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Summary  

Glioblastoma recurrence originates from invasive cells at the tumour margin that escape 

surgical debulking, but their biology remains poorly understood. Here we generated three 

somatic mouse models recapitulating the main glioblastoma driver mutations to characterise 

margin cells. We find that, regardless of genetics, tumours converge on a common set of neural-

like cellular states. However, bulk and margin display distinct neurogenic patterns and immune 

microenvironments. The margin is immune-cold and preferentially follows developmental-like 

trajectories to produce astrocyte-like cells. In contrast, injury-like programmes dominate in the 

bulk, are associated with immune infiltration and generate lowly-proliferative injured neural 

progenitor-like (iNPCs) cells. In vivo label-retention approaches further demonstrate that 

iNPCs account for a significant proportion of dormant glioblastoma cells and are induced by 

interferon signalling within T-cell niches. These findings indicate that tumour region is a major 

determinant of glioblastoma cell fate and therapeutic vulnerabilities identified in bulk may not 

extend to the margin residuum. 

 

Introduction 

Glioblastoma (GBM) is the most common and aggressive primary brain tumour (Weathers and 

Gilbert, 2014). Current standard of care, consisting of maximally safe surgical resection 

followed by chemo- and radiotherapy remains ineffective, leading to invariable recurrence and 

a median survival of less than 18 months (Stupp et al., 2005).  

 

A main cause of therapy-resistance is the ability of GBM cells to diffusely infiltrate into the 

normal brain (Cuddapah et al., 2014; Vehlow and Cordes, 2013). Infiltration precludes curative 

surgery, leading to tumour regrowth from cells that have invaded past the resection margin 

(Cuddapah et al., 2014; Vehlow and Cordes, 2013). Despite its crucial role in recurrence 
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however, the invasive GBM margin remains poorly characterised (Vehlow and Cordes, 

2013). This gap in our knowledge is largely due to the paucity of available patient material 

from the tumour margin, particularly from distal regions. Indeed, current knowledge of GBM 

biology originates almost exclusively from analysis of the tumour bulk collected during biopsy 

or surgical de-bulking. Nonetheless, as invasive cells, rather than bulk cells, give rise to 

recurrence, potential differences between bulk and margin tumour cells would have profound 

therapeutic implications.  

 

The pervasive molecular and cellular heterogeneity of GBM further underlies recurrence by 

limiting efficacy of both standard and targeted therapies (Qazi et al., 2017). Large scale 

research efforts have carried out detailed molecular characterisation of human GBM, revealing 

marked genetic, epigenetic and transcriptional inter-tumoural heterogeneity (Brennan et al., 

2013; Network, 2008; Sturm et al., 2012; Verhaak et al., 2010). Based on these analyses, GBMs 

have been classified into three main molecular subtypes, termed proneural, classical and 

mesenchymal, defined by distinct transcriptional signatures and associated driver mutations in 

PDGFRA, EGFR and NF1, respectively (Verhaak et al., 2010; Wang et al., 2017). In addition, 

GBMs display remarkable intra-tumour heterogeneity, with individual tumours containing co-

existing cell populations of different genetics and subtypes (Couturier et al., 2020; Neftel et 

al., 2019; Patel et al., 2014).  

 

At the cellular level, GBMs recapitulate developmental-like lineage hierarchies (Couturier et 

al., 2020; Lan et al., 2017; Neftel et al., 2019). The apex of this hierarchy is occupied by glioma 

stem-like cells (GSCs), defined by their ability to self-renew and differentiate into non-stem 

tumour cells (Galli et al., 2004; Lan et al., 2017; Lathia et al., 2015; Singh et al., 2004). GSCs 

are thought to play a key role in recurrence due to their tumour-initiation potential and intrinsic 
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resistance to chemotherapy and radiation (Bao et al., 2006; Chen et al., 2012). Interestingly, 

GSCs were also shown to be more invasive than non-stem tumour cells (Cheng et al., 2011). 

This has led to the speculation that GSCs may drive infiltration at the invasive niche, but as 

other studies suggest a possible loss of stemness at the margin, their exact role in invasion 

remains an open question (Hoelzinger et al., 2005; Molina et al., 2010; Piccirillo et al., 2009).  

In analogy to neural development and adult neurogenesis, GSCs are also thought to be slow-

cycling and give rise to actively dividing progenitor-like cells that in turn generate partially 

differentiated progeny (Obernier and Alvarez-Buylla, 2019). Within the tumour bulk, lineage 

progression occurs towards glia-like fate, including OPC-, astrocyte- and neural progenitor-

like states, or to a mesenchymal-like phenotype (Couturier et al., 2020; Neftel et al., 2019). 

These state transitions are modulated by driver mutations and by the immune 

microenvironment, with common GBM mutations biasing towards either OPC (PDGFR) or 

astrocyte-like fate (EGFR), and NF1-dependent high microglia/macrophage infiltration 

promoting a mesenchymal-like fate (Hara et al., 2021; Neftel et al., 2019; Wang et al., 2017). 

In contrast, little is known about the lineage progression of invasive cells. Yet, the 

microenvironments of the bulk and margin are dramatically different, with the bulk comprising 

hypoxic, necrotic and angiogenic regions and the margin containing largely normal brain tissue 

(Brooks and Parrinello, 2017). This suggests that distinct pressures on tumour cell fate choice 

might exist between the two regions and that knowledge of bulk heterogeneity may not directly 

inform margin phenotypes.   

 

Here, we investigated the biology of invasive GBM cells and how they are affected by genetic 

heterogeneity. We developed three somatic mouse models of GBM that carry the main subtype-

associated patient mutations and share remarkable similarities with the human disease. By 

labelling the tumour cells with fluorescent reporters and exploiting the full accessibility of the 
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murine invasive front, we used these models to compare bulk and margin tumour cells by single 

cell RNA-sequencing (scRNA-seq) and in functional studies. We found that regardless of 

underlying mutations, all three models converge on a finite set of cellular states that resemble 

normal neural cell types. However, the cancer hierarchy is distinctly modulated by tumour 

region. In the bulk, injury-like neurogenic programmes are dominant. This correlates with 

selective immune infiltration of the bulk and results in the generation of slow-cycling cells with 

properties of injured neural progenitor cells (iNPCs). In contrast, neurodevelopmental-like 

hierarchies biased towards astrocyte-like differentiation are prevalent at the margin, where the 

immune microenvironment resembles that of normal brain. We also show that the injured NPC 

state represents a large proportion of the GBM dormant population and is induced by high 

interferon signalling from T-cells that form bulk-specific niches. Our work reveals striking 

differences between bulk and margin biology and suggests that tumour region is a major 

determinant of GBM fate. 

 

Results 

Development of somatic GBM mouse models 

To characterise the biology of invasive tumour cells and how it is affected by genetic 

alterations, we developed three somatic mouse models of GBM carrying combinations of 

mutations commonly associated with the main human subtypes (Network, 2008; Verhaak et 

al., 2010; Wang et al., 2017).  This enabled us to directly link tumour phenotypes to disease-

relevant driver mutations and model the heterogeneity of human GBM through combined 

analysis of the three mouse models. Furthermore, the introduction of a tdTomato reporter in all 

tumour cells allowed us to comprehensively sample the tumour margin and discriminate 

tumour cells from normal brain cells based on tdTomato fluorescence.  
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Subtype-relevant mutations were introduced into endogenous neural stem cells (NSCs) of the 

subventricular zone neurogenic niche (SVZ), a frequent cell of origin in GBM patients 

(Alcantara Llaguno et al., 2009; Lee et al., 2018). Specifically, the following mutations were 

used: EGFRvIII overexpression and Cdkn2a knock-out (hereon EGFR model); Pdgfra 

overexpression and Trp53 knock-out (hereon Pdfgra model); Nf1, Pten and Trp53 knockout 

(hereon Nf1 model). To this end, a non-integrating plasmid encoding for the PiggyBase 

transposase alone (Pdgfra and EGFR models) or with Cas9 (Nf1 model) together with an 

integrating piggyBac vector carrying the oncogenes, CRISPR guides to tumour suppressors, 

Cre recombinase and tdTomato were co-electroporated into the lateral ventricles of Trp5fl/fl 

(Pdgfra and Nf1 models) or Cdkn2afl/fl (EGFR model) of P2 pups (Figure 1A) (Chen and 

LoTurco, 2012). Upon electroporation, transient Cas9/gRNA expression results in inactivation 

of the tumour suppressor genes, whereas PiggyBase-mediated integration of the piggyBac 

vector ensures stable expression of the oncogenes and the td-Tomato reporter in the targeted 

NSCs and their progeny. To ensure selective targeting of neural stem cells (NSC), Cas9 and 

Cre expression were driven by a truncated version of the human GFAP promoter (herein 

hGFAPMIN) previously reported to maintain the specificity of the full GFAP promoter while 

increasing its activity (Lee et al., 2008). Promoter specificity was confirmed by electroporation 

of a hGFAPMIN-tdTomato reporter construct, which revealed selective tomato expression in 

NSCs with radial glia morphology that were largely Ki67-/GFAP+ (Supplemental Figure 1A-

C). All genotypes generated tdTomato+ tumours with histological and molecular features of 

GBM, including vascular proliferation and necrosis, as well as expression of the GBM markers 

Sox2, Olig2 and GFAP, within 8-15 weeks and with high penetrance (Figure 1B-E). Western 

analysis of primary cells acutely isolated from the three tumour types confirmed that the 

mutations were correctly introduced in each model (Supplemental Figure 1D). Together, these 
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results suggest that the models closely recapitulate the human disease and can inform on GBM 

biology.  

 

Tumour cell states differ between bulk and margin 

We next used scRNA-seq to profile invasive tumour cells and their bulk counterparts in each 

model. The bulk and striatal margin regions of three tumours of each genotype were 

microdissected under fluorescence guidance, enzymatically dissociated to single cells and 

FACS-sorted based on tdTomato fluorescence (Figure 2A and Supplemental Figure 2A) 

(Brooks et al., 2021). As expected, the proportion of tdTomato+ tumour cells was lower at the 

margin relative to the bulk, confirming accuracy of microdissection (Supplemental Figure 2B). 

Transcriptomes of an average of 470 cells (ranging from 410 to 531) per region were analysed 

using SMART-seq2 protocols (Figure 2A) (Picelli et al., 2014).  

 

We first assessed the cellular composition of the tumours irrespective of tumour region. Each 

tumour model was first analysed independently and then all datasets were combined to identify 

common transcriptional patterns across the three genotypes. Data integration, based on 

canonical correlation analysis, revealed that cells did not segregate by genotype, but rather 

intermixed, converging onto 8 main subpopulations or states across regions (Figure 2Bi, 2Bii 

and 2Biv). This is consistent with previous findings in human GBM (Couturier et al., 2020; 

Neftel et al., 2019) and is indicative of common and mutation-independent biological 

processes. Furthermore, all tumours contained mixtures of cells of all three transcriptional 

subtypes and four cellular states identified in patients, further confirming the validity of our 

models (Figure 2Biii and Supplemental Figure 2C) (Neftel et al., 2019; Wang et al., 2017). 
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As our models derive from the transformation of normal postnatal NSCs, we reasoned that the 

8 identified clusters might correspond to states that mirror SVZ neurogenesis. We therefore 

compared expression signatures in each cluster with published scRNA-seq analyses of NSCs 

and their progeny in the normal and ischemic SVZ, which we hypothesized may be a state 

relevant to tumourigenesis due to the known links between injury and cancer (Supplemental 

Figure 2D-G and Supplemental Table 1) (Dvorak, 1986; Kalamakis et al., 2019; Llorens-

Bobadilla et al., 2015; Mizrak et al., 2019). All tumours contained cells with signatures of 

normal or injured neural progenitors (Figure 2Bii and Supplemental Figure 2D-H), 4 of which 

were shared among all genotypes. Specifically, all tumours contained cells similar to active 

NSCs (aNSC), transit amplifying progenitors/early neuroblasts (TA), oligodendrocytes (oligo) 

and injured NPCs that result from ischemic brain injury (iNPC). The iNPC state included, but 

was not restricted to mesenchymal-like cells described by Neftel et al. In addition, EGFR and 

Nf1 tumours contained cells with signatures of oligodendrocyte precursor cells (OPCs) and 

Pdgfr and Nf1 tumours cells with astrocyte-like subpopulations (Figure 2C, D). Interestingly, 

although Pdgfr tumours lacked OPCs, they uniquely contained a subpopulation of cells with 

signatures of immature oligodendrocytes (imOligo), indicating that Pdgfra overexpression 

promotes maturation down the oligodendrocyte lineage, while concomitantly preventing 

further differentiation to more mature oligodendrocytes, in line with its developmental roles 

(Figure 2C, D) (Brooks et al., 2021; Zhu et al., 2014). Similarly, although EGFR tumours 

lacked more mature astrocyte-like cells, they contained a subpopulation with signatures of 

astrocyte progenitor-like cells (Astro pr), which was absent in the other two genotypes (Figure 

2C, D). This suggests that EGFRvIII overexpression biases tumour cells towards 

astrogliogenesis, as previously reported for wildtype EGFR, while again preventing full 

differentiation (Neftel et al., 2019). Consistent with a differentiation block caused by mutant 

RTK signalling, pseudotemporal alignment of the differentiation trajectories of the three 
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models revealed that both EGFR and Pdgfr tumours appeared more immature than Nf1 tumours 

lacking constitutive RTK activity, with EGFR tumours being the most immature (Figure 2E). 

Thus, our models indicate that regardless of genetics, tumour fates converge on a finite set of 

phenotypes that mimic neurogenesis, with driver mutations biasing towards specific cell fates, 

as observed in human GBM (Neftel et al., 2019). They also reveal that mutations control the 

extent by which tumour cells differentiate, with sustained developmental RTK signalling 

blocking lineage progression at immature progenitor-like states. 

 

Next, we examined the impact of tumour region on cellular states, by comparing the frequency 

of the identified clusters in the bulk and margin of the tumours (Figure 2Biv, F, G). We found 

that while all cell fates were detected in both regions, location influenced the frequency of 

specific cell states, with the bulk being enriched for iNPCs and the margin for astrocyte-like 

fate. Interestingly, these biases were largely independent of genetics, as they were observed in 

all models, regardless of basal mutation-dependent lineage bias (Supplemental Figure 2I). 

These findings suggest that tumour region is dominant over driver mutations in modulating 

cell state and that margin and bulk biology differ. 

 

aNSC-like cells sit at the top of the tumour hierarchy and are not enriched at the margin 

To better understand the tumour hierarchy in our models, we performed pseudotime analysis 

of the integrated datasets using normal SVZ neurogenesis trajectories to infer directionality 

(Figure 3A and Supplemental Figure 3A) (Mizrak et al., 2019). We found that the aNSC 

compartment, which was the most highly proliferative tumour subpopulation, was at the apex 

of the tumour hierarchy (Figure 3B and Supplemental Figure 3B). In analogy to findings in 

human GBM, this suggests that the aNSC subpopulation corresponds to GSCs within our 

models (Couturier et al., 2020). GSCs have been hypothesized to drive invasion based on the 
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observation that GSCs-derived tumours are more invasive than tumours derived from non-stem 

tumour cells (Cheng et al., 2011). However, analyses of the stemness potential of invasive cells 

in vivo remain inconclusive, largely due to the challenges associated with profiling the human 

GBM margin (Hoelzinger et al., 2005; Molina et al., 2010; Piccirillo et al., 2009). We therefore 

took advantage of the accessibility of the margin in our models to explore the role of tumour 

stem-like cells in invasion and in the context of driver mutations.  

 

Consistent with an equal distribution of aNSCs in bulk and margin (Figure 2G), we found no 

changes in stemness signatures between the two regions, suggesting that stem cell potential 

may not be a prerequisite for invasion (Figure 3C) (Tirosh et al., 2016). To test this more 

directly, we experimentally validated the distribution of aNSCs within tumours by 

immunofluorescence analysis using the EGFR model as a paradigm. We chose EGFR tumours 

for this and all later validation experiments because they reflected all phenotypes shared across 

the models, while displaying the simplest hierarchical organisation (Supplemental Figure 3A). 

As aNSC-like tumour cells were the most proliferative cells amongst all tumour cell types, we 

used their cell cycle characteristics to label them selectively within tumour sections, as 

previously reported for SVZ neurogenesis (Supplemental Figure 3C) (Codega et al., 2014; 

Ponti et al., 2013). Mice were given a 2h EdU pulse prior to sacrifice and terminal tumours 

were analysed for distribution of EdU+ aNSCs (Figure 3D). aNSC-like cells were evenly 

distributed across the entire tumour mass, as shown by quantification of EdU+ cells relative to 

tdTomato signal in both regions (Figure 3E, F). EdU+ cells were also not enriched within the 

perivascular space of the margin, one of the main invasive niches for GBM (Figure 3G, H). 

Indeed, a larger proportion of EdU– tdTomato+ tumour cells than EdU+ cells invaded 

perivascularly (Supplemental Figure 3D). Thus, aNSC-like cells and more committed tumour 
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progenitors appear to have comparable invasive potential, suggesting that invasion is driven by 

all tumour compartments.   

 

Differential evolution of cell states in bulk and margin 

We next asked how the different cell states we identified in our models evolve from aNSCs 

and whether tumour hierarchies vary between bulk and margin. As shown in Figure 3A, 

pseudotime analysis was consistent with aNSCs undergoing lineage progression along two 

main routes, a developmental-like route that bifurcated to give rise to astrocyte-like or 

oligodendrocyte-like cells and an injury-like route that terminated with iNPC-like cells. 

Interestingly, when analysed in the context of tumour region, it became apparent that location 

impacted the tumour hierarchy in all models (Figure 4A and Supplemental Figure 4A). 

Progression to oligodendrocyte-like fate along the developmental route occurred in both bulk 

and margin, but astrocyte fate was favoured in the margin, consistent with the cell fate 

distributions measured in Figure 2G. In contrast, progression to the iNPC state along the injury-

like route occurred almost exclusively in the bulk (Figure 4A and Supplemental Figure 4A). 

Consistent with a propensity for differentiation at the margin, invasive cells were overall more 

mature than bulk cells as judged by their global pseudotime alignment (Figure 4B).  

 

To determine whether the cell state changes inferred from transcriptional signatures 

corresponded to phenotypic changes, we examined the distribution of astrocyte-like cells and 

iNPCs in EGFR tumours at the protein level and in their spatial context. We used Sox9, a 

master regulator of astrogliogenesis and one of the most differentially expressed genes in the 

astrocyte-like clusters (Supplemental Table 1), as a marker for Astro pr (Rowitch and 

Kriegstein, 2010). Immunofluorescence analysis of tumour sections confirmed that Sox9+ cells 

were rare within the bulk of the tumour and increased as cells invaded into the striatum (Figure 
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4C). However, Sox9 upregulation was heterogeneous within the margin, with a striking 

enrichment in the nucleus accumbens and a more modest increase across the dorsal striatum 

(Figure 4C). Quantification of the percentage of Sox9+/tdTomato+ cells within the nucleus 

accumbens revealed that as much as a quarter of all tumour cells acquired Astro pr fate in this 

region (Figure 4D). Thus, the margin microenvironment imposes distinct and regionally-

determined selective pressures on tumour cells. To examine the distribution of iNPCs, we 

selected the MHC class I markers H-2Kb and β₂ microglobulin (B2m), Bst2 and MHC class II 

I-A/I-E as marker genes as they were all markedly increased in this cluster (Supplemental 

Figure 2H and Supplemental Table 1). The bulk and margin regions of 3 EGFR tumours were 

microdissected under fluorescence guidance, dissociated to single cells, immunolabelled and 

subjected to FACS analysis. In agreement with the bioinformatics data, we found a much 

greater proportion of MHC-Ihigh, MHC class IIhigh, B2Mhigh and Bst2+ tdTomato+ iNPCs in the 

bulk of the tumour relative to the margin, confirming that iNPC fate evolves selectively in the 

bulk (Figure 4E and Supplemental Figure 7). Thus, the tumour hierarchy is biased by location 

and subject to significant extrinsic control. 

 

iNPCs comprise a large proportion of dormant tumour cells 

In the ischemic SVZ, injured neural progenitors include primed quiescent cells that are poised 

for activation (Llorens-Bobadilla et al., 2015). As this cellular compartment was also 

characterised by low proliferation in our models (Figure 3B), we hypothesised that iNPCs may 

represent dormant/quiescent tumour cells. To test this, we modified the EGFR piggyBac 

construct to incorporate a Tet-ON inducible H2B-GFP reporter of label retention (Foudi et al., 

2009). This approach allows in vivo detection of slow-cycling tumour cells by pulse-chase 

experiments using doxycycline (Dox) administered in the drinking water. To simplify the 

piggyBac system and enable transformation of endogenous NSCs in any mouse genetic 
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background, we also introduced gRNAs for Cdkn2a into the piggyBac backbone (Figure 5A), 

producing a fully integrated genetic tool for tumour initiation. Similar to the EGFR piggyBac 

system, the EGFR-H2B-GFP construct produced tumours with histological features of GBM 

and with high penetrance, but with shorter latency, likely due to more efficient integration of 

the modified vector (Figure 6F and Supplemental Figure 5A).   

 

Dox was administered from electroporation until week 5 of tumour development followed by 

a 2- to 4-week chase period (Figure 5A). Immunofluorescence analysis before and after chase 

indicated that the H2B-GFP protein was efficiently incorporated in the chromatin of  >90% of 

all tumour cells and effectively diluted over the chase period (Supplemental Figure 5B and C). 

Furthermore, by 2 weeks of chase, H2B-GFP+ cells were largely negative for the proliferation 

marker Ki67, which was instead restricted to H2B-GFP- and a minority of H2B-GFPlow cells, 

confirming that the approach successfully identified dormant tumour cells (Supplemental 

Figure 5D). We next examined the distribution of label retaining H2B-GFP+ cells (LRC) within 

the tumour in situ. In agreement with the enrichment of iNPCs in the bulk identified by scRNA-

seq (Figure 2G), immunofluorescence analysis revealed that the majority of LRC were found 

in the tumour bulk (Figure 5B, C). Interestingly, their distribution was not uniform, but rather 

restricted to specific bulk regions, with LRCs often found in clusters, suggestive of 

microenvironmental regulation (Figure 5B, C). In addition, FACS analysis indicated that H2B-

GFP+ cells were selectively enriched for expression of the iNPC markers Cd44 and Bst2 

relative to H2B-GFP- tumour cells (Figure 5D, E and Supplemental Figure 7). We conclude 

that iNPCs are LR tumour cells, induced to enter a dormancy-like state within the bulk of the 

tumour. 
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Dormant tumour cells are induced by interferon in T-cell niches 

To understand the signals that induce dormancy in the tumour bulk, we examined in greater 

detail the gene expression profile of iNPCs. Analysis of top marker genes alongside gene 

ontology analysis showed an overrepresentation of immune genes and signatures, particularly 

those linked to interferon signalling, as reported in the ischemic SVZ (MHC class proteins, 

innate immune response, antigen processing, response to virus, response to interferon beta) 

(Figure 6A, B, Supplemental Figure 6A and Supplemental Table 2) (Llorens-Bobadilla et al., 

2015). This suggested that the iNPC state may be induced by interactions with immune cells. 

To explore this idea, we examined the distribution of the main immune compartments in our 

tumour models. We found that all three models were infiltrated by immune cells as in the 

human disease (Pombo Antunes et al., 2020), with the EGFR model displaying a trend towards 

most robust infiltration, possibly due to expression of the EGFRvIII neoantigen in the tumour 

cells (Figure 6C and Supplemental Figure 7). Importantly, immune infiltration was not due to 

tdTomato overexpression, as integration of a piggyBac construct encoding for tdTomato alone 

did not elicit an immune response (Supplemental Figure 6B, C). We therefore next assessed 

the immune microenvironment in bulk and margin by FACS and immunofluorescence analysis, 

again using EGFR tumours as a model. The overall proportion of Cd45 immune cells was 

significantly increased in the bulk, whereas the margin had levels of infiltration comparable to 

tumour-free brain tissue (Figure 6D and Supplemental Figure 6D and 7). This indicates that 

the bulk accounts for the majority of the tumour immune infiltrate whereas the margin may 

represent an immune-cold microenvironment. Differences in Cd45 cells were reflected in all 

immune components analysed, including microglia, macrophages, Cd4 T cells, Cd8 T cells, 

Tregs and natural killer cells, which were selectively enriched in the tumour bulk (Figure 6E 

and Supplemental Figure 6E and 7). This pattern was consistent with the hypothesis that 

increased immune activity in the bulk induces dormancy via interferon signalling. To test this 
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more directly, we used two complementary approaches. First, we examined the spatial 

distribution of immune cells relative to H2B-GFP+ LRC by immunofluorescence. Although 

enriched in necrotic regions, microglia and macrophages were evenly distributed throughout 

the rest of the bulk (Supplemental Figure 6F). Instead, rare natural killer cells were restricted 

to necrotic regions (Supplemental Figure 6G). This suggests that neither cell type may be 

functionally linked to acquisition of LRC phenotypes, as the distribution of H2B-GFP+ cells 

was not uniform either within or outside necrotic patches (Figure 5B, Figure 6F and 

Supplemental Figure 6H). In contrast, Cd4 and Cd8 T cells formed clusters in multiple tumour 

areas, including around necrotic regions, which appeared to co-localise at least in part with 

H2B-GFP+ LRC-rich regions (Figure 6F and Supplemental Figure 6H).  

 

To quantify a potential spatial correlation between these populations, we used digital 

pathology. We applied supervised and semi-supervised algorithms to identify the exact location 

of T cells and H2B-GFP+ LRC in immunofluorescence confocal tile scan images of the tumours 

(balanced accuracy: LRC = 0.96, T-cells = 0.95). The LRC population was subdivided 

according to GFP intensity as a surrogate for their proliferative status (Supplemental Figure 

5D), with H2B-GFPhigh cells being the least and H2B-GFPlow the most proliferative 

(unsupervised three-classes k means applied at each sample) and spatial relationships measured 

using cell-to-cell distance and abundance-based approaches (Figure 6G). Both Cd4 and Cd8 T 

cells were found to be closer to H2B-GFPhigh than H2B-GFPlow cells (Figure 6H; GLMM, 

factor link type, T cell-GFPhigh vs T Cell-GFPlow: F = 193.467, p = 6.22e-44), while Cd8 T cells 

were closer to both H2B-GFP+ tumour populations than Cd4 T cells (Fig 6H; GLMM, factor 

T cell type Cd8 vs Cd4: F = 6.833, p = 0.039), in the absence of a significant interaction 

between these variables (GLMM, interaction between factor T cell type and link type: F = 

0.045, p = 0.083). Furthermore, measurement of the Morisita-Horn overlap index revealed that 
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the co-localisation of both Cd8 and Cd4 T cells with H2B-GFPhigh was higher than 0 (Cd8: t[3] 

= 4.508, p = 0.02; ; Cd4: t[3] = 2.4, p = 0.047) within immune hotspots (defined by Getis-Ord’s 

G* on T cells distribution) and, controlling by the T cell/H2B-GFP+ ratio within immune 

hotspots, the co-localisation of H2B-GFPhigh cells with Cd8 T cells was higher than with Cd4 

T cells (Figure 6I, J; F[1,5] = 9.076, p = 0.029; 95% CI difference = 0.028 – 0.348). Outside 

of immune hotspots, only co-localisation of H2B-GFPhigh cells and Cd8 T cells was 

significantly different than 0 (one-sided t-test t[3] = 4.048, p = 0.014; Cd4: t[3] = 1.73, p = 

0.09), and no significant differences in co-localisation with H2B-GFPhigh cells were detected 

between Cd4 and Cd8 T cells (Figure 6I, J; GLM F[1,5] = 1.39, p = 0.29). However, H2B-

GFPhigh tumour cells showed overall higher co-localisation with Cd4 or Cd8 T cells than H2B-

GFPlow cells resampled to control for difference in abundance between the two GFP 

subpopulations (Supplemental Figure 6I). Together, this spatially-resolved quantification 

suggests that H2B-GFPhigh LRCs reside in close proximity to T cells, particularly, to the Cd8 

T cell compartment.  

 

Second, we functionally assessed the role of interferon signalling in driving tumour dormancy. 

EGFR-H2B-GFP tumours were induced in Ifnar1-/- or compound Ifnar1-/-;Ifngr1-/- mice, which 

are homozygous knock-out for type I or type I/II interferon signalling, respectively (Figure 6K) 

(Huang et al., 1993; Muller et al., 1994). Background-matched wildtype mice were used as 

controls. Following pulse-chase experiments, we measured the proportion of H2B-GFP+ LRC 

in the three cohorts and found a significant decrease in both mutant strains relative to control 

tumours, indicative of a reduction in dormant cells in the absence of interferon signalling 

(Figure 6L). Importantly, interferon signalling-deficient and wildtype tumours had comparable 

levels of immune infiltration, indicating that the phenotype was not due to reduced immune 

activity in the interferon mutant strains (Supplemental Figure 6J). Consistent with these 
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findings, recombinant type I or II interferons, alone or in combination, were sufficient to 

decrease the proliferation of primary H2B-GFP- tumour cells purified from EGFR tumours 

(generated in a wildtype background) in vitro (Figure 6M). Together, these results indicate that 

dormancy is at least in part a bulk phenotype induced by interferon signalling in T-cell-rich 

niches. 

 

Discussion 

The GBM margin is notoriously difficult to study in patients due to the challenges of sampling 

and identifying invasive tumour cells, which, by definition, are left behind following surgical 

resection (Cuddapah et al., 2014; Vehlow and Cordes, 2013). To circumvent this problem, we 

developed three somatic mouse models of GBM driven by some of the most common 

combinations of the human mutations. Overall, the models show striking similarities with the 

human disease, recapitulating the histology, transcriptional and cellular heterogeneity, and 

immune microenvironment of patient tumours (Patel et al., 2014; Wang et al., 2017). We found 

that regardless of genetics, all tumours mirrored the main developmental lineages of the brain, 

containing cells of astrocytic, oligodendrocytic, and transit amplifying progenitor/neuronal 

progenitor fate, alongside an injured NPC-like state. These findings are remarkably consistent 

with recent findings by Neftel et al. and Couturier et al., in which human GBM cells were 

found to exist in astrocyte-like, oligodendrocyte-progenitor-like, neural progenitor-like and 

mesenchymal-like states (Couturier et al., 2020; Neftel et al., 2019). These similarities further 

underscore the accuracy of our models in recapitulating the human disease and support an NSC 

origin for GBM (Alcantara Llaguno et al., 2009; Lee et al., 2018).  

 

Although driver mutations biased the frequency of specific fates within our models, as was 

observed in human tumours (Neftel et al., 2019), our results indicate that genetics play an 
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overall modest role in driving tumour phenotypes. In contrast, we find that tumour region is a 

major determinant. Within the bulk, tumour cells of all genotypes progressed along an injury-

like trajectory culminating with interferon-induced dormancy in T-cell niches. Intriguingly, 

this behaviour is reminiscent of the aged SVZ, where neural progenitors were shown to 

undergo quiescence in response to age-dependent inflammation of the niche, including the 

production of interferons by infiltrating T-cells (Dulken et al., 2019; Kalamakis et al., 2019). 

Interferons have also been previously linked to dormancy in a handful of cancer types, which 

in a murine B-cell lymphoma model was released by Cd8 T cells (Correia et al., 2021; Farrar 

et al., 1999; Liu et al., 2017; Liu et al., 2018). It is of note that both type I and type II interferons 

mediated dormancy in our models. Together with the observation that dormancy often co-

localises with immune hotspots and necrotic regions, this points to a model whereby dormancy 

results from a combination of paracrine adaptive interferon g signalling produced by infiltrating 

T cells and autocrine innate interferon a/b signalling triggered by activation of the STING 

pathway in response to T cell-mediated killing of neighbouring tumour cells (Zhu et al., 2019). 

It is tempting to speculate that dormancy may be a general tumour response to T cell infiltration 

induced by the inflammatory microenvironment of the tumour bulk and that interferon 

blockade could be a promising strategy for chemosensitising GBM. 

 

At the margin, where the immune microenvironment resembled that of normal brain, cells 

followed a developmental-like tumour hierarchy biased towards astrocyte-like fate, even in 

Pdgfr tumours that display an intrinsic oligodendrocyte-like fate bias. Thus, although tumours 

are often compared to wounds that don’t heal, our findings suggest that injury programmes are 

mostly relevant to the bulk of the tumour and may not play a major role in driving margin 

phenotypes, with key implications for GBM treatment, including checkpoint blockade 

immunotherapy (Dvorak, 1986). In line with our findings, a recent study proposed that human 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.06.11.447915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.447915
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

GSCs exist in either a neurodevelopmental or an inflammatory state (Richards, 2021). It would 

be of great interest to explore whether there is a correlation between GSC state and their tumour 

region of origin in patients.  

 

The dominance of the microenvironment in controlling tumour behaviour is further emphasised 

by our observation that within the invasive margin astrocyte differentiation is highly localised 

to specific brain regions. We recently reported that invasion into white matter promotes 

differentiation towards oligodendrocyte fate in patient-derived models (Brooks et al., 2021). 

The findings presented here corroborate the observation of increased lineage progression at the 

margin and further suggest that even within a specific brain region, differentiation trajectories 

are highly heterogeneous and dependent on local extrinsic cues. This is of clinical relevance as 

it suggests that location within the brain could be predictive of tumour biology and, potentially, 

response to treatment. Comprehensively defining invasive phenotypes in their spatial context 

may therefore identify key biological vulnerabilities for eradicating invasive cells and is an 

important direction for future studies. 

 

Our work also provides two important insights into the biology of stem-like tumour cells. First, 

it suggests that GSCs resembling NSCs may not be slow-cycling or quiescent, as is the case 

for their normal counterparts. Indeed, in agreement with recent findings in patients, in our 

models, actively dividing NSC-like cells occupied the top of the tumour hierarchy (Couturier 

et al., 2020). This is perhaps not surprising given that normal quiescent NSCs are maintained 

by key tumour suppressors that become inactivated in GBM, including p53 and Cdkn2a (Gil-

Perotin et al., 2006; Meletis et al., 2006; Nishino et al., 2008). In further support of this idea, 

we also found that the majority of label-retaining tumour cells did not have NSC signatures, 

but rather represented more committed progenitors that were induced to exit the cell cycle by 
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the injury-like microenvironment of the tumour bulk. This is indicative of key differences 

between developmental and tumour hierarchies and highlights the importance of 

injury/inflammatory response programmes in gliomagenesis (Brooks et al., 2021; Richards, 

2021; Wang et al., 2017). Second, we found an equal distribution of aNSC-like cells between 

bulk and margin. While we cannot exclude the possibility that other subsets of stem-like 

tumour cells may be enriched at the invasive niche, this work suggests that invasive potential 

is a general property of most, if not all, tumour cell subpopulations. This is somewhat 

unexpected given that GSCs were shown to be more invasive than their non-stem counterparts 

(Cheng et al., 2011). It remains to be determined if astrocyte-like differentiation is beneficial 

for invasion or rather a by-stander effect driven by the surrounding normal brain 

microenvironment. Regardless, identifying biological vulnerabilities of the astrocyte-like state 

would be an important next step for the development of treatments that more effectively target 

the GBM margin residuum. 

 

In summary, our work reveals fundamental differences between the tumour bulk and margin 

and suggests that analysis of the bulk is not directly informative of margin biology or treatment. 

It further suggests that combinatorial therapies that take these differences into account will be 

required to improve patient outcome in this devastating disease. 
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Figure 1. Development of somatic mouse models of GBM. A, Schematic of method for 

tumour generation and piggyBac constructs. B, Representative tile scan fluorescence images 

of tumours of each genotype. Tumour cells are labelled by endogenous tdTomato expression 

(red). Sections were counterstained with DAPI (blue). Scale Bar=1mm. C, Representative 

haematoxylin-eosin (H&E) stainings of tumour models showing examples of microvascular 

proliferation (top) and necrosis (asterisks, bottom). Scale Bars=50µm and 100µm, respectively. 

D, Immunofluorescence staining for the GBM markers GFAP, Olig2 and Sox2 (green) of 

tdTomato+ (red) EGFR, Nf1 and Pdgfr tumours, as indicated. Scale Bar=50µm. E, Kaplan-

Meier survival plots of the three GBM models. n=20. Log Rank Mantel Cox test. (ns: 

p=0.1583; ****: p<0.0001). Median survival of 87, 89 and 67 days for EGFR, Nf1 and Pdgfr 

models, respectively. See also Supplemental Figure 1. 
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Figure 2. Tumour cell states differ between bulk and margin. A, Schematic of experimental 

set up. B, UMAP visualisation of 2824 cells from the combined GBM tumour models. Cells 

are coloured by i) genotype, ii) cell type, iii) Verhaak molecular subtyping and iv) tumor region 

(bulk, margin). C, Relative frequency of cell types across tumour genotypes. D, Cell type 

composition of the three models. E, Schematic representation of pseudotime alignment of 

differentiation trajectories in EGFR, Pdgfr and Nf1 tumours. The EGFR model was used as a 

reference for comparison with the other two models. F, Cell type composition of bulk and 

margin regions in the combined tumour models. G, Relative proportions of cell types in the 

bulk and margin regions of the combined tumour dataset. See also Supplemental Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.06.11.447915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.447915
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.06.11.447915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.447915
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Figure 3. aNSC-like cells sit at the top of the tumour hierarchy and are not enriched at 

the margin. A, Differentiation trajectory analysis of 2824 GBM cells coloured by (from left 

to right): cell type, genotype and pseudotime by which cells are ordered along the 

differentiation path. B, Boxplots comparing the cell-cycle signature score in each tumour cell 

population within the combined tumour dataset. Boxplots are ordered from higher to lower cell 

cycle score and display the minimum, 1st, 2nd, 3rd quartile and maximum of scores for each 

cell type. C, Boxplots comparing the Tirosh stemness signature score in bulk and margin tumor 

regions. Boxplots display the minimum, 1st, 2nd, 3rd quartile and maximum of scores for each 

regions. D, Schematic of experimental set up. E, Representative immunofluorescence staining 

for EdU (grey) and the vascular marker Cd31 (green) of tdTomato+ EGFR tumours. Scale 

bars=200 µm and 50µm for close-up regions. F, Quantifications of the number of EdU+ GSCs 

in the bulk (grey) and margin (red) of EGFR tumours shown in E. n=5 tumours. Six regions of 

interest (ROIs) per tumour were counted. Two-tailed Mann-Whitney test (ns: p=0.4581). G, 

Quantifications of the number of EdU+ aNSC-like cells in the perivascular region within the 

bulk (grey) and margin (red) of EGFR tumours shown in E. n=6 tumours. Three ROIs per 

tumour were counted. Two-tailed Mann-Whitney test (ns: p=0.7389). H, Quantification of 

proportion of margin EdU+ aNSC-like cells with or without association with the invasive 

vasculature.  n=5 tumours. Each independent repeat is plotted. Six ROIs per tumour were 

counted. Two-tailed paired Student’s t-test (ns: p=0.0567). See also Supplemental Figure 3. 
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Figure 4. Differential evolution of cell states in bulk and margin. A, Differentiation 

trajectory analysis of 463 margin (left) and 494 bulk (right) EGFR cells coloured by cell type. 

B, Distance matrix representative of the global alignment of bulk and margin pseudotimes. 

Trajectory starts at the top left corner and ends at the bottom right corner of the plot. C, 

Representative immunofluorescence image of the bulk and margin regions of tdTomato+ EGFR 

tumours stained for Sox9 (green). Images on the right are magnifications of the boxed regions 

on left images. Scale bar=100µm and 50µm for close-up regions. CC: Corpus callosum, NAc: 

nucleus accumbens. D, Quantifications of the number of Sox9+ astrocyte-like cells in the 

tumours shown in D. n=3 EGFR tumours >150 cells per tumour were counted. Paired two-

tailed Student’s t test. Mean±SD. E, FACS analysis of expression profiles for iNPC markers 

MHC-I, B2m, MHC-II and Bst2 in the bulk, margin and contralateral (Contra) regions of 

EGFR tumours. Representative histogram shown. n=3 tumours. See also Supplemental Figure 

4. 
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Figure 5. iNPCs comprise a large proportion of dormant tumour cells. A, Schematic 

representation of EGFR-H2B-GFP label-retention tumour model. Dox, doxycycline. LRC, 

label retaining cells.  B, Immunofluorescence tile scan image of a representative EGFR-H2B-

GFP tumour at 2 weeks of doxycycline chase. Endogenous tdTomato+ (red) and H2B-GFP+ 

(green) fluorescence is shown. Sections were counterstained with DAPI. Note that LRC are 

restricted to the tumour bulk. Scale bar=500µm. C, Higher magnification images of tumour 

boxed regions of the bulk and margin of the tumour shown in B. Scale bar=100µm. Dotted line 

demarcates margin. D, UMAP projections of expression of GFP and iNPC markers Cd44 and 

Bst2. Bulk tumour regions from four EGFR-H2B-GFP tumours at two weeks of doxycycline 

chase were analysed by FACs. 3,000 tumour cells (Cd45- tdTomato+) were concatenated from 

each tumour and gated positive populations were projected onto UMAP. E, Quantification of 

the proportion of Bst2, Cd44 and Ki67-expressing cells H2B-GFP negative (GFP-) and GFP 

positive LRC tumour cells (GFP+) from experiment shown in D. Whisker plots show median 

and min-max value range. n=4. Two-tailed paired Student’s t-test (Cd44: p=0.0003, Bst2: 

p=0.0051 and Ki67: p=0.0047). See also Supplemental Figure 5. 
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Figure 6. Dormant tumour cells are induced by interferon in T-cell niches. A, Heatmap of 

the top 30 markers of the iNPC population. Columns are grouped by cell type (top bar). 

Normalized gene expressed values (z-scores) are shown. B, Gene Ontology (GO) enrichment 

analysis for iNPCs from the integrated analysis of all genotypes. Shown are the top-20 GO 

terms ordered by log10 of their relative adjusted p-value. C, FACS analysis of the percentage 

of Cd45+ immune cells over total number of live cells in the three tumour models and normal 

control brains. n=6 for Control; n=6 for EGFR; n=7 for Nf1 and n=7 for Pdgfr. Welch and 

Brown-Forsythe one-way ANOVA with Dunnet’s T3 multiple comparison test. Control vs 

EGFR: p=0.0092; Control vs Nf1: p=0.0356; Control vs Pdgfr: p=0.0095. Mean±SD. D, FACS 

analysis of the percentage of Cd45+ immune cells over total number of live cells in the bulk 

and margin regions of EGFR tumours and contralateral non-infiltrated brain (Contra). n=6 for 

contralateral; n=8 for bulk and margin. One-way ANOVA with Tukey test. Mean±SD. E, 

FACS analysis of the percentage of indicated immune populations over total number of live 

cells in the bulk and margin regions of EGFR tumours and contralateral non-infiltrated brain 

(Contra). n=6 for contralateral; n=8 for bulk and margin. One-way ANOVA with Tukey test. 

Mean±SD. F, representative immunofluorescence staining for Cd8 (top) and Cd4 (bottom) T 

cells in the bulk of EGFR-H2B-GFP tumours. Shown are examples of T-cell rich necrotic 

regions surrounded by GFP positive LRCs (top) and direct cell-cell interactions between LRCs 

(yellow arrows) and T-cells (white arrows, bottom). Scale bars=100µm. G, Example of cell 

detection, classification, and spatial distance to neighbouring cells after Delaunay triangulation 

(segmented white lines). Scale bar=50µm H, Quantification of distances between H2B-

GFPhigh (GFPhigh) or H2B-GFPlow (GFPlow) tumour cells and Cd4 or Cd8 T cells. Different 

letters above boxplots indicate statistical differences between groups quantified with a Tukey’s 

test after a significant generalised linear mixed model for hypothesis testing. I, Schematic 

representation of the distribution of Cd8 T cells and H2B-GFPhigh (GFPhigh) cells in an 
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EGFR-H2B-GFP tumour. Regions of T cell hotspots, detected by Getis-Ord’s G* are shown 

in pink. J, Measurement of Morisita-Horn overlap indexes of indicated comparisons. An index 

higher than 0 indicates a non-random distribution of cells. p-value relates to comparison of 

H2B-GFPhigh (GFPhigh) cell co-localisation with Cd4 or Cd8 T cells. n=4 tumours, F test. K, 

Schematic representation of experimental set up. L, FACS quantification of percentage of 

H2B-GFPhigh LRC in EGFR-H2B-GFP tumours generated in wildtype (WT), Ifnar1-/- or Ifnar1-

/-;Ifngr1-/- animals. n=7 for WT, n=6 for Ifnar1-/-, n=7 for Ifnar1-/-;Ifngr1-/-. One-way ANOVA 

with Tukey’s multiple comparison test **: p= 0.0058; *: p=0.013; ns: p=0.9829. Mean±SD. 

M, FACS quantification of the percentage of EdU+ cells in cultured primary H2B-GFP- tumour 

cells isolated from EGFR tumours and left untreated or treated with the indicated recombinant 

interferons for 48h. n=4 repeats. One-way ANOVA with Tukey’s multiple comparison test. 

Untreated vs IFNb: p=0.0194; untreated vs IFNg: p=0.0002; untreated vs IFNb+IFNg: 

p<0.0001; IFNb vs IFNg: p=0.0619; IFNb vs IFNb+IFNg: p=0.0024; IFNg vs IFNb+IFNg: 

p=0.2872. Mean±SD. See also Supplemental Figure 6. 
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Methods 

Animals 

All procedures were performed in compliance with the Animal Scientific Procedures Act, 1986 

and approved by with the UCL Animal Welfare and Ethical Review Body (AWERB) in 

accordance with the International guidelines of the Home Office (UK). Trp53fl/fl mice were 

obtained from the Jackson Laboratory (Trp53tm1Brn/J; Jax 008462) (Marino et al., 2000) and 

Cdkn2afl/fl mice were provided by A. Berns (Cdkn2atm2Brn/A) (Krimpenfort et al., 2001). Trp53fl/fl 

pups were used for modelling Nf1 and Pdgfr tumour models, Cdkn2afl/fl mice were used for the 

EGFR model. Wildtype C57Black/6 mice were purchased from Charles River and used for the 

EGFR H2B-GFP model. Ifnar1-/- and Ifngr1-/-;Ifnar1-/- mouse lines were provided by Michel 

Aguet (Huang et al., 1993; Muller et al., 1994). Female and male mice were used for tumour 

modelling. Mice were monitored daily and sacrificed when they began to show signs of disease 

and reached humane endpoints. To study the distribution of GSCs between bulk and margin, 

EdU (50mg/kg; Insight Biotech, sc-284628A) was injected 2 hours prior to sacrifice to label 

rapidly dividing cells in the brain. To identify dormant tumour cells in the EGFR H2B-GFP 

model, doxycycline (Sigma, D891) was administered through the drinking water (0.2% 

doxycycline:1% sucrose) immediately following plasmid injection. Doxycycline withdrawal 

was carried out for a minimum of 2 weeks to dilute the H2B-GFP reporter in actively cycling 

cells. 

In vivo Electroporation 

Plasmids were injected into the ventricle of isoflurane-immobilized pups at postnatal day 2 

using an Eppendorf Femtojet microinjector (Eppendorf, 5247000030), followed by 

electroporation (5 square pulses, 50 msec/pulse at 100V, with 850 msec intervals). PiggyBase 
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(0.5ug/ul) and PiggyBac vectors at a molar ratio of 1:1 were diluted in saline (0.9% NaCl) 

containing 0.1% fast green (Sigma, F7258). 

Tissue preparation and immunohistochemistry 

Animals were perfused (4% paraformaldehyde in PBS) under terminal anaesthesia, brains 

collected and post-fixed overnight at 4°C in PFA (4%). Vibratome sections (50µm) were 

prepared and stored in cryopreservative (glycerol:ethylene glycol:PBS 1:1:2) prior to 

immunohistochemistry. For staining, floating sections were permeabilised overnight (1% 

triton-X-100, 10% serum in PBS) at 4°C, incubated in primary antibody overnight (1% triton-

X-100, 10% serum in PBS) at 4°C and for 3 hours in secondary antibody (0.5% triton-X-100,

10% serum in PBS) at room temperature. Sections were counterstained with DAPI (Insight 

Biotechnology, sc-3598) for 10 min at room temperature and mounted with antifade mounting 

solution (Prolong gold antifade mountant, Thermo Fisher, P36934). Images were acquired on 

Confocal LSM 880 (Zeiss) and analysed on ImageJ (RRID:SCR_003070). 

The following antibodies were used: rabbit anti-Sox2 (1:500; Abcam, ab97959), rabbit anti-

GFAP (1:1,000; Dako, Z0334), rabbit anti-Olig2 (1:500; Millipore, ab9610), rabbit anti-RFP 

(1:500; Antibodies Online, ABIN129578), goat anti-Sox9 (1:50; R&D AF3075), rat anti-Cd45 

(1:500; BD, 550539), rat anti-Cd68 (1:500; Abcam, ab53444), rabbit anti-Iba1 (1:1,000; Wako, 

019-19741), rat anti-Cd8a (1:250; Thermofisher, 14-0808-82), rat anti-Cd4 (1:100; BD,

550280), goat anti-Nkp46 (1:250; R&D, AF2225), rat anti-Cd31 (1:100; BD, 550274). For 

detection of EdU, sections were stained with Click-it EdU Alexa Fluor 647 Imaging Kit 

(Invitrogen, C10340) following manufacturer guidelines. 
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For histopathology assessment, brains were post-fixed in formalin overnight before tissue 

processing and paraffin embedding. 3µm sections were cut and stained with haematoxylin and 

eosin using standard methods.  

Derivation and culture of cell lines 

Neural stem cells were isolated from Trp53fl/fl and Cdkn2afl/fl pups as previously described 

(Ottone et al., 2014). Briefly, pup brains (P9-14) were collected and the lateral ventricles 

dissected out. Neural stem cells were isolated by enzymatic digestion using papain dissociation 

(Worthington, LK003178). Cells were seeded in NSC media (DMEM/F12 supplemented with 

N2 (1x), B27 lacking retinoic acid (1x), kanamycin (100mg/ml)/gentamycin (2mg/ml), heparin 

(4mg/ml), FGF (10ng/ul) and EGF (20ng/ul) and expanded as neurospheres for one passage 

prior to plating on laminin-coated (1:200 in PBS) plates and cultured in GSC media as 

previously described (Pollard et al., 2009).  

For preparation of tumour cell lines from mice, brains from tumour-bearing animals were 

collected into ice-cold HBSS media. Under fluorescence guidance, tdTomato+ tumour regions 

were microdissected, enzymatically digested and cultured as described above, with the 

exception of EGFR tumour-derived cells which were maintained and subcultured as 

neurospheres throughout. 

Interferon treatment and cell proliferation assay 

Proliferative GFP negative tumour cells were FACS-sorted from EGFR-H2B-GFP tumours 

after a 2-week doxycycline chase and cultured as neurospheres as above. Cells were incubated 

in the presence or absence of interferon b (1000 U/ml; R&D, 8234-MB-010), interferon g (1000 

U/ml; PeproTech 315-05-20) or both combined for 48 hours. EdU (10mM) was added to the 
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media 2 hours prior to collection to label dividing cells. Following EdU labelling (10mM; 

Invitrogen, C10424) according to the manufacturer’s instructions, a minimum of 10,000 cells 

were analysed using a BD LSRFortessa X-20 Flow Cytometer and cell-cycle profiles measured 

using FlowJo software. 

Western Blot 

GBM mutations were verified on tumour-derived and NSC cell lines by Western blotting. 

Protein lysates were prepared in RIPA buffer (containing protease (1:100; Sigma, P8340) and 

phosphatase inhibitors (1:500; Sigma, P5726 and P0044). Western Blots were performed 

following standard protocols. Membranes were incubated with primary antibodies in 5% milk 

in TBST (TBS+ 0.05% Tween) overnight at 4 °C, washed and incubated in secondary antibody 

(in 5% milk in TBST) at room temperature for 1h.  Proteins were detected using Luminata 

Crescendo (Millipore, WBLUR0500) or Classico (Millipore, WBLUC0500) Western HRP 

reagents and imaged using the ImageQuant system. 

The following primary antibodies were used: rabbit anti-p16 (1:500; Abcam, ab211542), rabbit 

anti-Trp53 (1:500; Novocastra Leica, NCL-L-p53-CM5P), goat anti-Pdgfra (1:500; R&D, 

AF1062), rabbit anti-Nf1 (1:1,000; Bethyl, A300-140A-M), rabbit anti-Pten (1:1,000, Cell 

Signalling, 9559), rabbit anti-EGFR (1:1,000; Millipore, 06847) and mouse anti-Gapdh 

(1:5,000; Abcam, ab8245). HRP secondary antibodies were purchased from ThermoFisher. 

Plasmid generation 

Constructs were generated using InFusion Kit (Clontech, 638917) and T4 DNA Ligase (NEB, 

M0202S), following manufacturer’s guidelines. Plasmids were transformed in chemically 

competent bacteria strains Top10 (Thermo Fisher, C303003) and Stbl3 (Thermo Fisher, 
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C737303). Stbl3 bacteria strain was used for PiggyBac vectors to minimise recombination. 

Plasmid construction and verification of constructs was designed using Snapgene software 

(RRID: SCR_015052). Previously described sgRNA were used to target Pten and Nf1 

(Zuckermann et al., 2015) for the Nf1 model and the Cdkn2a locus for the EGFR-H2B-GFP 

model (Weber et al., 2015).  

PiggyBases 

The hGFAPMIN-PBase plasmid was generated by inserting the hGFAPMIN promoter from 

pAAV-GFAP-EGFP (a gift from Bryan Roth, Addgene # 50473) into pCAG-PBase plasmid 

(a gift from Paolo Salomoni) (Pathania et al., 2017). hGFAPMIN-SpCas9-T2A-PBase plasmid 

was generated by introduction of SpCas9-T2A into hGFAPMIN-PBase. 

PiggyBac plasmids 

‘EF1α-tdTomato’ was a gift from Paolo Salomoni (Pathania et al., 2017). For the Nf1 model, 

hGFAPMIN and codon-improved Cre recombinase (iCre) sequences were inserted from 

hGFAPMIN-PBase and pBOB-CAG-iCre-SD (a gift from Inder Verma, Addgene # 12336) into 

EF1α-tdTomato PB vector. sgRNAs targeting Nf1 and Pten were cloned upstream of the EF1α-

tdTomato sequence, as described above. For the Pdgfr model, hGFAPMIN-iCre sequence from 

Nf1 PB vector above and cloned into EF1α-TdTomato-CAG-Pdgfra (D842V) (a gift from 

Paolo Salomoni) (Pathania et al., 2017). For the EGFR model, EGFRvIII was PCR-amplified 

and cloned into the Pdgfr model PB vector to replace PdgfraD842V. To generate the EGFR-H2B-

GFP PiggyBac plasmid, the EGFR model PB plasmid was modified as follows. hGFAPMIN-

iCre sequence was replaced with a U6-sgRNA sequence targeting Cdkn2a. To introduce the 

H2B-GFP reporter, the tetracycline inducible expression construct was PCR-amplified from 

pCW57.1 (a gift from David Root, Addgene # 41393) and the H2B-GFP reporter was PCR-
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amplified from LV-GFP (a gift from Elaine Fuchs, Addgene # 25999) (Beronja et al., 2010) 

and cloned after the tdTomato sequence as a polycistronic construct with a T2A linker.  

Flow cytometry analysis 

Brains were collected into ice-cold HBSS media and dissected into 1mm coronal sections using 

a brain matrix as above (WPI, RBMS-200C). The following regions were isolated under 

fluorescence guidance: tumour bulk, tumour margin and an equivalent area from the 

contralateral side (unless otherwise specified). Tissue was mechanically dissociated into small 

pieces, followed by enzymatic dissociation using Liberase TL (Roche, 05401119001) 

supplemented with DNAse (Sigma, 101041590001) for 30min at 37°C. Following addition of 

EDTA to stop the enzymatic reaction, cells were washed with PBS and filtered through a 70 

µm cell strainer (Falcon, 352350) to remove large debris. After a blocking step in serum and 

Fc receptor blocking cocktail containing fetal bovine, mouse, rabbit and rat serums and anti-

Cd16/32 antibody (BioXCell, BE0307) for 20 min on ice, cell suspensions were incubated with 

antibodies at 4°C for 20 min. For detection of intracellular epitopes, cells were fixed and 

permeabilised using BD CytoFix/CytoPerm kit (BD, 554714) for 20 min at 4°C in the dark for 

all panels, with the exception of the immune population panel where permeabilization and 

intracellular staining were performed for 2 h at 4°C in the dark. All centrifugation steps were 

carried out at 820g for 2 min and 820g for 5 min following permeabilization. Samples were 

acquired on a BD FACSymphony flow cytometer.  

To compare the tumour populations from the bulk and the margin (Figure 4E), the following 

antibodies were used: rat anti-Cd45-BUV563 (Clone 30-F11, BD, 612924), rat anti-Cd11b-

BUV661 (Clone M1/70, BD, 565080), mouse anti-β2-microglobulin-BUV805 (Clone S19.8, 

BD, 749215), mouse anti-MHC Class I H-2Kb-BV510 (Clone AF6-88.5, Biolegend, 116523), 
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rat anti-Bst2 (Cd317)-BV650 (Clone 927, BD, 747605), rat anti-MHC Class II (I-A/I-E)-

BV711 (Clone M5/114.15.2, BD, 563414), rabbit anti-RFP (Antibodies Online, ABIN129578) 

with donkey anti-rabbit AF594, Viability dye-eFluor 780 (eBioscience, 65-0865-18). The 

following antibodies were used for analysis of the H2B-GFP LR population (Figure 5): rat anti-

Cd74-BUV395 (Clone In-1, BD, 740274), rat anti-Cd45-BUV563 (Clone 30-F11, BD, 

612924), rat anti-Cd11b-BUV661 (Clone M1/70, BD, 565080), rat anti-Ki67-eFluor450 

(Clone SolA15, eBio, 48-5698-80), rat anti-Bst2-BV650 (Clone 927, Biolegend, 127019), rat 

anti-Cd44-BV786 (Clone IM7, Biolegend, 103059), rat anti-GFP-AF488 (Clone FM264G, 

Biolegend, 33807), rabbit anti-RFP (Antibodies Online, ABIN129578) with donkey anti-rabbit 

AF594, Viability dye-eFluor 780 (eBioscience, 65-0865-18). For analysis of the immune 

microenvironment, the following antibodies were used: mouse anti-Nk1.1-BUV395 (Clone 

PK136, BD, 564144), rat anti-Cd4-BUV496 (Clone GK1.5, BD, 564667), rat anti-Cd45-

BUV563 (Clone 30-F11, BD, 612924), rat anti-Cd11b-BUV661 (Clone M1/70, BD, 565080), 

rat anti-Cd3-BUV737 (Clone 17A2, BD, 564380), rat anti-Cd8a-BUV805 (Clone 53-6.7, BD, 

564920), rat anti-FoxP3-eFluor 450 (Clone FJK-16S, eBioscience, 48-5773-82), Viability dye-

eFluor 780 (eBioscience, 65-0865-18). 

Data was analysed using Flowjo (v10.7.1; RRID:SCR_008520). Data was compensated and 

only viable singlets were used for downstream analysis. For the analysis of tumour cells, Cd45 

and Cd11b markers were used to exclude the hematopoietic compartment. Non-hematopoietic 

cells were gated based on tdTomato expression and a minimum of 1,500 cells (tdTomato+ cells 

for bulk and margin regions, and tdTomato- for contralateral region) were used for further 

analysis. UMAP visualization of GFP, Cd44 and Bst2 markers was performed on concatenated 

data from 5 tumours (McInnes et al., 2018). Positive populations were manually gated based 
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on fluorescence minus one controls (FMO) and projected onto UMAP to compare marker 

distribution between GFP+ and GFP- populations.  

To study the immune cell infiltration, Cd45 and Cd11b were used to identify the hematopoietic 

compartment. Main immune populations were manually gated as follows: Macrophages 

(Cd45high Cd11b+), Microglia (Cd45low Cd11b+), Cd8 T cells (Cd45+ Cd11b- Cd3+ NK1.1- 

Cd8+), Cd4 T cells (Cd45+ Cd11b- Cd3+ NK1.1- Cd4+), Cd4 Teff (Cd45+ Cd11b- Cd3+ NK1.1- 

Cd4+ FoxP3-), Cd4 Tregs (Cd45+ Cd11b- Cd3+ NK1.1- Cd4+ FoxP3+), Natural killers (Cd45+ 

Cd3- Nk1.1+), Natural killer T cells (NKT) (Cd45+ Cd3+ Nk1.1+). See Supplemental Figure 7. 

Fluorescence-activated cell sorting for collection of single cells for RNA-sequencing 

To collect single tumour cells for scRNA-seq, brains containing tumours were collected and 

dissected into 1 mm coronal sections using a brain matrix (WPI, RBMS-200C). The tumour 

bulk and invasive tumour front migrating into the striatum (margin) were micro dissected from 

the sections under fluorescence guidance. Brain regions were enzymatically dissociated to 

single cells using papain dissociation, as described above. Cells were resuspended into FACs 

buffer supplemented with RNAse inhibitors (2.5 mM HEPES, 1 mM EDTA, 1.5% BSA, 2.5% 

RNAse) and DAPI was added 5 min prior sorting (1:10,000; Insight Biotechnology, sc-3598). 

Fluorescence-activated cell sorting was performed on a BD FACSAria Fusion Class II Type 

A2 Biosafety Cabinet. Control tissue was processed in parallel to determine gating for the 

tdTomato+ tumour cells. These cells were sorted into 96-well plates containing RNA lysis 

buffer. For quality control purposes, half of each plate was sorted with tumour cells from the 

margin and the other half with tumour cells from the bulk, leaving one empty well. After 

sorting, plates were snap frozen on dry ice and then stored briefly at -80°C until library 

preparation.  
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Single cell RNA library preparation 

Full-length single-cell RNA-seq libraries were prepared using the Smart-seq2 protocol with 

minor modifications (Picelli et al., 2014). Briefly, freshly harvested single cells were sorted 

into 96-well plates containing the lysis buffer (0.2% triton-X-100, 1U/µl RNase inhibitor 

(Takara Bio, 2313A). Reverse transcription was performed using SuperScript II (ThermoFisher 

Scientific, 18064014) in the presence of 1 μM oligo-dT30VN (IDT), 1 μM template-switching 

oligonucleotides (QIAGEN), and 1 M betaine (Sigma 61962). cDNA was amplified using the 

KAPA Hifi Hotstart ReadyMix (Kapa Biosystems KK2601) and IS PCR primer (IDT), with 

24 cycles of amplification. Following purification with Agencourt Ampure XP beads 

(Beckmann Coulter, A63881), product size distribution and quantity were assessed on a 

Bioanalyzer using a High Sensitivity DNA Kit (Agilent Technologies 5067-4628). A total of 

140 pg of the amplified cDNA was fragmented using Nextera XT DNA sample preparation kit 

(Illumina FC-131-1096) and amplified with Nextera XT indexes (Illumina FC-131-1001). 

Products of each well of the 96-well plate were pooled and purified twice with Agencourt 

Ampure XP beads. Final libraries were quantified and checked for fragment size distribution 

using a Bioanalyzer High Sensitivity DNA Kit. Pooled sequencing of Nextera libraries was 

carried out using a HiSeq2500 (Illumina, RRID:SCR_016383) to an average sequencing depth 

of 0.5 million reads per cell. Sequencing was carried out as paired-end (PE75) reads with 

library indexes corresponding to cell barcodes. 

Single cell RNA-seq data analysis 

Data pre-processing 

After sequencing, libraries were inspected with the FastQC suite to assess the quality of the 

reads. Reads were then demultiplexed according to the cell barcodes and mapped on the mouse 

reference genome (Gencode release 21, GRCm38 (mm10)) with the RNA pipeline of the 
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GEMTools 1.7.0 suite using default parameters (6% of mismatches, minimum of 80% matched 

bases, and minimum quality threshold of > 26) (Marco-Sola et al., 2012). For all samples, cells 

with <65% of mapped reads or <100,000 of total mapped reads were discarded. Cells in the 

95% percentile of the distribution of detected genes were included in the downstream analysis, 

resulting in read count matrices containing 957 (EGFR), 1033 (Pdgfr) and 834 (Nf1) cells. 

Genes that were expressed in fewer than five cells were removed.  

Clustering 

Filtering, normalization, selection of highly variable genes (HVG), clustering and genotype 

integration of cells were performed according to the Seurat package (version 2.3.4) (Butler et 

al., 2018). Through this pipeline, read counts were log-normalized for each cell using the 

natural logarithm of 1 + counts per ten thousand. To avoid spurious correlations, genes were 

scaled and centered after library sizes were regressed out. These scaled z-scores values are then 

used as normalized gene measurement input for the clustering and to visualize differences in 

expression between cell clusters. Selection of HVG was based on the evaluation of the 

relationship between gene dispersion and the log mean expression (with default parameters), 

while their total number was limited to 3000 genes, which was close to the average of genes 

per cell in EGFR and Nf1 models, while Pdgfr cells displayed around 5000 genes.  

The clustering procedure projects HVG onto a reduced dimensional space before grouping 

cells into subpopulations by computing a shared-nearest-neighbours (SNN) based on Euclidean 

distance. The clustering algorithm is a variant of the Louvain method, which uses a resolution 

parameter to determine the number of clusters (Waltman and van Eck, 2013). The resolution 

parameter was set depending on both the observed heterogeneity and the biological 

interpretation of the resulting clusters. At this step, the dimension of the subspace is represented 
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by the number of significant principal components (PC), which was decided based on the 

distribution of the PC standard deviations and by the inspection of the ElbowPlot graph. Cluster 

identities were assigned using previously described genes and cluster-specific markers 

obtained by differential expression analysis. UMAPs were used to visualize clusters and gene 

expression of biological relevant markers and signatures.  

Data integration 

After the three GBM models were analysed and annotated independently, we integrated them 

to find common patterns between them. The integration was performed by using the Seurat 

package, by which is possible to identify biological corresponding cells (anchors) between 

pairs of data sets, allowing data harmonization and comparison across tumours of different 

genotype. The algorithm makes use of the Canonical Correlation Analysis (CCA), a method 

that is able to learn gene correlation structures that are conserved across datasets (Hardoon et 

al., 2004). To do that, it identifies a fixed number of genes (i.e. the anchor feature parameter; 

in this case we used 6000 genes) that are then used to find relationships between cells across 

the different data sets.  

Differential Expression and GO Analysis 

Cluster-specific markers were identified through the Seurat function FindAllMarkers using the 

Wilcoxon’s rank sum test. The top 100 positive markers of each cell type were used as the 

signature for that type in order to compare them with external signatures. To visualize the 

similarity between cell type annotations from other studies, we applied matchSCore2 (Mereu 

et al., 2020), which computes Jaccard Index to quantify the overlap between cell-type 

signatures. Gene Ontology enrichment analysis was performed with the simpleGO package. 
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Trajectory analysis 

Trajectory analysis and pseudo-ordering of cells was performed with the Monocle (Qiu et al., 

2017) package (version 2.8.0) using the previously identified HVG from each individual 

analysis as ordering genes. Gene counts were modelled using the negative binomial distribution 

(negbinomial) as defined in the family function from the VGAM package.  As for the 

clustering, the expression space was reduced down before ordering cells using the “DDRTree” 

algorithm, which allows 2D visualization and interpretation of the trajectory of cell states 

transitions through the provided set of genes.   

Alignment of single-cell trajectories 

To compare the single-cell expression dynamics observed in the trajectory analysis by each 

individual model, we have applied the cellAlign package (Alpert et al., 2018). CellAlign 

enables the alignment of two pseudotime ordering by a quantitative framework that relies on 

time warping algorithms. In doing that the tool assumes that starting and ending points of the 

trajectories are matching, as it was observed in the integrated trajectory analysis of the three 

GBM models. Briefly, individual pseudotime values assigned to each cell are divided into 

equally distributed points (meta-cells) along the trajectory to avoid data sparsity associated 

with single-cell data. Gene expression of meta-cells is averaged and their Euclidean distances 

are used to identify matches between trajectories. The resulting distance matrix is then used to 

represent the similarity between two trajectories. A line that minimizes the overall alignment-

based distance is displayed to recapitulate the changes along the trajectory. Identical 

trajectories for example would match in each meta-cell and thus the resulting alignment-based 

distance will be zero. In this case the line would be diagonal and go from the starting point of 

the trajectory in the upper left of the distance matrix to the end point in the lower right. Any 

deviation represented in this line indicates a shift in the pseudotime resulting from comparative 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.06.11.447915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.447915
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

alignment. We used EGFR as a reference data set for the pairwise comparison with the other 

two models.  

Digital pathology 

Cell detection and validation 

We applied supervised and semi-supervised algorithms to identify the exact location of T cells 

and H2B-GFP+ LRC in immunofluorescence confocal tile scan images of the tumours. From 

each confocal image, we extracted the channels of GFP (H2B-GFP LRC), AF647 (T cells), 

and DAPI. All analyses were carried out using QuPath (Bankhead et al., 2017) and ImageJ 

(Schneider et al., 2012) software. For T cells, we run a cell segmentation and trained a 

supervised Random Trees classifier with 1140 annotations for training and 742 annotations for 

validation from non-overlapping regions with the training annotations made by CGD and LC. 

To detect GFP tumour cells, we implemented a Random Trees classifier with a semi-supervised 

pipeline, allowing to increase the detectability while maintaining the original label intensity of 

tumour cells. For the semi-supervised algorithm, we first trained a Random Trees classifier 

(classifier gfp v.1) with 1000 annotations on GFP cancer cells and 1000 annotations for the 

background (made by CGD and LC). As the classifier gfp v.1 includes the bias of the observer, 

it is not able to detect low-intensity GFP cells; then on the same tile, we increased the brightness 

and contrast (automatic B&C ImageJ). We applied the classifier gfp v.1 on that image and 

saved the predictions that served as new annotations for the original GFP (non-auto B&C) 

allowing us to train a new classifier (classifier gfp v.2). That approach maximises the detection 

of cells with lower intensities (fast-cycling cells). To validate the classifier gfp v.2, CGD and 

LC made 860 independent annotations in non-overlapping regions with the training 

annotations. To compute the balanced accuracy of the T and GFP cell classifiers, we obtained 

a binary mask for the predicted cells by each algorithm. We quantified true positive, true 
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negative, false positive or false negative frequencies according to the value of the binary mask 

for the annotations' coordinates (caret R package) (Kuhn, 2008). Finally, we run a simple cell 

segmentation on the DAPI channel and obtained a dilated binary mask that allowed us to 

remove detected GFP cells without DAPI marker. 

This detection method allowed us to obtain the location of each cell within the sample. Only 

for GFP tumour cells, we saved features related to intensity as a surrogate of the proliferative 

status at single-cell resolution to assess spatial relationships of dormant and proliferative 

tumour cells with immune cells. Due to the similarity between Cd4 and Cd8 markers, we use 

the same algorithm for immune cells detection. All the images were formatted to 8-bit with 

intensity values ranging from 0-255. To reduce biases, CGD and LC were not directly involved 

in the implementation of this pipeline beyond their annotations. 

Spatial metrics for co-localisation of T cells and H2B-GFP LRC  

We identified LRC and proliferative phenotypes by applying unsupervised k-means clustering 

with k=3 on the single-cell maximum intensity value. This identified GFP cell with low, 

medium and high intensity. The clustering was applied independently to each sample. This 

allowed us to examine the spatial relationship between T cells and GFPhigh and GFPlow cells 

through a distance-based approach and an abundance-based approach (Maley et al., 2015). 

The distance-based approach consists of representing the distribution of H2B-GFP+ cells 

(GFPhigh and GFPlow) and T cells in each sample as a network, where cells are the node and 

the distance between neighbouring cells are the links. For each sample, we run a Delaunay 

triangulation algorithm allowing us to obtain the spatial network and the distance between cells. 

We evaluated if the distance between cells differed between the two classes of links that 

connect (1) T cells and GFPlow cells and (2) T cells and GFP-high cells. As a second 
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explanatory variable, we compared the distance between (1) Cd4+ and GFP cells and (2) Cd8+ 

and GFP cells, grouping GFPlow and GFPhigh cells. With these two explanatory variables, 

link class and T cells, we built a linear mixed model (lme4 R package) (Bates et al., 2015), 

with the logarithm (log10) of the distance as the response variable, link class and T cells as 

fixed factors, link class nested in T cells, and the sample as an explanatory variable with a 

random effect. If the null hypothesis for the fixed factor is rejected, we evaluate a posteriori 

comparisons between the corresponding factor levels applying the Satterthwaite method for 

the computation of residual degrees of freedom. 

For the abundance-based approach we computed a discrete colocalisation measure based on 

the application of Morisita's dispersion and Morisita-Horn overlap indices4 on the local co-

occurrence of Cd4 T cells and GFPlow or GFPhigh cells. For each sample, we computed the 

Morisita dispersion index (Eq 1) at different spatial scales defined by the number of square 

quadrants or patches implemented by the R package IDmining (Golay et al., 2014), that 

measures the degree of randomness in cell distribution.  

!! = # ∑ #!(#!%&)"
!#$
(((%&) Eq. 1 

The algorithm subdivides the region of interests in Q quadrants or patches with a value of the 

diagonal ($) and computes !! based on the abundance of cells (ni) in the patch and the total 

number of cells or points (N). We iterated the algorithm from one to 90K subdivisions (patches) 

for each sample and took the value of the diagonal that maximises !!, as the distance where the 

spatial pattern diverges the most from complete spatial randomness. The value, which is 

sample-dependent, was used to create a polygonal grid for each sample and compute the 

Morisita-Horn overlap index (Eq 2) that calculates the probability to detect two classes of cells, 

for simplicity x and y, in the same quadrant with a similar relative abundance 
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%& = 2 ∑ )!*!"
!#$
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Eq 2 

Where xi and yi are the quadrant abundances of the classes and X and Y are the sample 

abundance of the classes. We computed the MH index at two scales within T cell hotspots 

identified computing Getis-Ord G* and outside these hotspots. We tested with a one-sided t-

student if the observed MH GFPhigh-Cd4 or  GFPhigh-Cd8 differs from 0 (null hypothesis is 

that the observed colocalisation matches the expected for a random distribution). Additionally, 

with a general linear model (GLM), we tested if the MH GFPhigh differs between T cell types, 

adding the T cells/GFP ratio as a covariate. The statistical evaluation was made independently 

at both scales (inside and outside of immune hotspots). The normality of the variables, raw and 

residuals, was confirmed with a Shapiro-Wilk normality test. 

Assessment of colocalisation between T cells and GFP subpopulations 

Within samples, the abundance of GFPlow and GFPhigh cells is expected to differ because a 

relative minority of tumour cells remains low-cycling (GFPhigh). To compute comparable MH 

indices between T cells and GFP subpopulations (low and high) we therefore controlled for 

differences in abundance to rule out density biases. After patch detection with the Morisita 

dispersion index (Eq 1), we computed the Morisita-Horn overlap index for randomly sampled 

GFPlow cells where their abundance equals the observed abundance of GFPhigh. For each 

sample, random sampling was run 500 times; hence obtaining 500 values of MH between 

GFPlow and the corresponding T cell class. We compute a z-test to evaluate if the observed 

MH GFPhigh-Tcell is higher than the mean MH GFPlow-Tcell index from the random 

resampling for each sample. 
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Data availability  

scRNAseq data generated for this study has been deposited to GEO and will be made publicly 

available following publication. 

Statistical analysis 

All statistical analysis were performed using Prism (GraphPad, RRID:SCR_002798). Mantel-

Cox log-rank test was performed for survival data statistical analysis. Statistical tests and 

significance are described in figure legends (p values = * <0.05, ** <0.01, *** < 0.001 

****<0.0001). Shapiro-Wilk normality test was used to test normal distribution of samples. If 

no statistical significance is indicated on a graph, then ns > 0.05. 
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