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Abstract. Understanding the various interrelated effects that result in leakage is vital to the 
effort to reduce it. This paper aims to understand, at the district metered area (DMA) level, the 
relationship between leakage and static characteristics of a DMA, i.e. without considering 
pressure or flow. The characteristics used include the number of pipes and connections, total 
DMA volume and network density, as well as pipe diameter, length, age, and material 
statistics. Leakage, especially background and unreported leakage, can be difficult to 
accurately quantify. Here, the Average Weekly Minimum Night Flow (AWM) over the last 5 
years is used as a proxy for leakage. While this may include some legitimate demand, it is 
generally assumed that minimum night flow, strongly correlates with leakage. A data-driven 
case study on over 800 real DMAs from UK networks is conducted. Two regression models, a 
decision tree model and an elastic net linear regression model, are created to predict the AWM 
of unseen DMAs. Reasonable accuracy was achieved, considering pressure is not an included 
feature, and the models are investigated for the most prominent features related to leakage. 

1.  Introduction 
It has been consistently noted throughout the literature that leakage is a pervasive and important 
challenge for water companies which has an economic, environmental and sustainability impact [1]. 
To combat this and reduce leakage, water distribution networks in the UK are commonly divided into 
District Metered Areas (DMAs) [2, 3]. These DMAs have flow sensors at the inlets and outlets, 
providing a measure of how much water is used in that DMA. There are multiple ways of measuring 
and analyzing leakage [4]. This paper uses Average Weekly Minimum Night Flow (AWM) as a proxy 
for leakage which focuses this study on background and unreported leakage (see Section 2). In 
addition, Minimum Night Flows (MNFs) are part of the reporting required of water companies in the 
UK by the regulator OFWAT [4, 5], meaning that the data necessary to undertake this study is widely 
available. 

Other research has estimated non-revenue water ratios and leakage rates [6-9]. Many of these 
works use principal component analysis and artificial neural networks [6-9]. These methods, while 
more sophisticated, are less explainable than the methods used in this paper. Explainability is 
important from the perspective of water companies to support decision making about leakage 
mitigation methodologies to implement and areas on which to focus resources. Explainable models 
allow us to understand the relationship between input features and outputs (e.g. predicted leakage), 
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furthering our understanding of the problem itself and what factors impact leakage the most. For water 
companies, this means additional factors can be considered, or better understood, when deciding on 
actions, company policies, and management. 

2.  Methods 
This paper investigates two models, a decision tree and an elastic net. Using explainable models is 
important because it allows the exploration of the reasons why a certain prediction is made. This 
means that the models are useful and informative outside of their direct application. 

In this paper, leakage is defined as Minimum Night Flow (MNF), measured in m3h-1, and is the 
flow during the hour of least flow between midnight and 4am. MNF is recorded, ideally, every day for 
each DMA. The Weekly MNF is the lowest MNF recorded during a Monday-Sunday period. The use 
of Weekly MNF smoothes out what can be an extremely noisy signal and will also mask bursts or 
other major leakage events that do not last for at least a full week, which focuses this work on 
background and unreported leakage. Weekly MNF data covers a 5-year period from the beginning of 
2017 to the beginning of 2022 for 866 real DMAs in the UK. The availability of Weekly MNFs for 
any single DMA varies from a few examples to almost total coverage of the 5-year period. To further 
reduce this problem from a time series forecast problem into a regression problem we use the Average 
Weekly MNF (AWM) over the last 5 years. Each model takes as input the static characteristics of a 
DMA and outputs the predicted AWM for that DMA. A prediction of, for example, 10 m3h-1 would 
indicate that the average, over the last 5 years of operation, Weekly MNF for that DMA would be 10 
m3h-1. 

The aim of this paper is to predict the AWM of unseen DMAs based on their static characteristics 
using explainable, data-driven methods. Emphasis is put on predicting AWM, which is derived from 
MNF, without a hydraulic model, pressure, or flow information. By predicting AWM in this way, we 
can further our understanding of the causes of leakage. Accurate predictions of the expected AWM 
may also inform new leak detection methodologies, which often rely on some understanding of 
‘normal’ operation. 

Predictions are based on the number of customer connections in a DMA and various pipe features. 
The models learn from a subset of the real DMAs and are tested on the remaining subset of completely 
unseen DMAs. There is considerable variety amongst each of the 866 real DMAs in terms of total 
length (less than 1km to over 10km), pipe materials (100% metal to nearly 100% plastic), number of 
customer connections (100s to 1000s), etc. In total, more than 80 features were created. Most of these 
features were calculated using the pipe data available for each DMA. Each pipe provides the following 
information: installation date (used to calculate age), length, diameter, and material. Various materials 
were grouped together into ‘metal’ (various types of iron and steel), ‘plastic’ (PE, PVC, etc.) and 
‘other’ (mainly asbestos cement). From this, various features were created such as ‘total length’, 
which is the sum of all pipe lengths in a DMA, ‘proportion of metal pipes’, which is the ratio of the 
number of metal pipes to all pipes, ‘proportion by volume of pipes older than 20’, which is the ratio of 
the volume of all pipes older than 20 years to the volume of all pipes, and so on. The volume of a pipe 
is calculated, based on the assumption that a pipe is a cylinder, using its length and diameter. 
Additional naming conventions are that large/small refers to diameter while long/short refers to length. 
Therefore, the smallest pipe diameter refers to the diameter of the pipe with the smallest diameter, 
whereas shortest pipe age refers to the age of the pipe with the shortest length. In addition, there are 
several ‘weighted age’ metrics which are calculated as follows: 
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where ip  is the ith pipe in a DMA, f  is the parameter of interest, for example diameter, length, or 
volume, and a is the age. Additional features of note include the number of customer connections and 
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network density (customer connections per meter of pipe). A full table of the features investigated can 
be found in the appendix (table A1).  

Each DMA is randomly placed into the training set or test set. The training set, which consists of 
60% of the DMAs, is used to train the models. The test set, consisting of the remaining 40%, is used to 
report the performance of the models, these DMAs are not seen during training. The same test-train 
split was used consistently across all models, i.e., the same DMAs were always part of the training set 
and vice-versa for the test set. This is important because our purpose is to find the best model, not the 
most representative training set. 

Many machine learning models make assumptions about the normalization of data, making it 
important to preprocess the DMA data. Therefore, features which are not proportions (since these are 
already normalized) are normalized. This is done by removing the median and dividing by the 
interquartile range, i.e., the range between the 1st and 3rd quartile. The median is used to scale instead 
of the mean because the data is not normally distributed. Therefore, using the median is more robust to 
outliers. To ensure that all features lie in the range 0 to 1, the features which are not proportions are 
then rescaled to fall within that range. The precise values for these transformations are found using the 
training set, rather than the entire dataset. This is important to avoid ‘leaking’ information about the 
test set back into the training set. This method of normalization is similar to the ‘Z-score’ in [6, 9] but 
replaces the mean and standard deviation with the median and interquartile range. 

Cross-validated grid search is used to finetune the hyperparameters of the decision tree and elastic 
net. Cross-validation takes a random subset of the training data away, without replacement, to serve as 
an intermediate test set, known as the validation set. This process is repeated, 8 times in this paper, 
until every training sample has been in the validation set exactly once. Each validation set is used to 
test different model hyperparameters, with the average over the repeated random subsets being used to 
determine the best hyperparameter values. 

Each model is assessed primarily using the R2 metric. Explained variance and mean absolute error 
(MAE) have also been reported for completeness. R2 values range from -∞ to 1, with 1 being the best 
possible score. A model which simply returns the average value of all samples would get an R2 of 0. 

2.1. Decision Tree 
Decision trees [10] are simple models where predictions are made based on a series of if-then-else 
decisions, similar to a flow chart. Each decision, or node, is based on a threshold on a single feature. 
At the end of a series of decisions, a leaf node determines what value is outputted. The depth of a tree, 
i.e., the maximum number of decisions before reaching a leaf node, determines its complexity. At each 
node, the decision (which feature and what threshold) which minimizes the mean squared error (MSE) 
in each child node is chosen. This is repeated until the tree is complete. In this paper, the leaf nodes on 
the decision trees output a constant value. The hyperparameters of the decision tree that were searched 
using cross-validated grid search were: maximum tree depth, minimum samples required in a leaf 
node, and minimum samples required to split a node. 

2.2. Elastic Net 
Elastic Nets [11] are linear regression models that use both l1 and l2 regularization. Regularization 
adds additional components to the loss function, which is the function that is minimized during 
training to determine the coefficients of the model. While l1 regularization adds a penalty based on the 
absolute value of the coefficients, l2 regularization adds a penalty based on the squared value of the 
coefficients. Elastic net tries to combine the benefits of lasso linear regression, which prefer to have 
fewer features with non-zero coefficients by using l1 regularization, and ridge linear regression, which 
penalizes the magnitude of coefficients by using l2 regularization. Elastic net is particularly useful 
when there are groups of correlated features [11], which is certainly the case in this instance. When 
given correlated features, other linear regression models would pick one of the correlated features to 
be the only important one, whereas an elastic net spreads the importance amongst the correlated 
features. The hyperparameters of the elastic net that were searched using cross-validated grid search 
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were: alpha, which controls ratio between the l1 and l2 regularization terms and lambda, which scales 
both the l1 and l2 regularization terms. 

3.  Results and Discussion 
This section discusses the results of the two methods that were used. Ten different runs, including 
cross-validation for hyperparameter tuning, with different random seeds were conducted, as these 
models are not deterministic. The following sections detail the results of the best model for each 
method from these runs. Table 1 shows the overall results for each of the best models. From this table, 
we can see that the elastic net model significantly outperforms the decision tree. This is to be expected 
because of the simplicity of the decision tree and due to its fundamental limitations when used as a 
regressor, i.e., discrete single value outputs. Section 3.1 details the decision tree results while Section 
3.2 details the elastic net. 

Other models, such as a neural network, support vector machine and random forest, which are not 
detailed here, were tested. Overall, the elastic net model gave the best results, but most models 
achieved an explained variance and test R2 of at least 0.6. It is possible that the performance of the 
elastic net is near the best achievable with the current set of features. Better performance might be 
achievable with more or different explanatory factors. 

Table 1. Overall results for predicting AWM. 

Method 
Explained 
Variance 

Test 
R2 

Train 
R2 

Overall 
R2 

Test 
MAE 

Train 
MAE 

Overall 
MAE 

Decision Tree 0.572 0.571 0.632 0.606 3.031 2.730 2.851 
Elastic Net 0.680 0.680 0.698 0.691 2.741 2.465 2.575 

 

3.1. Decision Tree 
Decision trees are simple, but explainable, models with the limitation of only being able to output 
discrete values, which is not ideal in a regression context. Therefore, it is common to use many 
different decision trees in an ensemble, i.e., a random forest. However, in this case the performance of 
the lone decision tree is good enough to justify examining it. Figure 1 shows the full decision tree with 
the thresholds transformed back into their original space. The sample sizes and MSEs are based on the 
training set. The decision tree model splits the data using ‘total length’ three times, ‘number of 
customer connections’ and ‘shortest pipe age’ twice, and ‘diameter weighted age’ and ‘total volume of 
metal pipe’ once. 

The root node splits roughly two thirds of the training set away based on total length. The right-
hand subtree then splits again on a much larger total length value with DMAs with more than 33km of 
pipe being assigned the highest AWM. If a DMA does not have more than 33km of pipe, then the 
number of customer connections is considered. DMAs with fewer customer connections are assigned a 
lower AWM than those with more. Overall, the right-hand subtree can be summarized as ‘larger 
DMAs have a higher AWM’ using different metrics. 

Meanwhile, the left-hand subtree splits on shortest pipe age. The shortest pipes in DMAs in this 
particular dataset are often less than 1m long and might be better understood as representing junctions. 
Therefore, one way of interpreting the significance of this metric is that the age of the shortest junction 
in DMAs is an important factor. If the DMA has an older shortest pipe, the assigned AWM is 
dependent on size metrics, where larger DMAs are assigned a higher AWM. If the DMA has a 
younger shortest pipe, then the diameter weighted age and shortest pipe age are considered. Overall, 
the left-hand subtree can be summarized as ‘smaller, younger infrastructure leaks less than older, 
larger infrastructure’, i.e. the importance of infrastructure condition [4] and size. 

Splitting on the number of customer connections and total length could be interpreted as the 
importance of network density, in terms of connections per meter of pipe. However, network density 
was a metric included as a feature which the decision tree did not consider important. This might 
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indicate that the number of customer connections and total length are important in and of themselves 
rather than as a ratio of each other. 

 

 

Figure 1. Decision tree model. The MSE, number of samples and AWM shown are based on the 
training set. The decision thresholds are shown transformed back into their original space. 
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(a) 

 
(b) 

Figure 2. Decision tree comparison between (a) predicted and observed AWM, and (b) predicted and 
residual AWM (prediction - observed). The dotted line in (a) and (b) shows the zero-error line, i.e., 
perfect predictions. Figure 2b also shows the distribution of samples along the residual axis as a box 
plot. 

Figure 2 shows the predictions of the decision tree across both the test and training set. The discrete 
outcomes of the decision tree can be seen clearly in both figure 2a and 2b. While there is some overlap 
between a DMA’s predicted AWM and observed AWM, the box plot in figure 2b shows that most 
predictions lie within ~2.5 m3h-1 of their observed value. The absolute median percentage error is 
25.7% and 30.0% for the training and test set respectively. In addition, the decision tree is not 
significantly less accurate on the test set compared to the training set, which is confirmed by the R2 of 
each set, and indicates that the model did not overfit. However, the model does have difficulty 
predicting the AWM of extreme outlier DMAs, although this is not completely unexpected behavior. 

Overall, the performance of the decision tree model is good, especially considering its simplicity 
and limitations. In addition, the decision tree as shown in figure 1 allows straightforward assessment 
of more DMAs without using of the model directly. 

3.2. Elastic Net 
The Elastic Net model results are detailed in this section. Unlike the decision tree, the elastic net 
model has a continuous output because, fundamentally, it is a linear model. Therefore, we find that 
this model outperforms the decision tree model. This comes at the cost of additional complexity, 
though it is still a linear model. Figure 3 shows the predictions of the elastic net model across both the 
test and training set. Figure 3b again shows that most predictions lie within ~2.5 m3h-1 of their 
observed value. The absolute median percentage error is 23.8% and 25.0% for the training and test set 
respectively. Furthermore, the accuracy of the model is similar on the test set and the training set, 
which is confirmed by the R2 of each set, indicating the model has not overfitted. The elastic net 
model, as with the decision tree, has more difficulty predicting the AWM of extreme outlier DMAs. 
Again, this is not surprising as they are outliers. 

As a linear regression model, the elastic net model derives a set of coefficients which allow us to 
understand why the model makes certain predictions. Table 1 lists the coefficients of the elastic net 
linear model. These coefficients are for the transformed data. They allow us to understand which 
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features the elastic net has determined to be the most important for predicting the AWM of a DMA. In 
general, coefficients of less than 1 are insignificant, but have been reported for completeness. 

 

 
(a) 

 
(b) 

Figure 3. Elastic net comparison between (a) predicted and observed AWM, and (b) predicted and 
residual AWM (prediction - observed). The dotted line in (a) and (b) shows the zero-error line, i.e., 
perfect predictions. Figure 3b also shows the distribution of samples along the residual axis as a box 
plot. 

From table 2 we can see that the number of customer connections is by far the most important 
factor and correlates with an increase in AWM. This is consistent with research on the leakage at 
service connections and water mains, where service connections, due to the high density of joints and 
fittings, are responsible for more leakage than their total length might indicate [4]. This is also 
consistent with the practice of reporting leakage in relation to the number of customer connections in 
an area [4]. This may also reflect the legitimate night usage of customers. The next most important 
coefficients are ‘total length of pipes larger than 100mm’ and ‘total length’, both correlating with an 
increase in AWM. Both of these features are closely correlated with each other because the pipes 
smaller than 100mm are usually very short. Again, this is consistent with the literature, in that the 
more pipe there is, the more leakage there is. 

Table 2 also shows the factors which correlate with a decrease in AWM. Of these, the most 
important is ‘smallest pipe diameter’. This suggests that, if the diameter of the smallest pipe in a DMA 
is larger, then the AWM is smaller. Bernoulli’s principle states that a decrease in pipe diameter will 
decrease pressure and increase velocity. This increased velocity may result in more wear and tear, 
leading to more leakage, in smaller pipes compared to larger pipes. This increased velocity may be at 
its height during the MNF, as this is usually the period with the highest pressure, unless pressure 
management policies are in place. Furthermore, there is an interplay between the positive coefficients: 
‘largest pipe diameter’ and ‘total length of pipes larger than 100mm’, which indicate that larger pipes 
cause more leakage, and the negative coefficient ‘smallest pipe diameter’ which indicates that larger 
pipes cause less leakage. One interpretation is that this describes the relationship between pipes of 
different sizes in a DMA. Specifically, those significant changes in pipe diameter within a DMA, such 
as stepping down from a 200mm pipe to a 20mm pipe, and the resulting pressure changes, are a 
significant underlying cause of these coefficients. 
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Table 2. Coefficients for the elastic net model in descending magnitude. Left shows positive 
coefficients, right negative. Prop. is the abbreviation of proportion. 

Feature Coeff. Feature Coeff. 
Number of Customer Connections 9.53 Smallest pipe diameter 

(mm) 
-3.14 

Total length of pipes larger than 100mm (m) 3.54 
Total length (m) 3.31 Prop. of Metal pipes -1.30 

Oldest pipe length (m) 2.79 Longest pipe length (m) -1.22 
Prop. by volume of pipes older than 20 2.67 Total length of Plastic 

pipes older than 20 (m) 
-1.20 

Total volume of Metal pipe (m3) 2.51 
Smallest pipe length (m) 2.17 Prop. by length of Plastic 

pipes older than 20 
-0.87 

Prop. by volume of Metal pipe 2.09 
Shortest pipe age (y) 2.08 Total length of pipes 

older than 20 (m) 
-0.84 

Prop. by length of pipes longer than 400m 2.01 
Largest pipe diameter (mm) 1.85 Prop. by volume of Other 

pipe 
-0.79 

Total length of Metal pipe (m) 1.84 
Number of pipes 1.67 Total volume of pipes 

longer than 400m (m3) 
-0.71 

Prop. by length of Other pipe 1.56 
Average Metal pipe diameter (mm) 1.39 Total volume of Plastic 

pipe (m3) 
-0.59 

Largest pipe age (y) 1.05 
Total length of Plastic pipe (m) 1.03 Longest pipe diameter 

(mm) 
-0.55 

Prop. by length of Metal pipe 0.88 
Total volume of pipes larger than 100mm (m3) 0.88 Prop. by volume of pipes 

longer than 400m 
-0.55 

Total length of Metal pipes older than 20 (m) 0.77 
Prop. of Plastic pipes 0.76 Prop. by volume of pipes 

larger than 100mm 
-0.39 

Diameter Weighted Age (y) 0.66 
Total length of Other pipe (m) 0.65 Number of Metal pipes -0.34 

Prop. by length of pipes larger than 100mm 0.58 
Prop. of Other pipes 0.56 Number of Other pipes -0.33 

Network Density (mc-1) 0.37 
Average Metal pipe length (m) 0.33 Prop. of pipes longer than 

400m 
-0.26 

Prop. by length of Metal pipes older than 20 0.33 
Length Weighted Age (y) 0.30 Prop. by length of Plastic 

pipe 
-0.22 

Number of Plastic pipes 0.27 
Oldest pipe diameter (mm) 0.12 Number of pipes longer 

than 400m 
-0.08 

Average pipe age (y) 0.07 
Prop. of pipes larger than 100mm 0.07 Total volume of Other 

pipe (m3) 
-0.05 

Average Other pipe diameter (mm) 0.03 
Total length of pipes longer than 400m (m) 0.03 Number of pipes older 

than 20 
-0.03 

Shortest pipe length (m) 0.02 
 
Table 2 also shows the impact of age on AWM with ‘oldest pipe length’, ‘proportion by volume of 

pipes older than 20’ and ‘shortest pipe age’ all correlating with an increase in AWM. In addition, the 
impact of different materials is also present, though more difficult to decipher. For example, the 
proportion of metal pipes (by number) in a DMA correlates with a decrease in AWM while the 
proportion by volume of metal pipe correlates with an increase in AWM. This might mean that for 
smaller/shorter pipes metal is better than other materials, but for larger/longer pipes other materials are 
better than metal. This may be because of the mechanical joints of metal pipes which allow more 
minor leaks than, for example, a welded plastic pipe [4]. In addition, there is ‘total length of plastic 
pipes older than 20’ and ‘proportion by length of plastic pipes older than 20’, both of which correlate 
with a decrease in AWM. This could either mean that as plastic pipes age they do not degrade as badly 
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as other pipe materials, or it could mean that the type of plastic used more than 20 years ago is better 
than the type of plastic used since. All the factors that affected the decision tree are present as 
coefficients for the elastic net model, though not necessarily as prominently as their importance in the 
decision tree might suggest. 

Many of these features are related to others. For example, ‘smallest pipe diameter’ is related to 
‘total length of pipes larger than 100mm’, which is also related to the total length of all pipes. If the 
smallest pipe diameter is 100mm then ‘total length of pipes larger than 100mm’ is equal to the total 
length of all pipes. Because of this, the interactions between the different coefficients are more 
complex in some cases than a cursory glance might suggest, and it becomes important to interpret 
which features are related to each other. Therefore, it is much harder to answer a question such as 
‘how would the AWM change if we replaced the oldest and largest metal pipe with a plastic one’ 
without calculating the new statistic for the theoretical DMA and running it through the model. This is 
one of the main downsides of this linear model compared to the decision tree: while the elastic net is 
more accurate, it is also more difficult to interpret. 

4.  Conclusion 
This paper has presented two models for predicting Average Weekly MNF of DMAs in a real-world 
data-driven case study. By doing so we hoped to further our understanding of the causes of long-term 
leakage. The results have illustrated the main factors that contribute to these predictions for each 
model and attempts have been made to interpret why these factors are important. The models and 
results are based on a data-driven approach which relies on little to no domain knowledge. The results 
presented support and demonstrate many of the ideas on what influences leakage presented in the 
literature. Specifically, the importance of DMA size, the number of customer connections and service 
pipe sizes, the different material properties for different pipe sizes and the interplay between different 
materials and their age all have an effect on Average Weekly MNF. 

The simplicity and explainability of the methods used should allow these results to be repeated and 
improved upon. Further work may include the addition of more features. In particular, pressure may be 
the most obviously missing metric. Adding pressure or other features may help to improve the 
accuracy of these models even further. In addition, increasing the size of the dataset with more DMAs 
may also improve the accuracy of the predictions. Finally, further work may also incorporate these 
predictions as part of a leak detection methodology. 
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Appendix 

Table A1. Table of all features, in no specific order, created for each DMA. 

Features 
Number of pipes Diameter Weighted Age (y) Length Weighted Plastic Age (y) 
Total length (m) Average pipe diameter (mm) Prop. of pipes larger than 100mm 
Oldest pipe age (y) Largest pipe diameter (mm) Average Other pipe diameter (mm) 
Average pipe age (y) Longest pipe diameter (mm) Number of pipes longer than 400m 
Longest pipe age (y) Average Other pipe age (y) Average Metal pipe diameter (mm) 
Largest pipe age (y) Average Metal pipe age (y) Total length of Plastic pipe (m) 
Prop. of Metal pipes Smallest pipe diameter (mm) Number of pipes larger than 100mm 
Prop. of Other pipes Shortest pipe diameter (mm) Total volume of Plastic pipe (m3) 
Number of Metal pipes Youngest pipe diameter (mm) Average Plastic pipe diameter (mm) 
Youngest pipe age (y) Prop. of pipes older than 20 Prop. by length of pipes older than 20 
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Shortest pipe age (y) Average Plastic pipe age (y) Prop. by volume of pipes older than 20 
Smallest pipe age (y) Prop. by length of Other pipe Total length of pipes older than 20 (m) 
Number of Other pipes Prop. by volume of Other pipe Total volume of pipes older than 20 (m3) 
Network Density (mp-1) Average Other pipe length (m) Prop. by length of pipes longer than 400m 
Oldest pipe length (m) Length Weighted Other Age (y) Prop. by volume of pipes longer than 400m 
Prop. of Plastic pipes Number of pipes older than 20 Prop. by volume of pipes larger than 100mm 
Number of Demand Points Prop. by length of Metal pipe Total length of pipes longer than 400m (m) 
Volume Weighted Age (y) Prop. by volume of Metal pipe Prop. by length of pipes larger than 100mm 
Average pipe length (m) Length Weighted Metal Age (y) Total volume of pipes longer than 400m (m3) 
Longest pipe length (m) Average Metal pipe length (m) Total length of pipes larger than 100mm (m) 
Largest pipe length (m) Total length of Other pipe (m) Total volume of pipes larger than 100mm (m3) 
Length Weighted Age (y) Total length of Metal pipe (m) Prop. by length of Other pipes older than 20 
Number of Plastic pipes Total volume of Other pipe (m3) Prop. by length of Metal pipes older than 20 
Total volume of DMA (m3) Prop. of pipes longer than 400m Total length of Other pipes older than 20 (m) 
Shortest pipe length (m) Total volume of Metal pipe (m3) Total length of Metal pipes older than 20 (m) 
Smallest pipe length (m) Prop. by length of Plastic pipe Prop. by length of Plastic pipes older than 20 
Youngest pipe length (m) Prop. by volume of Plastic pipe Total length of Plastic pipes older than 20 (m) 
Oldest pipe diameter (mm) Average Plastic pipe length (m)  
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