SSP2-RCP4.5 to just above present-day levels. In 
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2070, this divergent trend continues for the different scenarios with a further 

dramatic increase for SSP3-RCP6.0, additional projected declines below 

present-day levels for SSP1-RCP2.6 and SSP5-RCP8.5 scenarios, and a 

plateau in population at risk for SSP2-RCP4.5. Predictions from the model 

suggest that by 2070, over 45,000 more people will be at risk of JE in 

northeast India when compared to the present-day under SSP3-RCP6.0, 

compared to approximately 3500 under SSP2-RCP4.5 (Figure 5.3A, 

Appendix 4 Table S5.3). Whereas there will be reductions in over 22,000 

people at risk under SSP1-RCP2.6, and approximately 25,000 for SSP5-

RCP8.5. When assuming only population changes and holding 

environmental factors constant at present-day levels, the population at risk is 

projected to increase for all scenarios (Figure 5.3B). Although these results 

mirror the population differences projected for the different pathways 

(Appendix 4 Table S5.1), they also reveal how environmental change is 

projected to dampen the potential population at risk, especially for SSP1-

RCP2.6 and SSP5-RCP8.5 scenarios. Indeed, rice-cropland proportion is 

projected to decrease under both these scenarios, especially in the states of 

Assam and West Bengal (Figure 5.2A). However, other environmental and 

socioeconomic factors that are associated with JE risk such as future pig 

production, and poverty conditions are missing from these projections.
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Figure 5.3. Projected changes in population at risk of Japanese encephalitis in 
northeast India under different SSP-RCP scenarios from 2030 to 2070. 

Points and error bars show (A) the change population at risk of JE in thousands 
under different SSP-RCP scenarios from a present-day baseline to 2030, 2050 and 
2070 (mean, 95% credible intervals (CIs) per scenario). (B) The change population 
at risk of JE in thousands when environmental factors are held constant at present-
day levels.   
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5.4.4 Projected change in the geographic distribution of JE risk under 

different scenarios 

By 2070, there is a projected overall decrease in JE outbreak occurrence 

probability under all SSP-RCP scenarios when compared to present-day 

levels (Figure 5.4), with greatest reductions predicted for the states of Assam 

and Meghalaya (see Appendix 4 Figure S5.1 for map of different states in 

northeast India). The SSP1-RCP2.6 scenario is projected to have the 

greatest decline in JE outbreak occurrence probability, followed by SSP2-

RCP4.5, with SSP3-RCP6.0 and SSP5-RCP8.5 scenarios having 

comparable predictions across the region. Some districts in central Assam, 

northern West Bengal and in Arunachal Pradesh are projected modest 

increases in JE outbreak occurrence probability, most notably under SSP3-

RCP6.0 and SSP5-RCP8.5 scenarios. The concurrent geographic 

distribution of human populations at risk under different scenarios are 

projected to vary throughout the region under different SSP-RCP scenarios 

(Figure 5.5). Scenarios SSP1-RCP2.6 and SSP5-RCP8.5 are comparable, 

with reductions projected across most of the region, focal areas of moderate 

increases in population at risk in Assam and West Bengal, and many states 

remaining stable when compared to present-day levels (e.g., Arunachal 

Pradesh, Manipur, Nagaland, Sikkim). These results are likely to reflect the 

projected declines in human population and rice-cropland proportion under 

these pathways. Under SSP2-RCP4.5, increased populations at risk are 

expected for the state of Assam and a combination of increases and declines 

are predicted in West Bengal. By contrast, the highest increases in 

populations at risk are predicted for the SSP3-RCP6.0 pathway, particularly 

for Assam and West Bengal. When considering the effect of outflow 

migration on the projected population at risk of JE, states with high outflow 

migration such as Assam and West Bengal will have greater disparity in the 

projected populations at risk under different global change scenarios 

compared to other states in the region (Table 5.2).  
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Figure 5.4. Change in projected probability of Japanese encephalitis outbreak 
occurrence per district in northeast India for 2070 for different SSP-RCP 
scenarios. 

Change in probability of JE outbreak occurrence per district when compared to 
present-day predictions where zero (white) indicates no change, negative values 
(blues) indicate a decrease, and positive values (reds) indicate an increase. 
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Figure 5.5. Change in projected population at risk (1000s) per district in 
northeast India for 2070 for different SSP-RCP scenarios. 

Change in population at risk of JE in thousands per district when compared to 
present-day predictions where zero (white) indicates no change, negative values 
(blues) indicate a decrease, and positive values (reds) indicate an increase. 
 

  



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

142 
 

Table 5.2 Projected human population (in thousands) at risk of JE transmission per state in northeast India in 2070 under different 
scenarios of global change when considering migration. 
I calculated migration inflow and outflow proportion per state from the latest census (Government of India, 2011). I calculated the maximum projected 
population at risk (and 95% credible intervals) by multiplying the projected human population (absolute number of the population moving in or out of a state) 
by predicted JE outbreak occurrence probability. I then calculated the minimum projected population at risk (and 95% credible intervals) using the same 
method but first I subtracted the proportion of migration outflow from the population projections. 

State Migration 
inflow 
proportion 
 

Migration 
outflow 
proportion 
 

Present 
day 

population 
(2011) 

Maximum projected population at risk in 2070 
(Total projected population x probability of JE occurrence) 

Minimum projected population at risk in 2070 
([Total projected population - outflow migration] x probability of JE 

occurrence ) 
 
 

SSP1-RCP2.6 SSP2-RCP4.5 SSP3-RCP6.0 SSP5-RCP8.5 SSP1-RCP2.6 SSP2-RCP4.5 SSP3-RCP6.0 SSP5-RCP8.5 

Arunachal 
Pradesh 

0.50 0.18 85 5.3   
(5.2-5.4) 
 

7.4 
(7.2-7.5) 

10.0 
(9.8-10.2) 

5.3 
(5.2-5.4) 

4.4 
(4.3-4.4) 

6.0 
(5.9-6.1) 

8.2 
(8.0-8.4) 

4.4 
(4.3-4.4) 

Assam 0.32 0.36 1126 196.1 
(192.5-199.6) 
 
 

242.9 
(238.5-247.2) 

319.2 
(313.5-324.9) 

195.5 
(191.9-199.0) 

125.5 
(123.3-127.7) 

155.4 
(152.6-158.2) 

204.3 
(200.6-208.0) 

125.1 
(122.8- 127.3) 

Manipur 0.03 0.09 314 29.0 
(28.0-29.9) 
 

35.0 
(33.1-36.9) 

43.4 
(42.1-44.8) 

28.9 
(28.0-29.8) 

26.4 
(25.5-27.2) 

31.8 
(30.8-32.8) 

39.5 
(38.3-40.8) 

26.3 
(25.5-27.1) 

Meghalaya 0.10 0.07 332 22.5 
(21.7-23.3) 
 

28.2 
(27.2-29.2) 

37.5 
(36.2-38.8) 

22.4 
(21.6-23.2) 

20.9 
(20.2-21.7) 

26.2 
(25.3-27.2) 

34.9 
(33.6-36.1) 

20.8 
(20.1-21.6) 

Mizoram 0.04 0.04 134 3.8 
(3.8-4.0) 
 

5.1 
(4.9-5.3) 

6.8 
(6.6-7.1) 

3.8 
(3.7-4.0) 

3.7 
(3.5-3.8) 

4.9 
(4.7-5.1) 

6.6 
(6.3-6.8) 

3.7 
(3.5-3.8) 

Nagaland 0.18 0.08 205 9.8 
(9.5-10.1) 
 

13.0 
(12.6-13.4) 

17.4 
(16.9-17.9) 

9.8 
(9.5-10.1) 

9.0 
(8.8-9.3) 

12.0 
(11.6-12.3) 

16.0 
(15.6-16.4) 

9.0 
(8.8-9.3) 

Sikkim 0.07 0.07 128 0.7 
(0.7-0.7) 
 

1.2 
(1.2-1.2) 

1.6 
(1.5-1.6) 

0.7 
(0.7-0.7) 

0.7 
(0.6-0.7) 

1.1 
(1.1-1.1) 

1.5 
(1.4-1.5) 

0.7 
(0.6-0.7) 

Tripura 0.08 0.07 464 10.8 
(10.4-11.1) 
 

13.3 
(12.8-13.7) 

17.3 
(16.8-17.9) 

10.7 
(10.4-11.1) 

10.0 
(9.7-10.3) 

12.3 
(11.9-12.7) 

16.1 
(15.6-16.6) 

10.0 
(9.6-10.3) 

West 
Bengal 

0.16 0.16 4476 167.7 
(164.0-171.3) 
 

193.5 
(189.3-197.7) 

235.9 
(230.7-241.0) 

166.8 
(163.2-170.4) 

140.9 
(137.8-143.9) 

162.5 
(159.0-166.1) 

198.1 
(193.8-202.4) 

140.1 
(137.1-143.2) 
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5.5 Discussion 

The spatial distribution and burden of MBDs are driven by climatic, land-use 

and socioeconomic factors. This study suggests that these factors may 

impact the geographic suitability and population at risk of JE within the next 

century. I found the inclusion of rice-cropland proportion, poverty prevalence 

and climatic factors improved the predictive ability of present-day JE 

outbreak occurrence in northeast India relative to a simpler baseline (random 

effects only) model. When projecting the environmental model to 2030, 2050 

and 2070 under four different global change scenarios, I found that the 

population at risk of JE is projected to substantially diverge from present-day 

levels under different SSP-RCP scenarios. After an initial decline for all 

scenarios except SSP3-RCP6.0 in 2030, the population at risk of JE is 

predicted to increase for SSP3-RCP6.0 (i.e., ‘regional rivalry’ scenario), 

decline below present-day levels for SSP1-RCP2.6 (i.e., ‘sustainability’ 

scenario) and SSP5-RCP8.5 (i.e., ‘rapid growth’ scenario), and increase and 

then plateau for SSP2-RCP4.5 (i.e., ‘middle of the road’ scenario). The 

results equate to the number of people at risk of JE in 2070 increasing by 

over 45,000 from present-day levels under SSP3-RCP6.0 scenario and by 

over 3500 under the SSP2-RCP4.5 scenario. By contrast, when compared 

with present-day, declines in population at risk are predicted for the SSP1-

RCP2.6 and SSP5-RCP8.5 scenarios, resulting in reductions of over 22,000 

and 25,000 people at risk, respectively.  

The future trajectory of JE burden in northeast India, depends on which SSP-

RCP scenario is realised. Unsurprisingly, future population projections under 

different SSP scenarios will have an extremely strong influence on future 

populations at risk whereas the influence of environmental conditions is more 

subtle. However, the influence of environmental factors on JE risk were 

revealed when holding present-day environmental conditions constant and 

only assuming projected population changes. This led to predicted increases 

in populations at risk above present-day levels for all scenarios and revealed 

the potential negative relationship that future environmental conditions may 
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have on JE risk. This was especially evident for SSP1-RCP2.6 and SSP5-

RCP8.5 scenarios which are both projected dramatic reductions in 

populations at risk by 2070 when future environmental factors are included in 

the models. Although SSP1-RCP2.6 and SSP5-RCP8.5 differ dramatically in 

their projected climatic conditions (Figure 5.2) (van Vuuren et al., 2011), they 

both represent high equity pathways whereby reductions in agricultural land 

will occur either due to sustainable practices or technological advancement. 

These findings suggest that, irrespective of climatic or socioeconomic 

conditions, reducing rice-cropland extent may be important in limiting the 

future impact of JE. Conversely, JE risk is projected to increase to 2070 for 

the ‘regional rivalry’ scenario (SSP3-RCP6.0) which involves medium-high 

climate change, high agricultural expansion, high population growth and low 

equity. By comparison, the ‘middle of the road’ scenario (SSP2-RCP4.5) 

results in more moderate increases in JE risk by 2030 when compared to 

‘regional rivalry’ scenario (SSP3-RCP6.0). My findings are in line with a other 

VBD research which has shown that projected temperature increases may 

not always amplify disease risk (Li et al., 2019). An integrative modelling 

study projecting Lyme disease risk in Europe projected risk to be greatest 

under intermediate (RCP4.5) rather than high (RCP8.5) climate change 

scenarios and predicted reduced risk under a sustainable scenario (SSP1-

RCP2.6) (Li et al., 2019).  

I found that present-day JE risk in northeast India is associated with climatic 

suitability, rice crop agricultural practices and poverty prevalence, supporting 

the results in Chapter 4. The predictive models used in both chapters 

substantiate the potential importance of rice crop cultivation and climatic 

conditions in driving JE risk in the region, both of which are strongly 

associated with vector and host ecology (Keiser et al., 2005b; Erlanger et al., 

2009; Borah et al., 2013; Le Flohic et al., 2013). Accordingly, the future 

geographic distribution of JE risk may be influenced by both by present-day 

environmental conditions and prospective land-use and climate conditions 

projected for the various scenarios. When assessing geographic patterns of 

JE outbreak occurrence probability under different pathways by 2070, I found 

an overall projected decrease under all SSP-RCP scenarios when compared 
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to present-day levels. The greatest reduction in JE occurrence was predicted 

for the reduced agricultural expansion and low emissions scenario, SSP1-

RCP2.6. Predicted change in JE occurrence probability from present-day 

was comparable for the other scenarios despite their differences in projected 

agricultural expansion (Figure 5.2). This is likely to be due to the additional 

influence of projected temperature rise under these pathways (Figure 5.2). 

Predicted declines in JE occurrence were most prominent for the states of 

Assam and Meghalaya. The moderate present-day temperatures (25–28⁰C) 

and rice-cropland proportions (5–25%) reported in these states (Figure 5.2A) 

may mean projected environmental changes will have a greater influence on 

the probability of JE outbreak occurrence in these areas.   

Assessing the projected spatial distributions of populations at risk of JE in 

northeast India reveals diverse differences in the contraction, stability, and 

expansion of risk under different SSP-RCP scenarios when compared to 

present-day levels. The greatest between-scenario differences are seen in 

the two current ‘high JE priority’ states of the region: West Bengal and Assam 

(Government of India, 2014). Both states are predicted an overall reduction in 

population at risk under SSP1-RCP2.6 and SSP5-RCP8.5 scenarios 

whereas other states are predicted to stay stable. By contrast, under SSP3-

RCP6.0 and SSP2-RCP4.5 pathways, Assam and West Bengal are projected 

an increase in the population at risk. My results indicate that the states of 

Assam and West Bengal are likely to be priority targets for strengthening 

health systems and improving surveillance especially as they have high 

levels of migration. I predict that the human population at risk will remain 

stable for the other states except for focal areas of increased populations at 

risk in Manipur and Arunachal Pradesh under SSP3-RCP6.0. Currently 

Manipur and Arunachal Pradesh are not considered high priority for JE. This 

research suggests that surveillance should be strengthened in these states to 

obtain accurate baseline data from which to monitor trends in JE risk over 

time. Although JE is rarely reported in Arunachal Pradesh, the virus is 

increasingly being detected in the Himalayan highlands (Baylis et al., 2016) 

and so could feasibly expand its range to higher elevations with associated 

warming trends, as predicted for other MBDs such as malaria in Africa and 
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Central America (Siraj et al., 2014). Shifts towards higher altitudes may have 

major impacts on populations that are immunologically naive and public 

health systems with no previous experience in managing JE. Additionally, 

future increases in populations at risk are predicted to overlap with existing 

state-level infectious disease vulnerabilities such as socioeconomic factors 

(i.e., education, demography, poverty), vulnerability due to non-availability of 

health care (i.e., access to health insurance, public health facilities, 

availability of hospital beds) and housing and hygiene conditions (Acharya 

and Porwal, 2020). Therefore, these vulnerabilities will also need to be 

addressed in order to reduce the future burden of JE in northeast India.  

Similar to all future projection analyses, this study is subject to a range of 

assumptions and limitations. For example, I have assumed that the effects of 

the global change processes on JE transmission will remain constant and 

that there will be no future improvements in JE diagnosis, treatment, and 

control practices. I have also assumed that migration will remain at the same 

level as recorded in 2011 which is not likely due to the projected effects of 

global change on human movement (Marotzke, Semmann and Milinski, 

2020). Future studies would benefit from including movement models in their 

analyses since they may improve disease risk predictions when mobility data 

is unavailable (Kraemer et al., 2019b). Another limitation of this study are the 

assumptions that the virus will not continue to evolve into further genotypes 

(Xu et al., 2022) and that there will be no change to the ecology (Ramasamy 

and Surendran, 2012) or range of vectors or hosts of the disease (Lord, 

Gurley and Pulliam, 2015; Folly et al., 2021). Future predictions of suitability 

for disease risk are inherently stochastic, and so the degree to which models 

resemble reality depends on uncertainty of the environmental and 

socioeconomic drivers of disease. I have attempted to account for the 

considerable uncertainty in the structure of the GCMs used to predict 

changes in future environmental conditions by propagating parameter 

uncertainty (e.g., uncertainty bounds in climatic and land-use parameters) 

from the climate models through to my predictions. Indeed, the high levels of 

uncertainty (i.e., wide CIs) for the maximum temperature parameter may 

suggest that this variable is not having that significant an effect in the model. 
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However, increasing the number of GCMs used in the analysis would 

produce better estimates of uncertainty intervals and provide further context 

for policymakers.  

A significant limitation of this study is that the observational datasets and 

correlative analytic methods used do not enable the inference of mechanistic 

relationships between covariates and risk which may limit the model’s ability 

to predict risk responses to novel settings (Getz et al., 2018). For example, 

the upper thermal limits for optimal JE virus transmission (Mordecai et al., 

2019; Tu et al., 2021) were not captured in this analysis due to uncertainty in 

the temperature parameter. However, in the absence of detailed biological 

knowledge and data required to specify mechanistic models, correlative 

approaches such as those used in this study, may be the most conservative 

approach in the projection of future disease risks (Messina et al., 2015; Getz 

et al., 2018). Another limitation of the study is the quality of the case data 

which was strongly influenced by the reporting effort (Government of India, 

2014; Baylis et al., 2016). This meant the analysis focused on predicting 

outbreak occurrence which is a coarse proxy for realised risk. Indeed, future 

research could extend this model to predict not only occurrence, but also 

incidence. In addition, this study did not consider the role of human factors 

which are critical in shaping patterns of disease risk such as behaviour, 

population immunity, and age distribution (Funk, Salathé and Jansen, 2010). 

Future studies could use age-stratified human population projections to 

consider how the age distribution of the population may impact the population 

at risk of disease (Li et al., 2016; Kwak, Hong and Kim, 2021). Furthermore, 

future projections for important socio-ecological drivers such poverty (Luo et 

al., 1995; Halstead and Jacobson, 2003; Sarkar et al., 2012) were not 

captured in this study. A study on malaria risk found future socioeconomic 

status had a larger impact than climate change and the combined impact of 

both factors was even more significant than either factor alone (Béguin et al., 

2011). Water scarcity was also overlooked in my analysis despite its 

important relationship to irrigated agriculture and varied water demands 

predicted across different socioeconomic scenarios (Graham et al., 2018, 

2020). Indeed, climate change, population growth, and increased 
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dependence on irrigated agriculture are predicted to reduce the Brahmaputra 

basin which is likely to significantly impact irrigated agriculture in Assam 

(Immerzeel, van Beek and Bierkens, 2010).  

Despite these limitations, the projections produced in this study provide an 

evidence base that can be used to improve surveillance systems, focus 

adaption strategies on vulnerable areas, and strengthen public health 

systems to reduce JE burden in the coming decades. Higher populations at 

risk are predicted for SSP3-RCP6.0 and SSP2-RCP4.5 scenarios which 

more accurately reflect current pathway trajectories, indicating that JE risk 

will continue to increase in the region with ongoing environmental and 

socioeconomic trends. Interestingly, I found that projected future 

environmental conditions may dampen the overall population at risk in 

northeast India when compared to present-day environmental conditions. 

This suggests that different climate and agricultural pathways could have 

distinctly different effects on disease risk, especially in already JE endemic 

areas such as northeast India. These results are in line with projections of 

future disease risk for other VBDs under scenarios of plausible future 

socioeconomic and climate change (Purse et al., 2017; Li et al., 2019). A 

study on leishmaniasis in the Americas projected that future disease patterns 

would be largely influenced by climatic factors however, the presence-only 

nature of the available disease data and the wide geographic scale of the 

study may have meant the impacts of land-use and social factors were 

difficult to detect (Purse et al., 2017). In comparison Li et al. (2019) found that 

the projected impact of climate and land-use change of future Lyme disease 

risk were likely to be different, with climate warming projected to expand risk 

in northern Europe and agricultural land expansion projected to limit risk in 

southern Europe (Li et al., 2019). 

My study represents a step towards incorporating MBD risk into public health 

and environmental policy decisions to identify trade-offs across land-use, 

climate, food security and human health. Future research could extend this 

analysis to wider JE endemic areas across Asia and to include multiple 

MBDs (Colón-González et al., 2021a). This research could provide a fuller 
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picture of future global change effects on MBD burden and enhance 

intersectoral coordination and collaboration on policy decisions, as has been 

performed for biodiversity and sustainability goals (Zabel et al., 2019; Hinz et 

al., 2020).  
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Chapter 6:  

Discussion 

Human exploitation of the environment has resulted in natural systems being 

degraded to an unprecedented extent, leading to dramatic environmental 

changes with deleterious impacts for human health (Whitmee et al., 2015). 

The latest Intergovernmental Panel on Climate Change (IPCC) report (IPCC, 

2022) provides a stark overview of the effects of human-induced 

environmental change on the health of nature and humans, signalling that 

the “people and ecosystems least able to cope are being hardest hit”. The 

report provides overwhelming evidence for the strong links between climate, 

land-use, and socioeconomics and their effects on environmentally sensitive 

diseases such as mosquito-borne diseases (MBDs), emphasising the need to 

consider these processes simultaneously when tackling complex problems. 

Yet, despite the rapidly growing awareness of the influence of global change 

processes on the burden of MBDs, a lack of evidence on the effects of these 

drivers has hindered understanding of present-day MBD burdens and how 

disease risk may vary under future scenarios of global change (Campbell-

Lendrum et al., 2015). Broader perspectives that consider the combined 

influence of different socialecological pressures that are driving MBD risk are 

required to better understand the current and future impacts of global change 

processes on MBD systems.  

To improve understanding of the effects of different global change processes 

on MBD risk, the research in this thesis has adopted a socio-ecological 

perspective on the effects of these pressures on the hazard (i.e., pathogen 

availability) and risk of MBDs both in general (Chapter 2) and, for a case 

study of Japanese encephalitis (JE) in India (Chapters 3 to 5). In Chapter 2, I 

reviewed the current evidence of the relative impact of global change 

processes on MBD risk and critically examined how these drivers have been 

incorporated into existing analyses. Despite growing evidence for the key role 

of other global change processes in modulating MBD risk, I found that in 

previous MBD research there has been a focus on the effects of climate 
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change (Figure 2.1). I suggested a holistic approach to the modelling of MBD 

risk whereby socioeconomic and environmental factors, and their interactions 

were considered (Figure 2.3). In so doing, I showed the need for better 

surveillance data, empirical research, use of novel data sources and 

enhanced statistical methods to improve the understanding of MBD drivers 

and risk.  

In Chapter 3, I addressed some of the gaps identified in Chapter 2 by 

applying a novel statistical method to predict spatiotemporal patterns in 

vector abundance using sparse vector surveillance data. Measures of 

seasonal vector abundance – a key component of MBD hazard – are 

required to define potential hotspots of disease risk and target public health 

interventions. This is particularly important for understudied diseases such as 

JE because resources for disease surveillance and control are often limited. 

By combining different types of vector surveillance data in a joint-likelihood 

model, I was able to predict the seasonal abundance of the predominant JE 

vector Culex tritaeniorhynchus across India (Figure 3.3). I also identified 

important environmental drivers of seasonal vector abundance (Figure 3.2) 

and proposed the potential use of vector abundance as a proxy for JE 

hazard. In Chapter 4, by analysing long-term, surveillance data for JE in 

northeast India, I addressed knowledge gaps in the underlying drivers, 

geographic distribution, timing, and intensity of JE risk. I demonstrated the 

importance of environmental and socioeconomic factors in driving JE risk in 

this region (Figure 4.5) and used this knowledge to predict JE endemic areas 

(Figure 4.6) and temporal patterns in JE incidence (Figure 4.7). I then 

evaluated how future socioeconomic and greenhouse gas concentration 

pathways (Shared Socioeconomic Pathways and Representative 

Concentration Pathways [SSP-RCPs]) may differentially impact trends in JE 

risk in northeast India and found while population changes across all 

pathways are expected to influence JE risk, environmental conditions have 

the potential to either intensify or reduce these risks (Chapter 5).  

In this final synthesis chapter, I discuss the contributions these studies make 

in improving knowledge on MBD risk and global change and highlight 
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outstanding questions. Firstly, I examine the methodological innovations and 

challenges I encountered in my research. Secondly, I consider how my 

results contribute to the understanding of the epidemiology and control of JE 

in India, and to the environmental and socioeconomic factors driving JE 

disease risk. Thirdly, based on my findings and the wider research 

contributions during this thesis, I review policy areas where ecosystem 

perspectives and transdisciplinary approaches could assist in enhancing 

human health outcomes. Finally, I discuss unresolved questions and 

limitations of the thesis before suggesting how my research could be 

extended to offer a broader perspective on MBD as an environmental nexus 

issue. I believe this approach is key to advance understanding and 

predictions of MBD risk under current and future scenarios of global change.  

6.1 Methodological contributions 

Quantifying and predicting the effects of different global change processes on 

MBD risk is hindered by the paucity of reliable, high quality surveillance data 

on vectors (ECDC and EFSA, 2018; Rund et al., 2019), reservoir host 

populations (Britch et al., 2013; Lord, Gurley and Pulliam, 2015; DeCarlo et 

al., 2017; Pandit et al., 2018) and human incidence (Lowe et al., 2020; WHO, 

2020a). Since JE is a relatively understudied disease, accounting for data 

gaps and surveillance biases has been a significant challenge throughout this 

thesis. I used Bayesian hierarchical modelling approaches in Chapters 3 to 5 

to compensate for potential data biases (Redding, Lucas, Blackburn and 

Jones, 2017). In Chapter 3, I addressed gaps in vector surveillance data 

using a novel joint-likelihood Bayesian hierarchical model that leveraged 

spatial information from vector occurrence probability to estimate seasonal 

vector abundance for the principal JE vector, Cx. tritaeniorhynchus across 

India (Figure 3.3). This joint-likelihood modelling approach explicitly accounts 

for differences in data quality and structure (i.e., different probability 

distributions) and can handle and quantify sources of uncertainty associated 

with each data type (Amoah, Diggle and Giorgi, 2020; Lucas et al., 2021). 

The framework provides a powerful and flexible method to define seasonal 
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vector abundance over large spatial scales and is easily adaptable for other 

MBDs also with limited vector surveillance data. The issue of limited robust 

long-term geographically extensive distribution data is also pertinent for other 

insect vectors. Indeed, a study using available long-term tick surveillance 

datasets compared the performance of three different data types (quantitative 

count data from scientific surveys; presence-only data from public 

submissions; and a combined dataset from multiple sources) in their ability to 

predict Ixodes ricinus tick distributions in the UK and inform public health 

policy (Ribeiro et al., 2019). Although quantitative count data from scientific 

surveys are considered gold standard, their value was limited by poor data 

coverage and instead, combined datasets from multiple sources were found 

to be valuable in addressing issues of low coverage and producing maps for 

public health decision-making (Ribeiro et al., 2019). Using varied data types 

to estimate spatiotemporal patterns in vector abundance and the uncertainty 

associated with the predictions will assist the targeting of future surveillance 

efforts where long-term and large spatial scale data are not available or 

cannot be practically acquired.  

Similar to other understudied diseases (Lowe et al., 2020; Purse et al., 2020; 

WHO, 2020a), insufficient disease surveillance data has meant that the exact 

global incidence and burden of JE are not fully understood (Sabesan, Raju 

Konuganti and Perumal, 2008; WHO, 2015b; Quan et al., 2020). 

Furthermore, the high subclinical to clinical ratio of disease presentation 

(WHO, 2015b), non-specific clinical symptoms (McNaughton, Singh and 

Khan, 2018), possible test cross reactivity with other flaviviruses and 

vaccines (Maeki et al., 2019; Quan et al., 2020) and limited healthcare 

resources (WHO, 2020b) has hindered the identification of drivers and 

accurate reporting of the distribution and dynamics of JE. In Chapter 4, I 

describe how I compensated for the patchy, zero-inflated surveillance data 

that were currently available, and any surveillance biases, by modelling 

binary outbreak indicators rather than incidence rates. It is common for 

vector-borne disease (VBD) case data to include excess zeros, either true or 

due to imperfect detection (i.e., sampling zeros), which pose modelling 

challenges (Neupane, Goldbloom-Helzner and Arab, 2021). The use of JE 
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outbreak occurrence thresholds allowed me to reduce the effects of bias 

introduced by differences in case reporting and health seeking behaviour and 

so distinguish the effects of socio-ecological factors on spatial JE risk (Figure 

4.5). In addition, this approach enabled me to determine the potential 

endemic areas for JE transmission and identify areas that may be 

experiencing underreporting that could benefit from increased surveillance 

(Figure 4.6). The use of several outbreak thresholds for the binary outbreak 

indicator enabled me to perform a sensitivity test on the analysis and so 

avoid exaggeration or understatement of the results. However, the 

classification of outbreak thresholds must be performed and analysed with 

caution for underreported diseases because of the potential for predictions in 

unobserved areas (e.g., potential areas of underreporting) being penalised 

(see Section 4.5). Paucity of vector and disease surveillance data has led to 

the popularity of correlative models such as ecological niche models (ENMs; 

otherwise known as species distribution models) in VBD research to predict 

vector, pathogen and VBD risk distributions with future scenarios of global 

change (Tjaden et al., 2018; Johnson, Escobar and Zambrana-Torrelio, 

2019; Moritz U. G. Kraemer et al., 2019a; Leta et al., 2019; Messina et al., 

2019; Slatculescu et al., 2020; Lule et al., 2022). Although useful in instances 

of incomplete data or undefined environmental associations (Phillips, 

Anderson and Schapire, 2006; Redding et al., 2016), these models often lack 

ecological information (Johnson, Escobar and Zambrana-Torrelio, 2019) and 

do not facilitate the identification of underlying causal relationships (Kraemer, 

Reiner and Bhatt, 2019); they tend to assume linear covariate associations 

(Washburne et al., 2019) which reduces their applicability to novel settings 

(Campbell-Lendrum et al., 2015; Parham et al., 2015). Integrating ecological 

theory and approaches to modelling disease systems could significantly 

improve our understanding of how global change impacts disease risk (Gibb 

et al., 2020b). Indeed, while modelling approaches that incorporate 

ecological processes are gaining traction in VBD research, they have tended 

to focus on the effects of climate change (Caminade et al., 2014; Ogden et 

al., 2014a; McPherson et al., 2017; Kraemer et al., 2019a; Ryan et al., 2019).  
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The study I present in Chapter 5 focuses on incorporating scenarios of 

climate, land-use and socioeconomic change into future disease projections 

to evaluate the degree to which projected pathways may impact the 

population at risk of JE in northeast India. To do this, I applied a Bayesian 

model of JE outbreak spatial occurrence to project the spatial extent of JE 

risk across northeast India in 2030, 2050 and 2070 based on different global 

change scenarios (SSP-SSP scenarios). This study represents a step 

towards incorporating MBD risk into public health and environmental policy 

decisions to identify trade-offs across land-use, climate, food security and 

human health. Projections of future disease risk for other VBDs have also 

been performed under scenarios of plausible future socioeconomic and 

climate change (Purse et al., 2017; Li et al., 2019). A study on leishmaniasis 

in the Americas used correlative methods to determine present disease-

environment relationships and project these onto a matrix of six alternative 

future scenarios of climate and land-use changes (Purse et al., 2017). 

Climatic factors were found to have a strong influence on disease patterns 

however, the presence-only nature of the available disease data and the 

wide geographic scale of the study may have meant the impacts of 

landscape and social factors were difficult to detect (Purse et al., 2017). In 

comparison Li et al. (2019) combined an agent-based model with host 

species distribution modelling and models of climates and land-use change 

to look at the impact of various climate and socioeconomic scenarios on the 

spread of Lyme disease in Europe. By integrating process-based and 

correlative methods, this study improves understanding on the mechanisms 

of Lyme disease transmission and how it may respond to combined future 

global changes. Future research could extend my analysis to include 

process-based models to enable a fuller picture of future global change 

effects on JE burden and enhance intersectoral coordination and 

collaboration on policy decisions, as has been performed for biodiversity and 

sustainability goals (Zabel et al., 2019; Hinz et al., 2020).  
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6.2 Contributions to the understanding of JE epidemiology and 

control 

JE is an important arbovirus in Asia and the West Pacific (G. L. Campbell et 

al., 2011; Quan et al., 2020) with a high morbidity and mortality rate, affecting 

over three billion people (Moore, 2021). However, despite JE meeting the 

criteria of disproportionally affecting impoverished communities (Sarkar et al., 

2012), having a complex transmission cycle that is sensitive to environmental 

conditions (van den Hurk, Ritchie and Mackenzie, 2009; Le Flohic et al., 

2013) and causing serious health, social and economic consequences 

(Kulkarni et al., 2018; Moore, 2021), the World Health Organization does not 

class it as a neglected tropical disease (NTD) (WHO, 2020a). The most likely 

reason for this decision is the availability of an effective vaccine in some 

countries (Abeysinghe and Neuzil, 2018); effective vaccination strategies 

have enabled countries such as Japan, Taiwan, and South Korea to reduce 

previously high JE burdens to almost zero (Erlanger et al., 2009). Therefore, 

although the zoonotic source of transmission (i.e., animal reservoir hosts) 

remains in these more affluent countries, JE virus (JEV) spillover to humans 

has been significantly reduced (Moore, 2021). Nevertheless, large-scale 

vaccination programmes in other JEV-endemic countries may not be as 

achievable due to differences in demographics, resources, and healthcare 

access. Furthermore, it has been suggested that JEV genotypes may vary 

over time which may impede the success of any vaccination programme 

(Fang et al., 2019). Although JE is not classed as an NTD, underreporting 

and ineffective healthcare provision for the disease necessitates the effective 

targeting of available resources and preventative measures towards the most 

at-risk regions and populations. Therefore, in Chapters 3 to 5, I aimed to 

determine the spatiotemporal distribution of disease hotspots in India and 

establish where future survey efforts should be directed to improve the 

knowledge of this understudied disease.  

When predicting spatiotemporal variation in JE vector abundance across 

India, I found two distinct patterns; these were perennial hotspots in the 

northeast and southern regions, and seasonal hotspots in the north, east and 
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south of the country (Figure 3.2). My study showed the limitations of 

previously available static vector distribution maps which have used ENMs to 

define JE vector occurrence across large geographic ranges (Masuoka et al., 

2010; Miller et al., 2012; Longbottom et al., 2017; Samy et al., 2018). Indeed, 

patterns in vector abundance and seasonality are important epidemiological 

factors that impact pathogen establishment, persistence and transmission 

(ECDC and EFSA, 2018; Tjaden et al., 2018; Liu-Helmersson et al., 2019) 

and, provide a detailed understanding of the hazard associated with JE 

transmission (i.e., JEV availability). Understanding the location and timing of 

peak vector abundance in India will certainly assist national public health 

bodies in their objective “to strengthen surveillance, (and) vector control” 

(Government of India, 2014). Accordingly, future vector surveillance should 

be guided by ecological understanding and empirical modelling (Chapter 3), 

focusing on predicted hotspots, especially in understudied regions predicted 

to have high vector abundance. These data could then be used to inform the 

model and improve and update predictions. This approach will help to better 

characterise geographical and seasonal JE vector abundance when 

compared to current surveillance strategies which are guided by 

socioeconomic factors and historical reported outbreaks (Government of 

India, 2014). Furthermore, model predictions could also be used to target 

preventative measures to reduce the disease incidence.  

In Chapter 4, I built on my findings from Chapter 3 to model spatiotemporal 

JE risk and included information on contact with pathogen (i.e., exposure),  

likelihood of infection (i.e., susceptibility) (Hosseini et al., 2017) in addition to 

environmental factors hypothesised to determine JE hazard. I focused my 

analysis on the northeast region of India, where most JE case data have 

been reported, and perennial JE vector abundance hotspots have been 

predicted (Chapter 3). My aim was to improve the understanding of the 

geographic distribution, timing and intensity of JE outbreaks and determine 

underlying drivers using long-term JE surveillance data. I predicted areas for 

potentially endemic transmission across many districts already considered 

high JE priority in the states of Assam and West Bengal (Government of 

India, 2014). However, I also identified several districts predicted endemic 
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despite low or absent numbers of reported cases (Figure 4.6B). These 

results indicate increased surveillance is required in these districts.  

As suggested for vector surveys, future human JE surveillance should target 

areas predicted to be appropriate based on empirical models (Chapter 4) 

rather than on historic reporting of outbreaks to better characterise the 

distribution of the disease. Indeed, there are many factors that suggest that 

the targeting of surveillance to areas with high historical incidence is 

misguided. The factors  include: the possibility that JE is mistaken for other 

causes of encephalitis (Khan et al., 2011; Chowdhury et al., 2014; Dev, 

Sharma and Barman, 2015; McNaughton, Singh and Khan, 2018); 

serological test cross reactivity with other flaviviruses and vaccines (Maeki et 

al., 2019; Quan et al., 2020); disparity in healthcare resources (WHO, 

2020b). Furthermore, because of the influences of ongoing environmental 

changes, public health bodies must adapt and rather than focus their 

surveillance efforts on currently endemic regions, they should establish a 

broader scanning surveillance system to implement timely and appropriate 

health care strategies.  

While the influence of environmental (Keiser et al., 2005b; Erlanger et al., 

2009; Borah et al., 2013; Le Flohic et al., 2013) and socioeconomic 

conditions on JE transmission (Badari, 1985; Luo et al., 1995; Sarkar et al., 

2012), have been widely reported, the relative importance of these risk 

factors remains poorly understood. Chapter 3 provides strong evidence that 

not only climatic seasonality, but land-use and rice cultivation metrics are 

important drivers of vector abundance. These results reflect the influence of 

environmental covariates on vector ecology, with temperature and rainfall 

patterns influencing mosquito development and survival (Murty, Rao and 

Arunachalam, 2010; Kumari and Joshi, 2012; Mordecai et al., 2019). In 

addition, intensive irrigated agriculture practices provide stable suitable 

vector breeding habitats for extended periods (Keiser et al., 2005b; Baeza et 

al., 2011). Regions that cultivate rice biannually report reduced vector 

seasonality (i.e., higher vector abundance throughout the year) compared 

with those that have a single annual crop (Gajanana et al., 1997).  
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My results in Chapter 4 further emphasise the sensitivity of JE to 

environmental conditions. I showed that within endemic areas climate and 

agricultural practices were crucial determinants of JE risk, both spatially and 

seasonally. These relationships probably reflect the critical roles of pathogen, 

vector and reservoir host population ecology in disease transmission 

dynamics (Keiser et al., 2005b; Erlanger et al., 2009; Borah et al., 2013; Le 

Flohic et al., 2013). Temperature is linked to vector and pathogen 

development (Mordecai et al., 2019) and seasonal rainfall and land-use 

practices are linked to habitat availability for vectors and hosts (Keiser et al., 

2005b; Erlanger et al., 2009; Borah et al., 2013; Le Flohic et al., 2013; 

Elphick, 2015). In endemic districts of northeast India, I found that JE risk 

was influenced by climatic factors (i.e., temperature, precipitation, and 

precipitation extremes) lagged by one month which probably represents the 

periods of vector development (CDC, 2020), viral replication in vectors 

(Schuh et al., 2014; Tu et al., 2021), and human incubation (Turtle and 

Solomon, 2018).  

My findings also support the association between predicted vector 

abundance lagged by one month and JE outbreak occurrence detected in 

Chapter 3. Land-use covariates including area of land under rice cultivation 

and vegetation greenness (i.e., vegetation index NDVI) lagged by three 

months were also important predictors of JE risk in endemic areas, reflecting 

not only the importance of irrigated agricultural systems to the ecology of 

vectors and hosts (i.e., components of JE hazard), but also the contact 

between humans and infected vectors (i.e., JE exposure). The lag of three 

months between vegetation greenness and JE incidence may represent peak 

times of exposure during rice crop harvesting (Singha et al., 2019) when 

increased human-vector transmission is likely to occur. However, the timing 

between vegetation greenness and potential human exposure has yet to be 

confirmed despite studies linking vegetation indices to JE cases (Wang et al., 

2014; Rattanavong et al., 2020).  

The distinct seasonality in JE incidence observed in districts of Assam 

described in Chapter 4 differs from the high perennial vector abundance 
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predicted across the state described in Chapter 3. This difference suggests 

that factors other than vector abundance are driving seasonal disease 

dynamics in the region. For example, although ardeid bird host populations in 

India are resident (i.e., spend the whole year in their breeding grounds) 

(SoIB, 2020e, 2020d, 2020b, 2020a, 2020c), they primarily forage in rice 

paddies during the rice growing season (King et al. 2010) and so their 

contact with vectors may be seasonal. Similarly, there may be a distinct 

seasonality in human exposure to infected mosquitoes due to behavioural 

practices such rice crop harvesting or seasonal use of vector control 

measures (e.g., fogging). Both these components of risk require further 

investigation, especially in understanding how human behaviour influences 

exposure over time and space. Although previous studies have attempted to 

develop potential indicators of human exposure to other MBDs (Monroe et 

al., 2020; Fustec et al., 2021), these are currently specific to other MBD 

systems and are unlikely to be useful for understanding JE exposure. 

6.3 Contributions to the understanding of the impact of global change 

on MBD risk 

Research on the effects of global change on MBDs have predominantly been 

explored through the lens of climate change due to well-documented effects 

of climate on vector life history traits (Gething et al., 2010; Ryan et al., 2015; 

Mordecai et al., 2017; Mordecai et al., 2019; Ryan et al., 2019). This has 

resulted in policy narratives around MBD risk focusing on the direct effects of 

climate as a crucial driver of disease emergence and outbreak risk without 

considering the role of non-climatic drivers. Climate-driven models have also 

predominated in wider VBD research and other drivers of change have been 

less explored (González et al., 2010; Moo-Llanes et al., 2013; Ogden et al., 

2014a; Parham et al., 2015; Williams et al., 2015; Alkishe, Peterson and 

Samy, 2017; McPherson et al., 2017). Importantly, the recent IPCC report on 

climate change impacts acknowledges that climate change is expected to 

expand and redistribute MBD burdens but also recognises that these effects 

are mediated by other impacts such as land-use change, travel, 
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socioeconomic conditions, and public health interventions (IPCC, 2022). My 

conclusions in Chapter 2 are consistent with the IPCC’s assessment; 

considering the effect of climate change in isolation may result in inaccurate 

predictions of MBD risk. In Chapter 2, I reviewed climate-based modelling 

studies and found that climate change was predicted to have both a positive 

and negative effect on MBD risk. However, most reviewed studies were 

simple correlative analyses that did not account for key biological information 

(e.g., vector trait thermal optima) and needed to predict the climate 

dependence of transmission across vectors, pathogens, and environments 

(Mordecai et al., 2019). Although many studies have since used ecologically 

informed approaches that leverage information on thermal trait responses 

into models (Mordecai et al., 2017; Ryan et al., 2019), conflicting results on 

the effects of climate change on MBD risk exist between models. For 

example, malaria is projected to expand in some regions but also forecast to 

decrease in other areas (Caminade et al., 2014; Ryan et al., 2015; Murdock, 

Sternberg and Thomas, 2016; Endo and Eltahir, 2020; Mordecai et al., 2020). 

One reason for this lack consensus is that some models have not captured 

how other global change processes might influence disease risk directly or 

indirectly via interactions with climate. Indeed, I found that only 28% of 

reviewed studies considered the effects of non-climate drivers in their 

analyses (Table 2.2). I suggest that future analyses need to consider other 

global change processes to understand and better predict MBD risk.  

My results in Chapters 3 and 4 show the importance of land-use in shaping 

MBD risk. My findings suggest that vector populations and JE risk respond in 

consistently positive ways to agricultural land-use practices.  In Chapter 3 I 

reported on the positive relationship I found between vector abundance and 

land-use intensity metrics for rice crop cultivation and in Chapter 4, I 

described how I found that crop growth phenology could be used to predict 

temporal trends in JE cases in endemic areas. My findings are supported by 

evidence from previous studies that have reported positive associations 

between agricultural intensity and vector abundance (Kanojia and 

Geevarghese, 2004; Keiser et al., 2005b; Richards et al., 2010; Raju et al., 

2018), and correlations between vegetation greenness and JE cases (Wang 
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et al., 2014; Rattanavong et al., 2020). My results also support broader 

conclusions on the importance of land-use change on infectious disease risk 

related to impacts on the interaction between people, pathogens, vectors and 

vertebrate hosts (Lambin et al., 2010; Kilpatrick and Randolph, 2012; 

Gottdenker et al., 2014; Johnson, de Roode and Fenton, 2015; Hassell et al., 

2017; Gibb et al., 2018; Gibb et al., 2020). These findings  have implications 

for projected global expansion of land-use change (Chen et al., 2020). 

Nevertheless, the impact of future land-use change will depend on factors 

such as the geographic region, the mode of the change and the specific 

disease system; these factors influence underlying ecological processes 

regulating disease transmission (Ladeau et al., 2015; Gibb et al., 2020a). 

Overall, my results highlight the importance of integrating ecological 

perspectives into MBD prediction due to their situation at the nexus between 

environmental change, ecosystems, and health (Gibb et al., 2020b). 

Knowledge on how different global change processes combine to alter MBD 

risk remains unclear (Chapter 2). Several studies have explored how climate 

and land-use may interact to influence MBD risk and have found that the 

combined effects of both pressures may lead to reduced predictability and   

increased potential for larger epidemics (Baeza et al., 2011; Tompkins and 

Caporaso, 2016; Lowe et al., 2021). Furthermore, the interactions of these 

processes with socioeconomic factors (e.g., poverty, human mobility, 

demographics, trade) adds another level of complexity which is difficult to 

assess but critical for understanding the impact of global change on MBD 

risk. Although poverty prevalence was found to be positively associated with 

JE outbreak occurrence in Chapters 4 and 5, the compound nature of the 

variable (i.e., it is mediated by several factors) makes interpretation of this 

relationship challenging. Understanding the influence of socioeconomic 

factors on MBD risk requires a sophisticated approach that considers how 

these effects might interact with climate and land-use. For example, a study 

investigating the relationship between malaria and socioeconomic conditions 

associated with land-use change (Baeza et al., 2017) developed an 

epidemiological compartmental model of malaria transmission which included 

a subpopulation not at risk of contracting malaria due to improvement in 
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socioeconomic conditions. This model was then combined with a mosquito 

population dynamics model and an economic model which mimicked an 

agricultural, labour-intensive productive system that captured economic 

productivity and demographic changes. The study found an initial increase in 

malaria transmission due to relatively fast ecological changes associated with 

land-use conversion, followed by either a decline or a further increase in risk 

which related to the pace of investment in interventions. Therefore, although 

climate and land-use changes are predicted to have directional (i.e., positive, 

or negative) effects on MBD hazard and risk, approaches that consider how 

these processes might interact with socioeconomic factors are necessary to 

understand how these diseases may be affected by future environmental 

change. 

In Chapter 5 I used a statistical model of outbreak risk to project the 

combined effects of future climatic, agricultural, and socioeconomic change 

on future populations at risk of JE. Despite the strong influence on population 

projections under different SSP scenarios, I also revealed the potential 

dampening effect that future environmental conditions may have on JE risk. 

This was especially evident for SSP1-RCP2.6 (i.e., ‘sustainability’ scenario) 

and SSP5-RCP8.5 (i.e., ‘rapid growth’ scenario) which are both projected 

dramatic reductions in populations at risk by 2070. Although SSP1-RCP2.6 

and SSP5-RCP8.5 differ dramatically in their projected climatic conditions 

(van Vuuren et al., 2011), they both represent high equity pathways whereby 

reductions in agriculture will occur either because of sustainable practices or 

technological advancement. These findings suggest that, irrespective of 

climatic or socioeconomic conditions, reducing rice cropland extent may be 

important in limiting the future impact of JE. However, the lack of inferred 

mechanistic relationships between covariates and risk may limit the model’s 

ability to predict risk responses to novel settings (Getz et al., 2018). Future 

research could extend this model to include mechanistic processes and 

therefore improve its potential predictive ability. For example, a recent VBD 

study combined an agent-based model with host species distribution 

modelling and models of climates and land-use change to look at the impact 

of various climate and socioeconomic scenarios on the spread of Lyme 
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disease in Europe (Li et al., 2019).  The study found that the projected impact 

of climate and land-use change of future disease risk were likely to be 

different, with climate warming projected to expand risk in northern Europe 

and agricultural land expansion projected to limit risk in southern Europe (Li 

et al., 2019). 

6.4 Policy implications 

The importance of climate, land-use and agricultural practices on JE 

emphasises the need for increased adaptive, ecosystem-based interventions 

to help manage MBD hazards and risks across multiple areas of policy (i.e., 

public health, agricultural, environmental, and land management). As I have 

demonstrated in this thesis, evaluating how vector populations respond to 

agricultural expansion and climate changes can identify high risk areas for 

MBD transmission. This information can inform the design of agricultural 

landscapes and practices to regulate vector and host populations and their 

interactions, reducing pathogen availability and potential human exposure. 

An example of this approach is seen with the reintroduction of prawns to 

riverine ecosystems in Senegal to regulate snail host populations, reduce the 

prevalence of vector-borne human schistosomiasis, while also benefiting 

local food security (Sokolow et al., 2015). In the context of JE ecology, 

adopting methods from high yield rice cultivation strategies that require less 

standing water (e.g., alternate wetting and drying irrigation methods, the 

development of drought-tolerant cultivars) (Singh et al., 2021) could enable 

more efficient use of land and reduce wildlife-vector-human interfaces. This 

approach could have added benefits for biodiversity (Folberth et al., 2020), 

food security by reducing crop losses due to climate change (IRRI, 2018; 

Oladosu et al., 2019), could benefit biodiversity (Folberth et al., 2020) and 

could improve water security due to the reduced demand for irrigation (Luo, 

2010; Kayatz et al., 2019). Indeed, there is scope to include MBDs such as 

JE within the “water-food-energy nexus” approach to sustainable 

development which acknowledges that actions in one of these domains 

commonly impacts the others (FAO, 2014; UNECE, 2021). This would enable 
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the identification and management of trade-offs across the different policy 

sectors of water, food, energy and public health, allowing for more integrated 

and cost-effective planning to safeguard ecosystem and human health.   

The integration of ecological knowledge into modelling approaches for MBDs 

is fundamental to the understanding of these disease systems (Chapters 3 

and 4). Under future global change, ecological knowledge will be increasingly 

important to support both short-term public health policy (e.g., early warning 

systems for prevention and targeting resources) and long-term decisions for 

adaptation to different scenarios (e.g., strengthening health systems and 

surveillance, improving diagnostic capacities, and targeting vaccinations) 

(Chapter 5). However, ecological perspectives are rarely factored into current  

and future public health policy (Gibb et al., 2020b). Changing this ‘status quo’ 

requires a transdisciplinary approach to public health policy involving the 

integration of knowledge, evidence, and research across ecological, social, 

and health domains (Grant et al., 2016; Bedford et al., 2019; Li et al., 2019; 

Purse et al., 2020; Burthe et al., 2021). Furthermore, the sharing of data 

across these different disciplines via the development of open access 

platforms could help fill gaps in data and improve public health policy in the 

prevention and control of MBD. Planetary Health provides a framework for 

the necessary broadening of public health policy by promoting a systems 

approach to human health outcomes (Pongsiri et al., 2017) whereby 

stakeholder objectives across domains can be matched and the challenges 

that society faces identified, studied, and addressed holistically.  

The need for a holistic, systems-thinking approach to health is repeated in 

the research and policy contributions I made in other projects during my time 

as a PhD student. I co-authored a report for the World Wide Fund for Nature 

and the Smithsonian Institute which reviewed the links between 

environmental degradation and health outcomes in Africa to identify how 

efforts to preserve the natural environment and sustainably manage natural 

resources could have an impact on human and animal health (Hassell et al., 

2021a). The report highlighted major gaps in knowledge of the mechanisms 

by which environmental degradation endangers human health and 
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recommended the formation of interdisciplinary partnerships to advocate for 

nature to be at the centre of public health policy and to frame natural 

resource management as a form of preventative medicine. Similar themes 

emerged in my co-authored analysis piece for the British Medical Journal in 

which I highlighted the need for improved understanding of how 

environmental changes can affect zoonotic risk to help prevent and respond 

to outbreaks (Gibb et al., 2020b). The paper outlined the socio-ecological 

challenges associated with managing zoonotic disease transmission and 

advocated for ecological perspectives to be integrated into public health 

policy to help evaluate disease-risk trade-offs, prioritise interventions, and 

build health resilience to global change. Moreover, during my policy 

fellowship at the House of Commons Environmental Audit Committee, I was 

able to further advocate the need for policymakers to consider the 

relationships between environmental and human health. During my 

placement I took a lead role in an inquiry highlighting the links between 

environmental and human health in relation to the COVID-19 pandemic. This 

culminated in a report to the government advocating for nature to be placed 

at the centre of the economic recovery (EAC, 2021).  

In a perspective piece, I explored how predictive systems ecology models 

could be used to understand interactions between pathogens, hosts and the 

environment, transforming our understanding of disease ecology and 

identifying the best ways to manage emerging disease risk (Hassell et al., 

2021b). Furthermore, I held a transdisciplinary workshop that brought 

together experts from the United Nations, humanitarian non-governmental 

organisations, policy, and academia to develop a better understanding of 

how big data could be used to understand drivers of migration. The workshop 

highlighted the potential application of big data to understand environmental 

drivers of migration such as climate change and highlighted the benefit of 

transdisciplinary collaborations when addressing complex problems 

(Franklinos et al., 2021).  
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6.5 Outstanding questions, limitations, and opportunities  

As described in Chapter 2, enhanced surveillance is required to improve 

health data and define the factors that promote MBD risk. However, due to 

differences in capacity, resources and the need for integration into pre-

existing systems, considerable variability exists in the approach, quality, and 

extent of JE surveillance (Heffelfinger et al., 2017). The lack of JE 

surveillance data was a prevalent challenge for the quantitative parts of my 

thesis. Notably, the spatial and temporal biases of available vector and 

human surveillance data were significant limitations in Chapters 3 and 4 and 

hindered my ability to accurately describe important associations and to 

make predictions in data-poor regions. However, in both chapters, my 

analyses informed where future surveillance efforts could be targeted, 

principally to areas with high predicted hazard or risk that have low reporting 

effort. Like other understudied diseases, it is imperative to establish a 

broader surveillance system to better characterise the distribution of the 

disease rather than continue to target surveillance efforts in known endemic 

regions. Enhanced surveillance data could then be used to inform models 

and improve and update predictions and test and monitor interventions.  

Owing to the dearth of available long term vector data needed to identify 

population trends (Rund et al., 2019), several methods of vector surveillance 

have been developed that are less time-intensive and involve citizen 

scientists that do not require expertise. For example, citizen science projects 

that either involve visual surveys of breeding habitats (Palmer et al., 2017; 

Low et al., 2021; Pataki et al., 2021; Sousa et al., 2022) or acoustic 

surveillance (Mukundarajan et al., 2017; Vasconcelos et al., 2019; Sinka et 

al., 2021) have the potential to vastly increase information on the 

spatiotemporal distribution of mosquito vectors and to evaluate the success 

of vector control measures. However, these data will be influenced by 

sampling bias (Palmer et al., 2017) and biases caused by changes in the 

algorithms behind data collection platforms or the behaviour of the people 

interacting with the platforms (UN Global Pulse, 2012) which must be 

addressed. Furthermore, relatively low engagement reported for citizen 
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science projects in the Global South (Rathnayake, Joshi and Cerratto-

Pargman, 2020) may mean these data also suffer from significant spatial 

biases.  

Future JE research would benefit from targeted serosurveillance data to 

capture subclinical cases and reduce data biases associated with the effects 

of test cross-reactivity, variations in healthcare diagnostics and differences in 

reporting effort. These data would help address the poor baseline knowledge 

of current JE distribution and burden which is required to project and mitigate 

future changes in risk (Campbell-Lendrum et al., 2015). Alternative 

surveillance data collection methods via the use of smartphones, wireless 

connectivity, and cloud-based technologies also have great potential to 

augment the amount, detail and type of disease data (Mtema et al., 2016; 

Carrillo et al., 2021; Pley et al., 2021). However, these data will be biased 

towards populations that are able to access the technology (WHO, 2011) and 

may not be suitable for diseases without characteristic case definitions (Pley 

et al., 2021) such as JE. Underreporting of JE cases also occurs due to 

difficulties in diagnosis (Vannice et al., 2021) and so improved access to 

diagnostics and laboratory testing is needed to increase the quality and 

amount of surveillance data, especially in remote areas. Furthermore, there 

is a clear need to develop systematic surveillance programmes to better 

characterise JEV reservoir hosts (Lord, Gurley and Pulliam, 2015) and to 

understand seasonal and spatial dynamics in JE seroprevalence in these 

groups.  

Although the results of my thesis highlight the importance of environmental 

factors on MBD risk, the observational datasets and correlative analytic 

methods used do not enable the identification of underlying causal 

mechanisms (Hernán, 2018; Kraemer, Reiner and Bhatt, 2019). This limits 

the generalisability of these ecological associations across time and space 

(Washburne et al., 2019) and hinders the ability of models to investigate the 

effects of interventions, as has been performed for other VBDs (White et al., 

2017). Furthermore, there are likely to be unmeasured variables that have 

not been accounted for in the models that are also influencing risk. For 
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example, when considering the effect of land-use on JE risk, unmeasured 

abiotic (e.g., agrichemical use, method or irrigation) (Kibuthu et al., 2016) and 

biotic factors (e.g., competition and predation) (Ohba, Matsuo and Takagi, 

2013; Elphick, 2015; Lounibos and Juliano, 2018) may be influencing vector 

and host populations that are not accounted for in models. Indeed, a recent 

study revealed the importance of biotic interactions in shaping MBD 

dynamics by showing that vector predators can limit disease transmission via 

their effects on vector survival and size and by modifying vector oviposition 

behaviour (Russell et al., 2022). Another study demonstrated the effect of 

competition in determining the geographic distribution of Aedes mosquitoes 

(Lounibos and Juliano, 2018), a factor that is often not considered when 

predicting the potential geographic distribution of these vectors (Kraemer et 

al., 2015; Ryan et al., 2019). Moreover, the influence of land-use practices on 

reservoir host ecology (Gibb et al., 2020a) and the potential for hosts to 

disperse pathogens long distances (Peterson, 2008; Duggal et al., 2019) are 

not well understood. Overall, further empirical research investigating 

underlying ecological processes that influence MBD risk is imperative to 

improve understanding and parameterisation of models (Lounibos and 

Juliano, 2018; Gibb et al., 2020b). 

Another significant limitation in my thesis related to insufficient understanding 

of the socioeconomic factors that drive exposure (Monroe et al., 2020) and 

vulnerabilities to MBDs (Bardosh et al., 2017) and how these aspects of MBD 

risk may be influenced by environmental conditions (Baeza et al., 2017). 

Socioeconomic factors influence exposure to disease via their influence on 

population distribution, migration, and landscape use at various scales (Li et 

al., 2019). Studies that include human demography and behaviour in MBD 

risk models are needed to further understand disease exposure and 

therefore target people at risk and raise public awareness. A recent study 

explored the projected Aedes-borne virus transmission risk by demographic 

group (e.g., age-sex-race/ethnicity cohorts) in the USA under different 

combinations of climate and socioeconomic change (Rohat et al., 2020). The 

study found that projected disease exposure changes were mainly driven by 

changes in the population of vulnerable demographic groups. Future studies 
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on JE would benefit from including demographic data when predicting current 

and future disease impacts.  

Lack of knowledge on the impact of global change drivers is further 

compounded by poor understanding of the scale at which these processes 

influence MBD risk and how different scales should be incorporated into risk 

models (Caminade et al., 2014; Parham et al., 2015; Booth, 2018). Despite 

the identification of causal relationships being the ultimate goal when 

understanding drivers of disease emergence (Kraemer, Reiner and Bhatt, 

2019), the complexity, scale, and natural variability of the systems involved 

mean that this is likely to be impractical for MBDs (Plowright et al., 2008). 

Instead, amassing sufficient evidence to implicate drivers of MBD risk to 

inform predictions and mitigation efforts is a more realistic and achievable 

objective. 

6.6 Future directions and challenges 

The classification of ardeid birds and pigs as reservoir hosts of JEV has its 

origins in the first investigations of JEV transmission ecology that were 

conducted in the 1950s in Japan (Scherer, Buescher and McClure, 1959; 

Buescher et al., 1959; Scherer et al., 1959; Scherer and Buescher, 1959). 

The justification for focusing on these hosts was that their reproductive rate 

enabled them to have a high enough population turnover to enable the 

continuous supply of susceptible individuals needed for annual epidemics. 

Ardeid birds were selected as a wildlife study group because their size meant 

they were relatively easy to catch and large enough to enable repeated blood 

sampling, rather than imply that other wild birds were not potential hosts 

(Scherer and Buescher, 1959). Both pigs and ardeid birds are likely to be 

important JEV reservoir hosts due to the high level of viraemia they produce 

which is sufficient to infect mosquitoes. However, it is important to reconsider 

the transmission cycle for other JE endemic regions that might differ from 

that first described in Japan (Lord, Gurley and Pulliam, 2015). In particular, 

the role of domestic birds such as chickens and ducks remains unknown 
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despite evidence that they can produce high levels of JEV viraemia (Dhanda 

et al., 1977; Cleton et al., 2014; Kalaiyarasu et al., 2016). Although I 

identified pig populations as important drivers of JE risk in northeast India 

(Chapter 4), knowledge on the relative contribution of pigs to JEV 

transmission compared to other hosts and how this may vary in space and 

time is deficient.  

To address these knowledge gaps requires veterinary surveillance of wildlife 

and domestic animals within JE endemic areas. Targeted serological 

surveillance of wildlife and domestic animals will help determine the absence 

or geographic and temporal distributions in prevalence of JEV in different 

populations and therefore, the likelihood of their ability to act as reservoir 

hosts. Simultaneously, scanning surveillance of pigs could be undertaken at 

slaughter to assess the geographic and seasonal variation in their ability to 

transmit JEV and to understand their relative importance to JE transmission 

ecology. This is particularly important given their recently discovered ability to 

transmit JEV directly between pigs without a vector (Ricklin et al., 2016). 

Furthermore, mobile phone syndromic surveillance programmes could be 

employed to detect potential JE outbreaks in domestic animal populations in 

rural communities as has been performed for other zoonotic flaviviruses 

(Thumbi et al., 2019). In addition, the development of the Global Virome in 

One Network (VIRION) (Carlson et al., 2022), an open access database of 

vertebrate-virus species interactions, makes identifying potential JEV hosts 

easier. Defining the breadth of potential JEV host species and quantifying 

their relative contributions to JE risk, would help to characterise geographical 

and seasonal variations in host seroprevalence across Asia and the West 

Pacific, and how these may vary with important JE drivers identified in this 

thesis (i.e., climate, agricultural land cover, poverty). This knowledge would 

improve assessments of the ability for JEV to spread to new geographic 

regions (Mackenzie, Gubler and Petersen, 2004; van den Hurk, Ritchie and 

Mackenzie, 2009; Lord, 2021) and potential impact of global change 

processes such as climate and land-use change on disease risk (Gibb et al., 

2018; Gibb et al., 2020b). 
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As seen with the recent emergence of JE in Australia (Commonwealth of 

Australia, 2022), JE epidemics can often occur without warning and 

overwhelm public health services (Kulkarni et al., 2018). Therefore, the 

development of a short-term early warning system that combines seasonal 

environmental forecasts with surveillance data would be beneficial to help 

prepare mitigation efforts (e.g., targeting of vaccination effort, advance 

warning of high risk periods), and improve JE diagnosis and treatment 

outcomes (e.g., increased clinical suspicion during high risk periods) 

(Hussain-Alkhateeb et al., 2021). The high out-of-sample predictive ability for 

the temporal model of JE incidence in Chapter 4 suggests that short-term 

forecasting of JE incidence in endemic areas to inform vaccination 

programmes may be possible with this model. However, the model requires 

further development and parametrisation with additional data reported since 

2019 to accurately determine its potential as a tool for public health decision 

support (Ballester et al., 2016). Host seroprevalence data and vector 

abundance predictions could also be explored as possible predictors in the 

model. Indeed, there is scope for developing the vector abundance model 

from Chapter 3 into a forecasting model of seasonal vector abundance which 

could in turn inform a JE outbreak early warning system.  

Despite the increasing importance of early warning systems to disease 

outbreak prediction and control, there is relatively little data on their 

effectiveness or the feasibility of their integration into existing surveillance 

programmes (Hussain-Alkhateeb et al., 2021). Therefore, it is imperative that 

the development of an early warning system for JE involves stakeholder 

perspectives to ensure its utility and effectiveness in controlling disease 

outbreaks. To operationalise and sustain an early warning tool for JE would 

require models to be developed via a process of co-production with 

stakeholders in which different forms of knowledge are integrated into 

decision-making (Purse et al., 2020). Stakeholders would be selected due to 

their key roles in the understanding and management of JE across different 

sectors and geographic scales. These may include policymakers and actors 

from public health, veterinary and agricultural sectors at the scale of national 

decision-makers down to village communities. This process of co-production 
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would enable models to be parameterised with data and knowledge from the 

field and for the spatial grain of the models to be tailored to the scale of 

intervention and ecosystem use (Leach and Scoones, 2013). In addition, 

interpretation and validation of model outputs by stakeholders would likely 

increase the uptake of the early warning system for targeting surveillance 

and interventions. Furthermore, the early warning system would have to be 

simple, practical, and sustainable to guarantee that it would be useful to local 

decision makers over the long-term. 

My findings throughout this thesis have revealed MBD as a nexus issue 

between the environment and human health, thus validating the application 

of the Planetary Health approach (Pongsiri et al., 2017) in the understanding 

and mitigation of these diseases in the era of dramatic global change. In the 

context of JE, the importance of agricultural land management practices 

highlighted in this work has implications for the projected expansion of 

irrigated agricultural land (Keiser et al., 2005b; Alexandratos and Bruinsma, 

2012) and intensification of rice production (Song et al., 2018) needed to 

improve food security. Therefore, if we want to significantly expand rice 

paddy cultivation and at the same time work towards reducing MBD risk, we 

will need to develop ways to reconcile these two goals.  

Modelling approaches such as those applied in Chapter 5, could support this 

work by evaluating the consequences of proposed future land-use changes 

for MBD risk to identify trade-offs across land-use, climate, food security and 

human health. Furthermore, such counterfactual analyses whereby different 

scenarios are evaluated, could be conducted for multiple MBDs to enhance 

policy decisions that benefit both public health and environmental sectors. 

Examples of potential counterfactual questions could include: ‘If we alter 

different characteristics of rice cultivation (e.g., type of rice grown, size of 

irrigation schemes, and distance of rice-growing communities from their 

fields) how many JE infections could be averted?’ Or ‘If we increase the 

availability of natural wetlands, do we reduce JE risk due to decreased 

contact between vectors and ardeid birds?’ In addition, which agricultural 

practices are best for ensuring food security and reducing MBD risk, while 
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accounting for the influence of predicted climate and socioeconomic change? 

These counterfactuals can be used to structure and manage agricultural 

landscapes to ensure food security, preserve ecosystem health and regulate 

vector and reservoir host populations across projected scenarios of global 

change.  

6.7 Conclusions 

Much of recent human development has come at the expense of the natural 

environment, leading to ecosystem degradation, biodiversity loss and 

increased exposure and vulnerability to infectious diseases such as MBDs. 

This has been emphasised by the SARS CoV2 pandemic which has 

increased global awareness of the need to expand and strengthen our 

understanding of the links between nature and human health (FAO et al., 

2021). Traditionally, public health interventions have been aimed at reducing 

the exposure and vulnerability of populations to disease (Gibb et al., 2020b) 

by focusing on disease control and vaccination efforts. However, with future 

global change, broader perspectives that consider the combined influence of 

different socio-ecological pressures driving disease risk will be increasingly 

important to support both short-term public health policy and long-term 

decisions for adaptation to different scenarios. In this thesis, I have illustrated 

the importance of environmental and socioeconomic change to MBD risk, 

underlining the need to integrate socio-ecological perspectives into not only 

public health but environmental planning decisions, to help understand and 

predict disease risk and therefore build wider health resilience to global 

change. 

  



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

175 
 

Bibliography 

Abajobir, A.A. et al. (2017) ‘Global, regional, and national age-sex specific mortality for 264 

causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 

2016’, The Lancet, 390(10100), pp. 1151–1210. doi:10.1016/S0140-6736(17)32152-9. 

Abatzoglou, J.T. et al. (2018) ‘TerraClimate, a high-resolution global dataset of monthly 

climate and climatic water balance from 1958–2015’, Scientific Data, 5(1), pp. 1–12. 

doi:10.1038/sdata.2017.191. 

Abeysinghe, N. and Neuzil, K. (2018) Japanese encephalitis—no longer neglected: A model 

for other new vaccines, PATH. Available at: https://www.path.org/articles/japanese-

encephalitis-no-longer-neglected-a-model-for-other-new-vaccines/ (Accessed: 3 March 

2022). 

Acharya, R. and Porwal, A. (2020) ‘A vulnerability index for the management of and 

response to the COVID-19 epidemic in India: an ecological study’, The Lancet Global Health, 

8(9), pp. e1142–e1151. doi:10.1016/S2214-109X(20)30300-4. 

Aerts, C. et al. (2020) ‘Understanding the role of disease knowledge and risk perception in 

shaping preventive behavior for selected vector-borne diseases in Guyana’, PLOS 

Neglected Tropical Diseases, 14(4), p. e0008149. 

Aguirre, A. et al. (2019) ‘Transdisciplinary and social-ecological health frameworks—Novel 

approaches to emerging parasitic and vector-borne diseases’, Parasite Epidemiology and 

Control, 4, p. e00084. doi:10.1016/j.parepi.2019.e00084. 

Ahmad, A. et al. (2015) ‘Japanese Encephalitis in Assam, India: Need to Increase 

Healthcare Workers’ Understanding to Improve Health Care’, PLOS ONE, 10(8), p. 

e0135767. doi:10.1371/journal.pone.0135767. 

Ahmad, A. et al. (2017) ‘Community knowledge and attitude towards Japanese encephalitis 

in Darrang, India: a cross-sectional study’, Annals of Tropical Medicine and Public Health, 

10(2), pp. 377–377. 

Albert, C.H. et al. (2017) ‘Applying network theory to prioritize multispecies habitat networks 

that are robust to climate and land-use change’, Conservation Biology: The Journal of the 

Society for Conservation Biology, 31(6), pp. 1383–1396. doi:10.1111/cobi.12943. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

176 
 

Alexandratos, N. and Bruinsma, J. (2012) World agriculture towards 2030/2050: the 2012 

revision. ESA Working Paper No. 12-03. Rome: FAO, p. 160. 

Ali, S. et al. (2017) ‘Environmental and Social Change Drive the Explosive Emergence of 

Zika Virus in the Americas’, PLoS Neglected Tropical Diseases, 11(2), pp. 1–16. 

doi:10.1371/journal.pntd.0005135. 

Alkire, S., Oldiges, C. and Kanagaratnam, V. (2018) Multidimensional poverty reduction in 

India 2005/6–2015/16: Still a long way to go but the poorest are catching up. 54a OPHI 

Research in Progress. University of Oxford: Oxford Poverty and Human Development 

Initiative (OPHI). Available at: https://www.ophi.org.uk/wp-

content/uploads/OPHIRP54a_vs2.pdf (Accessed: 15 November 2021). 

Alkishe, A.A., Peterson, A.T. and Samy, A.M. (2017) ‘Climate change influences on the 

potential geographic distribution of the disease vector tick Ixodes ricinus’, PLoS ONE, 

12(12). doi.org/10.1371/journal.pone.0189092. 

Allen, T. et al. (2017) ‘Global hotspots and correlates of emerging zoonotic diseases’, Nature 

Communications, 8(1), pp. 1–10. doi:10.1038/s41467-017-00923-8. 

Alley, W.M. (1984) ‘The Palmer Drought Severity Index: Limitations and Assumptions’, 

Journal of Applied Meteorology and Climatology, 23(7), pp. 1100–1109. doi:10.1175/1520-

0450(1984)023<1100:TPDSIL>2.0.CO;2. 

Alsan, M.M. et al. (2012) ‘Poverty, global health and infectious disease: lessons from Haiti 

and Rwanda’, infect Dis Clin North Am, 25(3), pp. 611–622. 

doi:10.1016/j.idc.2011.05.004.Poverty. 

Amaku, M. et al. (2016) ‘Magnitude and frequency variations of vector-borne infection 

outbreaks using the Ross–Macdonald model: explaining and predicting outbreaks of dengue 

fever’, Epidemiology & Infection, 144(16), pp. 3435–3450. 

doi:10.1017/S0950268816001448. 

Amoah, B., Diggle, P.J. and Giorgi, E. (2020) ‘A geostatistical framework for combining 

spatially referenced disease prevalence data from multiple diagnostics’, Biometrics, 76(1), 

pp. 158–170. doi:10.1111/biom.13142. 

Anderson, E.P. et al. (2018) ‘Fragmentation of Andes-to-Amazon connectivity by hydropower 

dams’, Science Advances, 4, pp. 1–8. doi:10.1126/sciadv.aao1642. 

https://doi.org/10.1371/journal.pone.0189092


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

177 
 

Anyamba A., Chretien JP., Small J., Tucker CJ., F.P. (2009) ‘Prediction of a Rift Valley fever 

outbreak’, Procedure for National Academic Science, 106(3), pp. 955–959. 

Arai, S. et al. (2008) ‘Japanese encephalitis: Surveillance and elimination effort in Japan 

from 1982 to 2004’, Japanese Journal of Infectious Diseases, 61(5), pp. 333–338. 

Asare, E.O., Tompkins, A.M. and Bomblies, A. (2016) ‘A Regional Model for Malaria Vector 

Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology 

Simulations’, PLOS ONE, 11(3), p. e0150626. 

Athni, T.S. et al. (2021) ‘The influence of vector-borne disease on human history: socio-

ecological mechanisms’, Ecology Letters, 24(4), pp. 829–846. doi:10.1111/ele.13675. 

Badari, V. (1985) ‘A socio-economic study of Japanese encephalitis in Kolar district of 

Karnataka during 1981’, Health and Population—Perspectives & Issues, 8, pp. 29–49. 

Baeza, A. et al. (2011) ‘Climate forcing and desert malaria: the effect of irrigation’, Malaria 

Journal, 10, p. 190. doi:10.1186/1475-2875-10-190. 

Baeza, A. et al. (2017) ‘The rise and fall of malaria under land-use change in frontier 

regions’, Nature Ecology & Evolution, 1(5), p. 0108. doi:10.1038/s41559-017-0108. 

Bagcchi, S. (2014) ‘India intensifies Japanese encephalitis immunisation’, The Lancet 

Infectious Diseases, 14(8), p. 682. doi:10.1016/S1473-3099(14)70862-X. 

Bai, Y. et al. (2014) ‘Regional Impact of Climate on Japanese Encephalitis in Areas Located 

near the Three Gorges Dam’, PLoS ONE. Edited by M. Kirk, 9(1), p. e84326. 

doi:10.1371/journal.pone.0084326. 

Baig, S. et al. (2013) ‘Japanese Encephalitis Surveillance and Immunization — Asia and the 

Western Pacific, 2012’, MMWR. Morbidity and Mortality Weekly Report, 62(33), pp. 658–

662. 

Baker, R.E. et al. (2021) ‘Infectious disease in an era of global change’, Nature Reviews 

Microbiology, pp. 1–13. doi:10.1038/s41579-021-00639-z. 

Balakrishnan, A. et al. (2017) ‘Seroprevalence of Japanese encephalitis virus & West Nile 

virus in Alappuzha district, Kerala’, The Indian Journal of Medical Research, 146(Suppl 1), 

pp. S70–S76. doi.org/10.4103/ijmr.IJMR_1638_15. 

https://doi.org/10.4103/ijmr.IJMR_1638_15


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

178 
 

Balasubramanian, R. and Nikhil, T.L. (2015) ‘Effects of rainfall and salinity increase on 

prevalence of vector mosquitoes in coastal areas of Alappuzha district, Kerala’, Journal of 

Environmental Biology, 36(6), pp. 1325–1328. 

Ballester, J. et al. (2016) ‘Seasonal forecasting and health impact models: challenges and 

opportunities’, Annals of the New York Academy of Sciences, 1382(1), pp. 8–20. 

doi:10.1111/nyas.13129. 

Bandyopadhyay, B. et al. (2013) ‘Incidence of Japanese encephalitis among acute 

encephalitis syndrome cases in West Bengal, India’, Biomed Res Int, 2013, p. 896749. 

doi:10.1155/2013/896749. 

Barbazan, P. et al. (2010) ‘Modelling the effect of temperature on transmission of dengue’, 

Medical and Veterinary Entomology, 24(1), pp. 66–73. doi:10.1111/j.1365-

2915.2009.00848.x. 

Bardosh, K.L. et al. (2017) ‘Addressing vulnerability, building resilience: community-based 

adaptation to vector-borne diseases in the context of global change’, Infectious Diseases of 

Poverty, 6(1), p. 166. doi:10.1186/s40249-017-0375-2. 

Barnagaud, J.Y. et al. (2012) ‘Relating Habitat and Climatic Niches in Birds’, PLoS ONE, 

7(3), p. e32819. doi:10.1371/journal.pone.0032819. 

Baruah, A. et al. (2018) ‘Mosquito abundance and pig seropositivity as a correlate of 

Japanese encephalitis in human population in Assam, India’, Journal of Vector Borne 

Diseases, 55(4), p. 291. doi:10.4103/0972-9062.256564. 

Bashar, K. et al. (2016) ‘Species composition and habitat characterization of mosquito 

(Diptera: Culicidae) larvae in semi-urban areas of Dhaka, Bangladesh’, Pathogens and 

Global Health, 110(2), pp. 48–61. doi:10.1080/20477724.2016.1179862. 

Baston, D. (2021) exactextractr: Fast Extraction from Raster Datasets using Polygons. 

ISciences, LLC. Available at: https://CRAN.R-project.org/package=exactextractr (Accessed: 

13 October 2021). 

Bates, M. (1949) The natural history of mosquitoes. New York: Harper and Row Publishers. 

Baylis, M. et al. (2016) ‘Emergence or improved detection of Japanese encephalitis virus in 

the Himalayan highlands?’, Transactions of The Royal Society of Tropical Medicine and 

Hygiene, 110(4), pp. 209–211. doi:10.1093/trstmh/trw012. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

179 
 

Beck, H.E. et al. (2018) ‘Present and future Köppen-Geiger climate classification maps at 1-

km resolution’, Scientific Data, 5(1), pp. 1–12. doi:10.1038/sdata.2018.214. 

Becker, N. et al. (2010) ‘Biology of mosquitoes’, in Mosquitoes and Their Control. 2nd edn. 

London: Springer-Verlag Berlin Heidelberg, pp. 9–24. doi:10.1007/978-3-540-92874-4. 

Bedford, J. et al. (2019) ‘A new twenty-first century science for effective epidemic response’, 

Nature, 575(7781), pp. 130–136. doi:10.1038/s41586-019-1717-y. 

Béguin, A. et al. (2011) ‘The opposing effects of climate change and socio-economic 

development on the global distribution of malaria’, Global Environmental Change, 21(4), pp. 

1209–1214. doi:10.1016/j.gloenvcha.2011.06.001. 

Bergquist, R., Stensgaard, A.S. and Rinaldi, L. (2018) ‘Vector-borne diseases in a warmer 

world: Will they stay or will they go?’, Geospatial Health, 13, p. 699. doi:10.4081/ejh.2013.e2. 

Besag, J., York, J. and Mollié, A. (1991) ‘Bayesian image restoration, with two applications in 

spatial statistics’, Annals of the Institute of Statistical Mathematics, 43(1), pp. 1–20. 

doi:10.1007/BF00116466. 

Bhatt, S. et al. (2013) ‘The global distribution and burden of dengue’, Nature, 496(7446), pp. 

504–507. 

Bhattacharyya, D.R. et al. (1994) ‘Host feeding patterns of Culex vishnui sub group of 

mosquitoes in Dibrugarh district of Assam.’, Journal of Communicable Diseases, 26(3), pp. 

133–138. 

Bi, P. et al. (2003) ‘Climate variability and transmission of Japanese encephalitis in eastern 

China’, Vector Borne and Zoonotic Diseases (Larchmont, N.Y.), 3(3), pp. 111–115. 

doi:10.1089/153036603768395807. 

Bista, M.B. and Shrestha, J.M. (2005) ‘Epidemiological situation of Japanese encephalitis in 

Nepal’, Journal of Nepal Medical Association, 44. 

Bloom, D.E., Canning, D. and Sevilla, J. (2004) ‘The effect of health on economic growth: A 

production function approach’, World Development, 32(1), pp. 1–13. 

doi:10.1016/j.worlddev.2003.07.002. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

180 
 

Bonds, M.H. et al. (2010) ‘Poverty trap formed by the ecology of infectious diseases’, 

Proceedings of the Royal Society B: Biological Sciences, 277(1685), pp. 1185–1192. 

doi:10.1098/rspb.2009.1778. 

Booth, M. (2018) Climate Change and the Neglected Tropical Diseases. 1st edn, Advances 

in Parasitology. 1st edn. Elsevier Ltd. doi:10.1016/bs.apar.2018.02.001. 

Borah, J. et al. (2013) ‘Association of weather and anthropogenic factors for transmission of 

Japanese encephalitis in an endemic area of India’, EcoHealth, 10(2), pp. 129–136. 

doi:10.1007/s10393-013-0849-z. 

Bouzid, M. et al. (2014) ‘Climate change and the emergence of vector-borne diseases in 

Europe: case study of dengue fever’, BMC Public Health, 14(1), p. 781. doi:10.1186/1471-

2458-14-781. 

Bowles, S., Durlauf, S. and Hoff, K. (eds) (2006) Poverty Traps. Princeton: Princeton 

University Press. 

Brady, O.J. et al. (2014) ‘Global temperature constraints on Aedes aegypti and Ae . 

albopictus persistence and competence for dengue virus transmission’, Parasites & Vectors, 

7, p. 338. 

Brier, G. (1950) ‘Verification of forecasts expressed in terms of probability’, Monthly Weather 

Review, 78, pp. 1–3. 

Britch, S.C. et al. (2013) ‘Rift Valley Fever Risk Map Model and Seroprevalence in Selected 

Wild Ungulates and Camels from Kenya’, PLOS ONE, 8(6), p. e66626. 

doi:10.1371/journal.pone.0066626. 

Brock, P.M. et al. (2016) ‘Plasmodium knowlesi transmission: integrating quantitative 

approaches from epidemiology and ecology to understand malaria as a zoonosis’, 

Parasitology, 143(4), pp. 389–400. doi:10.1017/S0031182015001821. 

Brock, P.M. et al. (2019) ‘Predictive analysis across spatial scales links zoonotic malaria to 

deforestation’, Proceedings of the Royal Society B: Biological Sciences, 286(1894), p. 

20182351. doi:10.1098/rspb.2018.2351. 

Bron, G.M. et al. (2020) ‘Context matters: Contrasting behavioral and residential risk factors 

for Lyme disease between high-incidence states in the Northeastern and Midwestern United 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

181 
 

States’, Ticks and Tick-borne Diseases, 11(6), p. 101515. 

doi.org/10.1016/j.ttbdis.2020.101515. 

Brouard, O. et al. (2011) ‘Are Algae Relevant to the Detritus-Based Food Web in Tank-

Bromeliads?’, PLOS ONE, 6(5), p. e20129. 

Brown, H.E. et al. (2015) ‘Projection of Climate Change Influences on U.S. West Nile Virus 

Vectors’, Earth Interactions, 19(18), pp. 1–18. doi:10.1175/EI-D-15-0008.1. 

Brown, J.E. et al. (2011) ‘Worldwide patterns of genetic differentiation imply multiple 

“domestications” of Aedes aegypti, a major vector of human diseases’, Proceedings. 

Biological Sciences, 278(1717), pp. 2446–2454. doi:10.1098/rspb.2010.2469. 

Buescher, E.L., et al. (1959) ‘Ecologic Studies of Japanese Encephalitis Virus in Japan IV. 

Avian Infection’, The American Society of Tropical Medicine and Hygiene, 8, pp. 678–688. 

Buonsenso, D. et al. (2014) ‘The re-emergence of dengue virus in non-endemic countries: a 

case series’, BMC Research Notes, 7(1), p. 596. doi:10.1186/1756-0500-7-596. 

Burkett-Cadena, N.D. and Vittor, A.Y. (2017) ‘Deforestation and vector-borne disease: 

Forest conversion favors important mosquito vectors of human pathogens’, Basic and 

Applied Ecology, 26, pp. 101–10. doi:10.1016/j.baae.2017.09.012. 

Burthe, S.J. et al. (2021) ‘Reviewing the ecological evidence base for management of 

emerging tropical zoonoses: Kyasanur Forest Disease in India as a case study’, PLOS 

Neglected Tropical Diseases, 15(4), p. e0009243. doi:10.1371/journal.pntd.0009243. 

Butterworth, M.K., Morin, C.W. and Comrie, A.C. (2017) ‘An analysis of the potential impact 

of climate change on dengue transmission in the southeastern United States’, Environmental 

Health Perspectives, 125(4), pp. 579–585. doi:10.1289/EHP218. 

Caminade, C. et al. (2014) ‘Impact of climate change on global malaria distribution’, 

Proceedings of the National Academy of Sciences, 111(9), pp. 3286–3291. 

doi:10.1073/pnas.1302089111. 

Caminade, C. et al. (2017) ‘Global risk model for vector-borne transmission of Zika virus 

reveals the role of El Niño 2015’, Proceedings of the National Academy of Sciences, 114(1), 

pp. 119–124. doi:10.1073/pnas.1614303114. 

https://doi.org/10.1016/j.ttbdis.2020.101515


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

182 
 

Campbell, G.L. et al. (2011) ‘Estimated global incidence of Japanese encephalitis: a 

systematic review’, Bulletin of the World Health Organization, 89(10), pp. 766–774, 774A-

774E. doi:10.2471/BLT.10.085233. 

Campbell, L.P. et al. (2015) ‘Climate change influences on global distributions of dengue and 

chikungunya virus vectors’, Philosophical Transactions of the Royal Society B: Biological 

Sciences, 370(1665), pp. 20140135–20140135. doi:10.1098/rstb.2014.0135. 

Campbell-Lendrum, D. et al. (2015) ‘Climate change and vector-borne diseases: what are 

the implications for public health research and policy?’, Philosophical Transactions of the 

Royal Society of London, 370(20130552). 

Cao, M. et al. (2010) ‘Contextual risk factors for regional distribution of Japanese 

encephalitis in the People’s Republic of China’, Tropical medicine & international health: TM 

& IH, 15(8), pp. 918–923. doi:10.1111/j.1365-3156.2010.02563.x. 

Capinha, C., Rocha, J. Sousa, C.A. (2014) ‘Macroclimate Determines the Global Range 

Limit of Aedes aegypti’, EcoHealth, 11, pp. 420–428. 

Cardona, O.-D. et al. (2012) ‘Determinants of Risk: Exposure and Vulnerability’, in Field, 

C.B. et al. (eds) Managing the Risks of Extreme Events and Disasters to Advance Climate 

Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. 

Cambridge: Cambridge University Press, pp. 65–108. doi:10.1017/CBO9781139177245.005. 

Cardoso-Leite, R. et al. (2014) ‘Recent and future environmental suitability to dengue fever 

in Brazil using species distribution model’, Transactions of The Royal Society of Tropical 

Medicine and Hygiene, 108(2), pp. 99–104. doi:10.1093/trstmh/trt115. 

Carlson, C.J. (2020) ‘embarcadero: Species distribution modelling with Bayesian additive 

regression trees in R’, Methods in Ecology and Evolution [Preprint]. doi:10.1111/2041-

210X.13389. 

Carlson, C.J. (2021) embarcadero. Available at: https://github.com/cjcarlson/embarcadero 

(Accessed: 18 January 2022). 

Carlson, C.J. et al. (2022) ‘The Global Virome in One Network (VIRION): an Atlas of 

Vertebrate-Virus Associations’, mBio, p. e0298521. doi:10.1128/mbio.02985-21. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

183 
 

Carlson, C.J., Dougherty, E.R. and Getz, W. (2016) ‘An Ecological Assessment of the 

Pandemic Threat of Zika Virus’, PLOS Neglected Tropical Diseases, 10(8), pp. 1–18. 

doi:10.1371/journal.pntd.0004968. 

Carrillo, M.A. et al. (2021) ‘The use of mobile phones for the prevention and control of 

arboviral diseases: a scoping review’, BMC Public Health, 21, p. 110. doi:10.1186/s12889-

020-10126-4. 

Carrington, L.B. et al. (2013) ‘Fluctuations at a Low Mean Temperature Accelerate Dengue 

Virus Transmission by Aedes aegypti’, PLOS Neglected Tropical Diseases, 7(4), p. e2190. 

CDC (2017) One Health: Zoonotic Diseases, Centers for Disease Control and Prevention. 

Available at: https://www.cdc.gov/onehealth/basics/zoonotic-diseases.html (Accessed: 30 

March 2020). 

CDC (2020) Culex Mosquito Life Cycle, Centers for Disease Control and Prevention. 

Available at: https://www.cdc.gov/mosquitoes/about/life-cycles/culex.html (Accessed: 24 

February 2022). 

Chareonviriyaphap, T. et al. (2003) ‘Larval habitats and distribution patterns of Aedes 

aegypti (Linnaeus) and Aedes albopictus (Skuse), in Thailand’, The Southeast Asian Journal 

of Tropical Medicine and Public Health, 34(3), pp. 529–535. 

Chase, J.M. and Knight, T.M. (2003) ‘Drought-induced mosquito outbreaks in wetlands’, 

Ecology Letters, 6(11), pp. 1017–1024. doi:10.1046/j.1461-0248.2003.00533.x. 

Chastonay, A.H.M. and Chastonay, O.J. (2022) ‘Housing Risk Factors of Four Tropical 

Neglected Diseases: A Brief Review of the Recent Literature’, Tropical Medicine and 

Infectious Disease, 7(7), p. 143. doi.org/10.3390/tropicalmed7070143. 

Chatterjee, S. et al. (2004) ‘Serosurveillance for Japanese encephalitis in children in several 

districts of West Bengal, India’, Acta Paediatrica, 93(3), pp. 390–393. doi:10.1111/j.1651-

2227.2004.tb02967.x. 

Chaves, L.F. et al. (2012) ‘Nonlinear impacts of climatic variability on the density-dependent 

regulation of an insect vector of disease’, Global Change Biology, 18(2), pp. 457–468. 

doi:10.1111/j.1365-2486.2011.02522.x. 

https://doi.org/10.3390/tropicalmed7070143


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

184 
 

Chaves, L.S.M. et al. (2018) ‘Abundance of impacted forest patches less than 5 km2is a key 

driver of the incidence of malaria in Amazonian Brazil’, Scientific Reports, 8(1), pp. 1–11. 

doi:10.1038/s41598-018-25344-5. 

Chaves, L.S.M. et al. (2020) ‘Global consumption and international trade in deforestation-

associated commodities could influence malaria risk’, Nature Communications, 11, p. 1258. 

doi:10.1038/s41467-020-14954-1. 

Chen, M. et al. (2020) ‘Global land use for 2015–2100 at 0.05° resolution under diverse 

socioeconomic and climate scenarios’, Scientific Data, 7(1), p. 320. doi:10.1038/s41597-020-

00669-x. 

Chen, M.J. et al. (2012) ‘Effects of Extreme Precipitation to the Distribution of Infectious 

Diseases in Taiwan, 1994–2008’, PLOS ONE, 7(6), p. e34651. 

doi:10.1371/journal.pone.0034651. 

Childs, M.L. et al. (2019) ‘Mosquito and primate ecology predict human risk of yellow fever 

virus spillover in Brazil’, Philosophical Transactions of the Royal Society B: Biological 

Sciences, 374(1782), p. 20180335. doi:10.1098/rstb.2018.0335. 

Chowdhury, P. et al. (2014) ‘Characterization of West Nile virus (WNV) isolates from Assam, 

India: Insights into the circulating WNV in northeastern India’, Comparative Immunology, 

Microbiology and Infectious Diseases, 37(1), pp. 39–47. doi:10.1016/j.cimid.2013.10.006. 

Christiansen-Jucht, C. et al. (2014) ‘Temperature during larval development and adult 

maintenance influences the survival of Anopheles gambiae s.s.’, Parasites {&} Vectors, 7(1), 

p. 489. doi:10.1186/s13071-014-0489-3. 

Ciota, A.T. et al. (2014) ‘The effect of temperature on life history traits of Culex mosquitoes’, 

J Med Entomol, 51. doi:10.1603/ME13003. 

Civitello, D.J. et al. (2015) ‘Biodiversity inhibits parasites: Broad evidence for the dilution 

effect’, Proceedings of the National Academy of Sciences, 112(28), pp. 8667–8671. 

doi:10.1073/pnas.1506279112. 

Cleton, N.B. et al. (2014) ‘Age-related susceptibility to Japanese encephalitis virus in 

domestic ducklings and chicks’, The American Journal of Tropical Medicine and Hygiene, 

90(2), pp. 242–246. doi:10.4269/ajtmh.13-0161. 

Cliff, A. and Ord, J.K. (1973) Spatial Autocorrelation. London: Pion. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

185 
 

Colón-González, F.J. et al. (2018) ‘Limiting global-mean temperature increase to 1.5–2 °C 

could reduce the incidence and spatial spread of dengue fever in Latin America’, 

Proceedings of the National Academy of Sciences, 115(24), pp. 6243–6248. 

doi:10.1073/pnas.1718945115. 

Colón-González, F.J. et al. (2021a) ‘Projecting the risk of mosquito-borne diseases in a 

warmer and more populated world: a multi-model, multi-scenario intercomparison modelling 

study’, The Lancet Planetary Health, 5(7), pp. e404–e414. doi:10.1016/S2542-

5196(21)00132-7. 

Colón-González, F.J. et al. (2021b) ‘Probabilistic seasonal dengue forecasting in Vietnam: A 

modelling study using superensembles’, PLoS Medicine, 18(3), p. e1003542. 

doi:10.1371/journal.pmed.1003542. 

Commonwealth of Australia (2022) Japanese encephalitis, National pest & disease 

outbreaks. Available at: https://www.outbreak.gov.au/current-responses-to-

outbreaks/japanese-encephalitis (Accessed: 10 March 2022). 

Cunze, S., Koch, L.K., et al. (2016) ‘Aedes albopictus and Aedes japonicus - two invasive 

mosquito species with different temperature niches in Europe’, Parasites & Vectors, 9(1), p. 

573. doi:10.1186/s13071-016-1853-2. 

Czech, H.A. and Parsons, K.C. (2002) ‘Agricultural Wetlands and Waterbirds: A Review’, 

Waterbirds: The International Journal of Waterbird Biology, 25, pp. 56–65. 

Dahlgren, F.S. et al. (2016) ‘Expanding Range of Amblyomma americanum and 

Simultaneous Changes in the Epidemiology of Spotted Fever Group Rickettsiosis in the 

United States’, American Journal of Tropical Medicine and Hygiene. 2015/10/26 edn, 94(1), 

pp. 35–42. doi:10.4269/ajtmh.15-0580. 

Das Bhowmik, R., Suchetana, B. and Lu, M. (2019) ‘Shower effect of a rainfall onset on the 

heat accumulated during a preceding dry spell’, Scientific Reports, 9. doi:10.1038/s41598-

019-43437-7. 

Das, B.P., Lal, S. and Saxena, V.K. (2004) ‘Outdoor resting preference of Culex 

tritaeniorhynchus, the vector of Japanese encephalitis in Warangal and Karim Nagar 

districts, Andhra Pradesh’, Journal of Vector Borne Diseases, 41(1–2), pp. 32–36. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

186 
 

Das, D. et al. (2016) ‘A change in epidemiology of Japanese encephalitis in Bankura and 

Purulia districts of West Bengal’, Journal of Evolution of Medical and Dental Sciences, 5(78), 

pp. 5796–5799. doi:10.14260/jemds/2016/1308. 

Dash, A.P. et al. (2001) ‘Retrospective analysis of epidemiological investigation of Japanese 

encephalitis outbreak occurred in Rourkela, Orissa, India’, Southeast Asian Journal of 

Tropical Medicine and Public Health, 32(1), pp. 137–139. 

Datey, A. et al. (2020) ‘Molecular epidemiology of Japanese encephalitis virus in pig 

population of Odisha, Assam and Manipur states of India’, Infection, Genetics and Evolution, 

83, p. 104325. doi:10.1016/j.meegid.2020.104325. 

Davis, J.K. et al. (2017) ‘Integrating Environmental Monitoring and Mosquito Surveillance to 

Predict Vector-borne Disease: Prospective Forecasts of a West Nile Virus Outbreak’, PLoS 

currents, 9, p. ecurrents.outbreaks.90e80717c4e67e1a830f17feeaaf85de. 

doi:10.1371/currents.outbreaks.90e80717c4e67e1a830f17feeaaf85de. 

Day, J.F. and Shaman, J. (2008) ‘Using hydrologic conditions to forecast the risk of focal and 

epidemic arboviral transmission in peninsular Florida.’, Journal of medical entomology, 45(3), 

pp. 458–465. 

DeCarlo, C. et al. (2017) ‘Potential Reservoir and Associated Factors for West Nile Virus in 

Three Distinct Climatological Zones’, Vector Borne and Zoonotic Diseases (Larchmont, 

N.Y.), 17(10), pp. 709–713. doi:10.1089/vbz.2016.2098. 

Desingu, P.A. et al. (2016) ‘Pathogenic and Genotypic Characterization of a Japanese 

Encephalitis Virus Isolate Associated with Reproductive Failure in an Indian Pig Herd’, PLOS 

ONE, 11(2), p. e0147611. doi:10.1371/journal.pone.0147611. 

Despommier, D., Ellis, B.R. and Wilcox, B.A. (2006) ‘The role of ecotones in emerging 

infectious diseases’, EcoHealth, 3(4), pp. 281–289. doi:10.1007/s10393-006-0063-3. 

Dev, V., Sharma, V. and Barman, K. (2015) ‘Mosquito-borne diseases in Assam, north-east 

India: current status and key challenges’, WHO South-East Asia Journal of Public Health, 

4(1), p. 20. doi:10.4103/2224-3151.206616. 

Devi, N.P. and Jauhari, R.K. (2004) ‘Altitudinal distribution of mosquitoes in mountainous 

area of Garhwal region : Part–I’, Journal of Vector Borne Diseases, 41, pp. 17–26. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

187 
 

Deville, P. et al. (2014) ‘Dynamic population mapping using mobile phone data’, PNAS, 

111(45), pp. 15888–15893. doi:10.1073/pnas.1408439111. 

Dhanda, V. et al. (1977) ‘Experimental viraemia and transmission of Japanese encephalitis 

virus by mosquitoes in domestic ducks.’, The Indian Journal of Medical Research, 66(6), pp. 

881–888. 

Dhiman, R.C. (2014) ‘Emerging Vector-Borne Zoonoses: Eco-Epidemiology and Public 

Health Implications in India’, Frontiers in Public Health, 2, p. 168. 

doi:10.3389/fpubh.2014.00168. 

Dhiman, S. et al. (2013) ‘DDT & deltamethrin resistance status of known Japanese 

encephalitis vectors in Assam, India’, The Indian Journal of Medical Research, 138(6), pp. 

988–994. 

Didan, K. (2015) ‘MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg 

CMG V006’. NASA EOSDIS Land Processes DAAC. doi:10.5067/MODIS/MOD13C2.006. 

Diuk-Wasser, M.A., VanAcker, M.C. and Fernandez, M.P. (2021) ‘Impact of Land Use 

Changes and Habitat Fragmentation on the Eco-epidemiology of Tick-Borne Diseases’, 

Journal of Medical Entomology, 58(4), pp. 1546–1564. doi.org/10.1093/jme/tjaa209. 

Dobson, A. (2009) ‘Climate variability, global change, immunity, and the dynamics of 

infectious diseases’, Ecology, 90(4), pp. 920–927. doi:10.1890/08-0736.1. 

Drake, J.M. and Beier, J.C. (2014) ‘Ecological niche and potential distribution of Anopheles 

arabiensis in Africa in 2050’, Malaria Journal, 13(1), p. 213. doi:10.1186/1475-2875-13-213. 

Duggal, N.K. et al. (2019) ‘On the Fly: Interactions Between Birds, Mosquitoes, and 

Environment That Have Molded West Nile Virus Genomic Structure Over Two Decades’, 

Journal of Medical Entomology, 56(6), pp. 1467–1474. doi:10.1093/jme/tjz112. 

Dutta, P. et al. (2011) ‘The Effect of Insecticide-Treated Mosquito Nets (ITMNs) on Japanese 

Encephalitis Virus Seroconversion in Pigs and Humans’, The American Journal of Tropical 

Medicine and Hygiene, 84(3), pp. 466–472. doi.org/10.4269/ajtmh.2011.10-0270. 

Dutta, R. (2014) ‘Climate change and its impact on tea in Northeast India’, Journal of Water 

and Climate Change, 5(4), pp. 625–632. doi:10.2166/wcc.2014.143. 

https://doi.org/10.1093/jme/tjaa209
https://doi.org/10.4269/ajtmh.2011.10-0270


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

188 
 

EAC (2021) Growing back better: putting nature and net zero at the heart of the economic 

recovery. House of Commons Environmental Audit Committee. Available at: 

https://committees.parliament.uk/publications/4712/documents/47430/default/. 

Ebi, K.L. and Nealon, J. (2016) ‘Dengue in a changing climate’, Environmental Research, 

151, pp. 115–123. doi:10.1016/j.envres.2016.07.026. 

eBird (2021) eBird Basic Dataset. Version: EBD_relMar-2021. Ithaca, New York: Cornell Lab 

of Ornithology. 

Elith, J., Burgman, M.A. and Regan, H.M. (2002) ‘Mapping epistemic uncertainties and 

vague concepts in predictions of species distribution’, Ecological Modelling, 157(2), pp. 313–

329. doi:10.1016/S0304-3800(02)00202-8. 

Elith, J. and Leathwick, J.R. (2009) ‘Species Distribution Models: Ecological Explanation and 

Prediction Across Space and Time’, Annual Review of Ecology, Evolution, and Systematics, 

40(1), pp. 677–697. doi:10.1146/annurev.ecolsys.110308.120159. 

Elphick, C.S. et al. (2010) ‘The Future for Research on Waterbirds in Rice Fields’, 

Waterbirds, 33(sp1), pp. 231–243. doi:10.1675/063.033.s117. 

Elphick, C.S. (2015) ‘A history of ecological studies of birds in rice fields’, Journal of 

Ornithology, 156(1), pp. 239–245. doi:10.1007/s10336-015-1194-5. 

Endo, N. and Eltahir, E.A.B. (2020) ‘Increased risk of malaria transmission with warming 

temperature in the Ethiopian Highlands’, Environmental Research Letters, 15(5), p. 054006. 

doi:10.1088/1748-9326/ab7520. 

Engebretsen, S. et al. (2020) ‘Time-aggregated mobile phone mobility data are sufficient for 

modelling influenza spread: the case of Bangladesh’, Journal of The Royal Society Interface, 

17(167), p. 20190809. doi.org/10.1098/rsif.2019.0809. 

Equihua, M. et al. (2017) ‘Establishment of Aedes aegypti (L.) in mountainous regions in 

Mexico: Increasing number of population at risk of mosquito-borne disease and future 

climate conditions’, Acta Tropica, 166, pp. 316–327. doi:10.1016/j.actatropica.2016.11.014. 

Erlanger, T.E. et al. (2005) ‘Effect of water resource development and management on 

lymphatic filariasis, and estimates of populations at risk.’, The American journal of tropical 

medicine and hygiene, 73(3), pp. 523–533. doi:10.4269/ajtmh.2005.73.523. 

https://doi.org/10.1098/rsif.2019.0809


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

189 
 

Erlanger, T.E. et al. (2009) ‘Past, present, and future of Japanese encephalitis’, Emerging 

Infectious Diseases, 15(1), pp. 1–7. doi:10.3201/eid1501.080311. 

ECDC and EFSA (2018) The importance of vector abundance and seasonality - Results 

from an expert consultation. Stockholm and Parma: European Centre for Disease Prevention 

and Control and European Food Safety Authority. 

European Space Agency (2022) ESA WorldCover 2021. Available at: 

https://worldcover2021.esa.int/ (Accessed: 19 January 2023).. 

Ewing, D.A. et al. (2016) ‘Modelling the effect of temperature on the seasonal population 

dynamics of temperate mosquitoes’, Journal of Theoretical Biology, 400, pp. 65–79. 

doi:10.1016/j.jtbi.2016.04.008. 

Ewing, D.A. et al. (2019) ‘Uncovering mechanisms behind mosquito seasonality by 

integrating mathematical models and daily empirical population data: Culex pipiens in the 

UK’, Parasites & Vectors, 12(1), p. 74. doi:10.1186/s13071-019-3321-2. 

Falzon, L.C. et al. (2018) ‘Quantitative Outcomes of a One Health approach to Study Global 

Health Challenges’, EcoHealth, 15(1), pp. 209–227. doi:10.1007/s10393-017-1310-5. 

Fang, Y. et al. (2019) ‘New strains of Japanese encephalitis virus circulating in Shanghai, 

China after a ten-year hiatus in local mosquito surveillance’, Parasites & Vectors, 12(1), p. 

22. doi:10.1186/s13071-018-3267-9. 

FAO (2014) The Water-Energy-Food Nexus: A new approach in support of food security and 

sustainable agriculture. Rome: Food and Agriculture Organization of the United Nations. 

FAO (2020) FAOSTAT: FAO Statistical Databases (Food and Agriculture Organization of the 

United Nations). Available at: https://www.fao.org/faostat/en/#data (Accessed: 18 January 

2022). 

FAO et al. (2021) ‘Tripartite and UNEP support OHHLEP’s definition of “One Health”’, OIE - 

World Organisation for Animal Health, 1 December. Available at: 

https://www.oie.int/en/tripartite-and-unep-support-ohhleps-definition-of-one-health/ 

(Accessed: 31 March 2022). 

Faust, C.L. et al. (2017) ‘Null expectations for disease dynamics in shrinking habitat: dilution 

or amplification?’, Philosophical Transactions of the Royal Society B: Biological Sciences, 

372(1722), p. 20160173. doi:10.1098/rstb.2016.0173. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

190 
 

Feachem, R.G.A. et al. (2019) ‘Malaria eradication within a generation: ambitious, 

achievable, and necessary’, The Lancet, 394 (10203), pp. 1056–1112. doi:10.1016/S0140-

6736(19)31139-0. 

Feng, C.X. (2021) ‘A comparison of zero-inflated and hurdle models for modeling zero-

inflated count data’, Journal of Statistical Distributions and Applications, 8(1), p. 8. 

doi.org/10.1186/s40488-021-00121-4. 

Fischer, M. et al. (2008) ‘Japanese Encephalitis Prevention and Control: Advances, 

Challenges, and New Initiatives’, in Emerging Infections 8. John Wiley & Sons, Ltd, pp. 93–

124. doi.org/10.1128/9781555815592.ch6. 

Fleming, L. et al. (2017) ‘Big Data in Environment and Human Health’, Oxford Research 

Encyclopedia of Environmental Science, July, pp. 1–27. 

doi:10.1093/acrefore/9780199389414.013.541. 

Fletcher, I.K. et al. (2019) ‘Environmental change and malaria risk in El Oro Province, 

Ecuador’, International Journal of Infectious Diseases, 79, pp. 28–29. 

doi:10.1016/j.ijid.2018.11.084. 

Folberth, C. et al. (2020) ‘The global cropland-sparing potential of high-yield farming’, Nature 

Sustainability, 3(4), pp. 281–289. doi:10.1038/s41893-020-0505-x. 

Folly, A.J. et al. (2021) ‘Temperate conditions restrict Japanese encephalitis virus infection to 

the mid-gut and prevents systemic dissemination in Culex pipiens mosquitoes’, Scientific 

Reports, 11(1), p. 6133. doi:10.1038/s41598-021-85411-2. 

Fornace, K.M. et al. (2016) ‘Association between Landscape Factors and Spatial Patterns of 

Plasmodium knowlesi Infections in Sabah, Malaysia’, Emerging Infectious Disease journal, 

22(2), p. 201. doi:10.3201/eid2202.150656. 

Fornace, K.M. et al. (2018) ‘Exposure and infection to Plasmodium knowlesi in case study 

communities in Northern Sabah, Malaysia and Palawan, The Philippines’, PLOS Neglected 

Tropical Diseases, 12(6), p. e0006432. doi:10.1371/journal.pntd.0006432. 

Franklinos, L.H.V., Jones, Kate E., et al. (2019) ‘The effect of global change on mosquito-

borne disease’, The Lancet Infectious Diseases, 19(9), pp. e302–e312. doi:10.1016/S1473-

3099(19)30161-6. 

https://doi.org/10.1186/s40488-021-00121-4
https://doi.org/10.1128/9781555815592.ch6


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

191 
 

Franklinos, L.H.V. et al. (2021) ‘Key opportunities and challenges for the use of big data in 

migration research and policy’, UCL Open Environment [Preprint]. 

doi:10.14324/111.444/ucloe.000027. 

Fuller, D.O. et al. (2012) ‘Linking land cover and species distribution models to project 

potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and 

Upper Egypt’, Malaria Journal, 11, p. 264. doi:10.1186/1475-2875-11-264. 

Funk, S., Salathé, M. and Jansen, V.A.A. (2010) ‘Modelling the influence of human 

behaviour on the spread of infectious diseases: a review’, Journal of The Royal Society 

Interface, 7(50), pp. 1247–1256. doi.org/10.1098/rsif.2010.0142. 

Fustec, B. et al. (2021) ‘Serological biomarker for assessing human exposure to Aedes 

mosquito bites during a randomized vector control intervention trial in northeastern Thailand’, 

PLOS Neglected Tropical Diseases, 15(5), p. e0009440. doi:10.1371/journal.pntd.0009440. 

Gajanana, A. et al. (1997) ‘Japanese encephalitis in south Arcot district, Tamil Nadu, India: a 

three-year longitudinal study of vector abundance and infection frequency’, Journal of 

Medical Entomology, 34(6), pp. 651–659. doi:10.1093/jmedent/34.6.651. 

Galaz, V. et al. (2015) The political economy of One Health research and policy. STEPS 

Working Paper 81. Brighton: STEPS Centre. Available at: https://steps-centre.org/wp-

content/uploads/One-Health-wp3.pdf (Accessed: 30 December 2021). 

Gallup, J.L. and Sachs, J.D. (2001) ‘The economic burden of malaria’, Am J Trop Med Hyg, 

64, pp. 85–96. doi:11425181. 

GBIF (2021a) GBIF occurrence download: Ardeola grayii - Bangladesh, Bhutan. Available at: 

https://doi.org/10.15468/dl.nhdz47 (Accessed: 24 November 2021). 

GBIF (2021b) GBIF occurrence download: Ardeola grayii - India. Available at: 

https://doi.org/10.15468/dl.sjf5xc (Accessed: 22 November 2021). 

GBIF (2021c) GBIF occurrence download: Bubulcus ibis - Bangladesh, Bhutan. Available at: 

https://doi.org/10.15468/dl.s3efhx (Accessed: 24 November 2021). 

GBIF (2021d) GBIF occurrence download: Bubulcus ibis - India. Available at: 

https://doi.org/10.15468/dl.s2hh9n (Accessed: 22 November 2021). 

https://doi.org/10.1098/rsif.2010.0142


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

192 
 

GBIF (2021e) GBIF occurrence download: Egretta garzetta - Bangladesh, Bhutan. Available 

at: https://doi.org/10.15468/dl.59x8te (Accessed: 24 November 2021). 

GBIF (2021f) GBIF occurrence download: Egretta intermedia - Bangladesh, Bhutan. 

Available at: https://doi.org/10.15468/dl.xyknvk (Accessed: 24 November 2021). 

GBIF (2021g) GBIF occurrence download: Egretta intermedia - India. Available at: 

https://10.15468/dl.6wsygw (Accessed: 29 April 2021). 

GBIF (2021h) GBIF occurrence download: Nycticorax nycticorax  - Bangladesh, Bhutan. 

Available at: https://doi.org/10.15468/dl.upkgth (Accessed: 24 November 2021). 

GBIF (2021i) GBIF occurrence download: Nycticorax nycticorax - India. Available at: 

https://doi.org/10.15468/dl.rwfsjm (Accessed: 22 November 2021). 

Gething, P.W. et al. (2010) ‘Climate change and the global malaria recession’, Nature, 

465(7296), pp. 342–345. 

Getz, W.M. et al. (2018) ‘Making ecological models adequate’, Ecology Letters, 21(2), pp. 

153–166. doi:10.1111/ele.12893. 

Ghosh, R.S., Haldar, P. and Jacobson, J. (2022) ‘Lessons Learned from the Japanese 

Encephalitis Vaccine Introduction in India That Supported the Introduction of Ivermectin–

Diethylcarbamazine–Albendazole for Lymphatic Filariasis Elimination’, The American Journal 

of Tropical Medicine and Hygiene, 106(5 Suppl), pp. 48–55. doi.org/10.4269/ajtmh.21-1168. 

Gibb, R. et al. (2017) ‘Understanding the cryptic nature of Lassa fever in West Africa’, 

Pathogens and Global Health, 111(6), pp. 276–288. doi:10.1080/20477724.2017.1369643. 

Gibb, R. et al. (2018) ‘Effects of land use on zoonotic host communities: a global correlative 

analysis’, The Lancet Planetary Health, 2, p. S2. doi:10.1016/S2542-5196(18)30087-1. 

Gibb, R. et al. (2020a) ‘Zoonotic host diversity increases in human-dominated ecosystems’, 

Nature, 584(7821), pp. 398–402. doi:10.1038/s41586-020-2562-8. 

Gibb, R. et al. (2020b) ‘Ecosystem perspectives are needed to manage zoonotic risks in a 

changing climate’, BMJ, 371, p. m3389. doi:10.1136/bmj.m3389. 

https://doi.org/10.4269/ajtmh.21-1168


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

193 
 

Gilbert, M. et al. (2018) ‘Global distribution data for cattle, buffaloes, horses, sheep, goats, 

pigs, chickens and ducks in 2010’, Scientific Data, 5(1), p. 180227. 

doi:10.1038/sdata.2018.227. 

Githeko, A.K. et al. (2000) ‘Climate change and vector-borne diseases: a regional analysis’, 

World Health Organization, 78(9), pp. 1136–1147. 

Gneiting, T. and Raftery, A.E. (2007) ‘Strictly Proper Scoring Rules, Prediction, and 

Estimation’, Journal of the American Statistical Association, 102(477), pp. 359–378. 

doi:10.1198/016214506000001437. 

Godfrey, E.R. and Randolph, S.E. (2011) ‘Economic downturn results in tick-borne disease 

upsurge’, Parasites & Vectors, 4(1), p. 35. doi.org/10.1186/1756-3305-4-35. 

Golding, N. and Purse, B.V. (2016) ‘Fast and flexible Bayesian species distribution modelling 

using Gaussian processes’, Methods in Ecology and Evolution, 7(5), pp. 598–608. 

doi:10.1111/2041-210X.12523. 

González, C. et al. (2010) ‘Climate Change and Risk of Leishmaniasis in North America: 

Predictions from Ecological Niche Models of Vector and Reservoir Species’, PLOS 

Neglected Tropical Diseases, 4(1), p. e585. doi.org/10.1371/journal.pntd.0000585. 

Gottdenker, N.L. et al. (2014) ‘Anthropogenic Land Use Change and Infectious Diseases: A 

Review of the Evidence’, EcoHealth, 11(4), pp. 619–632. doi:10.1007/s10393-014-0941-z. 

Gould, E.A. and Solomon, T. (2008) ‘Pathogenic flaviviruses’, Lancet (London, England), 

371(9611), pp. 500–509. doi:10.1016/S0140-6736(08)60238-X. 

Government of India (2011) Census of India 2011 - Report on Post-Enumeration Survey. 

Delhi, India: Ministry of Home Affairs, Government of India. Available at: 

https://censusindia.gov.in/2011Census/pes/Pesreport.pdf. 

Government of India (2014) Operational Guidelines: National Programme for Prevention and 

Control of Japanese Encephalitis/Acute Encephalitis Syndrome. Delhi: Government of India 

Ministry of Health & Family Welfare Directorate General of Health Services National Vector 

Borne Disease Control Programme, p. 114. 

Government of India (2021a) HMIS-Health Management Information System. Available at: 

https://hmis.nhp.gov.in/#!/aboutus (Accessed: 18 January 2022). 

https://doi.org/10.1186/1756-3305-4-35
https://doi.org/10.1371/journal.pntd.0000585


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

194 
 

Government of India (2021b) Integrated Disease Surveillance Programme (IDSP), Ministry of 

Health & Family Welfare. Available at: https://idsp.nic.in/ (Accessed: 1 September 2021). 

Government of India (2022) Data Management, Integrated Disease Surveillance Programme 

(IDSP). Available at: https://idsp.nic.in/index4.php?lang=1&level=0&linkid=412&lid=3695 

(Accessed: 6 February 2022). 

Grace, D., Gilbert, J., et al. (2012a) ‘The multiple burdens of zoonotic disease and an 

ecohealth approach to their assessment’, Tropical Animal Health and Production, 44(1), pp. 

67–73. doi:10.1007/s11250-012-0209-y. 

Grace, D., Mutua, F., et al. (2012b) Mapping of poverty and likely zoonoses hotspots: Report 

to Department for International Development, UK. Zoonoses Project 4. London: Department 

for International Development, UK. Available at: 

https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.pdf?sequen

ce=4 (Accessed: 18 December 2019). 

Graham, N.T. et al. (2018) ‘Water Sector Assumptions for the Shared Socioeconomic 

Pathways in an Integrated Modeling Framework’, Water Resources Research, 54(9). 

doi:10.1029/2018WR023452. 

Graham, N.T. et al. (2020) ‘Humans drive future water scarcity changes across all Shared 

Socioeconomic Pathways’, Environmental Research Letters, 15(1), p. 014007. 

doi:10.1088/1748-9326/ab639b. 

Grant, C. et al. (2016) Moving interdisciplinary science forward: Integrating participatory 

modelling with mathematical modelling of zoonotic disease in Africa, Infectious Diseases of 

Poverty. (1). doi:10.1186/s40249-016-0110-4. 

Grobbelaar, A.A. et al. (2016) ‘Resurgence of yellow fever in Angola, 2015–2016’, Emerging 

Infectious Diseases, 22(10), pp. 1854–1855. doi:10.3201/eid2210.160818. 

Gubler, D.J. (2011) ‘Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st 

Century’, Tropical Medicine and Health, 39(4 Suppl), pp. 3–11. doi:10.2149/tmh.2011-S05. 

Guhathakurta, P. and Rajeevan, M. (2008) ‘Trends in the rainfall pattern over India’, 

International Journal of Climatology, 28(11), pp. 1453–1469. doi:10.1002/joc.1640. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

195 
 

Gupta, I. and Guin, P. (2010) ‘Communicable diseases in the South-East Asia Region of the 

World Health Organization: towards a more effective response’, Bulletin of the World Health 

Organization, 88, pp. 199–205. doi:10.2471/BLT.09.065540. 

Gurav, Y.K. et al. (2016) ‘A large outbreak of Japanese encephalitis predominantly among 

adults in northern region of West Bengal, India’, Journal of Medical Virology, 88(11), pp. 

2004–2011. doi.org/10.1002/jmv.24556. 

Guzman, M.G. and Harris, E. (2015) ‘Dengue’, The Lancet, 385(9966), pp. 453–465. 

doi:10.1016/S0140-6736(14)60572-9. 

Hafner, H. (1997) ‘Ecology of Wading Birds’, Colonial Waterbirds, 20(1), pp. 115–120. 

doi:10.2307/1521773. 

Hahn, M.B. et al. (2014) ‘Influence of Deforestation, Logging, and Fire on Malaria in the 

Brazilian Amazon’, PLOS ONE, 9(1), p. e85725. 

Halstead, S.B. and Jacobson, J. (2003) ‘Japanese encephalitis’, Advances in Virus 

Research, 61, pp. 103–138. doi:10.1016/s0065-3527(03)61003-1. 

Harris, R.M.B. et al. (2014) ‘Climate projections for ecologists’, Wiley Interdisciplinary 

Reviews: Climate Change, 5(5), pp. 621–637. doi:10.1002/wcc.291. 

Hassell, James M et al. (2017) ‘Urbanization and Disease Emergence: Dynamics at the 

Wildlife–Livestock–Human Interface’, Trends in Ecology & Evolution, 32, pp. 1–13. 

doi:10.1016/j.tree.2016.09.012. 

Hassell, J.M. et al. (2021a) The Natural Environment & Health in Africa. WWF and 

Smithsonian Conservation Biology Institute. Available at: 

https://repository.si.edu/handle/10088/111281 (Accessed: 18 October 2021). 

Hassell, J.M. et al. (2021b) ‘Towards an ecosystem model of infectious disease’, Nature 

Ecology & Evolution, pp. 1–12. doi:10.1038/s41559-021-01454-8. 

Hay, S.I. et al. (2013) ‘Big Data Opportunities for Global Infectious Disease Surveillance’, 

PLoS Medicine, 10(4), pp. 2–5. doi:10.1371/journal.pmed.1001413. 

Heffelfinger, J.D. et al. (2017) ‘Japanese Encephalitis Surveillance and Immunization — Asia 

and Western Pacific Regions, 2016’, MMWR. Morbidity and Mortality Weekly Report, 66(22), 

pp. 579–583. doi:10.15585/mmwr.mm6622a3. 

https://doi.org/10.1002/jmv.24556


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

196 
 

Hennessy, S. et al. (1996) ‘Effectiveness of live-attenuated Japanese encephalitis vaccine 

(SA14-14-2): a case-control study’, The Lancet, 347(9015), pp. 1583–1586. 

doi.org/10.1016/S0140-6736(96)91075-2. 

Hernán, M.A. (2018) ‘The C-Word: Scientific Euphemisms Do Not Improve Causal Inference 

From Observational Data’, American Journal of Public Health, 108(5), pp. 616–619. 

doi.org/10.2105/AJPH.2018.304337. 

Heymann, D.L. et al. (2015) ‘Global health security: the wider lessons from the west African 

Ebola virus disease epidemic’, Lancet (London, England), 385(9980), pp. 1884–1901. 

doi:10.1016/S0140-6736(15)60858-3. 

Hijmans, R.J. et al. (2020) raster: Geographic Data Analysis and Modeling. Available at: 

https://CRAN.R-project.org/package=raster (Accessed: 27 April 2021). 

Hijmans, R.J. and van Etten, J. (2014) raster: Geographic data analysis and modeling (R 

package). Available at: https://cran.r-project.org/package=raster. 

Hill, M.P., Axford, J.K. and Hoffmann, A.A. (2014) ‘Predicting the spread of Aedes albopictus 

in Australia under current and future climates: Multiple approaches and datasets to 

incorporate potential evolutionary divergence’, Austral Ecology, 39(4), pp. 469–478. 

doi:10.1111/aec.12105. 

Hinz, R. et al. (2020) ‘Agricultural Development and Land Use Change in India: A Scenario 

Analysis of Trade-Offs Between UN Sustainable Development Goals (SDGs)’, Earth’s 

Future, 8(2), p. e2019EF001287. doi:10.1029/2019EF001287. 

Ho, S.H., Speldewinde, P. and Cook, A. (2016) ‘A Bayesian Belief Network for Murray Valley 

encephalitis virus risk assessment in Western Australia’, International Journal of Health 

Geographics, 15(1), p. 6. doi:10.1186/s12942-016-0036-x. 

Hofman, J.M. et al. (2021) ‘Integrating explanation and prediction in computational social 

science’, Nature, 595(7866), pp. 181–188. doi:10.1038/s41586-021-03659-0. 

Hombach, J. et al. (2005) ‘Report on a WHO consultation on immunological endpoints for 

evaluation of new Japanese encephalitis vaccines, WHO, Geneva, 2-3 September, 2004’, 

Vaccine, 23(45), pp. 5205–5211. doi.org/10.1016/j.vaccine.2005.07.002. 

Hooten, M.B. and Hobbs, N.T. (2015) ‘A guide to Bayesian model selection for ecologists’, 

Ecological Monographs, 85(1), pp. 3–28. 

https://doi.org/10.1016/S0140-6736(96)91075-2
https://doi.org/10.2105/AJPH.2018.304337
https://doi.org/10.1016/j.vaccine.2005.07.002


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

197 
 

Hossain, M.J. et al. (2010) ‘Hospital-based surveillance for Japanese encephalitis at four 

sites in Bangladesh, 2003-2005’, American Journal of Tropical Medicine and Hygiene, 82(2), 

pp. 344–349. doi:10.4269/ajtmh.2010.09-0125. 

Hosseini, P.R. et al. (2017) ‘Does the impact of biodiversity differ between emerging and 

endemic pathogens? The need to separate the concepts of hazard and risk’, Philosophical 

Transactions of the Royal Society B: Biological Sciences, 372(1722), p. 20160129. 

doi:10.1098/rstb.2016.0129. 

Hotez, P.J. et al. (2009) ‘Rescuing the bottom billion through control of neglected tropical 

diseases’, The Lancet, 373(9674), pp. 1570–1575. doi:10.1016/S0140-6736(09)60233-6. 

Hotez, P.J. (2013) ‘NTDs V.2.0: “Blue Marble Health”—Neglected Tropical Disease Control 

and Elimination in a Shifting Health Policy Landscape’, PLOS Neglected Tropical Diseases, 

7(11), p. e2570. doi:10.1371/journal.pntd.0002570. 

Hotez, P.J. (2016) ‘Neglected Tropical Diseases in the Anthropocene: The Cases of Zika, 

Ebola, and Other Infections’, PLOS Neglected Tropical Diseases, 10(4), p. e0004648. 

doi:10.1371/journal.pntd.0004648. 

Hotez, P.J. (2017) ‘Global urbanization and the neglected tropical diseases’, PLoS 

Neglected Tropical Diseases, 11(2), pp. 1–5. doi:10.1371/journal.pntd.0005308. 

Hrudya, P.H., Varikoden, H. and Vishnu, R. (2021) ‘A review on the Indian summer monsoon 

rainfall, variability and its association with ENSO and IOD’, Meteorology and Atmospheric 

Physics, 133(1), pp. 1–14. doi.org/10.1007/s00703-020-00734-5. 

Hsu, L.-C. et al. (2014) ‘The Incidence of Japanese Encephalitis in Taiwan—A Population-

Based Study’, PLOS Neglected Tropical Diseases, 8(7), p. e3030. 

doi.org/10.1371/journal.pntd.0003030. 

Huang, J. et al. (2014) ‘Analysis of NDVI Data for Crop Identification and Yield Estimation’, 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), 

pp. 4374–4384. doi:10.1109/JSTARS.2014.2334332. 

Hudson, L.N. et al. (2014) ‘The PREDICTS database : a global database of how local 

terrestrial biodiversity responds to human impacts’, pp. 1–35. 

https://doi.org/10.1007/s00703-020-00734-5
https://doi.org/10.1371/journal.pntd.0003030


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

198 
 

Humphreys, J.M. et al. (2019) ‘Seasonal occurrence and abundance of dabbling ducks 

across the continental United States: Joint spatio-temporal modelling for the Genus Anas’, 

Diversity and Distributions, 25(9), pp. 1497–1508. doi:10.1111/ddi.12960. 

van den Hurk, A.F., Ritchie, S.A. and Mackenzie, J.S. (2009) ‘Ecology and geographical 

expansion of Japanese encephalitis virus’, Annual Review of Entomology, 54, pp. 17–35. 

doi:10.1146/annurev.ento.54.110807.090510. 

Hurtt, G.C. et al. (2011) ‘Harmonization of land-use scenarios for the period 1500-2100: 600 

years of global gridded annual land-use transitions, wood harvest, and resulting secondary 

lands’, Climatic Change, 109(1), pp. 117–161. doi:10.1007/s10584-011-0153-2. 

Hussain-Alkhateeb, L. et al. (2021) ‘Early warning systems (EWSs) for chikungunya, 

dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review’, 

PLOS Neglected Tropical Diseases, 15(9), p. e0009686. doi:10.1371/journal.pntd.0009686. 

Iacono, G.L. et al. (2018) ‘Environmental limits of Rift Valley fever revealed using 

ecoepidemiological mechanistic models’, Proceedings of the National Academy of Sciences 

of the United States of America, 115(31), pp. E7448–E7456. doi:10.1073/pnas.1803264115. 

ICMR (2001) Centre for Research in Medical Entomology Annual Report 2000-2001. 

Madurai, India. 

Ijumba, J.N. and Lindsay, S.W. (2001) ‘Impact of irrigation on malaria in Africa: Paddies 

paradox’, Medical and Veterinary Entomology, 15(1), pp. 1–11. doi:10.1046/j.1365-

2915.2001.00279.x. 

Imhoff, M.L. et al. (2010) ‘Remote sensing of the urban heat island effect across biomes in 

the continental USA’, Remote Sensing of Environment, 114(3), pp. 504–513. 

doi:https://doi.org/10.1016/j.rse.2009.10.008. 

Immerzeel, W.W., van Beek, L.P.H. and Bierkens, M.F.P. (2010) ‘Climate Change Will Affect 

the Asian Water Towers’, Science, 328(5984), pp. 1382–1385. 

doi:10.1126/science.1183188. 

Impoinvil, D.E. et al. (2011) ‘The Spatial Heterogeneity between Japanese Encephalitis 

Incidence Distribution and Environmental Variables in Nepal’, PLOS ONE, 6(7), p. e22192. 

doi:10.1371/journal.pone.0022192. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

199 
 

Institute for Health Metrics and Evaluation (2021) India Health Management Information 

System (HMIS), Global Health Data Exchange. Available at: 

http://ghdx.healthdata.org/series/india-health-management-information-system-hmis 

(Accessed: 1 September 2021). 

International Society for Infectious Diseases (2021) ProMED, ProMED-mail. Available at: 

https://promedmail.org/ (Accessed: 1 September 2021). 

IOM (2008) ‘Summary and Assessment’, in Vector-Borne Diseases: Understanding the 

Environmental, Human Health, and Ecological Connections, Workshop Summary. 

Washington (DC): National Academies Press (US). Available at: 

https://www.ncbi.nlm.nih.gov/books/NBK52939/. 

IPBES (2019) Global assessment report on biodiversity and ecosystem services of the 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, 

Germany: IPBES secretariat, p. 1148. Available at: https://doi.org/10.5281/zenodo.3831673. 

IPCC (2013) ‘Summary for Policymakers’, Climate Change 2013: The Physical Science 

Basis. Contribution of Working Group I to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change, p. 33. doi:10.1017/CBO9781107415324. 

IPCC (2014a) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global 

and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of 

the Intergovernmental Panel on Climate Change. Edited by C. Field et al. Cambridge, United 

Kingdom and New York, NY, USA: Cambridge University Press. 

IPCC (2014b) ‘Summary for policymakers.’, in Field, C.B., V.R. Barros, D.J. Dokken, K.J. 

Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. 

Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea,  and L.L.W. (ed.) Climate 

Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. 

Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge 

University Press, pp. 1–32. doi:10.1016/j.renene.2009.11.012. 

IPCC (2022) Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of 

Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate 

Change. Cambridge University Press. Available at: 

https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_FinalDraft_FullReport.pdf (Accessed: 2 

March 2022). 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

200 
 

IRRI (1988) Vector-borne disease control in humans through rice agroecosystem 

management. Los Baños (Philippines). doi:10.1016/0169-4758(89)90277-9. 

IRRI (2018) Climate change - ready rice, International Rice Research Institute. Available at: 

https://www.irri.org/climate-change-ready-rice (Accessed: 8 March 2022). 

Iwamura, T., Guzman-Holst, A. and Murray, K.A. (2020) ‘Accelerating invasion potential of 

disease vector Aedes aegypti under climate change’, Nature Communications, 11(1), p. 

2130. doi:10.1038/s41467-020-16010-4. 

Jaleta, K.T. et al. (2013) ‘Agro-ecosystems impact malaria prevalence: large-scale irrigation 

drives vector population in western Ethiopia’, Malaria Journal, 12(1), p. 350. 

doi:10.1186/1475-2875-12-350. 

James, S.L. et al. (2018) ‘Global, regional, and national incidence, prevalence, and years 

lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–

2017: a systematic analysis for the Global Burden of Disease Study 2017’, The Lancet, 

392(10159), pp. 1789–1858. doi:10.1016/S0140-6736(18)32279-7. 

Jia, P. et al. (2017) ‘How does the dengue vector mosquito Aedes albopictus respond to 

global warming?’, Parasites & Vectors, 10(1), p. 140. doi:10.1186/s13071-017-2071-2. 

Jian, Y. et al. (2014) ‘Environmental forcing and density-dependent controls of Culex pipiens 

abundance in a temperate climate (Northeastern Italy)’, Ecological Modelling, 272, pp. 301–

310. doi:10.1016/j.ecolmodel.2013.10.019. 

Johnson, E.E., Escobar, L.E. and Zambrana-Torrelio, C. (2019) ‘An Ecological Framework 

for Modeling the Geography of Disease Transmission’, Trends in Ecology & Evolution, 34(7), 

pp. 655–668. doi:10.1016/j.tree.2019.03.004. 

Johnson, P.T.J., de Roode, J.C. and Fenton, A. (2015) ‘Why infectious disease research 

needs community ecology’, Science, 349, p. 1259504. doi:10.1126/science.1259504. 

Jones, B. and O’Neill, B.C. (2016) ‘Spatially explicit global population scenarios consistent 

with the Shared Socioeconomic Pathways’, Environmental Research Letters, 11(8), p. 

084003. doi:10.1088/1748-9326/11/8/084003. 

Jones, K.E. et al. (2008) ‘Global trends in emerging infectious diseases’, Nature Letters, 

451(February), pp. 990–994. doi:10.1038/nature06536. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

201 
 

Kakoti, G. et al. (2013) ‘Clinical Profile and Outcome of Japanese Encephalitis in Children 

Admitted with Acute Encephalitis Syndrome’, BioMed Research International, 2013. 

doi:10.1155/2013/152656. 

Kalaiyarasu, S. et al. (2016) ‘Serological evidence of widespread West Nile virus and 

Japanese encephalitis virus infection in native domestic ducks (Anas platyrhynchos var 

domesticus) in Kuttanad region, Kerala, India’, Comparative Immunology, Microbiology and 

Infectious Diseases, 48, pp. 61–68. doi:10.1016/j.cimid.2016.08.002. 

Kampen, H. et al. (2016) ‘Indoor development of Aedes aegypti in Germany, 2016’, 

Eurosurveillance, 21(47), pp. 2–4. doi:10.2807/1560-7917.ES.2016.21.47.30407. 

Kanojia, P. C. et al. (2010) ‘Morphometric and allozyme variation in Culex tritaeniorhynchus 

mosquito populations from India.’, Journal of insect science (Online), 10(138), p. 138. 

doi:10.1673/031.010.13801. 

Kanojia, P.C. and Geevarghese, G. (2004) ‘First Report on High-Degree Endophilism in 

Culex tritaeniorhynchus (Diptera: Culicidae) in an Area Endemic for Japanese Encephalitis’, 

Journal of Medical Entomology, 41(5), pp. 994–996. doi:10.1603/0022-2585-41.5.994. 

Kanojia, P.C. and Geevarghese, G. (2005) ‘New mosquito records of an area known for 

Japanese encephalitis hyperendemicity, Gorakhpur District, Uttar Pradesh, India’, Journal of 

the American Mosquito Control Association, 21(1), pp. 1–4. doi:10.2987/8756-

971X(2005)21[1:NMROAA]2.0.CO;2. 

Kanojia, P.C., Shetty, P.S. and Geevarghese, G. (2003) ‘A long-term study on vector 

abundance & seasonal prevalence in relation to the occurrence of Japanese encephalitis in 

Gorakhpur district, Uttar Pradesh’, The Indian Journal of Medical Research, 117, pp. 104–

110. 

Kari, K. et al. (2006) ‘A hospital-based surveillance for Japanese encephalitis in Bali, 

Indonesia’, BMC medicine, 4, p. 8. doi.org/10.1186/1741-7015-4-8. 

Kayatz, B. et al. (2019) ‘“More crop per drop”: Exploring India’s cereal water use since 2005’, 

Science of The Total Environment, 673, pp. 207–217. doi:10.1016/j.scitotenv.2019.03.304. 

Kehoe, L. et al. (2015) ‘Global patterns of agricultural land-use intensity and vertebrate 

diversity’, Diversity and Distributions. Edited by F. Essl, 21(11), pp. 1308–1318. 

doi:10.1111/ddi.12359. 

https://doi.org/10.1186/1741-7015-4-8


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

202 
 

Keiser, J. et al. (2005a) ‘Effect of irrigation and large dams on the burden of malaria on a 

global and regional scale’, American Journal of Tropical Medicine and Hygiene, 72(4), pp. 

392-406. doi.org/10.4269/ajtmh.2005.72.392. 

Keiser, J. et al. (2005b) ‘Effect of irrigated rice agriculture on Japanese encephalitis, 

including challenges and opportunities for integrated vector management’, Acta Tropica, 

95(1), pp. 40–57. doi:10.1016/j.actatropica.2005.04.012. 

Khan, S.A. et al. (2011) ‘West Nile Virus Infection, Assam, India’, Emerging Infectious 

Diseases, 17(5), pp. 947–948. doi:10.3201/eid1705.100479. 

Khan, S.U. et al. (2014) ‘Dynamics of Japanese Encephalitis Virus Transmission among Pigs 

in Northwest Bangladesh and the Potential Impact of Pig Vaccination’, PLOS Neglected 

Tropical Diseases, 8(9), p. e3166. doi:10.1371/journal.pntd.0003166. 

Khormi, H.M. and Kumar, L. (2016) ‘Future malaria spatial pattern based on the potential 

global warming impact in South and Southeast Asia’, Geospatial Health, 11(3), pp. 290–298. 

doi:10.4081/gh.2016.416. 

Kibret, S. et al. (2016) ‘Malaria and large dams in sub-Saharan Africa: future impacts in a 

changing climate’, Malaria Journal, 15(1), p. 448. doi:10.1186/s12936-016-1498-9. 

Kibuthu, T.W. et al. (2016) ‘Agricultural chemicals: life changer for mosquito vectors in 

agricultural landscapes?’, Parasites & Vectors, 9(1), p. 500. doi:10.1186/s13071-016-1788-7. 

Kilpatrick, A.M. and Pape, W.J. (2013) ‘Predicting human West Nile virus infections with 

mosquito surveillance data’, Am J Epidemiol, 178. doi:10.1093/aje/kwt046. 

Kilpatrick, A.M. and Randolph, S.E. (2012) ‘Drivers, dynamics, and control of emerging 

vector-borne zoonotic diseases’, The Lancet, 380(9857), pp. 1946–1955. 

doi:10.1016/S0140-6736(12)61151-9. 

Kim, N.-H. et al. (2014) ‘Prediction Forecast for Culex tritaeniorhynchus Populations in 

Korea’, Osong Public Health and Research Perspectives, 5(3), pp. 131–137. 

doi:10.1016/j.phrp.2014.04.004. 

Kingwell-Banham, E. (2019) ‘Dry, rainfed or irrigated? Reevaluating the role and 

development of rice agriculture in Iron Age-Early Historic South India using archaeobotanical 

approaches’, Archaeological and Anthropological Sciences, 11(12), pp. 6485–6500. 

doi:10.1007/s12520-019-00795-7. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

203 
 

Kishore, P. et al. (2016) ‘Precipitation climatology over India: validation with observations 

and reanalysis datasets and spatial trends’, Climate Dynamics, 46(1), pp. 541–556. 

doi.org/10.1007/s00382-015-2597-y. 

Koch, L.K. et al. (2016) ‘Modeling the habitat suitability for the arbovirus vector Aedes 

albopictus (Diptera: Culicidae) in Germany’, Parasitology Research, 115(3), pp. 957–964. 

doi:10.1007/s00436-015-4822-3. 

Korgaonkar, N.S. et al. (2012) ‘Mosquito biting activity on humans & detection of 

Plasmodium falciparum infection in Anopheles stephensi in Goa, India’, The Indian Journal 

of Medical Research, 135, pp. 120–126. doi:10.4103/0971-5916.93434. 

Kraemer, M.U.G. et al. (2015) ‘The global distribution of the arbovirus vectors Aedes aegypti 

and Ae. Albopictus’, eLife, 4(JUNE2015), pp. 1–18. doi:10.7554/eLife.08347. 

Kraemer, M.U.G. et al. (2016) ‘Progress and Challenges in Infectious Disease Cartography’, 

Trends in Parasitology, 32(1), pp. 19–29. doi:10.1016/j.pt.2015.09.006. 

Kraemer, M.U.G. et al. (2019a) ‘Past and future spread of the arbovirus vectors Aedes 

aegypti and Aedes albopictus’, Nature Microbiology, 4(5), pp. 854–863. doi:10.1038/s41564-

019-0376-y. 

Kraemer, M.U.G. et al. (2019b) ‘Utilizing general human movement models to predict the 

spread of emerging infectious diseases in resource poor settings’, Scientific Reports, 9(1), p. 

5151. doi.org/10.1038/s41598-019-41192-3. 

Kraemer, M.U.G., Reiner, R.C. and Bhatt, S. (2019) ‘Causal Inference in Spatial Mapping’, 

Trends in Parasitology, 35(10), pp. 743–746. doi:10.1016/j.pt.2019.06.005. 

Kugeler, K.J. et al. (2022) ‘Changing Trends in Age and Sex Distributions of Lyme Disease-

United States, 1992-2016’, Public Health Reports (Washington, D.C.: 1974), 137(4), pp. 

655–659. doi.org/10.1177/00333549211026777. 

Kulkarni, R. et al. (2018) ‘Japanese Encephalitis: A Brief Review on Indian Perspectives’, 

The Open Virology Journal, 12, pp. 121–130. doi:10.2174/1874357901812010121. 

Kumari, R. et al. (2013) ‘First indigenous transmission of Japanese Encephalitis in urban 

areas of National Capital Territory of Delhi, India’, Tropical medicine & international health: 

TM & IH, 18(6), pp. 743–749. doi:10.1111/tmi.12104. 

https://doi.org/10.1007/s00382-015-2597-y
https://doi.org/10.1177/00333549211026777


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

204 
 

Kumari, R. and Joshi, P.L. (2012) ‘A review of Japanese encephalitis in Uttar Pradesh, 

India’, WHO South-East Asia Journal of Public Health, 1(4), p. 374. doi:10.4103/2224-

3151.207040. 

Kwa, B.H. (2008) ‘Environmental change, development and vectorborne disease: Malaysia’s 

experience with filariasis, scrub typhus and dengue’, Environment, Development and 

Sustainability, 10(2), pp. 209–217. doi:10.1007/s10668-006-9060-5. 

Kwak, B.O., Hong, Y.J. and Kim, D.H. (2021) ‘Changes in age-specific seroprevalence of 

Japanese encephalitis virus and impact of Japanese encephalitis vaccine in Korea’, Clinical 

and Experimental Pediatrics, 65(3), pp. 108–114. doi.org/10.3345/cep.2020.01984. 

LaBeaud, A.D. (2008) ‘Why Arboviruses Can Be Neglected Tropical Diseases’, PLoS 

Neglected Tropical Diseases, 2(6). doi:10.1371/journal.pntd.0000247. 

Laborte, A.G. et al. (2017) ‘Data Descriptor: RiceAtlas , a spatial database of global rice 

calendars and production’, Scientific Data, 4, pp. 1–10. 

Ladeau, S.L. et al. (2015) ‘The ecological foundations of transmission potential and vector- 

borne disease in urban landscapes’, Functional Ecology, pp. 889–901. doi:10.1111/1365-

2435.12487.The. 

Lafferty, K.D. (2009) ‘The ecology of climate change and infectious diseases’, Ecology, 

90(4), pp. 888–900. 

Lai, S. et al. (2019) ‘Exploring the use of mobile phone data for national migration statistics’, 

Palgrave Communications, 5(1), pp. 1–10. doi.org/10.1057/s41599-019-0242-9. 

Lambin, E.F. et al. (2010) ‘Pathogenic landscapes: interactions between land, people, 

disease vectors, and their animal hosts.’, International journal of health geographics, 9(5), p. 

54. doi:10.1186/1476-072X-9-54. 

Lambrechts, L. et al. (2011) ‘Impact of daily temperature fluctuations on dengue virus 

transmission by Aedes aegypti’, Proceedings of the National Academy of Sciences, 108(18), 

p. 7460 LP – 7465. 

Laneri, K. et al. (2015) ‘Dynamical malaria models reveal how immunity buffers effect of 

climate variability’, Proceedings of the National Academy of Sciences, 112(28), pp. 8786–

8791. doi:10.1073/pnas.1419047112. 

https://doi.org/10.3345/cep.2020.01984
https://doi.org/10.1057/s41599-019-0242-9


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

205 
 

Laporta, G.Z. et al. (2015) ‘Malaria vectors in South America: current and future scenarios’, 

Parasites & Vectors, 8(1), p. 426. doi:10.1186/s13071-015-1038-4. 

Leach, M. and Scoones, I. (2013) ‘The social and political lives of zoonotic disease models: 

Narratives, science and policy’, Social Science & Medicine, 88, pp. 10–17. 

doi.org/10.1016/j.socscimed.2013.03.017. 

Lee, D.-W. et al. (2012) ‘Epidemiology of Japanese encephalitis in South Korea, 2007-2010’, 

International journal of infectious diseases: IJID: official publication of the International 

Society for Infectious Diseases, 16(6), pp. e448-452. doi.org/10.1016/j.ijid.2012.02.006. 

Le Flohic, G. et al. (2013) ‘Review of Climate, Landscape, and Viral Genetics as Drivers of 

the Japanese Encephalitis Virus Ecology’, PLoS Neglected Tropical Diseases, 7(9), pp. 5–

11. doi:10.1371/journal.pntd.0002208. 

Lequime, S., Paul, R.E. and Lambrechts, L. (2016) ‘Determinants of Arbovirus Vertical 

Transmission in Mosquitoes’, PLOS Pathogens, 12(5), p. e1005548. 

doi:10.1371/journal.ppat.1005548. 

Lerner, H. and Berg, C. (2015) ‘The concept of health in One Health and some practical 

implications for research and education: what is One Health?’, Infection ecology & 

epidemiology, 5(1), p. 25300. 

Leta, S. et al. (2019) ‘Modeling the global distribution of Culicoides imicola: an Ensemble 

approach’, Scientific Reports, 9(1), p. 14187. doi.org/10.1038/s41598-019-50765-1. 

Li, S. et al. (2019) ‘Lyme Disease Risks in Europe under Multiple Uncertain Drivers of 

Change’, Environmental Health Perspectives, 127(6), p. 067010. doi.org/10.1289/EHP4615. 

Li, Y. et al. (2014) ‘Urbanization Increases Aedes albopictus Larval Habitats and Accelerates 

Mosquito Development and Survivorship’, PLoS Neglected Tropical Diseases, 8(11). 

doi:10.1371/journal.pntd.0003301. 

Li, X. et al. (2016) ‘The Spatio-temporal Distribution of Japanese Encephalitis Cases in 

Different Age Groups in Mainland China, 2004 – 2014’, PLOS Neglected Tropical Diseases, 

10(4), p. e0004611. doi.org/10.1371/journal.pntd.0004611. 

Lin, C.-L. et al. (2017) ‘Seasonal Patterns of Japanese Encephalitis and Associated 

Meteorological Factors in Taiwan’, International Journal of Environmental Research and 

Public Health, 14(11), p. 1317. doi:10.3390/ijerph14111317. 

https://doi.org/10.1016/j.ijid.2012.02.006
https://doi.org/10.1038/s41598-019-50765-1
https://doi.org/10.1289/EHP4615
https://doi.org/10.1371/journal.pntd.0004611


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

206 
 

Lindblade, K.A. et al. (2000) ‘Land use change alters malaria transmission parameters by 

modifying temperature in a highland area of Uganda’, Tropical Medicine and International 

Health, 5(4), pp. 263–274. doi:10.1046/j.1365-3156.2000.00551.x. 

Lindgren, F. and Rue, H. (2015) ‘Bayesian Spatial Modelling with R-INLA’, Journal of 

Statistical Software, 63(19). Available at: https://www.jstatsoft.org/article/view/v063i19 

(Accessed: 8 February 2021). 

Lindquist, L. (2018) ‘Recent and historical trends in the epidemiology of Japanese 

encephalitis and its implication for risk assessment in travellers’, Journal of Travel Medicine, 

25(suppl_1), pp. S3–S9. doi:10.1093/jtm/tay006. 

Linthicum, K.J. et al. (2014) ‘Association of Temperature and Historical Dynamics of Malaria 

in the Republic of Korea, Including Reemergence in 1993’, Military Medicine, 179(7), pp. 

806–814. doi:10.7205/MILMED-D-13-00545. 

Liu, Z. et al. (2020) ‘Nonlinear and Threshold Effect of Meteorological Factors on Japanese 

Encephalitis Transmission in Southwestern China’, The American Journal of Tropical 

Medicine and Hygiene, 103(6), pp. 2442–2449. doi:10.4269/ajtmh.20-0040. 

Liu-Helmersson, J. et al. (2014) ‘Vectorial Capacity of Aedes aegypti: Effects of Temperature 

and Implications for Global Dengue Epidemic Potential’, PLOS ONE, 9(3), p. e89783. 

Liu-Helmersson, J. et al. (2016) ‘Climate Change and Aedes Vectors: 21st Century 

Projections for Dengue Transmission in Europe’, EBioMedicine, pp. 267–277. 

doi:10.1016/j.ebiom.2016.03.046. 

Liu-Helmersson, J. et al. (2019) ‘Estimating Past, Present, and Future Trends in the Global 

Distribution and Abundance of the Arbovirus Vector Aedes aegypti Under Climate Change 

Scenarios’, Frontiers in Public Health, 7(148). doi:10.3389/fpubh.2019.00148. 

Loaiza, J.R. et al. (2017) ‘Disturbance and mosquito diversity in the lowland tropical 

rainforest of central Panama’, Scientific Reports, 7(1), pp. 1–13. doi:10.1038/s41598-017-

07476-2. 

Longbottom, J. et al. (2017) ‘Mapping the spatial distribution of the Japanese encephalitis 

vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese 

encephalitis risk’, Parasites & Vectors, 10(1), p. 148. doi:10.1186/s13071-017-2086-8. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

207 
 

Lord, C.C. (2004) ‘Seasonal population dynamics and behaviour of insects in models of 

vector-borne pathogens’, Physiological Entomology, 29(3), pp. 214–222. doi:10.1111/j.0307-

6962.2004.00411.x.Seasonal. 

Lord, J.S., Gurley, E.S. and Pulliam, J.R.C. (2015) ‘Rethinking Japanese Encephalitis Virus 

Transmission: A Framework for Implicating Host and Vector Species’, PLoS Neglected 

Tropical Diseases, 9(12), pp. 1–7. doi:10.1371/journal.pntd.0004074. 

Lord, J.S. (2021) ‘Changes in Rice and Livestock Production and the Potential Emergence of 

Japanese Encephalitis in Africa’, Pathogens, 10(3), p. 294. 

doi:10.3390/pathogens10030294. 

Lounibos, L.P. and Juliano, S.A. (2018) ‘Where vectors collide: the importance of 

mechanisms shaping the realized niche for modeling ranges of invasive Aedes mosquitoes’, 

Biological Invasions, pp. 1–17. doi:10.1007/s10530-018-1674-7. 

Low, R. et al. (2021) ‘GLOBE Mosquito Habitat Mapper Citizen Science Data 2017–2020’, 

GeoHealth, 5(10), p. e2021GH000436. doi:10.1029/2021GH000436. 

Lowe, R. et al. (2016) ‘Evaluating probabilistic dengue risk forecasts from a prototype early 

warning system for Brazil’, eLife, 5(FEBRUARY2016), pp. 1–18. doi:10.7554/eLife.11285. 

Lowe, R. et al. (2017) ‘Climate services for health: predicting the evolution of the 2016 

dengue season in Machala , Ecuador’, Lancet Planetary Health, 1(4), pp. e142-51. 

doi:10.1016/S2542-5196(17)30064-5. 

Lowe, R. et al. (2020) ‘Emerging arboviruses in the urbanized Amazon rainforest’, BMJ, 371, 

p. m4385. doi:10.1136/bmj.m4385. 

Lowe, R. et al. (2021) ‘Combined effects of hydrometeorological hazards and urbanisation 

on dengue risk in Brazil: a spatiotemporal modelling study’, The Lancet Planetary Health, 

5(4), pp. e209–e219. doi:10.1016/S2542-5196(20)30292-8. 

Lucas, T.C.D. et al. (2021) ‘Mapping malaria by sharing spatial information between 

incidence and prevalence data sets’, Journal of the Royal Statistical Society: Series C 

(Applied Statistics) [Preprint]. doi:https://doi.org/10.1111/rssc.12484. 

Luis, A.D., Kuenzi, A.J. and Mills, J.N. (2018) ‘Species diversity concurrently dilutes and 

amplifies transmission in a zoonotic host–pathogen system through competing mechanisms’, 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

208 
 

Proceedings of the National Academy of Sciences, p. 201807106. 

doi:10.1073/pnas.1807106115. 

Lule, S.A. et al. (2022) ‘Widespread exposure to Crimean-Congo haemorrhagic fever in 

Uganda might be driven by transmission from Rhipicephalus ticks: Evidence from cross-

sectional and modelling studies’, Journal of Infection, 85(6), pp. 683–692. 

doi.org/10.1016/j.jinf.2022.09.016. 

Lund, A.J. et al. (2021) ‘Exposure, hazard, and vulnerability all contribute to Schistosoma 

haematobium re-infection in northern Senegal’, PLOS Neglected Tropical Diseases, 15(10), 

p. e0009806. doi:10.1371/journal.pntd.0009806. 

Luo, D. et al. (1995) ‘Socio-economic status and micro-environmental factors in relation to 

the risk of Japanese encephalitis: a case-control study’, The Southeast Asian Journal of 

Tropical Medicine and Public Health, 26(2), pp. 276–279. 

Luo, L.J. (2010) ‘Breeding for water-saving and drought-resistance rice (WDR) in China’, 

Journal of Experimental Botany, 61(13), pp. 3509–3517. doi:10.1093/jxb/erq185. 

M. Khormi, H. and Kumar, L. (2014) ‘Climate change and the potential global distribution of 

Aedes aegypti: spatial modelling using geographical information system and CLIMEX’, 

Geospatial Health, 8, pp. 405–415. 

MacDonald, A.J. and Mordecai, E.A. (2019) ‘Amazon deforestation drives malaria 

transmission, and malaria burden reduces forest clearing’, Proceedings of the National 

Academy of Sciences, 116(44), pp. 22212–22218. doi:10.1073/pnas.1905315116. 

Mackenzie, J.S., Gubler, D.J. and Petersen, L.R. (2004) ‘Emerging flaviviruses: the spread 

and resurgence of Japanese encephalitis, West Nile and dengue viruses.’, Nature medicine, 

10(12 Suppl), pp. S98–S109. doi:10.1038/nm1144. 

Maeki, T. et al. (2019) ‘Analysis of cross-reactivity between flaviviruses with sera of patients 

with Japanese encephalitis showed the importance of neutralization tests for the diagnosis of 

Japanese encephalitis’, Journal of Infection and Chemotherapy: Official Journal of the Japan 

Society of Chemotherapy, 25(10), pp. 786–790. doi:10.1016/j.jiac.2019.04.003. 

Mahanta, R., Sarma, D. and Choudhury, A. (2013) ‘Heavy rainfall occurrences in northeast 

India’, International Journal of Climatology, 33(6), pp. 1456–1469. doi:10.1002/joc.3526. 

https://doi.org/10.1016/j.jinf.2022.09.016


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

209 
 

Malakar, M. and Choudhury, M. (2014) ‘Positivity rate of Japanese encephalitis in the 

Goalpara district of Assam, India’, International Journal of Pharmaceutical Science and 

Health Care, 2(4). Available at: https://rspublication.com/ijphc/2014/april14/19.pdf. 

Malecela, M.N. (2019) ‘Reflections on the decade of the neglected tropical diseases’, 

International Health, 11(5), pp. 338–340. doi:10.1093/inthealth/ihz048. 

Manlove, K.R. et al. (2016) ‘“One Health” or Three? Publication Silos Among the One Health 

Disciplines’, PLOS Biology, 14(4), p. e1002448. doi.org/10.1371/journal.pbio.1002448. 

Mandal, S., Sarkar, R. and Sinha, S. (2011) ‘Mathematical models of malaria - A review’, 

Malaria Journal, 10(1), p. 202. doi:10.1186/1475-2875-10-202. 

Mariappan, T. et al. (2014) ‘Entomological investigations into an epidemic of Japanese 

encephalitis (JE) in northern districts of West Bengal, India (2011-2012)’, The Indian Journal 

of Medical Research, 139(5), pp. 754–761. 

Marin-Ferrer, M., Vernaccini, L. and Poljansek, K. (2017) Index for Risk Management 

INFORM Concept and Methodology Report. EUR 28655 EN. doi:10.2760/094023 

(Accessed: 23 February 2023). 

Marotzke, J., Semmann, D. and Milinski, M. (2020) ‘The economic interaction between 

climate change mitigation, climate migration and poverty’, Nature Climate Change, 10(6), pp. 

518–525. doi.org/10.1038/s41558-020-0783-3. 

Marshall, E.C. and Spiegelhalter, D.J. (2003) ‘Approximate cross-validatory predictive 

checks in disease mapping models’, Statistics in Medicine, 22(10), pp. 1649–1660. 

doi:10.1002/sim.1403. 

Masuoka, P. et al. (2010) ‘Modeling the distribution of Culex tritaeniorhynchus to predict 

Japanese encephalitis distribution in the Republic of Korea’, Geospatial Health, pp. 45–57. 

doi:10.4081/gh.2010.186. 

Matsuzaki, S. (1990) ‘Population dynamics of Culex tritaeniorhynchus in relation to the 

epidemics of Japanese encephalitis in Kochi Prefecture, Japan.’, Japanese Journal of 

Sanitary Zoology, 41(3), pp. 247–255. 

McElreath, R. (2020a) ‘7.1 The problem with parameters’, in Statistical Rethinking: A 

Bayesian Course with Examples in R and STAN. Second. Chapman and Hall/CRC, p. 195. 

Available at: https://www.routledge.com/Statistical-Rethinking-A-Bayesian-Course-with-

https://doi.org/10.1371/journal.pbio.1002448
https://doi.org/10.1038/s41558-020-0783-3


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

210 
 

Examples-in-R-and-

STAN/McElreath/p/book/9780367139919?utm_source=crcpress.com&utm_medium=referral. 

McElreath, R. (2020b) ‘7.4 Predicting predictive accuracy’, in Statistical Rethinking: A 

Bayesian Course with Examples in R and STAN. Second. Boca Raton, Florida: CRC Press, 

pp. 217–225. 

McElreath, R. (2020c) Statistical Rethinking: A Bayesian Course with Examples in R and 

STAN. Second. Boca Raton, Florida: CRC Press. Available at: 

https://www.routledge.com/Statistical-Rethinking-A-Bayesian-Course-with-Examples-in-R-

and-

STAN/McElreath/p/book/9780367139919?utm_source=crcpress.com&utm_medium=referral 

(Accessed: 16 June 2020). 

McGough, S.F. et al. (2021) ‘A dynamic, ensemble learning approach to forecast dengue 

fever epidemic years in Brazil using weather and population susceptibility cycles’, Journal of 

The Royal Society Interface, 18(179), p. 20201006. doi:10.1098/rsif.2020.1006. 

McNaughton, H., Singh, A. and Khan, S.A. (2018) ‘An outbreak of Japanese encephalitis in a 

non-endemic region of north-east India’, The Journal of the Royal College of Physicians of 

Edinburgh, 48(1), pp. 25–29. doi:10.4997/JRCPE.2018.105. 

McPherson, M. et al. (2017) ‘Expansion of the Lyme Disease Vector Ixodes Scapularis in 

Canada Inferred from CMIP5 Climate Projections’, Environmental Health Perspectives, 

125(5), p. 057008. doi.org/10.1289/EHP57. 

Medhi, M. et al. (2017) ‘Incidence of Japanese Encephalitis amongst acute encephalitis 

syndrome cases in upper Assam districts from 2012 to 2014: A report from a tertiary care 

hospital’, The Indian Journal of Medical Research, 146(2), pp. 267–271. 

doi:10.4103/ijmr.IJMR_1303_15. 

Messina, J.P. et al. (2015) ‘The many projected futures of dengue’, Nature Reviews 

Microbiology, 13(4), pp. 230–239. doi:10.1038/nrmicro3430. 

Messina, J.P. et al. (2019) ‘The current and future global distribution and population at risk of 

dengue’, Nature Microbiology, 4(9), pp. 1508–1515. doi:10.1038/s41564-019-0476-8. 

Metelka, J., Robertson, C. and Stephen, C. (2015) ‘Japanese Encephalitis: Estimating 

Future Trends in Asia’, AIMS public health, 2(4), pp. 601–615. 

doi:10.3934/publichealth.2015.4.601. 

https://doi.org/10.1289/EHP57


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

211 
 

Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Synthesis. 

Washington, D.C.: World Resources Institute. doi:10.1196/annals.1439.003. 

Miller, R.H. et al. (2012) ‘Ecological niche modeling to estimate the distribution of Japanese 

encephalitis virus in Asia’, PLoS Neglected Tropical Diseases, 6(6). 

doi:10.1371/journal.pntd.0001678. 

Ministry of Health & Family Welfare, Government of India (2020) Weekly Outbreaks, 

Integrated Disease Surveillance Programme. Available at: 

https://www.idsp.nic.in/index4.php?lang=1&level=0&linkid=406&lid=3689 (Accessed: 8 April 

2020). 

Misra, B.R. and Gore, M. (2015) ‘Malathion Resistance Status and Mutations in 

Acetylcholinesterase Gene (Ace) in Japanese Encephalitis and Filariasis Vectors from 

Endemic Area in India’, Journal of Medical Entomology, 52(3), pp. 442–446. 

doi:10.1093/jme/tjv015. 

Misra, U.K. and Kalita, J. (2010) ‘Overview: Japanese encephalitis’, Progress in 

Neurobiology, 91(2), pp. 108–120. doi:10.1016/j.pneurobio.2010.01.008. 

MOEF (2019) Implementation of India’s National Biodiversity Action Plan An Overview 2019. 

New Delhi, Delhi: Ministry of Environment, Forest and Climate Change, Government of India. 

Available at: https://www.cbd.int/doc/world/in/in-nbsap-other-en.pdf (Accessed: 18 December 

2019). 

Monaghan, Andrew J. et al. (2018) ‘The potential impacts of 21st century climatic and 

population changes on human exposure to the virus vector mosquito Aedes aegypti’, 

Climatic Change, 146(3), pp. 487–500. doi:10.1007/s10584-016-1679-0. 

Monroe, A. et al. (2020) ‘Methods and indicators for measuring patterns of human exposure 

to malaria vectors’, Malaria Journal, 19(1), p. 207. doi:10.1186/s12936-020-03271-z. 

Moo-Llanes, D. et al. (2013) ‘Current and Future Niche of North and Central American Sand 

Flies (Diptera: Psychodidae) in Climate Change Scenarios’, PLOS Neglected Tropical 

Diseases, 7(9), p. e2421. doi.org/10.1371/journal.pntd.0002421. 

Moore, S.M. (2021) ‘The current burden of Japanese encephalitis and the estimated impacts 

of vaccination: Combining estimates of the spatial distribution and transmission intensity of a 

zoonotic pathogen’, PLOS Neglected Tropical Diseases, 15(10), p. e0009385. 

doi:10.1371/journal.pntd.0009385. 

https://doi.org/10.1371/journal.pntd.0002421


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

212 
 

Moore, S.M., Borer, E.T. and Hosseini, P.R. (2010) ‘Predators indirectly control vector-borne 

disease: linking predator-prey and host-pathogen models’, Journal of The Royal Society 

Interface, 7(42), pp. 161–176. doi:10.1098/rsif.2009.0131. 

Mordecai, E.A., Cohen, J.M., Evans, M. V, et al. (2017) ‘Detecting the impact of temperature 

on transmission of Zika, dengue, and chikungunya using mechanistic models’, PLOS 

Neglected Tropical Diseases, 11(4), p. e0005568. 

Mordecai, E.A. et al. (2019) ‘Thermal biology of mosquito-borne disease’, Ecology Letters, 

22(10), pp. 1690–1708. doi:10.1111/ele.13335. 

Mordecai, E.A. et al. (2020) ‘Climate change could shift disease burden from malaria to 

arboviruses in Africa’, The Lancet. Planetary Health, 4(9), pp. e416–e423. 

doi:10.1016/S2542-5196(20)30178-9. 

Morens, D.M. and Fauci, A.S. (2012) ‘Emerging Infectious Diseases in 2012: 20 Years after 

the Institute of Medicine Report’, mBio, 3(6). doi:10.1128/mBio.00494-12. 

Morin, C.W., Comrie, A.C. and Ernst, K. (2013) ‘Climate and Dengue Transmission: 

Evidence and Implications’, Environmental Health Perspectives, 121(11–12), pp. 1264–

1272. doi:10.1289/ehp.1306556. 

Morita, K., Nabeshima, T. and Buerano, C.C. (2015) ‘Japanese encephalitis Aetiological’, 

Revue scientifique et technique (International Office of Epizootics), 34(2), pp. 441–452. 

Mtema, Z. et al. (2016) ‘Mobile Phones as Surveillance Tools: Implementing and Evaluating 

a Large-Scale Intersectoral Surveillance System for Rabies in Tanzania’, PLOS Medicine, 

13(4), p. e1002002. doi:10.1371/journal.pmed.1002002. 

Mukhtar, M. et al. (2003) ‘Role of wastewater irrigation in mosquito breeding in south Punjab, 

Pakistan’, Southeast Asian Journal of Tropical Medicine and Public Health, 34(1), pp. 72–80. 

Mukundarajan, H. et al. (2017) ‘Using mobile phones as acoustic sensors for high-

throughput mosquito surveillance’, eLife, 6, p. e27854. doi:10.7554/eLife.27854. 

Mulligan, K. et al. (2015) ‘Is dengue a disease of poverty? A systematic review’, Pathogens 

and Global Health, 109(1), pp. 10–18. doi:10.1179/2047773214Y.0000000168. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

213 
 

Muniaraj, M. and Rajamannar, V. (2019) ‘Impact of SA 14-14-2 vaccination on the 

occurrence of Japanese encephalitis in India’, Human Vaccines & Immunotherapeutics, 

15(4), pp. 834–840. doi:10.1080/21645515.2018.1564435. 

Murakami, D., Yoshida, T. and Yamagata, Y. (2021) ‘Gridded GDP Projections Compatible 

With the Five SSPs (Shared Socioeconomic Pathways)’, Frontiers in Built Environment, 7. 

Available at: https://www.frontiersin.org/article/10.3389/fbuil.2021.760306 (Accessed: 28 

March 2022). 

Murdock, C.C. et al. (2012) ‘Complex effects of temperature on mosquito immune function’, 

Proceedings of the Royal Society B: Biological Sciences, 279(1741), pp. 3357–3366. 

doi:10.1098/rspb.2012.0638. 

Murdock, C.C. et al. (2017) ‘Fine-scale variation in microclimate across an urban landscape 

shapes variation in mosquito population dynamics and the potential of Aedes albopictus to 

transmit arboviral disease’, PLOS Neglected Tropical Diseases, 11(5), p. e0005640. 

Murdock, C.C., Sternberg, E.D. and Thomas, M.B. (2016) ‘Malaria transmission potential 

could be reduced with current and future climate change’, Scientific Reports, 6, p. 27771. 

Murhekar, M.V. et al. (2017) ‘Coverage & missed opportunity for Japanese encephalitis 

vaccine, Gorakhpur division, Uttar Pradesh, India, 2015: Implications for Japanese 

encephalitis control’, Indian Journal of Medical Research, 145(1), p. 63. 

doi:10.4103/ijmr.IJMR_712_16. 

Murty, U.S., Rao, M.S. and Arunachalam, N. (2010) ‘The effects of climatic factors on the 

distribution and abundance of Japanese encephalitis vectors in Kurnool district of Andhra 

Pradesh, India’, Journal of Vector Borne Diseases, (47), pp. 26–32. 

Mweya, C.N. et al. (2016) ‘Climate Change Influences Potential Distribution of Infected 

Aedes aegypti Co-Occurrence with Dengue Epidemics Risk Areas in Tanzania’, PLOS ONE, 

11(9), pp. 1–13. doi:10.1371/journal.pone.0162649. 

Mweya, C.N., Mboera, L.E.G. and Kimera, S.I. (2017) ‘Climate Influence on Emerging Risk 

Areas for Rift Valley Fever Epidemics in Tanzania’, The American Journal of Tropical 

Medicine and Hygiene, 97(1), pp. 109–114. 

National Academies of Sciences, Engineering and Medicine (2016) Global Health Impacts of 

Vector-Borne Diseases: Workshop Summary. Edited by A. Mack. Washington, DC: The 

National Academies Press. doi:10.17226/21792. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

214 
 

Nealon, J. et al. (2019) ‘Serological Evidence of Japanese Encephalitis Virus Circulation in 

Asian Children From Dengue-Endemic Countries’, The Journal of Infectious Diseases, 

219(3), pp. 375–381. doi.org/10.1093/infdis/jiy513. 

Neupane, N., Goldbloom-Helzner, A. and Arab, A. (2021) ‘Spatio-temporal modeling for 

confirmed cases of lyme disease in Virginia’, Ticks and Tick-borne Diseases, 12(6), p. 

101822. doi.org/10.1016/j.ttbdis.2021.101822. 

Newbold, T. et al. (2015) ‘Global effects of land use on local terrestrial biodiversity.’, Nature, 

520(7545), pp. 45–50. doi:10.1038/nature14324. 

Newbold, T. (2018) ‘Future effects of climate and land-use change on terrestrial vertebrate 

community diversity under different scenarios’, Proceedings of the Royal Society of London 

B: Biological Sciences, 285(1881). 

Ngonghala, C.N. et al. (2014) ‘Poverty, Disease, and the Ecology of Complex Systems’, 

PLoS Biology, 12(4), pp. 1–9. doi.org/10.1371/journal.pbio.1001827. 

Ngonghala, C.N. et al. (2017) ‘General ecological models for human subsistence, health and 

poverty’, Nature Ecology and Evolution, 1(8), pp. 1153–1159. doi:10.1038/s41559-017-0221-

8. 

Niaz, S. and Reisen, W.K. (1981) ‘Culex tritaeniorhnchus Giles: some effects of temperature 

and photoperiod on larval development and selected adult attributes’, Japanese Journal of 

Medical Hygiene, 9(1), pp. 37–47. 

Nunes, M.R.T. et al. (2014) ‘Air Travel Is Associated with Intracontinental Spread of Dengue 

Virus Serotypes 1-3 in Brazil’, PLoS Neglected Tropical Diseases, 8(4). 

doi:10.1371/journal.pntd.0002769. 

Ochieng, A.O. et al. (2016) ‘Ecological niche modelling of Rift Valley fever virus vectors in 

Baringo, Kenya.’, Infection Ecology & Epidemiology, 6, p. 32322. doi:10.3402/iee.v6.32322. 

Ogden, N.H. et al. (2014a) ‘Estimated Effects of Projected Climate Change on the Basic 

Reproductive Number of the Lyme Disease Vector Ixodes scapularis’, Environmental Health 

Perspectives, 122(6), pp. 631–638. doi.org/10.1289/ehp.1307799. 

Ogden, N.H. et al. (2014b) ‘Recent and projected future climatic suitability of North America 

for the Asian tiger mosquito Aedes albopictus’, Parasites & Vectors. London. 

doi:10.1186/s13071-014-0532-4. 

https://doi.org/10.1093/infdis/jiy513
https://doi.org/10.1016/j.ttbdis.2021.101822
https://doi.org/10.1371/journal.pbio.1001827
https://doi.org/10.1289/ehp.1307799


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

215 
 

Ohba, S.Y., Matsuo, T. and Takagi, M. (2013) ‘Mosquitoes and other aquatic insects in 

fallow field biotopes and rice paddy fields’, Medical and Veterinary Entomology, 27(1), pp. 

96–103. doi:10.1111/j.1365-2915.2012.01045.x. 

Ohm, J.R. et al. (2018) ‘Rethinking the extrinsic incubation period of malaria parasites’, 

Parasites and Vectors, 11(1), pp. 1–9. doi:10.1186/s13071-018-2761-4. 

Oladosu, Y. et al. (2019) ‘Drought Resistance in Rice from Conventional to Molecular 

Breeding: A Review’, International Journal of Molecular Sciences, 20(14), p. 3519. 

doi:10.3390/ijms20143519. 

One Health Commission (2021) ‘What is One Health?’, One Health Commission. Available 

at: https://www.onehealthcommission.org/en/why_one_health/what_is_one_health/ 

(Accessed: 14 March 2022). 

O’Neill, B.C. et al. (2016) ‘The Scenario Model Intercomparison Project (ScenarioMIP) for 

CMIP6’, Geoscientific Model Development, 9(9), pp. 3461–3482. doi:10.5194/gmd-9-3461-

2016. 

Onojeghuo, A.O. et al. (2018) ‘Rice crop phenology mapping at high spatial and temporal 

resolution using downscaled MODIS time-series’, GIScience & Remote Sensing, 55(5), pp. 

659–677. doi:10.1080/15481603.2018.1423725. 

Ostfeld, R.S. and Keesing, F. (2000) ‘Biodiversity and Disease Risk: the Case of Lyme 

Disease’, Conservation Biology, 14(3), pp. 722–728. doi:10.1046/j.1523-1739.2000.99014.x. 

Oviedo-Pastrana, M. et al. (2017) ‘Epidemic outbreak of Chikungunya in two neighboring 

towns in the Colombian Caribbean: a survival analysis’, Archives of Public Health, 75(1), p. 

1. doi:10.1186/s13690-016-0169-1. 

Paaijmans, K.P. et al. (2010) ‘Influence of climate on malaria transmission depends on daily 

temperature variation’, Proceedings of the National Academy of Sciences of the United 

States of America, 107(34), pp. 15135–15139. doi:10.1073/pnas.1006422107. 

Paaijmans, K.P. et al. (2012) ‘Warmer temperatures reduce the vectorial capacity of malaria 

mosquitoes’, Biology Letters, 8(3), pp. 465–468. doi:10.1098/rsbl.2011.1075. 

Paaijmans, K.P. et al. (2013) ‘Temperature variation makes ectotherms more sensitive to 

climate change’, Global Change Biology, 19(8), pp. 2373–2380. doi:10.1111/gcb.12240. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

216 
 

Paaijmans, K.P. et al. (2014) ‘Downscaling reveals diverse effects of anthropogenic climate 

warming on the potential for local environments to support malaria transmission’, Climatic 

Change, 125(3), pp. 479–488. doi:10.1007/s10584-014-1172-6. 

Pagel, J. et al. (2014) ‘Quantifying range-wide variation in population trends from local 

abundance surveys and widespread opportunistic occurrence records’, Methods in Ecology 

and Evolution, 5(8), pp. 751–760. doi:10.1111/2041-210X.12221. 

Paixão, E.S., Teixeira, M.G. and Rodrigues, L.C. (2017) ‘Zika, chikungunya and dengue: the 

causes and threats of new and re-emerging arboviral diseases’, BMJ Global Health, 2(4), p. 

e000530. doi:10.1136/bmjgh-2017-000530. 

Palmer, J.R.B. et al. (2017) ‘Citizen science provides a reliable and scalable tool to track 

disease-carrying mosquitoes’, Nature Communications, 8(1), p. 916. doi:10.1038/s41467-

017-00914-9. 

Pandit, P.S. et al. (2018) ‘Predicting wildlife reservoirs and global vulnerability to zoonotic 

Flaviviruses’, Nature Communications, 9(1), p. 5425. doi:10.1038/s41467-018-07896-2. 

Paramasivan, R., Dhananjeyan, K.J. and Pandian, R.S. (2013) ‘A preliminary report on DNA 

barcoding and phylogenetic relationships of certain public health important mosquito species 

recorded in rural areas of south India’, Journal of Vector Borne Diseases, 50(2), pp. 144–

146. 

Parham, P.E. et al. (2015) ‘Climate, environmental and socio-economic change: weighing up 

the balance in vector-borne disease transmission’, Philosophical Transactions of the Royal 

Society B: Biological Sciences, 370(1665), p. 20130551. doi:10.1098/rstb.2013.0551. 

Parida, M. et al. (2006) ‘Japanese encephalitis Outbreak, India, 2005’, Emerging Infectious 

Diseases, 12(9), pp. 1427–1430. doi.org/10.3201/eid1209.060200. 

Pataki, B.A. et al. (2021) ‘Deep learning identification for citizen science surveillance of tiger 

mosquitoes’, Scientific Reports, 11(1), p. 4718. doi:10.1038/s41598-021-83657-4. 

Patz, J.A. et al. (2000) ‘Effects of environmental change on emerging parasitic diseases’, 

International Journal for Parasitology, 30(12–13), pp. 1395–1405. doi:10.1016/S0020-

7519(00)00141-7. 

https://doi.org/10.3201/eid1209.060200


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

217 
 

Patz, J.A. et al. (2004) ‘Unhealthy landscapes: Policy recommendations on land use change 

and infectious disease emergence’, Environmental Health Perspectives, 112(10), pp. 1092–

1098. doi:10.1289/ehp.6877. 

Paul, R.C. et al. (2011) ‘A novel low-cost approach to estimate the incidence of Japanese 

encephalitis in the catchment area of three hospitals in Bangladesh’, American Journal of 

Tropical Medicine and Hygiene, 85(2), pp. 379–385. doi:10.4269/ajtmh.2011.10-0706. 

Paul, R.E.L. et al. (2016) ‘Environmental factors influencing tick densities over seven years 

in a French suburban forest’, Parasites & Vectors, 9(1), p. 309. doi.org/10.1186/s13071-016-

1591-5. 

Paz, S. (2015) ‘Climate change impacts on West Nile virus transmission in a global context’, 

Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1665), pp. 

20130561–20130561. doi:10.1098/rstb.2013.0561. 

Pearce, J.C. et al. (2018) ‘Japanese encephalitis: the vectors, ecology and potential for 

expansion’, Journal of Travel Medicine, 25(suppl_1), pp. S16–S26. doi:10.1093/jtm/tay009. 

Pech-May, A. et al. (2016) ‘Population genetics and ecological niche of invasive Aedes 

albopictus in Mexico’, Acta Tropica, 157, pp. 30–41. 

doi:https://doi.org/10.1016/j.actatropica.2016.01.021. 

Peralbo-Moreno, A. et al. (2022) ‘Environmental factors driving fine-scale ixodid tick 

abundance patterns’, Science of The Total Environment, 853, p. 158633. 

doi.org/10.1016/j.scitotenv.2022.158633. 

Peterson, A.T. (2008) ‘Biogeography of diseases: A framework for analysis’, 

Naturwissenschaften, 95(6), pp. 483–491. doi:10.1007/s00114-008-0352-5. 

Peterson, A.T. (2014) Mapping Disease Transmission Risk: Enriching Models Using 

Biogeography and Ecology. JHU Press. 

Petrić, M. et al. (2017) ‘Modelling the regional impact of climate change on the suitability of 

the establishment of the Asian tiger mosquito (Aedes albopictus) in Serbia’, Climatic 

Change, 142(3), pp. 361–374. doi:10.1007/s10584-017-1946-8. 

Pettit, L.I. (1990) ‘The Conditional Predictive Ordinate for the Normal Distribution’, Journal of 

the Royal Statistical Society. Series B (Methodological), 52(1), pp. 175–184. 

https://doi.org/10.1186/s13071-016-1591-5
https://doi.org/10.1186/s13071-016-1591-5
https://doi.org/10.1016/j.scitotenv.2022.158633


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

218 
 

Phillips, S., Anderson, R. and Schapire, R. (2006) ‘Maximum entropy modeling of species 

geographic distributions’, Ecological Modelling, 190, pp. 231–259. 

doi:10.1016/j.ecolmodel.2005.03.026. 

Phillips, S.J. et al. (2009) ‘Sample selection bias and presence-only distribution models: 

implications for background and pseudo-absence data’, Ecological Applications, 19(1), pp. 

181–197. doi:10.1890/07-2153.1. 

Phukan, A.C., Borah, P.K. and Mahanta, J. (2004) ‘Japanese encephalitis in Assam, 

northeast India’, The Southeast Asian Journal of Tropical Medicine and Public Health, 35(3), 

pp. 618–622. 

Pley, C. et al. (2021) ‘Digital and technological innovation in vector-borne disease 

surveillance to predict, detect, and control climate-driven outbreaks’, The Lancet Planetary 

Health, 5(10), pp. e739–e745. doi:10.1016/S2542-5196(21)00141-8. 

Plowright, R.K. et al. (2008) ‘Causal inference in disease ecology: investigating ecological 

drivers of disease emergence’, Frontiers in Ecology and the Environment, 6(8), pp. 420–429. 

doi:10.1890/070086. 

Plowright, R.K. et al. (2017) ‘Pathways to zoonotic spillover’, Nature Reviews Microbiology, 

15(8), pp. 502–510. doi:10.1038/nrmicro.2017.45. 

Plowright, R.K. et al. (2021) ‘Land use-induced spillover: a call to action to safeguard 

environmental, animal, and human health’, The Lancet Planetary Health, 0(0). 

doi:10.1016/S2542-5196(21)00031-0. 

Pongsiri, M.J. et al. (2017) ‘The need for a systems approach to planetary health’, The 

Lancet Planetary Health, 1(7), pp. e257–e259. doi:10.1016/S2542-5196(17)30116-X. 

Popp, A. et al. (2017) ‘Land-use futures in the shared socio-economic pathways’, Global 

Environmental Change, 42, pp. 331–345. doi:10.1016/j.gloenvcha.2016.10.002. 

Potula, R., Badrinath, S. and Srinivasan, S. (2003) ‘Japanese Encephalitis in and around 

Pondicherry, South India: a Clinical Appraisal and Prognostic Indicators for the Outcome’, 

Journal of Tropical Pediatrics, 49(1), pp. 48–53. doi.org/10.1093/tropej/49.1.48. 

Proestos, Y. et al. (2015) ‘Present and future projections of habitat suitability of the Asian 

tiger mosquito, a vector of viral pathogens, from global climate simulation’, Philosophical 

https://doi.org/10.1093/tropej/49.1.48


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

219 
 

Transactions of the Royal Society B: Biological Sciences, 370(1665), pp. 20130554–

20130554. doi:10.1098/rstb.2013.0554. 

Prokop, P. (2020) ‘Remote sensing of severely degraded land: Detection of long-term land-

use changes using high-resolution satellite images on the Meghalaya Plateau, northeast 

India’, Remote Sensing Applications: Society and Environment, 20, p. 100432. 

doi:10.1016/j.rsase.2020.100432. 

Purse, B.V. et al. (2017) ‘How will climate change pathways and mitigation options alter 

incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-

America’, PLOS ONE, 12(10), p. e0183583. doi.org/10.1371/journal.pone.0183583. 

Purse, B.V. et al. (2020) ‘Predicting disease risk areas through co-production of spatial 

models: The example of Kyasanur Forest Disease in India’s forest landscapes’, PLOS 

Neglected Tropical Diseases, 14(4), p. e0008179. doi.org/10.1371/journal.pntd.0008179. 

Qi, Q. et al. (2012) ‘The effects of urbanization on global Plasmodium vivax malaria 

transmission’, Malaria Journal, 11(1), p. 403. doi:10.1186/1475-2875-11-403. 

Quan, T.M. et al. (2020) ‘Estimates of the global burden of Japanese encephalitis and the 

impact of vaccination from 2000-2015’, eLife. Edited by E. Franco, 9, p. e51027. 

doi:10.7554/eLife.51027. 

R Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna, 

Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/. 

Rahman, A.P. (2016) ‘Climate change linked to surge in Japanese encephalitis in North East 

India’, The Third Pole, 12 October. Available at: 

https://www.thethirdpole.net/en/climate/climate-change-linked-to-surge-in-japanese-

encephalitis-in-north-east-india/ (Accessed: 23 March 2022). 

Rajagopalan, P.K. and Panicker, K.N. (1978) ‘A note on the 1976 epidemic of Japanese 

encephalitis in Burdwan district, West Bengal’, The Indian Journal of Medical Research, 68, 

p. 3938. 

Rajavel, A.R. and Natarajan, R. (2008) ‘Mosquitoes of the mangrove forests of India: part 7–

an overview.’, Journal of the American Mosquito Control Association, 24(4), pp. 478–488. 

doi:10.2987/08-5762.1. 

https://doi.org/10.1371/journal.pntd.0008179


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

220 
 

Rajavel, A.R., Natarajan, R. and Vaidyanathan, K. (2005a) ‘Mosquitoes of the mangrove 

forests of India: Part 1--Bhitarkanika, Orissa’, Journal of the American Mosquito Control 

Association, 21(2), pp. 131–135. doi:10.2987/8756-971X(2005)21[131:MOTMFO]2.0.CO;2. 

Rajavel, A.R., Natarajan, R. and Vaidyanathan, K. (2005b) ‘Mosquitoes of the mangrove 

forests of India: Part 2--Sundarbans, West Bengal’, Journal of the American Mosquito 

Control Association, 21(2), pp. 136–138. doi:10.2987/8756-

971X(2005)21[136:MOTMFO]2.0.CO;2. 

Rajavel, A.R., Natarajan, R. and Vaidyanathan, K. (2006a) ‘Mosquitoes of the mangrove 

forests of India: Part 4--Coringa, Andhra Pradesh’, Journal of the American Mosquito Control 

Association, 22(4), pp. 579–581. doi:10.2987/8756-971X(2006)22[579:MOTMFO]2.0.CO;2. 

Rajavel, A.R., Natarajan, R. and Vaidyanathan, K. (2006b) ‘Mosquitoes of the mangrove 

forests of India: Part 6--Kundapur, Karnataka and Kannur, Kerala’, Journal of the American 

Mosquito Control Association, 22(4), pp. 582–585. doi:10.2987/8756-

971X(2006)22[582:MOTMFO]2.0.CO;2. 

Rajendran, R. et al. (2003) ‘Longitudinal studies in South Indian villages on Japanese 

encephalitis virus infection in mosquitoes and seroconversion in goats.’, Tropical medicine & 

international health : TM & IH, 8(2), pp. 174–81. 

Rajeevan, M. et al. (2012) ‘Northeast monsoon over India: variability and prediction’, 

Meteorological Applications, 19(2), pp. 226–236. doi.org/10.1002/met.1322. 

Raju, H.K. et al. (2016) ‘A Preliminary Study to Forecast Japanese Encephalitis Vector 

Abundance in Paddy Growing Area, with the Aid of Radar Satellite Images’, Vector-Borne 

and Zoonotic Diseases, 16(2), pp. 117–123. doi:10.1089/vbz.2014.1757. 

Raju, H.K. et al. (2018) ‘Validating the Association of Japanese Encephalitis Vector 

Abundance with Paddy Growth, Using MODIS Data’, Vector-Borne and Zoonotic Diseases, 

18(10), pp. 560–562. doi:10.1089/vbz.2017.2250. 

Ramasamy, R. and Surendran, S.N. (2012) ‘Global Climate Change and Its Potential Impact 

on Disease Transmission by Salinity-Tolerant Mosquito Vectors in Coastal Zones’, Frontiers 

in Physiology, 3, p. 198. doi:10.3389/fphys.2012.00198. 

Ramesh, D. et al. (2015) ‘Seasonal abundance & role of predominant Japanese encephalitis 

vectors Culex tritaeniorhynchus & Cx. gelidus Theobald in Cuddalore district, Tamil Nadu’, 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

221 
 

The Indian Journal of Medical Research, 142(Suppl 1), pp. S23–S29. doi:10.4103/0971-

5916.176607. 

Ramli, N.S. et al. (2022) ‘Seroepidemiological Studies on Japanese Encephalitis: A 

Systematic Review’, Oman Medical Journal, 37(2), p. e366. doi.org/10.5001/omj.2021.86. 

Randolph, S.E. and Dobson, A.D.M. (2012) ‘Pangloss revisited: a critique of the dilution 

effect and the biodiversity-buffers-disease paradigm’, Parasitology, 139(07), pp. 847–863. 

doi:10.1017/S0031182012000200. 

Rathnayake, C., Joshi, S. and Cerratto-Pargman, T. (2020) ‘Mapping the current landscape 

of citizen-driven environmental monitoring: a systematic literature review’, Sustainability: 

Science, Practice and Policy, 16(1), pp. 326–334. doi:10.1080/15487733.2020.1829845. 

Rattanavong, S. et al. (2020) ‘Spatial epidemiology of Japanese encephalitis virus and other 

infections of the central nervous system infections in Lao PDR (2003–2011): A retrospective 

analysis’, PLOS Neglected Tropical Diseases, 14(5), p. e0008333. 

doi:10.1371/journal.pntd.0008333. 

Ravindranath, N.H. et al. (2011) ‘Climate change vulnerability profiles for North East India’, 

Current Science, 101(3), pp. 384–394. 

Redding, D.W. et al. (2016) ‘Environmental-mechanistic modelling of the impact of global 

change on human zoonotic disease emergence: a case study of Lassa fever’, Methods in 

Ecology and Evolution, 7(6), pp. 646–655. doi:10.1111/2041-210X.12549. 

Redding, D.W., Lucas, T.C.D., Blackburn, T.M. and Jones, Kate E (2017a) ‘Evaluating 

Bayesian spatial methods for modelling species distributions with clumped and restricted 

occurrence data’, PLoS ONE, 12(11), pp. 1–13. doi:10.1371/journal.pone.0187602. 

Redding, D.W., Tiedt, Sonia, Iacono, G.L., Bett, Bernard and Jones, K.E. (2017b) ‘Spatial, 

seasonal and climatic predictive models of Rift Valley fever disease across Africa’, 

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 

372(1725). doi:10.1098/rstb.2016.0165. 

Redding, D.W. et al. (2019) ‘Impacts of environmental and socio-economic factors on 

emergence and epidemic potential of Ebola in Africa’, Nature Communications, 10, p. 4531. 

doi:10.1038/s41467-019-12499-6. 

https://doi.org/10.5001/omj.2021.86


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

222 
 

Reis, R.B. et al. (2008) ‘Impact of environment and social gradient on Leptospira infection in 

urban slums’, PLoS neglected tropical diseases, 2(4), p. e228. 

doi:10.1371/journal.pntd.0000228. 

Reisen, W., Aslamkhan, M. and Basia, R. (1976) ‘The effects of climatic patterns and 

agricultural practices on the population dynamics of Culex tritaeniorhynchus in Asia’, 

Southeast Asian J Trop Med Public Health, 7(61–71). 

Reisen, W.K., Fang, Y. and Martinez, V.M. (2006) ‘Effects of Temperature on the 

Transmission of West Nile Virus by Culex tarsalis (Diptera: Culicidae)’, J. Med. Entomol, 

43(2), pp. 309–317. doi:10.1603/0022-2585(2006)043[0309:EOTOTT]2.0.CO;2. 

Reiter, P. (2001) ‘Climate Change and Mosquito-Borne Disease’, Environmental Health 

Perspectives, 109, pp. 141–161. 

Reiter, P. et al. (2003) ‘Texas Lifestyle Limits Transmission of Dengue Virus’, Emerging 

Infectious Diseases, 9(1), pp. 86–89. doi:10.3201/eid0901.020220. 

Riahi, K. et al. (2017) ‘The Shared Socioeconomic Pathways and their energy, land use, and 

greenhouse gas emissions implications: An overview’, Global Environmental Change, 42, 

pp. 153–168. doi:10.1016/j.gloenvcha.2016.05.009. 

Ribeiro, R. et al. (2019) ‘Using imperfect data in predictive mapping of vectors: a regional 

example of Ixodes ricinus distribution’, Parasites & Vectors, 12(1), p. 536. 

doi.org/10.1186/s13071-019-3784-1. 

Richards, E.E. et al. (2010) ‘The relationship between mosquito abundance and rice field 

density in the Republic of Korea’, International Journal of Health Geographics, 9(1), p. 32. 

doi:10.1186/1476-072X-9-32. 

Richardson, A.J., Taylor, I.R. and Growns, J.E. (2001) ‘The Foraging Ecology of Egrets in 

Rice Fields in Southern New South Wales, Australia’, Waterbirds: The International Journal 

of Waterbird Biology, 24(2), pp. 255–264. doi:10.2307/1522039. 

Rinaldo, D. et al. (2021) ‘The economic impact of schistosomiasis’, Infectious Diseases of 

Poverty, 10(1), p. 134. doi.org/10.1186/s40249-021-00919-z. 

Roberts, D.R. et al. (2017) ‘Cross-validation strategies for data with temporal, spatial, 

hierarchical, or phylogenetic structure’, Ecography, 40(8), pp. 913–929. 

doi:10.1111/ecog.02881. 

https://doi.org/10.1186/s13071-019-3784-1
https://doi.org/10.1186/s40249-021-00919-z


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

223 
 

Robertson, C. et al. (2013) ‘Comparative Spatial Dynamics of Japanese Encephalitis and 

Acute Encephalitis Syndrome in Nepal’, PLOS ONE, 8(7), p. e66168. 

doi:10.1371/journal.pone.0066168. 

Roche, B. et al. (2013) ‘The impact of community organization on vector-borne pathogens.’, 

The American naturalist, 181(1), pp. 1–11. doi:10.1086/668591. 

Rocklöv, J. and Dubrow, R. (2020) ‘Climate change: an enduring challenge for vector-borne 

disease prevention and control’, Nature Immunology, 21(5), pp. 479–483. 

doi:10.1038/s41590-020-0648-y. 

Rohat, G. et al. (2020) ‘Intersecting vulnerabilities: climatic and demographic contributions to 

future population exposure to Aedes-borne viruses in the United States’, Environmental 

Research Letters, 15(8), p. 084046. doi.org/10.1088/1748-9326/ab9141. 

Roiz, D. et al. (2014) ‘Climatic effects on mosquito abundance in Mediterranean wetlands’, 

Parasites & Vectors, 7(1), p. 333. doi:10.1186/1756-3305-7-333. 

Romanelli, C. et al. (2015) Connecting global priorities: biodiversity and human health: a 

state of knowledge review. World Health Organization and Secretariat of the Convention on 

Biological Diversity, p. 344. doi.org/10.13140/RG.2.1.3679.6565 

Roy, A. et al. (2015) ‘Food Security in North-East Region of India — A State-wise Analysis’, 

in Agricultural Economics Research Review. Analysis, Agricultural Economics Research 

Association (India). 

RStudio Team (2020) RStudio: Integrated Development Environment for R. Boston, MA: 

RStudio, PBC. Available at: http://www.rstudio.com/. 

Rue, H., Martino, S. and Chopin, N. (2009) ‘Approximate Bayesian inference for latent 

Gaussian models by using integrated nested Laplace approximations’, Journal of the Royal 

Statistical Society: Series B (Statistical Methodology), 71(2), pp. 319–392. 

doi:10.1111/j.1467-9868.2008.00700.x. 

Rueda Páramo, M.E., López Lastra, C.C. and García, J.J. (2015) ‘Persistence and 

pathogenicity of a native isolate of Leptolegnia chapmanii against Aedes aegypti larvae in 

different anthropic environments’, Biocontrol Science and Technology, 25(2), pp. 238–243. 

doi:10.1080/09583157.2014.967177. 

https://doi.org/10.1088/1748-9326/ab9141


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

224 
 

Rund, S.S.C. et al. (2019) ‘Rescuing troves of hidden ecological data to tackle emerging 

mosquito-borne diseases’, Journal of the American Mosquito Control Association, 35(1), pp. 

75–83. doi:10.2987/18-6781.1. 

Russell, R.C. et al. (2009) ‘Dengue and climate change in Australia: predictions for the future 

should incorporate knowledge from the past’, Medical Journal of Australia, 190(5). 

Russell, M.C. et al. (2022) ‘Both consumptive and non-consumptive effects of predators 

impact mosquito populations and have implications for disease transmission’, eLife. Edited 

by S.E. Cobey, C. Rutz, and A. Meadows, 11, p. e71503. doi:10.7554/eLife.71503. 

Ryan, S.J. et al. (2015) ‘Mapping Physiological Suitability Limits for Malaria in Africa Under 

Climate Change’, 15(12), pp. 718–725. doi:10.1089/vbz.2015.1822. 

Ryan, S.J., Carlson, Colin J., et al. (2019) ‘Global expansion and redistribution of Aedes-

borne virus transmission risk with climate change’, PLOS Neglected Tropical Diseases, 

13(3), p. e0007213. doi:10.1371/journal.pntd.0007213. 

Sabesan, S., Raju Konuganti, H.K. and Perumal, V. (2008) ‘Spatial Delimitation, Forecasting 

and Control of Japanese Encephalitis: India - A Case Study’, The Open Parasitology 

Journal, 2(1), pp. 59–63. doi:10.2174/1874421400802010059. 

Sachs, J. and Malaney, P. (2002) ‘The economic and social burden of malaria’, Nature, 415, 

p. 680. 

SAGE Working Group on Japanese encephalitis vaccines (2014) Background Paper on 

Japanese Encephalitis Vacccines. SAGE Working Group on Japanese encephalitis 

vaccines. Available at: 

https://www.who.int/immunization/sage/meetings/2014/october/1_JE_Vaccine_Background_

Paper.pdf (Accessed: 29 January 2021). 

Saikia, A. (2017) Japanese encephalitis continues to kill in Assam despite immunisation 

against the virus, Scroll.in. Available at: https://scroll.in/pulse/845647/japanese-

encephalitis%EF%BF%BEcontinues-to-kill-in-assam-despite-

immunisation%EF%BF%BEagainst-the-virus (Accessed: 8 January 2023). 

Sakamoto, R. et al. (2019) ‘Flourishing Japanese Encephalitis, Associated with Global 

Warming and Urbanisation in Asia, Demands Widespread Integrated Vaccination 

Programmes’, Annals of Global Health, 85(1), p. 111. doi.org/10.5334/aogh.2580. 

https://doi.org/10.5334/aogh.2580


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

225 
 

Saker, L. et al. (2004) Globalization and infectious diseases: a review of the linkages. 

Geneva, Sw. 

Salahi-Moghaddam, A. et al. (2017) ‘Spatial changes in the distribution of malaria vectors 

during the past 5 decades in Iran’, Acta Tropica, 166, pp. 45–53. 

doi:https://doi.org/10.1016/j.actatropica.2016.11.001. 

Samaranayake, N., Limaye, S. and Wuthnow, J. (2016) Water Resource Competition in the 

Brahmaputra River Basin: China, India and Bangladesh. Arlington, VA: CNA Analysis and 

Solutions. Available at: https://www.cna.org/cna_files/pdf/cna-brahmaputra-study-2016.pdf 

(Accessed: 21 February 2022). 

Samuel, P.P. et al. (2010) ‘Temporal Variation in the Susceptibility of Culex tritaeniorhynchus 

(Diptera: Culicidae) to Japanese Encephalitis Virus in an Endemic Area of Tamil Nadu, 

South India’, Vector-Borne and Zoonotic Diseases, 10(10), pp. 1003–1008. 

doi:10.1089/vbz.2009.0072. 

Samuel, P.P. et al. (2016) ‘Japanese Encephalitis vector abundance and infection frequency 

in Cuddalore District, Tamil Nadu, India: a five-year longitudinal study’, Journal of 

Entomological and Acarological Research, 48(3), pp. 366–371. doi:10.4081/jear.2016.5630. 

Samy, A.M. et al. (2016) ‘Climate Change Influences on the Global Potential Distribution of 

the Mosquito Culex quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis’, 

Plos One, 11(10), p. e0163863. doi:10.1371/journal.pone.0163863. 

Samy, A.M. et al. (2018) ‘Mapping the potential distributions of etiological agent, vectors, and 

reservoirs of Japanese Encephalitis in Asia and Australia’, Acta Tropica, 188, pp. 108–117. 

doi:10.1016/j.actatropica.2018.08.014. 

Sarkar, A. et al. (2012) ‘Influence of socio-economic status and environmental factors on 

serologically diagnosed Japanese encephalitis cases in the state of West Bengal, India 

during 2005-2010’, Health, 4(1), pp. 6–12. doi:10.4236/health.2012.41002. 

Sarkar, A. et al. (2013) ‘Envelope protein gene based molecular characterization of 

Japanese encephalitis virus clinical isolates from West Bengal, India: a comparative 

approach with respect to SA14-14-2 live attenuated vaccine strain’, BMC infectious 

diseases, 13, p. 368. doi:10.1186/1471-2334-13-368. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

226 
 

Sarma, N. et al. (2019) ‘The Economic Burden of Malaria: Revisiting the Evidence’, The 

American Journal of Tropical Medicine and Hygiene, 101(6), pp. 1405–1415. 

doi:10.4269/ajtmh.19-0386. 

Scherer, W.F. et al. (1959) ‘Ecologic Studies of Japanese Encephalitis Virus in Japan VI. 

Swine Infection’, The American Society of Tropical Medicine and Hygiene, 8, pp. 698–706. 

Scherer, W.F. and Buescher, E.L. (1959) ‘Ecologic studies of Japanese encephalitis virus in 

Japan. I. Introduction’, American Journal of Tropical Medicine and Hygiene, 8. 

Scherer, W.F., Buescher, E.L. and McClure, H.E. (1959) ‘Ecologic Studies of Japanese 

Encephalitis Virus in Japan V. Avian Factors’, The American Society of Tropical Medicine 

and Hygiene, 8, pp. 689–697. 

Schuh, A.J. et al. (2013) ‘Phylogeography of Japanese Encephalitis Virus: Genotype Is 

Associated with Climate’, PLoS Neglected Tropical Diseases, 7(8), p. e2411. 

doi.org/10.1371/journal.pntd.0002411. 

Schuh, A.J. et al. (2014) ‘Dynamics of the Emergence and Establishment of a Newly 

Dominant Genotype of Japanese Encephalitis Virus throughout Asia’, Journal of Virology, 

88(8), pp. 4522–4532. doi:10.1128/JVI.02686-13. 

Seidahmed, O.M.E. et al. (2018) ‘Patterns of Urban Housing Shape Dengue Distribution in 

Singapore at Neighborhood and Country Scales’, GeoHealth, 2(1), pp. 54–67. 

doi:10.1002/2017GH000080. 

Semenza, J.C. et al. (2016) ‘Climate change projections of West Nile virus infections in 

Europe: implications for blood safety practices’, Environmental Health. London. 

doi:10.1186/s12940-016-0105-4. 

Service, M.W. (1991) ‘Agricultural development and arthropod-borne diseases: a review.’, 

Revista de Saude Publica, 25(3), pp. 165–178. doi:10.1590/S0034-89101991000300002. 

Shah, H.A. et al. (2019) ‘Agricultural land-uses consistently exacerbate infectious disease 

risks in Southeast Asia’, Nature Communications, 10(1), p. 4299. doi:10.1038/s41467-019-

12333-z. 

Sharma, R. et al. (2012) ‘Media scanning and verification system as a supplemental tool to 

disease outbreak detection & reporting at National Centre for Disease Control, Delhi’, The 

Journal of Communicable Diseases, 44(1), pp. 9–14. 

https://doi.org/10.1371/journal.pntd.0002411


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

227 
 

Shukla, R., Chakraborty, A. and Joshi, P.K. (2017) ‘Vulnerability of agro-ecological zones in 

India under the earth system climate model scenarios’, Mitigation and Adaptation Strategies 

for Global Change; Dordrecht, 22(3), pp. 399–425. 

doi.org.libproxy.ucl.ac.uk/10.1007/s11027-015-9677-5. 

Simpson, D.P. et al. (2017) ‘Penalising model component complexity: A principled, practical 

approach to constructing priors’, Statistical Science, 32(1), pp. 1–28. 

Singer, M. and Bulled, N. (2013) ‘Interlocked infections: the health burdens of syndemics of 

neglected tropical diseases’, Annals of Anthropological Practice, 36, pp. 328–345. 

Singh, A. et al. (2015) ‘A Japanese Encephalitis Vaccine From India Induces Durable and 

Cross-protective Immunity Against Temporally and Spatially Wide-ranging Global Field 

Strains’, The Journal of Infectious Diseases, 212(5), pp. 715–725. 

doi.org/10.1093/infdis/jiv023. 

Singh, B. et al. (2021) ‘Growing Rice with Less Water: Improving Productivity by Decreasing 

Water Demand’, in Ali, J. and Wani, S.H. (eds) Rice Improvement: Physiological, Molecular 

Breeding and Genetic Perspectives. Cham: Springer International Publishing, pp. 147–170. 

doi:10.1007/978-3-030-66530-2_5. 

Singh, H., Singh, N. and Mall, R.K. (2020) ‘Japanese Encephalitis and Associated 

Environmental Risk Factors in Eastern Uttar Pradesh: A time series analysis from 2001 to 

2016’, Acta Tropica, 212, p. 105701. doi:10.1016/j.actatropica.2020.105701. 

Singh, L.S. et al. (2019) ‘A descriptive study on prevalence pattern of Japanese encephalitis 

in State of Manipur’, Indian Journal of Medical Microbiology, 37(2), pp. 235–240. 

doi:10.4103/ijmm.IJMM_18_180. 

Singh, R.K. et al. (2020) ‘Hydrodynamic modeling for identifying flood vulnerability zones in 

lower Damodar river of eastern India’, Ain Shams Engineering Journal, 11(4), pp. 1035–

1046. doi:10.1016/j.asej.2020.01.011. 

Singha, M. et al. (2019) ‘High resolution paddy rice maps in cloud-prone Bangladesh and 

Northeast India using Sentinel-1 data’, Scientific Data, 6(1), p. 26. doi:10.1038/s41597-019-

0036-3. 

Sinka, M.E. et al. (2021) ‘HumBug – An Acoustic Mosquito Monitoring Tool for use on budget 

smartphones’, Methods in Ecology and Evolution, 12(10), pp. 1848–1859. doi:10.1111/2041-

210X.13663. 

https://doi.org/10.1093/infdis/jiv023


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

228 
 

Siraj, A. et al. (2014) ‘Altitudinal changes in malaria incidence in highlands of Ethiopia and 

Colombia’, Science, 343(March), pp. 1154–1158. doi:10.1126/science.1244325. 

Slatculescu, A.M. et al. (2020) ‘Species distribution models for the eastern blacklegged tick, 

Ixodes scapularis, and the Lyme disease pathogen, Borrelia burgdorferi, in Ontario, Canada’, 

PLOS ONE, 15(9), p. e0238126. doi.org/10.1371/journal.pone.0238126. 

Smith, D.L., Dushoff, J. and McKenzie, F.E. (2004) ‘The Risk of a Mosquito-Borne Infection 

in a Heterogeneous Environment’, PLoS Biology. Edited by Andy P. Dobson, 2(11), p. e368. 

doi:10.1371/journal.pbio.0020368. 

Smith, G.C. et al. (2008) ‘What is the future of wildlife rabies control in Europe?’, 

Developments in Biologicals, 131, pp. 283–289. 

Smith, K.F. et al. (2014) ‘Global rise in human infectious disease outbreaks’, Journal of The 

Royal Society Interface, 11(101), p. 20140950. doi:10.1098/rsif.2014.0950. 

SoIB (2020a) State of India’s Birds factsheet: Black-crowned Night Heron Nycticorax 

nycticorax, State of India’s Birds. Available at: 

https://www.stateofindiasbirds.in/species/bcnher/ (Accessed: 4 March 2022). 

SoIB (2020b) State of India’s Birds factsheet: Cattle Egret Bubulcus ibis, State of India’s 

Birds. Available at: https://www.stateofindiasbirds.in/species/categr/ (Accessed: 4 March 

2022). 

SoIB (2020c) State of India’s Birds factsheet: Indian Pond Heron Ardeola grayii, State of 

India’s Birds. Available at: https://www.stateofindiasbirds.in/species/inpher1/ (Accessed: 4 

March 2022). 

SoIB (2020d) State of India’s Birds factsheet: Intermediate Egret Ardea intermedia, State of 

India’s Birds. Available at: https://www.stateofindiasbirds.in/species/integr/ (Accessed: 4 

March 2022). 

SoIB (2020e) State of India’s Birds factsheet: Little Egret Egretta garzetta, State of India’s 

Birds. Available at: https://www.stateofindiasbirds.in/species/litegr/ (Accessed: 4 March 

2022). 

Sokolow, S.H. et al. (2015) ‘Reduced transmission of human schistosomiasis after 

restoration of a native river prawn that preys on the snail intermediate host’, Proceedings of 

the National Academy of Sciences, 112(31), pp. 9650–9655. doi:10.1073/pnas.1502651112. 

https://doi.org/10.1371/journal.pone.0238126


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

229 
 

Sokolow, S.H. et al. (2017) ‘Nearly 400 million people are at higher risk of schistosomiasis 

because dams block the migration of snail-eating river prawns’, Philosophical Transactions 

of the Royal Society B: Biological Sciences, 372(1722). doi:10.1098/rstb.2016.0127. 

Sokolow, S.H. et al. (2022) ‘Ecological and socioeconomic factors associated with the 

human burden of environmentally mediated pathogens: a global analysis’, The Lancet 

Planetary Health, 6(11), pp. e870–e879. doi.org/10.1016/S2542-5196(22)00248-0. 

Solomon, T. et al. (2000) ‘Japanese encephalitis’, Journal of Neurosurgery and Psychiatry, 

68, pp. 405–415. 

Solomon, T. and Vaughn, D.W. (2002) ‘Pathogenesis and clinical features of Japanese 

encephalitis and West Nile virus infections’, Current Topics in Microbiology and Immunology, 

267, pp. 171–194. doi.org/10.1007/978-3-642-59403-8_9. 

Solomon, T. (2006) ‘Control of Japanese encephalitis-within our grasp?’, New England 

Journal of Medicine, 355. doi:10.1056/NEJMp058263. 

Song, X.-P. et al. (2018) ‘Global land change from 1982 to 2016’, Nature [Preprint]. 

doi:10.1038/s41586-018-0411-9. 

Soti, V. et al. (2012) ‘Combining hydrology and mosquito population models to identify the 

drivers of Rift Valley fever emergence in semi-arid regions of West Africa’, PLoS Negl Trop 

Dis, 6(8), p. e1795. doi:10.1371/journal.pntd.0001795. 

Sousa, L.B. et al. (2022) ‘Methodological Diversity in Citizen Science Mosquito Surveillance: 

A Scoping Review’, Citizen Science: Theory and Practice, 7(1), p. 8. doi:10.5334/cstp.469. 

Srivastava, V.K., Singh, A. and Thapar, B.R. (2008) ‘Field evaluation of malathion fogging 

against Japanese encephalitis vector, Culex tritaeniorhynchus’, Journal of Vector Borne 

Diseases, 45(3), pp. 249–250. 

Stamatis, D.H. (2014) Introduction to Risk and Failures: Tools and Methodologies. CRC 

Press. doi:10.1201/b16855. 

Stanaway, J.D. et al. (2016) ‘The global burden of dengue: an analysis from the Global 

Burden of Disease Study 2013’, The Lancet Infectious Diseases, 16(6), pp. 712–723. 

doi:10.1016/S1473-3099(16)00026-8. 

https://doi.org/10.1007/978-3-642-59403-8_9


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

230 
 

Steffen, W. et al. (2011) ‘The anthropocene: Conceptual and historical perspectives’, 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 

Sciences, 369(1938), pp. 842–867. doi:10.1098/rsta.2010.0327. 

Steffen, W. et al. (2015) ‘Planetary boundaries: guiding human development on a changing 

planet.’, Science (New York, N.Y.), 347(6223), p. 1259855. doi:10.1126/science.1259855. 

Stewart Ibarra, A.M. et al. (2013) ‘Dengue Vector Dynamics (Aedes aegypti) Influenced by 

Climate and Social Factors in Ecuador: Implications for Targeted Control’, PLOS ONE, 

8(11), p. e78263. 

Stoddard, S.T. et al. (2009) ‘The Role of Human Movement in the Transmission of Vector-

Borne Pathogens’, PLOS Neglected Tropical Diseases, 3(7), p. e481. 

doi.org/10.1371/journal.pntd.0000481. 

Stratton, L. et al. (2008) ‘The persistent problem of malaria: Addressing the fundamental 

causes of a global killer’, Social Science and Medicine, 67(5), pp. 854–862. 

doi:10.1016/j.socscimed.2008.05.013. 

Sudjaritruk, T. et al. (2022) ‘Seroepidemiological study of Japanese encephalitis virus in 

Chiang Mai: Immunity and susceptibility 28 years after introduction of a vaccination 

programme’, PLOS Neglected Tropical Diseases, 16(8), p. e0010674. 

doi.org/10.1371/journal.pntd.0010674. 

Sunwoo, J.-S. et al. (2016) ‘Reemergence of Japanese Encephalitis in South Korea, 2010-

2015’, Emerging Infectious Diseases, 22(10), pp. 1841–1843. 

doi.org/10.3201/eid2210.160288. 

Suryanarayana Murty, U. et al. (2002) ‘Seasonal prevalence of Culex vishnui subgroup, the 

major vectors of Japanese encephalitis virus in an endemic district of Andhra Pradesh, 

India.’, Journal of the American Mosquito Control Association, 18(4), pp. 290–3. 

Suryanarayana Murty, U., Srinivasa Rao, M. and Arunachalam, N. (2010) ‘The effects of 

climatic factors on the distribution and abundance of Japanese encephalitis vectors in 

Kurnool district of Andhra Pradesh, India’, Journal of Vector Borne Diseases, (47), pp. 26–

32. 

Sutherst, R.W. (2004) ‘Global Change and Human Vulnerability to Vector-Borne Diseases 

Global Change and Human Vulnerability to Vector-Borne Diseases’, Clinical Microbiology 

Reviews, 17(1), pp. 136–173. doi:10.1128/CMR.17.1.136. 

https://doi.org/10.1371/journal.pntd.0000481
https://doi.org/10.1371/journal.pntd.0010674
https://doi.org/10.3201/eid2210.160288


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

231 
 

Swei, A. et al. (2020) ‘Patterns, Drivers, and Challenges of Vector-Borne Disease 

Emergence’, Vector Borne and Zoonotic Diseases, 20(3), pp. 159–170. 

doi:10.1089/vbz.2018.2432. 

Tabachnick, W.J. (2010) ‘Challenges in predicting climate and environmental effects on 

vector-borne disease episystems in a changing world’, The Journal of Experimental Biology, 

213(6), pp. 946–954. doi:10.1242/jeb.037564. 

Tandale, B.V. et al. (2018) ‘Effectiveness of Japanese encephalitis SA 14-14-2 live 

attenuated vaccine among Indian children: Retrospective 1:4 matched case-control study’, 

Journal of Infection and Public Health, 11(5), pp. 713–719. 

doi.org/10.1016/j.jiph.2018.04.011. 

Tatem, A.J. et al. (2013) ‘Urbanization and the global malaria recession’, Malaria Journal, 12, 

p. 133. 

Tennant, W.S.D. et al. (2021) ‘Modelling the persistence and control of Rift Valley fever virus 

in a spatially heterogeneous landscape’, Nature Communications, 12(1), p. 5593. 

doi:10.1038/s41467-021-25833-8. 

The National Center for Atmospheric Research (2020) The climate data guide: Palmer 

drought severity index (PDSI). Available at: https://climatedataguide.ucar.edu/climate-

data/palmer-drought-severity-index-pdsi (Accessed: 18 January 2022). 

The World Bank (2016) The United Nations Population Divisions World Urbanization 

Prospects: Urban population (% of total). Available at: 

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?view=chart (Accessed: 31 August 

2017). 

Thenmozhi, V. et al. (2013) ‘Japanese encephalitis virus isolation from mosquitoes during an 

outbreak in 2011 in Alappuzha district, Kerala’, Journal of Vector Borne Diseases, 50(3), pp. 

229–231. 

Thomas, S.M. et al. (2014) ‘Implementing cargo movement into climate based risk 

assessment of vector-borne diseases’, International Journal of Environmental Research and 

Public Health, 11(3), pp. 3360–3374. doi:10.3390/ijerph110303360. 

Thumbi, S.M. et al. (2019) ‘Mobile phone-based surveillance for animal disease in rural 

communities: implications for detection of zoonoses spillover’, Philosophical Transactions of 

https://doi.org/10.1016/j.jiph.2018.04.011


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

232 
 

the Royal Society B: Biological Sciences, 374(1782), p. 20190020. 

doi:10.1098/rstb.2019.0020. 

Tian, H.Y. et al. (2015) ‘How environmental conditions impact mosquito ecology and 

Japanese encephalitis: An eco-epidemiological approach’, Environment International, 79, pp. 

17–24. doi:10.1016/j.envint.2015.03.002. 

Tjaden, N.B. et al. (2013) ‘Extrinsic Incubation Period of Dengue: Knowledge, Backlog, and 

Applications of Temperature Dependence’, PLOS Neglected Tropical Diseases, 7(6), p. 

e2207. 

Tjaden, N.B. et al. (2017) ‘Modelling the effects of global climate change on Chikungunya 

transmission in the 21st century’, Scientific Reports, 7(1), p. 3813. doi:10.1038/s41598-017-

03566-3. 

Tjaden, N.B. et al. (2018) ‘Mosquito-Borne Diseases: Advances in Modelling Climate-

Change Impacts’, Trends in Parasitology, 34(3), pp. 227–245. doi:10.1016/j.pt.2017.11.006. 

Tricco, A.C. et al. (2015) ‘A scoping review of rapid review methods’, BMC Medicine, 13(1), 

p. 224. doi.org/10.1186/s12916-015-0465-6. 

Trienekens, S.C.M. et al. (2022) ‘Variation in water contact behaviour and risk of 

Schistosoma mansoni (re)infection among Ugandan school-aged children in an area with 

persistent high endemicity’, Parasites & Vectors, 15(1), p. 15. doi.org/10.1186/s13071-021-

05121-6. 

Tolle, M.A. (2009) ‘Mosquito-borne Diseases’, Current Problems in Pediatric and Adolescent 

Health Care, 39(4), pp. 97–140. doi:10.1016/j.cppeds.2009.01.001. 

Tompkins, A.M. and Caporaso, L. (2016) ‘Assessment of malaria transmission changes in 

Africa, due to the climate impact of land use change using Coupled Model Intercomparison 

Project Phase 5 earth system models’, Geospatial Health, 11(1 Suppl), p. 380. 

doi:10.4081/gh.2016.380. 

Tompkins, A.M. and Ermert, V. (2013) ‘A regional-scale, high resolution dynamical malaria 

model that accounts for population density, climate and surface hydrology’, Malaria Journal, 

12(1), p. 65. doi:10.1186/1475-2875-12-65. 

Trájer, A. et al. (2014) ‘Seasonality and geographical occurrence of West Nile fever and 

distribution of Asian tiger mosquito’, Idojaras, 118(1), pp. 19–40. 

https://doi.org/10.1186/s13071-021-05121-6
https://doi.org/10.1186/s13071-021-05121-6


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

233 
 

Trawinski, P.R. and Mackay, D.S. (2010) ‘Identification of Environmental Covariates of West 

Nile Virus Vector Mosquito Population Abundance’, Vector-Borne and Zoonotic Diseases, 

10(5), pp. 515–526. doi:10.1089/vbz.2008.0063. 

Tu, T. et al. (2021) ‘Association between meteorological factors and the prevalence 

dynamics of Japanese encephalitis’, PLOS ONE, 16(3), p. e0247980. 

doi:10.1371/journal.pone.0247980. 

Turtle, L. and Solomon, T. (2018) ‘Japanese encephalitis — the prospects for new 

treatments’, Nature Reviews Neurology, 14(5), pp. 298–313. doi:10.1038/nrneurol.2018.30. 

Tyagi, B. et al. (2016) ‘Determination of critical density and vectorial capacity for Culex 

tritaeniorhynchus Giles, 1901 (Diptera: Culicidae), the primary vector for Japanese 

encephalitis in southern India’, International Journal of Mosquito Research, 3(2), pp. 39–46. 

UN Global Pulse (2012) Big Data for Development: Opportunities and Challenges. Available 

at: https://www.unglobalpulse.org/wp-content/uploads/2012/05/BigDataforDevelopment-

UNGlobalPulseMay2012.pdf (Accessed: 9 March 2022). 

UNDP and OPHI (2021) Global Multidimensional Poverty Index 2021 – Unmasking 

disparities by ethnicity, caste and gender. United Nations Development Programme and 

Oxford Poverty and Human Development Initiative. Available at: https://ophi.org.uk/wp-

content/uploads/UNDP_OPHI_GMPI_2021_Report_Unmasking.pdf. 

UNECE (2021) Water-food-energy-ecosystem nexus, UNECE. Available at: 

https://unece.org/environment-policy/water/areas-work-convention/water-food-energy-

ecosystem-nexus (Accessed: 7 March 2022). 

United Nations, Department of Economic and Social Affairs, P.D. (2014) World Urbanization 

Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352). New York. 

Urfi, A.J. (2011) ‘Climate change and its impacts on Indian birds: monsoon phenology and 

monitoring heronry birds’, Current Science, 101(9), pp. 1140–1142. 

Utzinger, J. and Tanner, M. (2013) ‘Socioeconomic development to fight malaria, and 

beyond’, The Lancet, 382(9896), pp. 920–922. doi:10.1016/S0140-6736(13)61211-8. 

Valavi, R. et al. (2019) ‘blockCV: An r package for generating spatially or environmentally 

separated folds for k-fold cross-validation of species distribution models’, Methods in 

Ecology and Evolution, 10(2), pp. 225–232. doi:10.1111/2041-210X.13107. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

234 
 

Valdez, L D et al. (2017) ‘Effects of rainfall on Culex mosquito population dynamics’, Journal 

of Theoretical Biology, 421, pp. 28–38. doi:https://doi.org/10.1016/j.jtbi.2017.03.024. 

Vannice, K.S. et al. (2021) ‘The future of Japanese encephalitis vaccination: expert 

recommendations for achieving and maintaining optimal JE control’, npj Vaccines, 6(1), pp. 

1–9. doi:10.1038/s41541-021-00338-z. 

Vanwambeke, S.O. and Schimit, P.H.T. (2021) ‘Tick bite risk resulting from spatially 

heterogeneous hazard, exposure and coping capacity’, Ecological Complexity, 48, p. 

100967. doi.org/10.1016/j.ecocom.2021.100967. 

Vasconcelos, D. et al. (2019) ‘LOCOMOBIS: a low-cost acoustic-based sensing system to 

monitor and classify mosquitoes’, in 2019 16th IEEE Annual Consumer Communications 

Networking Conference (CCNC). 2019 16th IEEE Annual Consumer Communications 

Networking Conference (CCNC), pp. 1–6. doi:10.1109/CCNC.2019.8651767. 

Vasconcelos, P.F.C. et al. (2001) ‘Inadequate management of natural ecosystem in the 

Brazilian Amazon region results in the emergence and reemergence of arboviruses’, 

Cadernos de Saúde Pública, 17(suppl), pp. S155–S164. doi:10.1590/S0102-

311X2001000700025. 

Vashishtha, V.M. and Ramachandran, V. (2015) ‘Vaccination Policy for Japanese 

Encephalitis in India: Tread with Caution!’, INDIAN PEDIATRICS, 52, p. 3. 

Vaughn, D.W. and Hoke, C.H. (1992) ‘The Epidemiology of Japanese Encephalitis: 

Prospects for Prevention’, Epidemiologic Reviews, 14(1), pp. 197–221. 

doi:10.1093/oxfordjournals.epirev.a036087. 

Verhoef, F.A., Venter, G.J. and Weldon, C.W. (2014) ‘Thermal limits of two biting midges, 

Culicoides imicola Kieffer and C. bolitinos Meiswinkel (Diptera: Ceratopogonidae)’, Parasites 

& Vectors, 7, p. 384. doi.org/10.1186/1756-3305-7-384. 

Vittor, A.Y. et al. (2009) ‘Linking Deforestation to Malaria in the Amazon: Characterization of 

the Breeding Habitat of the Principal Malaria Vector, Anopheles darlingi’, The American 

journal of tropical medicine and hygiene, 81(1), pp. 5–12. 

van Vuuren, D.P. et al. (2011) ‘The representative concentration pathways: an overview’, 

Climatic Change, 109(1), p. 5. doi:10.1007/s10584-011-0148-z. 

https://doi.org/10.1016/j.ecocom.2021.100967
https://doi.org/10.1186/1756-3305-7-384


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

235 
 

Vythilingam, I. et al. (1997) ‘Abundance, parity, and Japanese encephalitis virus infection of 

mosquitoes (Diptera:Culicidae) in Sepang District, Malaysia.’, Journal of medical 

entomology, 34(3), pp. 257–262. 

Wada, Y. et al. (1975) ‘Ecology of Japanese encephalitis virus in Japan. II. The population of 

vector mosquitoes and the epidemic of Japanese encephalitis’, Tropical Medicine, 17(3), pp. 

111–127. 

Walker, P.G.T. et al. (2020) ‘The impact of COVID-19 and strategies for mitigation and 

suppression in low- and middle-income countries’, Science, 369(6502), pp. 413–422. 

doi:10.1126/science.abc0035. 

Walsh, A.S. et al. (2008) ‘Predicting seasonal abundance of mosquitoes based on off-

season meteorological conditions’, Environmental and Ecological Statistics, 15(3), pp. 279–

291. doi:10.1007/s10651-007-0056-6. 

Walsh, M.G. et al. (2021) ‘High risk landscapes of Japanese encephalitis virus outbreaks in 

India converge on wetlands, rainfed agriculture, wild Ardeidae, and domestic pigs’. medRxiv, 

p. 2021.09.07.21263238. doi:10.1101/2021.09.07.21263238. 

Wang, L. et al. (2014) ‘The role of environmental factors in the spatial distribution of 

Japanese encephalitis in mainland China’, Environment International, 73, pp. 1–9. 

doi:10.1016/j.envint.2014.07.004. 

Wangchuk, S. et al. (2020) ‘Japanese Encephalitis Virus as Cause of Acute Encephalitis, 

Bhutan’, Emerging Infectious Diseases, 26(9). doi:10.3201/eid2609.200620. 

Warren, R. et al. (2018) ‘The projected effect on insects, vertebrates, and plants of limiting 

global warming to 1.5°C rather than 2°C’, Science, 360(6390), pp. 791–795. 

doi:10.1126/science.aar3646. 

Washburne, A.D. et al. (2019) ‘Percolation models of pathogen spillover’, Philosophical 

Transactions of the Royal Society B: Biological Sciences, 374(1782), p. 20180331. 

doi:10.1098/rstb.2018.0331. 

Watts, N. et al. (2017) ‘The Lancet Countdown on health and climate change: From 25 years 

of inaction to a global transformation for public health’, The Lancet, 6736(17). 

doi:10.1016/S0140-6736(17)32464-9. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

236 
 

Watts, N. et al. (2021) ‘The 2020 report of The Lancet Countdown on health and climate 

change: responding to converging crises’, The Lancet, 397(10269), pp. 129–170. 

doi:10.1016/S0140-6736(20)32290-X. 

Waugh, C., Lam, S.S. and Sonne, C. (2020) ‘One Health or Planetary Health for pandemic 

prevention?’, The Lancet, 396(10266), p. 1882. doi:10.1016/S0140-6736(20)32387-4. 

Weaver, S.C. (2013) ‘Urbanization and geographic expansion of zoonotic arboviral diseases: 

Mechanisms and potential strategies for prevention’, Trends in Microbiology, 21(8), pp. 360–

363. doi:10.1016/j.tim.2013.03.003. 

Weaver, S.C. and Reisen, W.K. (2010) ‘Present and future arboviral threats’, Antiviral 

Research, 85(2), pp. 328–345. doi:10.1016/j.antiviral.2009.10.008. 

Wesolowski, A. et al. (2015) ‘Impact of human mobility on the emergence of dengue 

epidemics in Pakistan’, PNAS, 112(38), pp. 11887–11892. doi:10.1073/pnas.1504964112. 

Westbrook, C.J. et al. (2010) ‘Larval environmental temperature and the susceptibility of 

Aedes albopictus Skuse (Diptera: Culicidae) to Chikungunya virus.’, Vector borne and 

zoonotic diseases, 10(3), pp. 241–247. doi:10.1089/vbz.2009.0035. 

White, S.M. et al. (2017) ‘Mechanistic model for predicting the seasonal abundance of 

Culicoides biting midges and the impacts of insecticide control’, Parasites & Vectors, 10(1), 

p. 162. doi:10.1186/s13071-017-2097-5. 

Whitmee, S. et al. (2015) ‘Safeguarding human health in the Anthropocene epoch: Report of 

the Rockefeller Foundation-Lancet Commission on planetary health’, The Lancet, 

386(10007), pp. 1973–2028. doi:10.1016/S0140-6736(15)60901-1. 

WHO (2010) ‘First WHO report on neglected tropical diseases: working to overcome the 

global impact of neglected tropical diseases’, World Health Organization, pp. 1–184. 

doi:10.1177/1757913912449575. 

WHO (2011) mHealth: new horizons for health through mobile technologies. Geneva, 

Switzerland: World Health Organization. Available at: 

https://www.who.int/goe/publications/goe_mhealth_web.pdf. 

WHO (2012) ‘Global Strategy for Dengue Prevention and Control 2012–2020’, World Health 

Organiszation, p. 43. doi:/entity/denguecontrol/9789241504034/en/index.html. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

237 
 

WHO (2014) A global brief on vector-borne diseases. Geneva, Sw. 

WHO (2015a) Japanese encephalitis. Available at: 

http://www.who.int/mediacentre/factsheets/fs386/en/ (Accessed: 4 September 2017). 

WHO (2015b) ‘Japanese Encephalitis Vaccines: WHO position paper’, Weekly 

Epidemiological Record, 90, pp. 69–87. 

WHO (2017) Global vector control response 2017–2030. License: CC BY-NC-SA 3.0 IGO. 

Geneva: World Health Organization. Available at: 

https://apps.who.int/iris/bitstream/handle/10665/259205/9789241512978-

eng.pdf;jsessionid=5E3751A18758EB696D0C57C7DA7F7093?sequence=1. 

WHO (2020a) Ending the neglect to attain the Sustainable Development Goals: a road map 

for neglected tropical diseases 2021–2030. Licence: CC BY-NC-SA 3.0 IGO. Geneva, 

Switzerland: World Health Organization. Available at: 

https://apps.who.int/iris/handle/10665/346561. 

WHO (2020b) Global Health Expenditure Database. Available at: 

https://apps.who.int/nha/database/country_profile/Index/en (Accessed: 10 February 2022). 

WHO (2021) World malaria report 2021. Licence: CC BY-NC-SA 3.0 IGO. Geneva, 

Switzerland: World Health Organization. Available at: https://www.who.int/publications-detail-

redirect/9789240040496 (Accessed: 30 December 2021). 

WHO, FAO and OIE (2019) Taking a Multisectoral, One Health Approach: A Tripartite Guide 

to Addressing Zoonotic Diseases in Countries. Geneva, Switzerland: World Health 

Organization (WHO), Food and Agriculture Organization of the United Nations (FAO) and 

World Organisation for Animal Health (OIE),. Available at: 

https://www.oie.int/app/uploads/2021/03/en-tripartitezoonosesguide-webversion.pdf. 

WHO in collaboration with FAO, UNEP,  and U. (1996) ‘Agricultural Development and 

Vector-borne Diseases Training and Information Materials on Vector Biology and Control’. 

Wilcox, B. a and Gubler, D.J. (2005) ‘Disease ecology and the global emergence of zoonotic 

pathogens.’, Environmental health and preventive medicine, 10(5), pp. 263–272. 

doi:10.1007/BF02897701. 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

238 
 

Williams, C.R. et al. (2014) ‘Bionomic response of Aedes aegypti to two future climate 

change scenarios in far north Queensland, Australia: implications for dengue outbreaks’, 

Parasites & Vectors, 7(1), p. 447. doi:10.1186/1756-3305-7-447. 

Williams, C.R. et al. (2016) ‘Projections of increased and decreased dengue incidence under 

climate change’, Epidemiology and Infection, 144(14), pp. 3091–3100. 

doi:10.1017/S095026881600162X. 

Williams, H.W. et al. (2015) ‘Climate suitability for European ticks: assessing species 

distribution models against null models and projection under AR5 climate’, Parasites & 

Vectors, 8(1), p. 440. doi.org/10.1186/s13071-015-1046-4. 

Willmott, C. and Matsuura, K. (2005) ‘Advantages of the mean absolute error (MAE) over the 

root mean square error (RMSE) in assessing average model performance’, Climate 

Research, 30, pp. 79–82. doi:10.3354/cr030079. 

Wong, M.C. et al. (2020) ‘The potential impact of vulnerability and coping capacity on the 

pandemic control of COVID-19’, Journal of Infection, 81(5), pp. 816–846. 

doi.org/10.1016/j.jinf.2020.05.060. 

Wood, C.L. et al. (2017) ‘Human infectious disease burdens decrease with urbanization but 

not with biodiversity’, Philosophical transactions of the Royal Society of London. Series B, 

Biological sciences, 372, p. 20160122. doi:10.1016/S0140-6736(12)61689-4. 

World Health Organization, Convention on Biological Diversity, and United Nations 

Environment Programme (2015) Connecting global priorities: biodiversity and human health: 

a state of knowledge review. Available at: 

http://apps.who.int/iris/bitstream/10665/174012/1/9789241508537_eng.pdf?ua=1 (Accessed: 

28 March 2020). 

World Health Organization and Department of Control of Neglected Tropical Diseases (2017) 

Integrating neglected tropical diseases into global health and development: fourth WHO 

report on neglected tropical diseases. Available at: 

http://www.who.int/neglected_diseases/resources/9789241565448/en/. 

Xu, C. et al. (2022) ‘A Bibliometric Analysis of Global Research on Japanese Encephalitis 

From 1934 to 2020’, Frontiers in Cellular and Infection Microbiology, 12, p. 833701. 

doi:10.3389/fcimb.2022.833701. 

https://doi.org/10.1016/j.jinf.2020.05.060


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

239 
 

Yadav, R., Sharma, V. and Chand, S. (1997) ‘Mosquito breeding and resting in treeholes in a 

forest ecosystem in Orissa.’, Indian Journal of Malariology [Preprint]. 

Ye, X. et al. (2023) ‘Associations of socioeconomic status with infectious diseases mediated 

by lifestyle, environmental pollution and chronic comorbidities: a comprehensive evaluation 

based on UK Biobank’, Infectious Diseases of Poverty, 12(1), p. 5. doi.org/10.1186/s40249-

023-01056-5. 

Yee, D.A., Ezeakacha, N.F. and Abbott, K.C. (2017) ‘The interactive effects of photoperiod 

and future climate change may have negative consequences for a wide‐spread invasive 

insect’, Oikos, 126(1), pp. 40–51. doi:10.1111/oik.03635. 

Yen, N.T. et al. (2010) ‘Surveillance for Japanese Encephalitis in Vietnam, 1998–2007’, The 

American Journal of Tropical Medicine and Hygiene, 83(4), pp. 816–819. 

doi.org/10.4269/ajtmh.2010.10-0262. 

Zabel, F. et al. (2019) ‘Global impacts of future cropland expansion and intensification on 

agricultural markets and biodiversity’, Nature Communications, 10(1), p. 2844. 

doi:10.1038/s41467-019-10775-z. 

Zhang, G. et al. (2017) ‘Spatiotemporal patterns of paddy rice croplands in China and India 

from 2000 to 2015’, Science of The Total Environment, 579, pp. 82–92. 

doi:10.1016/j.scitotenv.2016.10.223. 

https://doi.org/10.4269/ajtmh.2010.10-0262


Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

240 
 

Appendices             

Appendix 1: Supplementary figures and data for Chapter 2 

This appendix provides supplementary figures, tables and information on 
data sources for the analyses conducted in Chapter 2, ‘The impact of global 
change on mosquito-borne disease’. The items contained in this appendix 
are: 

Text S2.1. Search strategy and selection criteria. 

Text S2.2. Glossary. 

 

Table S2.1. Results of rapid review of modelling studies published from 
2014- March 2018, that investigated the impact of climate change on 
mosquito-borne disease. 
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Text S2.1: Search strategy and selection criteria 

I searched PubMed and Web of Science, for all papers from 1st January 2014 

to 28th March 2018 inclusive to reflect the field since the publication of the 

WHO published ‘A global brief on vector-borne diseases’ in 2014 which 

called for further research (WHO 2014). Search terms were related to models 

of human mosquito-borne diseases and climate change: (“mosquito*” or 

"mosquito-borne disease*" or "mosquito borne disease*") AND ("climate 

chang*" or “climat* change*" or "climat* warm*" or "chang* climat*") AND 

(“model*” or “modelling”). I excluded treatment papers, reviews, case studies 

and surveillance reports and focused on modelling studies that evaluated the 

effect of climate change on mosquito borne diseases and their vectors. 

Climate change was defined as an alteration (either observed or projected) to 

climatic parameters and studies were included in the analysis if they 

considered the effects of climate change over several decades rather than 

within-decade timescales. 

 

Text S2.2: Glossary 

Mosquito-borne disease risk: the probability that the simultaneous presence 

of an infected host and competent vector may impact a susceptible 

population (Bergquist, Stensgaard and Rinaldi, 2018). 

Correlative models of MBD: use statistical approaches to identify correlative 

associations of disease risk to a suite of explanatory variables such as 

environmental or socioeconomic conditions.  

Mechanistic models of MBD: make explicit assumptions about the biological 

or environmental processes that drive disease risk. 
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Table S2.1. Results of rapid review of modelling studies published from 2014- March 2018, that investigated the impact of climate 
change on mosquito-borne disease.  

The table shows the spatial scale of the study, the disease and mosquito vectors, the type of model and projection and, the climatic parameters 
analysed. The table illustrates the direction of the relationship between the climatic parameters and the change in distribution of disease 
transmission risk. Details are provided regrading whether mosquito biological thresholds and other global change drivers were considered within 
the study. 

SPATIAL 

SCALE and 

AUTHORS 

 

DISEASE MOSQUITO 

VECTORS 

MODEL 

TYPE 

STUDY 

PROJECTION 

CLIMATE 

PARAMETERS 

INCLUDED 

DIRECTION OF 

RELATIONSHIP 

(+ or -) 

CONSIDERED 

CRITICAL 

CLIMATE 

THRESHOLDS*  

 

CONSIDERED 

OTHER 

GLOBAL 

CHANGE 

DRIVERS 

 

Zonal 

Australia         

(Williams et 

al., 2014) 

Dengue Aedes aegypti Mechanistic Prospective T, P, H +/- Y N 

(Ho, 

Speldewinde 

and Cook, 

2016) 

MVEV Culex 

annulirostris 

Mechanistic Prospective T, P, H - Y Y# 
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China         

(Jia et al., 

2017) 

(NA) Aedes albopictus Mechanistic Retrospective T +/- Y N 

Kenya         

(Paaijmans 

et al., 2014) 

Malaria (NA) Mechanistic Prospective T +/- Y N 

(Ochieng et 

al., 2016) 

RVF Culex 

quinquefasciatus, 

Culex univitattus, 

Mansonia 

africana, 

Mansonia 

uniformis 

Correlative Prospective T, P +/- N Y δ 

Spain         

(Roiz et al., 

2014) 

(NA) Anopheles 

atroparvus, 

Culex pipiens, 

Correlative Prospective T, P, H, W, S, 

E, Ph 

+/- N N 
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Culex theileri, 

Culex modestus,  

Culex 

perexiguus, 

Ochlerotatus 

caspius, 

Ochlerotatus 

detritus 

National 

Australia         

(Hill, Axford 

and 

Hoffmann, 

2014) 

(NA) Ae. albopictus Hybrid 

correlative 

Prospective T, P, S, Sm + Y N 

(Williams et 

al., 2016) 

Dengue (NA) Mechanistic Prospective T, P, H - Y N 

Brazil         
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(Cardoso-

Leite et al., 

2014) 

Dengue Ae. aegypti Correlative Prospective T, P - N N 

Germany         

(Koch et al., 

2016) 

(NA) Ae. albopictus Correlative Prospective T, P + N N 

Iran         

 (Salahi-

Moghaddam 

et al., 2017) 

Malaria Anopheles spp. Correlative Retrospective T, P, H +/- N N 

Mexico         

(Pech-May et 

al., 2016) 

(NA) Ae. albopictus Correlative Prospective T, P + N N 

(Equihua et 

al., 2017) 

Dengue Ae. aegypti Correlative Prospective T, P + N N 
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Republic of 

Korea 

        

 (Linthicum 

et al., 2014) 

Malaria (NA) Mechanistic Retrospective T + N N 

Serbia         

(Petrić et al., 

2017) 

(NA) Ae. albopictus Mechanistic Prospective T, P, Ph +/- Y N 

Taiwan         

(Lin et al., 

2017) 

JEV (NA) Correlative Retrospective T, P, H, Ph + N N 

Tanzania         

(Mweya et 

al., 2016) 

 

Dengue Ae. aegypti Correlative Prospective T, P + N N 
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(Mweya, 

Mboera and 

Kimera, 

2017) 

RVF Cx. 

pipiens complex 

Correlative Prospective T, P +/- N N 

United 

Kingdom 

        

(Ewing et al., 

2016) 

(NA) Cx. pipiens Mechanistic Prospective T + Y N 

USA         

(Brown et 

al., 2015) 

WNV Cx. pipiens, 

Culex tarsalis 

Mechanistic Prospective T, p + Y N 

(Butterworth, 

Morin and 

Comrie, 

2017) 

 

Dengue Ae. aegypti Mechanistic Prospective T, P + Y N 
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(Yee, 

Ezeakacha 

and Abbott, 

2017) 

(NA) Ae. albopictus Mechanistic Prospective T, Ph - Y N 

Regional  

Africa         

(Drake and 

Beier, 2014) 

Malaria Anopheles 

arabiensis 

Correlative Prospective T, P - N N 

(Ryan et al., 

2015) 

Malaria An. gambiae Mechanistic Prospective T + Y Y¥ 

Europe         

(Thomas et 

al., 2014) 

(NA) Ae. albopictus Correlative Prospective T, P + N Y€ 

(Bouzid et 

al., 2014) 

Dengue (NA) Correlative Prospective T, P, H + N Yβ 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

249 
 

(Trájer et al., 

2014) 

WNV Ae. Albopictus Correlative Prospective T, P + N N 

(Proestos et 

al., 2015) 

(NA) Ae. Albopictus Mechanistic Prospective T, P, H + Y N 

(Cunze, 

Koch, et al., 

2016) 

(NA) Aedes 

albopictus, 

Aedes japonicus 

Correlative Prospective T, P +/- N N 

(Cunze, 

Kochmann, 

et al., 2016) 

(NA) Ae. Albopictus Correlative Prospective T, P, Ph + Y N 

(Liu-

Helmersson 

et al., 2016) 

Dengue Ae. Aegypti, Ae. 

Albopictus 

Mechanistic Retrospective 

and 

prospective 

T + Y N 

(Semenza et 

al., 2016) 

WNV (NA) Correlative Prospective T + N Yγ 

North 

America 
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(Ogden et 

al., 2014b) 

(NA) Ae. albopictus Mechanistic Prospective T, P + Y N 

South 

America 

        

(Laporta et 

al., 2015) 

Malaria Anopheles spp. Correlative Prospective T, P +/- N Yδ 

South and 

Southeast 

Asia 

        

(Khormi and 

Kumar, 

2016) 

Malaria Anopheles spp. Hybrid 

correlative 

Prospective T, P, H +/- Y N 

Global 

(Liu-

Helmersson 

et al., 2014) 

(NA) Ae. aegypti Mechanistic Prospective T +/- Y N 
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(M. Khormi 

and Kumar, 

2014) 

Dengue Ae. aegypti Correlative Prospective T, p, h +/- Y N 

(Capinha, C., 

Rocha, J. 

Sousa, 2014) 

(NA) Ae. aegypti Correlative Prospective T, p + N N 

(Campbell et 

al., 2015) 

(NA) Ae. aegypti, Ae. 

albopictus 

Correlative Prospective T, P + N N 

(Carlson, 

Dougherty 

and Getz, 

2016) 

Zika, 

Dengue 

Ae. aegypti, 

Aedes africanus, 

Ae. albopictus 

Correlative Prospective T, P + N Yδ 

(Murdock, 

Sternberg 

and Thomas, 

2016b) 

Malaria An. gambiae, 

Anopheles 

stephensi 

Correlative  Prospective T - Y N 

(Samy et al., 

2016) 

WNV, LF, 

SLEV 

Cx. 

quinquefasciatus 

Correlative Prospective T, P +/- N N 
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(Caminade 

et al., 2017) 

Zika Ae. albopictus Mechanistic Retrospective T, P, 

El Nino event 

+ Y N 

(Valdez et 

al., 2017) 

(NA) Cx. 

quinquefasciatus 

Mechanistic Theoretical P +/- Y N 

(Tjaden et 

al., 2017) 

Chikungunya (NA) Correlative Prospective T, P + N Yλ 

(Monaghan 

et al., 2018) 

(NA) Ae. aegypti Correlative Prospective T, P + Y Yβ 

 

Abbreviations: (NA), data not available; MVEV, Murray Valley encephalitis virus; RVF, Rift valley fever; JEV, Japanese encephalitis virus; SLEV, St Louis 
encephalitis virus; LF, lymphatic filariasis; WNV, West Nile virus; T, temperature; P, precipitation; H, humidity; W, wind; S, solar radiation; E, 
evapotranspiration; Ph, photoperiod; Sm, soil moisture; 

*Inclusion of critical climate thresholds that may impact specific vector life history traits (e.g., temperature thresholds for mosquito survival). 
# Land cover, human population density; animal host migration 
δ Land cover 
¥ Land cover, human population density 
€ Trade 
β Human population density, urbanisation, GDP per capita 
γ Land cover, animal host migration 
λ Human population density 
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Appendix 2: Supplementary figures and data for Chapter 3 

This appendix provides supplementary figures, tables and information on 
data sources for the analyses conducted in Chapter 3, ‘Joint spatiotemporal 
modelling reveals seasonally dynamic patterns of Japanese encephalitis 
vector abundance across India’. The items contained in this appendix are: 

 

Table S3.1. Vector surveillance data used in analyses. 

Table S3.2. Data and rationale for covariates included in analyses. 

Table S3.3. Impact of additional inferred absence data on selection results 
for models of increasing complexity. 

Table S3.4. Model comparison results for observed JE outbreaks. 

 

 

Figure S3.1. Maps of covariates used in models. 

Figure S3.2. Diagnostic plots for joint likelihood models; scatterplot of 
predicted versus observed vector abundance (logscale) data. 

Figure S3.3. Histograms of CPO and PIT values for joint likelihood models. 

Figure S3.4. Random spatiotemporal cross-validation of the final model. 

Figure S3.5. Association between one-month lagged vector abundance and 
predicted JE outbreak probability. 

 

 

 

 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

254 
 

Table S3.1. Vector surveillance data used in analyses.  

The table includes the study from which the data were extracted, the state or union territory in India in which the survey was conducted, the year 
of the survey, the type of data collected, the survey method, the total number of months that were surveyed, the number of sampling sites per 
study and the total number of datapoints (occurrence and abundance) generated from the study.  

Study  

reference 

Surveyed 

state/ union 

territory 

Date 

range 

Type of 

vector 

surveillance 

data* 

Survey 

method for 

adult 

mosquitos 

Total 

number of 

months 

surveyed 

Number of 

sampling 

sites 

Number of 

occurrence 

datapoints 

Number of 

abundance 

datapoints 

Total 

number of 

datapoints  

(Rajavel, 

Natarajan and 

Vaidyanathan, 

2006a) 

Andhra 

Pradesh 

2003-

2004 

OC Aspirator 1 2 3 - 3 

(Bhattacharyya 

et al., 1994) 

Assam 1993 OC Aspirator 1 1 1 - 1 

(Dhiman et al., 

2013) 

Assam 2011 OC Indoor light 

trap, aspirator 

1 3 3 - 3 
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(Kumari et al., 

2013) 

Delhi 2011 OC, AB Aspirator, net 

sweeping 

1 2 2 2 4 

(Korgaonkar et 

al., 2012) 

Goa 2006 OC, AB Human 

landing catch 

1 1 1 1 2 

(Rajavel and 

Natarajan, 

2008) 

Gujarat 2003 OC, AB Aspirator 1 1 1 1 2 

(Srivastava, 

Singh and 

Thapar, 2008) 

Gujarat,  

Uttar Pradesh 

2005 OC, AB Aspirator 1 2 2 2 4 

(Rajavel, 

Natarajan and 

Vaidyanathan, 

2006b, p. 6) 

Karnataka, 

Kerala 

2003 OC Aspirator 1 2 2 - 2 

(Kanojia et al., 

2010) 

Karnataka, 

Maharashtra, 

Tamil Nadu 

2007 OC Aspirator 1 3 3 - 3 
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(Thenmozhi et 

al., 2013) 

Kerala 2011 OC, AB Aspirator 1 1 1 1 2 

(Yadav, 

Sharma and 

Chand, 1997) 

Odisha 1990-

1991 

OC, AB Aspirator 24 1 24 18 42 

(Dash et al., 

2001) 

Odisha 1993 OC, AB Aspirator 1 1 1 1 2 

(Rajavel, 

Natarajan and 

Vaidyanathan, 

2005a) 

Odisha 2000 OC, AB Light trap, 

aspirator 

1 2 2 1 3 

(Rajendran et 

al., 2003) 

Tamil Nadu 1998-

2000 

OC, AB Aspirator 23 2 46 23 69 

(Samuel et al., 

2010) 

Tamil Nadu 2003-

2006 

OC, AB  Hand catch 4 9 20 4 24 



Lydia Franklinos – Effects of global change on mosquito-borne disease (doctoral thesis) 

257 
 

(Samuel et al., 

2016) 

Tamil Nadu 2006-

2011 

OC, AB Aspirator 60 3 180 180 360 

(Paramasivan, 

Dhananjeyan 

and Pandian, 

2013) 

Tamil Nadu 2007-

2008 

OC Not described 1 1 2 - 2 

(Tyagi et al., 

2016) 

Tamil Nadu 2011-

2012 

OC, AB Aspirator 21 1 21 21 42 

(Das, Lal and 

Saxena, 2004) 

Telangana 2003 OC, AB Aspirator 1 6 6 6 12 

(Kanojia, 

Shetty and 

Geevarghese, 

2003) 

Uttar Pradesh 1991 OC Aspirator 1 4 4 - 4 

(Kanojia and 

Geevarghese, 

2005) 

Uttar Pradesh 1991-

2000 

OC Aspirator 1 1 3 - 3 
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(Misra and 

Gore, 2015) 

Uttar Pradesh 2011 OC, AB Aspirator 1 2 2 2 4 

(Rajavel, 

Natarajan and 

Vaidyanathan, 

2005b, p. 2) 

West Bengal 2000 OC Light trap, 

aspirator 

1 2 2 - 2 

(Mariappan et 

al., 2014) 

West Bengal 2011-

2012 

OC, AB Aspirator 2 4 8 4 12 

Totals      57 340 267 607 

*OC = occurrence data; AB = abundance data 
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Table S3.2. Data and rationale for covariates included in analyses.  

The table includes the sources and rationale (hypothesises) for inclusion of covariates in spatiotemporal models of vector abundance.  

Covariate Dataset Description Spatial 
resolution 

Temporal 
resolution 

Data classification Source Rationale 

Mean, min 
and max air 
temperature  

TerraClimate  High-spatial 
resolution 
data 
WorldClim is 
combined 
with coarser 
spatial 
resolution, 
but time-
varying data 
from CRU 
Ts4.0 and 
JRA55. 

1/24°, 

~4 km; 
Global. 

Monthly:  

1958–
2019. 

Maximum temperature, 
minimum temperature, 
and derived mean 
temperature (⁰C). 

 

 

http://www.climatologylab.or
g/terraclimate.html  

Temperature affects 
important vector life 
history traits such as 
development rate and 
survival (Mordecai et al., 
2019). 

Mean 
precipitation  

TerraClimate High-spatial 
resolution 
data 
WorldClim is 
combined 
with coarser 
spatial 
resolution, 
but time-
varying data 
from CRU 
Ts4.0 and 
JRA55. 

1/24°, 

~4 km; 
Global. 

Monthly:  

1958–
2019. 

Precipitation (mm). 

 

http://www.climatologylab.or
g/terraclimate.html  

Rainfall has been shown 
to influence vector 
populations due to the 
creation of standing water 
for vector breeding 
(Reisen, Aslamkhan and 
Basia, 1976; Vythilingam 
et al., 1997; 
Suryanarayana Murty, 
Srinivasa Rao and 
Arunachalam, 2010). 

http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
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Land cover European 
Space 
Agency 
Climate 
Change 
Initiative 
(CCI) Land 
Cover; 
version 3.14. 

Land cover 
time series 
produced 
with the 
reprocessing 
and the 
interpretation 
of five 
different 
satellite 
missions 
providing 
daily 
observation 
of the Earth. 

300m,  

Global. 

Annual:  

1992 -
2015. 

37 UN Land Cover 
Classes, derived into six 
broad groups: 
agricultural, mixed 
agricultural, forest, 
mixed vegetation, urban 
and water. 

 

http://maps.elie.ucl.ac.be/CC
I/viewer/index.php  

Irrigated agricultural 
practices provide suitable 
habitat for vector 
development and C. 
tritaeniorhynchus is 
reported to preferentially 
breed in rice paddy fields 
(Keiser et al., 2005; 
Sabesan, Raju Konuganti 
and Perumal, 2008a). 

Land-use 
intensity 
metrics for 
rice crop 
cultivation  

RiceAtlas;  

version 2. 

Database of 
rice planting 
and 
harvesting 
dates by 
growing 
season and 
estimates of 
monthly 
production 
for all rice-
producing 
countries. 

Second 
level 
subdivisions 
(i.e., district-
level for 
India), 

Global. 

2010–
2012 
average. 

Location information – 
geographic scale / crop 
calendar -planting, 
harvesting, growing / 
production / area. 

(Laborte et al., 2017) Vector abundance is 
positively associated with 
rice field density (Richards 
et al., 2010), rice crop 
growth stage (Raju et al., 
2016, 2018) and standing 
water availability 
(Rajagopalan and 
Panicker, 1978; Keiser et 
al., 2005). 

 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
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Table S3.3. Impact of additional inferred absence data on selection results for 
models of increasing complexity.  

The table details the structure of the joint-likelihood models and the difference 
between their corresponding within-sample predictive accuracy assessed on 
Watanabe-Akaike Information Criterion (WAIC) values when additional absence 
data is excluded. The differences (∆) in WAIC between the other models and the 
best fitting environmental model are still equivalently large when compared to the 
∆WAIC values when the additional absence data is included.  

Model Fixed 
effects 

Random 
intercepts 

WAIC ∆WAIC ∆WAIC 
for model 
with 
additional 
absence 
data 

1 Baseline model 
 

- ST, S 721.60 72.94 77.53 

2 Seasonal model 
 

- 
 

ST, S, M 652.62 3.96 6.52 

3 Environmental 
model 
 

Precipitation,  
Agri. land 
proportion, 
Annual rice 
crops,  
Annual rice 
area, Annual 
rice 
production, 
Nonlinear 
temp. 
function 

ST, S, M 648.66 0.00 0.00 
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Table S3.4. Model comparison results for observed JE outbreaks.  

AIC, odds ratio and 95% confidence intervals reported from logistic regression of JE 
outbreak probability as a function of model predicted vector abundance. Vector 
abundance predictions were generated from the final model with and without a one-
month lag. A null model (i.e., intercept only) was developed to assess the ability of 
vector abundance predictions in estimating JE outbreaks when compared to 
predictions expected at random. 

Model  AIC ∆AIC Akaike 
weight 

Odds 
ratio 

95% 
Confidence 
interval 

Null (intercept-only) 168.02 23.85 0 - - 

No lag 
(JE outbreak 
probability as a 
function of predicted 
vector abundance in 
the same month) 

147.66 3.49 0 2.25 1.35 - 3.74 

One month lag  
(JE outbreak 
probability as a 
function of predicted 
vector abundance in 
the previous month) 

144.17 0.00 1 2.45 1.52 - 4.08 
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Figure S3.1. Maps of covariates used in models.  

(A) average mean temperature per month (⁰C) (example given for the year 2005); 
(B) average precipitation per month (mm) (example given for the year 2005); (C) 
number of rice crop rotations per year (average for period 2010-12); (D) total annual 
rice area cultivated per year in hectares (average for period 2010-12); (E) total rice 
produced per year in tonnes (average for period 2010-12); (F) land-use classes 
(example given for the year 2005).  
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Figure S3.2. Diagnostic plots for joint likelihood models; scatterplot of 
predicted versus observed vector abundance (logscale) data. 

Plots show observed data against model predicted values, and the red line shows 
the expectation if observed equals predicted for each model: (A) baseline (spatial 
effects and study- level random effects), (B) seasonal (spatial, seasonal, and 
random effects), (C) environmental (spatial, seasonal, and random effects and 
environmental covariates).  
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Figure S3.3. Histograms of CPO and PIT values for joint likelihood models.  

Plots show CPO and PIT histograms, with the red line indicating the level of the of 
the different values if their distribution was uniform: (A) baseline (spatial effects and 
study- level random effects), (B) seasonal (spatial, seasonal and random effects), 
(C) environmental (spatial, seasonal and random effects and environmental 
covariates).  
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Figure S3.4. Random spatiotemporal cross-validation of the final model.  

I tested the sensitivity of fixed effects estimates to random (10-fold) subsampling. 
Points and error bars show posterior marginal parameter distributions for each hold-
out model (median and 95% quantile range), with colour denoting hold-out group. 
Directionality and magnitude of fixed-effects estimates are robust to all tests.  
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Figure S3.5. Association between one-month lagged vector abundance and 
predicted JE outbreak probability.  

Vertical axis displays model predicted JE outbreak probability, and vertical axis 
gives predicted vector abundance on the log scale. Smooth line highlights the non‐
linear relationship of JE outbreak probability to predicted vector abundance with a 
one-month lag.  
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Appendix 3: Supplementary figures and data for Chapter 4 

This appendix provides supplementary figures, tables and information on 
data sources for the analyses conducted in Chapter 4, ‘Climate, land-use and 
socioeconomic factors predict spatiotemporal dynamics of Japanese 
encephalitis risk’. The items contained in this appendix are: 

 

Text S4.1: Mapping the spatial distribution of Ardeid bird reservoir host 
occurrence. 

 

Table S4.1. Japanese surveillance data collected for northeast India from 
2009-2019 (115 districts). 

Table S4.2. Data sources for all covariates included in analyses.  

Table S4.3. Results of univariate analysis for spatial model covariates.  

Table S4.4. Results of multivariate analysis for spatial model covariates.  

Table S4.5. Model adequacy results for predictive spatial models of 
increasing complexity.  

Table S4.6. Model predictive accuracy results for temporal models of 
increasing complexity. 

Table S4.7. Parameter values from the evaluative spatial model of JE 
outbreak occurrence. 

Table S4.8. Model selection results for models predicting spatial JE outbreak 
occurrence in northeast India for outbreak threshold of 3 confirmed cases. 

 

Figure S4.1. Indian climatic regions and biomes. 

Figure S4.2. The spatiotemporal pattern in Japanese encephalitis cases 
across India, 2009 - 2019. 

Figure S4.3. A map of cattle egret (B. ibis) occurrence in northeast India. 

Figure S4.4. A map of intermediate egret (A. intermedia) occurrence in 
northeast India. 

Figure S4.5. A map of little egret (E. garzetta) occurrence in northeast India. 

Figure S4.6. A map of Indian pond heron (A. grayii) occurrence in northeast 
India. 
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Figure S4.7. A map of black-crowned night heron (N. nycticorax) occurrence 
in northeast India. 

Figure S4.8. The spatial pattern of JE outbreaks between 2009 and 2019 in 
northeast India. 

Figure S4.9. Time series of monthly confirmed JE cases per district in the 
state of Assam*, 2009–2019. 

Figure S4.10. Correlates of annual JE occurrence in northeast India 2009–
2019 for different JE outbreak occurrence thresholds. 

Figure S4.11. Random 5-fold cross-validation for the spatial model of JE 
occurrence. 

Figure S4.12. The difference in Brier score between the baseline (random 
effects only) and socio-ecological model per district.  

Figure S4.13. Comparative effect of the inclusion of vaccination data at 
different lags on the predictive accuracy of the temporal model of JE 
incidence in endemic districts of Assam.  
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Text S4.1: Mapping the spatial distribution of Ardeid bird reservoir host 

occurrence 

Methods 

To estimate the geographical distribution of sylvatic JE reservoir host species 

(van den Hurk, Ritchie and Mackenzie, 2009; Pearce et al., 2018b), I fitted 

species distribution models (SDMs) with Bayesian additive regression trees 

(BART) (Carlson, 2020) to Intermediate egret (Ardea intermedia), Little egret 

(Egretta garzetta), Cattle egret (Bubulcus ibis), Indian pond heron (Ardeola 

grayii), and Black-crowned night heron (Nycticorax nycticorax) occurrence 

data, using the embarcadero package in R (Carlson, 2021). The BART 

approach was chosen since it adds a Bayesian component to classification 

tree methods that handles model uncertainty (i.e., builds a posterior 

distribution) and is comparable to the Bayesian approach I have taken in this 

Chapter. 

To account for uneven sampling effort across the geographical range, I 

generated the same number of random background (pseudo-absence) points 

as presence points for each host species (Phillips et al., 2009).  

Data 

Occurrence data for the five species recorded from January 2009 to 

December 2019 was obtained from ebird (eBird, 2021) and Global 

Biodiversity Information Facility (GBIF) (GBIF, 2021f, 2021d, 2021b, 2021i, 

2021e, 2021g, 2021h, 2021a, 2021c). I retrieved data on the presence and 

absence of the reservoir hosts for the Indian states in the northeast region, 

Bangladesh and Bhutan to achieve a more accurate projection of potential 

species distributions that are unlikely to reflect country borders.  

I obtained yearly precipitation, and minimum and maximum temperature from 

the Terraclimate dataset (Abatzoglou et al., 2018) and averaged over 2009-

2019. I extracted percentage land cover data from the ESA Climate Change 
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Initiative Land Cover dataset for the year 2014 (i.e., the middle of the study 

period). I extracted data for land cover classes that are reported to be 

preferrable host habitat (i.e., irrigated cropland, rainfed cropland, flood 

vegetation water bodies and grassland cover) as predictors in the models 

(see Appendix 3 Table S4.2 for details of the data used in the SDMs).  

Results 

The SDMs performed well with high area under the ROC curve (AUC) values 

for each of the species (i.e., B. ibis AUC = 0.83, A. intermedia AUC = 0.79, E. 

garzetta AUC = 0.81, N. nycticorax AUC = 0.76, A. grayii AUC = 0.81). The 

models reported low uncertainty (i.e., posterior width) in general with highest 

uncertainty reported in central regions of the study area. 

All JE hosts had similar distributions and response curves to covariates. 

Overall, the probability of occurrence for each species; increases with 

increasing minimum temperature until peak at 22⁰C, increases at lower 

rainfall values, and decreases with cropland land cover. Only the 

intermediate and little egret are strongly influenced by water bodies (positive 

effect). Despite irrigated cropland being described as an important habitat for 

these hosts (Czech and Parsons, 2002; Elphick et al., 2010), all SDMs apart 

from for B.ibis did not reflect this. However, this may be an artefactual 

problem due to less observations by ebird reporters in anthropogenic-

dominated habitats such as agricultural cropland. 

Partial dependence plots showing the marginal response of each JE host to 

all covariates and the corresponding predicted distribution of each JE host in 

northeast India is shown in Appendix 3 Figure S4.X. 
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Table S4.1. Japanese surveillance data collected for northeast India from 
2009-2019 (115 districts). 

The table includes the source from which the data were extracted, and information 
of the spatial and temporal scales of the data, and the total number of data points for 
each source (suspected, confirmed positive and confirmed negative cases). 

Source N Years Months States Districts Reference 

Indian 
government’s 
Integrated 
Disease 
Surveillance 
Programme 
(IDSP) 

138 2009–
19 

1-10 7 48 (Government of India, 
2021b) 

Indian 
government’s 
Health 
Management 
Information 
System (HMIS) 

255 2017-
18 

1-12 7 35 (Government of India, 
2021a) 

National Centre 
for Disease 
Control’s 
(NCDC) Media 
scanning and 
verification 
system  

16 2016-
19 

5-7 5 12 (Sharma et al., 2012) 

ProMed 99 2010-
19 

5-9 5 39 (International Society 
for Infectious Diseases, 
2021) 

Published 
literature 

122 2016–
17 

1-12 1 9 (Singh et al., 2019) 

Published 
literature 

24 2015-
16 

1-12 1 2 (Baruah et al., 2018) 

Published 
literature 

24 2009–
10 

1-12 1 1 (Borah et al., 2013) 

Published 
literature 

278 2011-
12 

1-12 1 18 (Bandyopadhyay et al., 
2013) 

Published 
literature 

7 2011-
12 

8-10 1 6 (Sarkar et al., 2013) 
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Table S4.2. Data sources for all covariates included in analyses.  

The table includes the sources and rationale (hypothesis) for inclusion of covariates in spatial and temporal models of Japanese encephalitis 
risk incidence across northeast India. Modelling is described in full in Methods. 

Covariate Dataset Description Spatial 
resolution 

Temporal 
resolution 

Units Source Rationale 

District ID India census 
2011. 

640 districts that 
were present in 
2011. 

District 2011 N/A (Government of 
India, 2011) 

Proxy for public access 
with links to state-level 
surveillance 
infrastructure. 

Mean, min and 
max air 
temperature  

TerraClimate
. 

High-spatial 
resolution data 
WorldClim is 
combined with 
coarser spatial 
resolution, but 
time-varying 
data from CRU 
Ts4.0 and 
JRA55. 

1/24°, 
~4 km; 
Global. 

Monthly:  
1958–2019. 

degrees C 
 

(Abatzoglou et al., 
2018) 

Temperature affects 
important vector life 
history traits such as 
development rate and 
survival (Mordecai et al., 
2019) and the 
environmental niche of 
avian species (Hafner, 
1997; Barnagaud et al., 
2012). 

Mean 
precipitation  

TerraClimate
. 

High-spatial 
resolution data 
WorldClim is 
combined with 
coarser spatial 
resolution, but 
time-varying 
data from CRU 
Ts4.0 and 
JRA55. 

1/24°, 
~4 km; 
Global. 

Monthly:  
1958–2019. 

mm 
 

(Abatzoglou et al., 
2018) 

Rainfall has been shown 
to influence vector 
populations due to the 
creation of standing water 
for vector breeding 
(Reisen, Aslamkhan and 
Basia, 1976; Vythilingam 
et al., 1997; Murty, Rao 
and Arunachalam, 2010) 
and suitable ardeid bird 



 

274 
 

feeding habitat (Hafner, 
1997). 

Mean Palmer 
Drought Index 
(PDSI) 

TerraClimate
. 

High-spatial 
resolution data 
WorldClim is 
combined with 
coarser spatial 
resolution, but 
time-varying 
data from CRU 
Ts4.0 and 
JRA55. 

1/24°, 
~4 km; 
Global. 

Monthly:  
1958–2019. 

Palmer 
Drought 
Index 

(Abatzoglou et al., 
2018) 

Extremely wet conditions 
can provide increased 
vector breeding (Ramesh 
et al., 2015) and host 
feeding habitats (Urfi, 
2011), but can also 
destroy vector habiatats 
(Chen et al., 2012). 
Droughts can reduce 
aquatic habitat of some 
mosquito species 
(Chareonviriyaphap et al., 
2003). 

Rainfed 
agricultural land 
cover 

European 
Space 
Agency 
Climate 
Change 
Initiative 
(CCI) Land 
Cover; 
(version 
3.14). 

Land cover time 
series produced 
with the 
reprocessing 
and the 
interpretation of 
five different 
satellite 
missions 
providing daily 
observation of 
the Earth. 

300m,  
Global. 

Annual:  
1992 -
2020. 

Proportion  
district area 

https://www.esa-
landcover-cci.org/  

Agricultural land provides 
suitable habitat for vector 
development (Keiser et 
al., 2005; Sabesan, Raju 
Konuganti and Perumal, 
2008a) and reservoir host 
feeding (Richardson, 
Taylor and Growns, 
2001). 

https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
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Irrigated 
agricultural land 
cover 

European 
Space 
Agency 
Climate 
Change 
Initiative 
(CCI) Land 
Cover; 
(version 
3.14). 

Land cover time 
series produced 
with the 
reprocessing 
and the 
interpretation of 
five different 
satellite 
missions 
providing daily 
observation of 
the Earth. 

300m,  
Global. 

Annual:  
1992 -
2020. 

Proportion  
district area 

https://www.esa-
landcover-cci.org/  

Agricultural land provides 
suitable habitat for vector 
development (Keiser et 
al., 2005b; Sabesan, Raju 
Konuganti and Perumal, 
2008) and reservoir host 
feeding (Richardson, 
Taylor and Growns, 
2001). 

Water bodies land 
cover 

European 
Space 
Agency 
Climate 
Change 
Initiative 
(CCI) Land 
Cover; 
(version 
3.14). 

Land cover time 
series produced 
with the 
reprocessing 
and the 
interpretation of 
five different 
satellite 
missions 
providing daily 
observation of 
the Earth. 

300m,  
Global. 

Annual:  
1992 -
2020. 

Proportion  
district area 

https://www.esa-
landcover-cci.org/  

River and freshwater 
marshlands are 
associtaed with JEV 
wildlife host presence 
(Walsh et al., 2021). 

Mosaic vegetation 
land cover 

European 
Space 
Agency 
Climate 
Change 
Initiative 
(CCI) Land 
Cover; 
(version 
3.14). 

Land cover time 
series produced 
with the 
reprocessing 
and the 
interpretation of 
five different 
satellite 
missions 
providing daily 

300m,  
Global. 

Annual:  
1992 -
2020. 

Proportion  
district area 

https://www.esa-
landcover-cci.org/  

Agricultural land provides 
suitable habitat for vector 
development (Keiser et 
al., 2005b; Sabesan, Raju 
Konuganti and Perumal, 
2008) and reservoir host 
feeding (Richardson, 
Taylor and Growns, 
2001). Fragmented 
agriculural land is 
associtaed with JEV 

https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
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observation of 
the Earth. 

wildlife host presence 
(Walsh et al., 2021). 

Mean Normalized 
Difference 
Vegetation Index 
(NDVI)  

MOD13C2 
MODIS/Terra 
Vegetation 
Indices  
(version 
006). 

This product is 
generated from 
the 
MODIS/006/MO
D09GA surface 
reflectance 
composites. 

0.05°, 
~5.6km; 
Global. 

Monthly: 
2000-
Present. 
 

NDVI (Didan, 2015) A positive relationship 
has been reported 
between NDVI and JE 
vector population density 
in India (Raju et al., 
2018). 

Mean probability 
of presence for 
sylvatic reservoir 
hosts  
(individual 
species and 
combined) 

Species 
distribution 
models (see 
Appendix 3 
Text S4.1). 

Intermediate 
egret (Ardea 
intermedia), 
Little egret 
(Egretta 
garzetta), Cattle 
egret (Bubulcus 
ibis), Indian 
pond heron 
(Ardeola grayii) , 
and Black-
crowned night 
heron 
(Nycticorax 
nycticorax) 
occurrence 
probability. 

1/24°, 
~4 km; 
Northeast 
India. 

Static  
(study 
period 
2009-2019) 

Logistic 
probability 
per district 

(see Appendix 3 
Text S4.1) 

Japanese encephalitis 
virus is maintained in an 
enzootic transmission 
cycle with vertebrate 
reservoir hosts including 
ardeid wading birds 
(Buescher et al., 1959; 
van den Hurk, Ritchie and 
Mackenzie, 2009; Le 
Flohic et al., 2013). 
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Mean pig 
population density 

Gridded 
Livestock of 
the World 
(version 3). 

Global 
population 
densities of pigs 
retrieved from 
census data. 

0.083333 °, 
~10 km; 
Global. 

2010 Density per 
district area 

(Gilbert et al., 
2018) 

Japanese encephalitis 
virus is maintained in an 
enzootic transmission 
cycle with vertebrate 
reservoir hosts including 
domestic pigs (van den 
Hurk, Ritchie and 
Mackenzie, 2009; Le 
Flohic et al., 2013). 

Proportion of the 
population living 
in rural areas  

India census 
2011. 

The most 
current Indian 
Census of the 
population 
provides 
population 
enumeration 
data. 

District 2011 Proportion  
district area 

(Government of 
India, 2011) 

Rural populations have 
potentially higher 
exposure to JE due to the 
presenece of vectors in 
ahgricultiral land (Keiser 
et al., 2005; Sabesan, 
Raju Konuganti and 
Perumal, 2008a). 

Proportion of 
population 
working in 
agriculture, 

India census 
2011 

The most 
current Indian 
Census of the 
population 
provides 
population 
enumeration 
data. 

District 2011 Proportion  
district area 

(Government of 
India, 2011) 

Agricultural workers have 
potentially higher 
exposure to JE due to the 
presenece of vectors in 
ahgricultiral land (Keiser 
et al., 2005; Sabesan, 
Raju Konuganti and 
Perumal, 2008a). 

Proportion of the 
population under 
6 years old 

India census 
2011 

The most 
current Indian 
Census of the 
population 
provides 
population 
enumeration 
data. 

District 2011 Proportion  
district area 

(Government of 
India, 2011) 

Most JE cases occur in 
children (Pearce et al., 
2018b). 
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Proportion of 
population 
practicing major 
religions (i.e., 
Hindus, Muslims, 
Sikh, Buddhists, 
Jain, Christians) 

India census 
2011 

The most 
current Indian 
Census of the 
population 
provides 
population 
enumeration 
data. 

District 2011 Proportion  
district area 

(Government of 
India, 2011) 

Pig farming is associated 
with religion (Lord, Gurley 
and Pulliam, 2015). 

Healthcare 
access  

India Health 
Management 
Information 
System 
(HMIS) data 

Indian 
government 
portal to monitor 
the National 
Health Mission 
and other Health 
programmes. 

District 2010-2018 Per capita 
value for 
the district 

(Government of 
India, 2021a) 

Limited healthcare access 
results in underreporting 
of cases (WHO, 2020b). 

Proportion of the 
population living 
in poverty 

Multidimensi
onal Poverty 
Index (MPI) 

The index tracks 
poverty across 
several 
indicators of 
health, 
education and 
living standards. 

District 2016 Proportion  
district area 

(Alkire, Oldiges 
and 
Kanagaratnam, 
2018) 

JE risk in increase in 
poverty settings (Badari, 
1985; Luo et al., 1995; 
Sarkar et al., 2012). 

Proportion of the 
population 
vaccinated 

India HMIS 
data 

Indian 
government 
portal to monitor 
the National 
Health Mission 
and other Health 
programmes. 

District 2010-2018 Proportion  
district area 

(Government of 
India, 2021a) 

Vaccination reduces JE 
cases (Quan et al., 2020). 
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Table S4.3. Results of univariate analysis for evaluative spatial model covariates.  

The change in widely-applicable information criterion (WAIC) and the cross-validated (CV) 
mean logarithmic score from the baseline model (grey cells) when each covariate is fitted in 
turn. Lower scores indicate a better fitting model when compared to the baseline.  
 

Model ∆ WAIC ∆ CV mean 

log score 

Baseline 0 0 

Baseline + proportion of rainfed and irrigated cropland 
-4.022 -0.022 

Baseline + mean annual Tmax nonlinear effect 
-3.392 -0.019 

Baseline + healthcare access per capita  
-2.459 -0.014 

Baseline + mean annual Tmin 
-2.446 -0.013 

Baseline + mean annual Tmax  
-2.406 -0.013 

Baseline + mean annual precipitation  
-2.170 -0.012 

Baseline + proportion of rainfed cropland 
-2.002 -0.011 

Baseline + mean annual precipitation nonlinear effect 
-1.137 -0.006 

Baseline + mean annual Tmin nonlinear effect 
-0.918 -0.005 

Baseline + pig population density GLW (Gridded Livestock of the 

World) 
-0.830 -0.004 

Baseline + proportion of mosaic cropland 
-0.696 -0.004 

Baseline + proportion of population working in agriculture 
-0.590 -0.003 

Baseline + proportion of population in poverty 
-0.329 -0.002 

Baseline + proportion of population under 6 
-0.137 -0.001 

Baseline + total pigs from Indian census 
0.209 0.001 

Baseline + presence bird hosts 
0.293 0.002 

Baseline + healthcare access per rural population 
0.512 0.003 

Baseline + mean annual PDSI nonlinear effect 
0.969 0.006 

Baseline + proportion of irrigated cropland 
1.061 0.006 

Baseline + proportion total population that are children in rural areas 
1.322 0.007 

Baseline + proportion of population in rural areas 
1.664 0.009 

Baseline + mean annual PDSI 
1.839 0.010 
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Table S4.4. Results of multivariate analysis for evaluative spatial model covariates.  

The widely-applicable information criterion (WAIC) score when each covariate is excluded in 
turn from the full model (grey cells). If the exclusion of a covariates elevated the WAIC by a 
threshold of at least five units, they were included in the final model since their addition in the 
model improved WAIC scores.  
 

Covariate excluded from model WAIC 

Full model   

(Baseline model + Mean annual Tmax nonlinear effect + Mean 

annual precipitation + Proportion of rainfed and irrigated cropland + 

Pig population density GLW + Healthcare access per capita + 

Proportion of population working in agriculture + Proportion of 

population in poverty) 

201.689 

Mean annual Tmax nonlinear effect 218.469 

Mean annual precipitation 207.626 

Proportion of rainfed and irrigated cropland 210.906 

Pig population density GLW (Gridded Livestock of the World) 206.763 

Healthcare access per capita 212.061 

Proportion of population working in agriculture 185.623 

Proportion of population in poverty 208.748 

 

 

  



 

281 
 

Table S4.5. Model adequacy results for predictive spatial models of increasing 
complexity.  

The out-of-sample predictive ability for a subset of predictive spatial models of increasing 
complexity determined by the Brier score. Lower scores indicate a model with better 
predictive ability.  
 

Model JE outbreak occurrence estimate Brier score 

Baseline 

Random effect of year and district-level spatial random 

effects 

0.0653 

Tmax 
Base model + mean annual Tmax nonlinear effect 

0.0641 

Precipitation 
Base model + mean annual precipitation 

0.0651 

Cropland Base model + proportion of rainfed and irrigated 

cropland 

0.0643 

Pig population Base model + pig population density GLW (Gridded 

Livestock of the World) 

0.0671 

Healthcare  
Base model + healthcare access per capita 

0.0668 

Poverty 
Base model + proportion of population living in poverty 

0.0652 

Tmax + precipitation Base model + mean annual Tmax nonlinear effect + 

mean annual precipitation 

0.0644 

Tmax + precipitation + 

cropland Base model + mean annual Tmax nonlinear effect + 

mean annual precipitation + agricultural cropland 

0.0640 

Tmax + precipitation + 

cropland + healthcare 

Base model + mean annual Tmax nonlinear effect + 

mean annual precipitation + agricultural cropland + 

healthcare access per capita 

0.0637 

Tmax + precipitation + 

cropland + healthcare + 

poverty 

Base model + mean annual Tmax nonlinear effect + 

mean annual precipitation + agricultural cropland + 

healthcare access per capita + proportion of population 

living in poverty 

0.0634 

Tmax + precipitation + 

cropland + healthcare + 

poverty + pig population 

Base model + mean annual Tmax nonlinear effect + 

mean annual precipitation + agricultural cropland + 

healthcare access per capita + proportion of population 

living in poverty + pig population density GLW 

0.0637 

 

 

  



 

282 
 

Table S4.6. Model predictive accuracy results for temporal models of increasing 
complexity. 

The out-of-sample predictive ability for a subset of predictive temporal models of increasing 
complexity (with regards to input covariates and probability distributions) determined by the 
root mean square error (RMSE). Lower scores indicate a model with better predictive ability. 

Model JE outbreak incidence estimate RMSE 

Baseline Random effect of data source, year, and month 53.369 

Precipitation Nonlinear precipitation function 
Nonlinear precipitation 1-month lag function 
Nonlinear precipitation 2-month lag function 
Nonlinear precipitation 3-month lag function 

102.13 
102.13 
59.97  
101.90 

PDSI Nonlinear PDSI function 

Nonlinear PDSI 1-month lag function 

Nonlinear PDSI 2-month lag function 

Nonlinear PDSI 3-month lag function 

50.63  

38.53  

41.94 

101.61 

Tmean Nonlinear Tmean function 

Nonlinear Tmean 1-month lag function 

Nonlinear Tmean 2-month lag function 

Nonlinear Tmean 3-month lag function 

56.64  

37.92  

103.16 

58.02 

NDVI Nonlinear NDVI function 

Nonlinear NDVI 1-month lag function 

Nonlinear NDVI 2-month lag function 

Nonlinear NDVI 3-month lag function 

61.22  

55.33 

38.86 

103.41 

PDSI + Tmean 

+ NDVI 

Nonlinear PDSI 1-month lag function + 

Nonlinear Tmean 1-month lag function + 

Nonlinear NDVI 2-month lag function 

39.82 

PDSI +      

Tmean + 

Precipitation + 

Rice area 

Nonlinear PDSI 1-month lag function + 

Nonlinear Tmean 1-month lag function + 

Nonlinear precipitation 1-month lag function +               

Rice area under cultivation 

33.83 

PDSI +      

Tmean + 

Precipitation + 

Rice area + 

Vaccination 

(Nonlinear PDSI 1-month lag function + 

Nonlinear Tmean 1-month lag function + 

Nonlinear precipitation 1-month lag function +               

Rice area under cultivation )                             

+ Vaccination  

+ Vaccination 1-month lag 

+ Vaccination 2-month lag 

+ Vaccination 3-month lag 

+ Vaccination 4-month lag 

+ Vaccination 5-month lag 

+ Vaccination 6-month lag 

104.07 

103.96 

28.80   

103.92 

32.98 

36.55 

28.80   

33.85 

52.81 

44.63 

100.74                                              
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Table S4.7. Parameter values from the evaluative spatial model of JE outbreak 
occurrence. 

Posterior means and 95% credible intervals (CI, obtained from the 2.5% and 97.5% quantiles 
of the marginal posterior distribution) for the model intercept and fixed-effect parameters 
associated with the explanatory variables.  

Parameter Posterior mean (95% CI) 

Intercept  -3.249 (−3.943, -2.645) 

Mean annual precipitation  -0.314 (-0.690, 0.024) 

Proportion of the population living in poverty 0.344 (0.057, 0.639) 

Mean pig population density 0.159 (−0.068, 0.363) 

Healthcare access per capita -0.106 (−0.486, 0.228) 

Agricultural land proportion 0.336 (0.152, 0.527) 

 

 

Table S4.8. Model selection results for models predicting spatial JE outbreak 
occurrence in northeast India for outbreak threshold of 3 confirmed cases. 

The table shows the differences in structure and out-of-sample model fit (Brier score) for the 
baseline (random effects only) and best-fitting socio-ecological model.  

Outbreak 

threshold 

Model Random effects Socio-ecological 

effects 

Brier score 

3 confirmed 

cases 

Baseline Year, district-

level spatial 

random effects 

 -  0.052 

Socio-

ecological  

Year, district-

level spatial 

random effects 

Precipitation 

Poverty 

Healthcare access 

Agricultural land prop. 

Nonlinear Tmax function 

0.050 
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Figure S4.1. Indian climatic regions and biomes. 

Location of (A) 12 Köppen climate classification groups (AM: tropical monsoon, AW: tropical 
savanna, BWH: hot arid, BSH: hot semi-arid, CSA: temperate dry and hot summer, CWA: 
temperate dry winter and hot summer, CWB: temperate dry winter and warm summer, CFA: 
temperate no dry season and hot summer, DSB: cold with dry and warm summer, DWB: cold 
with dry winter and warm summer, DFB: cold with no dry season and warm summer, ET: 
polar tundra) and (B) ten biomes (desert, savanna, mangrove, montane, temperate broadleaf 
and conifer forests, tropical broadleaf and coniferous forest, tropical grassland/ savanna and 
tundra). 
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Figure S4.2. The spatiotemporal pattern in Japanese encephalitis cases across India, 
2009 - 2019. 

Maps show the total reported suspected and confirmed Japanese encephalitis cases in each 
state and union territory during the specified years.  
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Figure S4.3. A map of cattle egret (B. ibis) occurrence in northeast India. 

The map is constructed using species distribution modelling with BART (see Appendix 3 Text 
S4.1), including (A) partial dependence plots, (B) the posterior mean and (C) the posterior 
width (95% credible interval).   
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Figure S4.4. A map of intermediate egret (A. intermedia) occurrence in northeast India. 

The map is constructed using species distribution modelling with BART (see Appendix 3 Text 
S4.1), including (A) partial dependence plots, (B) the posterior mean and (C) the posterior 
width (95% credible interval).  
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Figure S4.5. A map of little egret (E. garzetta) occurrence in northeast India. 

The map is constructed using species distribution modelling with BART (see Appendix 3 Text 
S4.1), including (A) partial dependence plots, (B) the posterior mean and (C) the posterior 
width (95% credible interval).  
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Figure S4.6. A map of Indian pond heron (A. grayii) occurrence in northeast India. 

The map is constructed using species distribution modelling with BART (see Appendix 3 Text 
S4.1), including (A) partial dependence plots, (B) the posterior mean and (C) the posterior 
width (95% credible interval).  
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Figure S4.7. A map of black-crowned night heron (N. nycticorax) occurrence in 
northeast India. 

The map is constructed using species distribution modelling with BART (see Appendix 3 Text 
S4.1), including (A) partial dependence plots, (B) the posterior mean and (C) the posterior 
width (95% credible interval). 
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Figure S4.8. The spatial pattern of JE outbreaks between 2009 and 2019 in northeast 
India. 

The presence and absence of JE outbreak occurrence per district per year at a threshold of 
(A) one confirmed case and (B) three confirmed cases per district, with black donating a 
confirmed case presence, pale pink denoting absence of reported cases.  
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Figure S4.9. Time series of monthly confirmed JE cases per district in the state of 
Assam*, 2009–2019. 

(A) The location of districts in Assam and (B) reported confirmed JE cases per district from 
2009-2019. *Abbreviations for Assam districts provided for the time series data (B).  
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Figure S4.10. Correlates of annual JE occurrence in northeast India 2009–2019 for 
different JE outbreak occurrence thresholds. 

(A) The mean and 95% credible interval of the posterior distribution for each model covariate 
for the best fitting model with a threshold of one confirmed case and three confirmed cases 
for comparison. The linear fixed effects are displayed on the standardised z-score scale so 
parameters measure the effect of 1 scaled unit change in the covariate (1 standard deviation) 
on the log odds of occurrence. Curves show nonlinear effects of mean annual Tmax on JE 
outbreak probability for (B) threshold 1 and (C) threshold 3 models. 
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Figure S4.11. Random 5-fold cross-validation for the spatial model of JE occurrence. 

The direction and magnitude of linear fixed effects and nonlinear climate effects in the model 
were robust to 5-fold cross validation. This involved in turn excluding all districts from each of 
5 folds, with point or line colour denoting the fold that was excluded in each model iteration. 
(A) Points and error bars show linear fixed effects (mean and 95% credible interval), (B) lines 
show fitted nonlinear effects of mean annual Tmax on the probability of JE outbreak 
occurrence.  
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Figure S4.12. The difference in Brier score between the baseline (random effects only) 
and socio-ecological model per district.  

A negative (blue) value indicates that the socio-ecological model performs better on OOS 
predictive ability for the district when compared to the baseline model, a positive (red) value 
indicate that the socio-ecological model performs worse than the baseline and, a zero value 
(white) indicates equivalent performance between models.  
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Figure S4.13. Comparative effect of the inclusion of vaccination data at different lags 
on the predictive accuracy of the temporal model of JE incidence in endemic districts 
of Assam.  

Points show the predictive performance of the environment and vaccine-driven JE incidence 
model when vaccination data at different lags (months) are included in the model (posterior 
mean and 95% credible interval). I measured predictive performance as out-of-sample root 
mean square error (RMSE), calculated for four neighbouring districts in Assam (i.e., 
Dibrugarh, Jorhat, Sivasagar and Tinsukia) across the entire study period (2009-2019). The 
model that included vaccination data at a 2-month lag improved out-of-sample RMSE for all 
districts when compared to the environment-driven model (RMSE value represented by 
dashed line) and other vaccination lags.  
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Appendix 4: Supplementary figures and data for Chapter 5 

This appendix provides supplementary figures, tables and information on data 
sources for the analyses conducted in Chapter 5, ‘Predicting Japanese encephalitis 
risk under different scenarios of global change’. The items contained in this appendix 
are: 

 

Table S5.1. Total human population (in thousands) in per state in northeast India in 
2011 (Government of India, 2011) and under different SSP scenarios for 2030, 2050 
and 2070 (Jones and O’Neill, 2016). 

Table S5.2. Model selection results for models predicting spatial JE outbreak 
occurrence in northeast India. 

Table S5.3. Changing population at risk of JE in northeast India under different SSP-
RCP scenarios. 

 

Figure S5.1. Map of India indicating states and union territories. 
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Table S5.1. Total human population (in thousands) per state in northeast India in 2011 (Government of India, 2011) and under different 
SSP scenarios for 2030, 2050 and 2070 (Jones and O’Neill, 2016). 

 
 

State 

Total population (in thousands) 
 

2011 2030 2050 2070 

SSP1 SSP2 SSP3 SSP5 SSP1 SSP2 SSP3 SSP5 SSP1 SSP2 SSP3 SSP5 

Arunachal 
Pradesh* 

85 92 101 107 93 88 108 127 88 76 105 143 76 

Assam 1126 1330 1408 1491 1329 1392 1590 1844 1389 1307 1619 2128 1303 

Manipur 314 366 384 399 366 382 429 479 382 362 437 543 361 

Meghalaya 332 390 415 441 390 404 466 544 403 375 470 625 373 

Mizoram 134 148 160 169 149 145 174 202 145 128 170 228 128 

Nagaland 205 227 245 259 227 221 266 308 221 196 260 348 196 

Sikkim 128 121 136 140 121 97 133 149 97 71 117 156 71 

Tripura 464 549 580 613 547 574 653 755 571 539 663 867 536 

West Bengal 4476 5399 5575 5775 5388 5861 6360 7030 5838 5726 6608 8054 5696 

 
Total 

 
1175 

 
1403 

 
1462 

 
1525 

 
1400 

 
1499 

 
1658 

 
1861 

 
1494 

 
1443 

 
1708 

 
2134 

 
1436 

* A part of Arunachal Pradesh is claimed by both India and China 
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Table S5.2. Model selection results for models predicting spatial JE outbreak 
occurrence in northeast India.  

The table shows the differences in structure and out-of-sample model fit (Brier score) for the 
baseline (random effects only) and best-fitting environmental model of JE outbreak 
occurrence.  

Outbreak 

threshold 

Model Random effects Environmental effects Brier score 

1 confirmed 

case 

Baseline District-level 

spatial random 

effects 

 -  0.064 

Environmental  District-level 

spatial random 

effects 

Precipitation 

Rice cropland proportion 

Poverty prevalence 

Nonlinear Tmax function 

0.061 
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Table S5.3. Changing population at risk of JE in northeast India under different SSP-
RCP scenarios.  
Change in absolute human population at risk in northeast India when compared to present-
day, broken down by epoch (2030, 2050, 2070) and SSP-RCP scenarios.  

 

Epoch SSP-RCP Change in population at risk from 
present-day  

 

2030 SSP1-RCP2.6 -9556 (-12475, -6637) 
 

SSP2-RCP4.5 
 

-2484 (-4074, -894) 

SSP3-RCP6.0 
 

2487 (132, 4843) 

SSP5-RCP8.5 
 

-9442 (-10527, -8357) 

2050 SSP1-RCP2.6 
 

-9734 (-13168, -6300) 

SSP2-RCP4.5 
 

4559 (3118, 5999) 

SSP3-RCP6.0 
 

25552 (20460, 30644) 

SSP5-RCP8.5 
 

-13624 (-12476, -14773) 

2070 SSP1-RCP2.6 
 

-22338 (-25227, -19450) 

SSP2-RCP4.5 
 

3574 (-906, 8054) 

SSP3-RCP6.0 
 

45739 (38028, 53449) 

SSP5-RCP8.5 
 

-24844 (-25652, -24035) 
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Figure S5.1. Map of India indicating states and union territories*. 

The northeast region described in this study (nine states) is highlight in brown.  

*Abbreviations for Indian states and union territories: AP - Andhra Pradesh,  AR - Arunachal 
Pradesh, AS - Assam, BR - Bihar, CH – Chandigarh, CT- Chhattisgarh, DD - Daman and 
Diu, DL - Delhi, DN - Dadra and Nagar Haveli, GA – Goa, GJ – Gujarat, HP - Himachal 
Pradesh, HR - Haryana, JH - Jharkhand, JK - Jammu and Kashmir, KA - Karnataka, KL – 
Kerala, MH - Maharashtra, ML - Meghalaya, MN - Manipur, MP - Madhya Pradesh, MZ - 
Mizoram, NL - Nagaland, OR - Odisha, PJ - Punjab, PY - Puducherry, RJ - Rajasthan, SK - 
Sikkim, TL – Telangana, TN – Tamil Nadu, TR - Tripura, UP - Uttar Pradesh, UT - 
Uttarakhand, WB – West Bengal.  

 

  



 

302 
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