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Jun Rao∗, Liang Ding∗, Shuhan Qi†, Meng Fang, Yang Liu, Li Shen, and Dacheng Tao, Fellow, IEEE

Abstract—The recent advancement in vision-and-language pre-
training (VLP) has significantly improved the performance of
cross-modal image-text retrieval (ITR) systems. However, the
increasing size of VLP models presents a challenge for real-world
deployment due to their high latency, making them unsuitable
for practical search scenarios. To alleviate this problem, we
present a novel plug-in dynamic contrastive distillation (DCD)
framework to compress the large VLP models for the ITR task.
Technically, we face the following two challenges: 1) the typical
uni-modal metric learning approach is difficult to directly apply
to cross-modal tasks due to the limited GPU memory to optimize
too many negative samples during handling cross-modal fusion
features. 2) it is inefficient to static optimize the student network
from different hard samples, which affects distillation learning
and student network optimization. We propose a method for
multi-modal contrastive learning that balances training costs and
effects. Our approach involves using a teacher network to identify
hard samples for student networks to learn from, allowing the
students to leverage the knowledge from pre-trained teachers and
effectively learn from hard samples. To learn from hard sample
pairs, we propose dynamic distillation to dynamically learn
samples of different difficulties to balance better the difficulty
of knowledge and students’ self-learning ability. We successfully
apply our proposed DCD strategy on two state-of-the-art vision-
language pretrained models, i.e., ViLT and METER. Extensive
experiments on MS-COCO and Flickr30K benchmarks show the
effectiveness and efficiency of our DCD framework. We further
provide in-depth analyses and discussions that explain how the
performance improves.

Index Terms—cross-modal retrieval, neural networks, con-
trastive learning

I. INTRODUCTION

MULTIMODAL learning becomes a surging topic due to
the increasing accessibility of multimodal data, such as

image, text, video and audio [1], [2]. Also, with the advances
of hardware, neural network models are able to scale up their
capacity and expressive power to better leverage information
from multiple modalities [3], [4], [5], [6].

Multimodal learning (e.g. cross-modal retrieval) becomes a
popular research topic [7], [8]. Image-text retrieval focuses
on obtaining a set of sentences given a query image, namely
measuring cross-modal similarity of image and text. How to
accurately measure the similarity of images and texts is at the
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Fig. 1. Comparison of an existing distillation method and proposed frame-
work. (a) The original distillation method supervises students through hard
labels and uncorrected soft labels “Noisy Knowledge”. (b) In our DCD
framework, we obtain the dynamically adjusted scores by “Hard mining&KA”
(Section IV-A) to improve the soft labels provided by the teachers. At the same
time we input the new filtered set of hard samples into the student network
and learn these more informative samples learning dynamically through the
weighted hard labels. Combining these two parts, our framework is greatly
improved compared to the original KD (Section V).

core of this task. Most image-text retrieval methods adopt the
idea of contrastive learning [9], [10], [11]. In this paradigm,
different modalities are encoded into a semantic space to
obtain modal-agnostic semantic representation, such that the
representations of a query and its corresponding matching key
are clustered while unmatched key-query pairs are separate.

Constructing a dynamic dictionary might be considered
a typical contrastive learning strategy [12], [13], [14]. In
the dictionary, each word is a sample embedding encoded
by the network. Essentially, such a dynamic dictionary can
be regarded as a global negative sample pool to explore
informative sample pairs. When the dictionary is large enough
and contains enough negative samples, the encoder can extract
more discriminative features. In this way, large and consistent
dictionaries can be constructed for unsupervised learning with
a contrastive loss [15].

Knowledge distillation (KD) [16] is to obtain a much
smaller model with comparable performance, while greatly
reducing the memory usage and accelerating the model infer-
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ence. It has been widely used in recent years in natural lan-
guage processing (NLP) and computer vision (CV) tasks [17],
[18], [19], [20], [21], [22], [23]. However, when applying KD
for image-text retrieval, there are incompatibilities between the
contrastive learning paradigm and image-text retrieval [24],
[25], [26].

On one hand, the dictionary [12] is not suitable for image-
text retrieval learning. To acquire multimodal content em-
bedding, most multimodal models must interact with distinct
changing modalities of embedding. As a result, the slowly
updated dictionary cannot maintain a large and diversified
sample pool. On the other hand, the existing image-text
retrieval systems are too inefficient to learn the separability of
sample pairs [27], [25], [26]. Though state-of-the-art (SOTA)
methods, e.g. UNITER [25] and ViLBERT [26] using self-
distillation [28], utilize an intermediate model to take a large
number of random samples and select the top K sample
pairs that are most similar to fine-tune the image-text retrieval
model, it is inefficient due to the lack of a stable selection of
hard negative samples and appropriate information guidance,
as well as the fact that it is computationally intensive for
contrastive learning. Because of the limited information and
low gradient values of these randomly picked samples, their
contributions to the training may be less informative since
many of them already satisfy the loss’s requirements. Besides,
a longer training time is necessary to make the network con-
verge. These problems lead to our first research question (RQ):
RQ1: How to facilitate the contrastive learning paradigm
in the distillation of image-text retrieval with informative
samples?

Different from those recent SOTA methods [25], [26], we di-
rectly introduce a teacher network to train a smaller student us-
ing knowledge distillation (KD) [16] to more efficiently learn
the differences and similarities of samples within constrained
resources, as shown in Figure 1(a). This teacher network may
convey knowledge to a student network and select informative
samples for training the multimodal interaction layers. A well-
learned teacher network is flexible in selecting hard samples,
and stabilizes the training process. To make an analogy with
the real world, we equate teacher networks with professors and
student networks with graduate students. Professors typically
have a certain level of knowledge and are aware of which
topics are currently challenging, and it is advantageous for
students to follow these topics.

Another issue with visual language model compression
is how to make greater use of the available information
of teacher. However, the vanilla KD approaches as shown
in Figure 1(a) are static and unable to actively learn from
different samples, consequently failing to learn the teacher’s
separability of sample pairs well. Another research question
arises as a result of this:
RQ2: For the purpose of improving teacher knowledge trans-
fer, is it possible to use the weighting method to dynamically
learn diversified content, according to the information of the
limited sample pairs?

We design a basic weighting strategy based on the teacher’s
uncertainty of samples and achieve dynamic distillation by
adjusting the sample’s contribution to the training. The core

of our solution is that, for the distillation loss item, we pay
particular attention to the samples that the teacher believes to
be mastered. Concerning the task loss item, we place a higher
weight on samples that the teacher believes to be confusing
so that students can focus on learning these samples through
the hard label.

As shown in Figure 1(b), our framework addresses the two
research questions described above. Specifically, we first filter
out the more informative and difficult samples for students
to learn from the samples selected by the teacher. Second,
we obtain adjusted scores by knowledge adjustment (KA) and
weigh these samples by teacher uncertainty as soft labels for
supervising student networks. Finally, we use teacher uncer-
tainty to weigh the hard labels to obtain dynamic supervision
signals to enhance students’ self-learning ability. In this paper,
we validate our approach in different training settings and
benchmark datasets upon a single cross-modal fusion layer
based on ViLT [29] model. The experimental results indicate
that dynamic data selection and supervision weighting improve
image-text retrieval performance. At the same time, we use
METER [30] with a different architecture using co-attention
[26] to achieve the same promising effects. Our contributions
are:

• We propose to leverage the teachers’ adjusted knowledge
to mine hard samples and supervise the students (§IV-A);

• We explore a variety of sample level weighted settings to
achieve better teacher knowledge transformation (§IV-B);

• Considering above aspects, we design a plug-in DCD
framework to compress VLP models and guarantee com-
petitive results compared to SOTA distillation approaches
(§V);

• To the best of our knowledge, we are the first to dynam-
ically distill a pre-trained model based on Transformer
architecture with modalities’ interaction for image-text
retrieval.

II. RELATED WORK

A. Image-Text Retrieval

It is difficult to represent and match the semantic infor-
mation of many modalities in image-text retrieval. Recently,
numerous existing methods [27], [31], [32], [33], [34], [35]
for image-text retrieval encode the features into a semantic
space using modality-independent encoders and then perform
modal fusion to obtain the corresponding fusion features for
cross-modal matching.

Some methods [32], [27] investigate self-attention to im-
prove the feature embedding of intra-modality and then mea-
sure distance in a common metric space to use contrastive
learning. In practical application scenarios, this type of ap-
proach usually allows the encoding of each modality to be
calculated in advance, and only involves the calculation of
the dot product of each modal vector at the time of retrieval.
Thus such an approach is usually more flexible for large-scale
retrieval, while these pre-encoded feature vectors of individual
modes can be used for other downstream tasks. However, this
type of method usually brings worse reproducibility stability
and poorer performance [36].
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Fig. 2. Illustration of our dynamic contrastive distillation framework (DCD) in two aspects: data selection(left) and supervision adjustment(right).We obtain
more informative data samples through the uncertainty of the teacher network (§IV-A). And we use the dynamic supervision adjustment (§IV-B) to use the
selected hard samples and the weighted labels to supervise students dynamically with adjusted scores and weighted hard labels.

Others [24], [37], [29], [26], [25] adopt inter-modality
interaction to obtain a robust multi-model representation. With
a sophisticated cross-modal attention mechanism or a graph
neural network, such methods are able to achieve state of
the art in cross-modal tasks. These work demonstrate the
importance of multi-modal interaction layers. Existing SOTA
methods [25] [30] for ITR have used the transformer architec-
ture for modal interaction between texts and images to obtain
multi-modal fusion features. However, this interaction increase
the complexity for retrieval (the fusion of the embedding
vectors of each modality and too large amount of parameters)
and not suitable in practical applications (long inference time).
Specifically, if the two modalities have m and n samples,
respectively, the complexity of such fusion often has a greater
complexity (O(mn)), compared to the modality-independent
approach [27], [32] (O(m+ n)).

Therefore we focus on the latter type of approach. If such a
heavy modal interaction layer can be compressed and obtained
close to the original model, our training time, inference time
can be greatly reduced and applied to similarly structured ITR
models, which are more practical in real-world deployment.

B. Knowledge Distillation

KD [16] is presently one of the most appealing methods for
compression in BERT-like models [38] and can be applied in
ITR for compressing the multi-modal interaction layers.

The theory behind KD is that a large teacher model can
teach a small student model to imitate the teacher’s behavior.
In this way, the knowledge contained in the teacher model
can be effectively transferred to the student model. A set of
methods [39], [19], [18], [40] use intermediate state matching
and logit matching to distill a pre-trained language model for
downstream tasks, achieving a strong compression effect while
performing almost the same as the original model. Neverthe-
less, these methods still need to use a large-scale unlabeled

corpus for distillation, which requires a lot of computational
resources [41], [42], [43], [44]. In the multimodal field, there
are also several works [45], [46], [47] that introduce KD
to compress visual-and-language (VLP) models. Since the
baseline models used in these methods are similar to BERT,
most of them migrated to the BERT compression method of
NLP and obtained good distillation results. After a simple
application of KD, only a few works [48], [49], [50], [51],
[52] explore how to further transfer the teacher’s knowledge
to the student. They follow the idea of active learning to choose
the data and the degree of learning for each sample.

Inspired by above works, we use ViLT [29] and ME-
TER [30], the powerful pre-trained models of the BERT
family, and investigate how to perform dynamic and adaptive
distillation to achieve better distillation results in multimodal
retrieval tasks. Meanwhile, different from the recent weighting
methods [53], [50], we introduce the teacher-student frame-
work to obtain the uncertainty score by a well-known teacher
network rather than the student model itself.

C. Hard Sample Mining

Although our distillation framework is consistent with the
goal in [54] to obtain more informative negative samples to
optimize learning, our implementation is quite different from
[54] and is more applicable to multi-modal settings.

The key to contrastive learning is using a small number of
samples to approximate the distribution of the data. Therefore,
hard sample mining to better utilize the informative negative
samples has been extensively studied [53], [55], [25], [56],
[57]. One of the mainstream methods for hard sample mining
is online mining, which uses the loss [56] or different
gradients [57] of samples in a batch to decide whether samples
are hard. For most image-text retrieval methods [27], [24],
[58], the negative samples with the highest similarity in a
batch are selected online as the informative hard negative
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samples so that there is no need to calculate other negative
samples. The SOTA models, ViLBERT [26] and UNITER [25]
adopt checkpoints at different stages of training to select hard
samples, which help it build diverse sample pools. However,
such methods scarifice time and resources to achieve better
performance.

In contrast, we achieve the same goal (mining informative
hard negatives) in a different way through data selection and
knowledge adjustment while striking a balance between time
and performance (§IV-A).

III. PRELIMINARY

A. Contrastive Learning

In contrastive learning [15], [59], a representation space
is commonly obtained by mixing training with positive and
negative samples. Though training, the semantically similar
samples are closer together in this space, whereas the semanti-
cally dissimilar samples are separated from each other. Unlike
typical self-supervised contrastive learning [12], [60], image-
text retrieval uses a supervised learning paradigm. Both visual
and text are available as queries. In general, considering the
image-to-text, for a query image vi, the matching sentence ti
can be obtained directly according to the data annotation, and
the unmatched sentence tj is obtained by randomly sampling
non-labeled related sentences. And the text-to-image scenario
is similar. For the convenience of description, we use q to
represent a modal embedding query (can be an image vi or a
sentence ti) and k to represent another modal embedding key.

Given a set of image-text pairs {(qi, ki)}Ni=1, our goal here
is to use a contrastive learning approach to learn an optimal
scoring function such that the scores of the matched image-
text pairs (qi, k

+
i ) are higher than the scores of the rest of the

unmatched samples (qi, k
−
j ), j ̸= i.

From the probabilistic perspective, aligning ki to qi is equiv-
alent to maximizing the conditional probability p(ki|qi) while
minimizing the probability for all negative pairs p(k−j |qi), j ̸=
i. According to [61], p(kj |qi) can be approximated as:

p (kj | qi) ∼
exps(qi,kj)∑N

m=1 exp
s(qi,km)

(1)

where s(qi, kj) is the matching score between qi and kj ; the
denominator is a sum over all possible sentences, which is a
partition function for normalization. Therefore, NCE loss [61]
can be measured in a softmax fashion:

LNCE =

N∑
i=1

− log p (ki | qi)

∼
N∑
i=1

− log

(
exps(qi,ki)

exps(qi,ki) +
∑

m ̸=i exp
s(qi,km)

) (2)

The denominator in Equation 2 requires a sum over all
sentences in a dataset, which is intractable in practice. There-
fore, we usually compute the NCE loss on a mini-batch of
K(K ≪ N) image-text pairs sampled from the whole dataset.

B. Knowledge Distillation

For vanilla KD [16], we need a teacher network to guide
the student network. We consider a single mini-batch and let
zk
i be the k-th value of the logit vector zi. The initial teacher

and student model can be defined as: teacher p(θt) and student
p(θs), respectively, where θ is the net parameters and pk(·) =

exp(zk(θ)/τ)∑K
j=1 exp(zj(θ)/τ)

is the probability predict of the matching
label and K is the number of classes. So the KL divergence
distillation loss can be defined as:

LKL

(
p(τ |θs),p(τ |θt)

)
= τ2

∑
j

pj(τ |θt)· log pj(τ |θt)
pj(τ |θs)

(3)

where τ is the temperature factor used in KD, which
controls how much to rely on the teacher’s soft predic-
tions. For simplicity of notation, we use LKL to represent
LKL (p(τ |θs),p(τ |θt)).

For a better distillation effect, we follow [62] and use Mean
Squared Error (MSE) loss. The MSE Loss can be defined as
follows:

LMSE = ||z(θs)− z(θt)||22 (4)

We can therefore get the final loss L of the student network:

L = αLMSE + (1− α)Ltask (5)

where α is the hyper-parameter that balances the importance
of the task loss Ltask and the distillation loss LMSE .

IV. METHOD

Figure 2 illustrates our DYNAMIC CONTRASTIVE DISTIL-
LATION framework in two aspects. From the data side (“Dy-
namic Data Selection”), we select the informative samples
for students according to the teacher’s uncertainty estimation.
From the supervision side (“Dynamic Supervision Adjust-
ment”), we use teacher uncertainty to select the level of
importance of supervision.

A. Dynamic Data Selection and Knowledge Adjustment

1) Dynamic Data Selection: Contrastive learning [12] ben-
efits from a large batch size [13] and extensive data augmenta-
tion [63]. However, the high computational cost of multimodal
fusion layers hinders its wide usage.

As defined in Section III-A, LNCE requires the network to
pass all N×N pairs into the multimodal layers. Assuming that
the number of tokens in the image is m, the number of tokens
in the text is n, and the dimension of each token is d, then the
complexity of the self-attention mechanism is O

(
d(m+ n)2

)
.

Due to such high computational complexity, most image-text
retrieval methods adopt a smaller value of K(K ≪ N). NCE
loss directly samples positive samples in a mini-batch of K
pairs and get the remaining K×(K−1) mismatched pairs. In
typical methods [25], [26], [24], they take only one negative
sample. Thus Equation 2 becomes the following:

LITM =

K∑
i=1

− log

(
exps(qi,k

+
i )

exps(qi,k
+
i ) + exps(qi,k

−
i )

)
(6)
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where k+ is the paired key of the corresponding query,
and k− is the unmatched negative key. In particular, most
methods usually use the way of VSE++ [27] to calculate more
negative samples, and only update the gradient of the hardest
negative sample during back propagation. VSE++ [27] will be
constrained by the efficacy of the existing network’s learning,
and if the present network is not well-optimized, it may result
in worse hard negative selection. In contrast, we provide a
superior approach by employing a network that has previously
been optimized as a selection for the hard negative samples.
Motivated by [64] and [55], we select hard examples from
the teacher to input into the student for supervised learning.

We get fewer but more useful negative samples by taking
larger random negative samples and propagating them through
the teacher network. As shown in Figure 1(b), we begin by
increasing the number of negative samples obtained by the
teacher network to M . Then we calculate M negative sample
pairs and a positive sample pair in the teacher network to
obtain the logits over the binary class of M + 1 matching
scores. Then we sort the scores, take the M ′+1 largest scores,
and find the corresponding samples and their matching scores.
We input these informative samples into the student network,
and get the logits of the M ′+1 matching scores of the student
network. The new image-text matching loss function can be
defined as follows:

LITM ′ =

K∑
i=1

− log

 exps(qi,k
+
i )

exps(qi,k
+
i ) +

∑M ′

j=1 exp
s(qi,k−

ij)


(7)

Then we use the teacher’s logits score to constrain the stu-
dent network. In this way, we not only reduce the gradient
calculation of the student network but also improve the ability
of the student network. Naturally, if a larger negative sample
value (M ) is adopted, the performance of the network will
be improved to a certain extent, but at the same time, it will
increase the network learning time. We need to adjust this
value (M ) and the number of negative samples (M ′) that
students need to learn in practical applications.

2) Knowledge Adjustment: In KD and KD-based ap-
proaches, the student network is trained under the supervision
of teacher predictions, regardless of whether this supervision
signal is right or wrong. We select the indistinguishable
and hard negative samples according to the teacher network.
Therefore, the scores of these negative samples may be higher
than those of positive samples. We call this situation a “genetic
error”. At the same time, if a student continues to learn this
erroneous knowledge under the supervision of the teacher, it
will further lead to errors in the student network. Therefore,
we try to fix the samples of this mini-batch where the teacher’s
prediction does not match the true label, which we call
knowledge adjustment.

For simplicity, we consider a mini-batch with only one
matching pair. As described in the aforementioned section,
we obtained the matching scores of M

′
+ 1 samples with the

teacher network. The matching scores are sorted in descending
order, but the positive samples are not necessarily among the
M

′
+ 1 samples. Based on this consideration, we move the

positive sample to the top of the original matching score list to
generate a new mapping of samples and matching scores. In
this way, we ensure that the sample with the highest confidence
score must be a positive sample.

When computing the loss, for implementation convenience,
for a batch of positive and negative samples (e.g., one positive
sample pair and 15 negative sample pairs), we set the first
position in the sample list to be the matching positive sample
pair and the remaining positions to be the negative sample
pairs. In general, we expect the first score to be the highest
(because it is a positive sample pair), so we guarantee the
nature of the highest matching score for the positive sample
pair by performing such an insertion operation on the list
of scores inferred by the teacher model, which can correct
some erroneous outputs. This method also keeps the numerical
distribution of soft targets, which is helpful in stabilizing the
training process.

With such a simple implementation of dynamic data selec-
tion and knowledge adjustment, we reduce the computational
cost of training as well as bring a more performance and
inference time balanced student model, and also bring a simple
and effective alternative for practical lightweight ITR model
deployment.

B. Dynamic Supervision Adjustment

In the actual data annotation for image-text retrieval, we
can know that image and text matching (1) or not matching
(0), so we call this label information as “hard labels”. We
can also get the output of the teacher, which represents the
degree of matching (normalized to a value between 0 and 1).
This time the more matching samples are closer to 1 for the
output of matching scores, and the more not matching samples
scores are closer to 0. The output is a score to indicate how an
image and a text match. We call this score as “soft labels”. In
Hindon [16], it shows the information of soft labels is easier
to learn compared to hard labels because of the inclusion of
inter-class differences. Similarly, in image-text retrieval, soft
labels are more representative of how well different sample
pairs match, and bring more information worth learning.

We select more valuable learning samples through the
teacher network and ensure the relative correctness of the
predictions of the teacher, but there are still uncertain sam-
ples. Intuitively, for samples with high degree of certainty
considered by the teacher, the soft labels provided by the
teachers bring more significant learning information than the
hard labels. Although these samples can provide a certain
amount of information, if the student network completely
relies on the guidance of the teacher’s judgement at this time,
this output may mislead feature learning in the fine-tuning
stage and hurt adaptation performance.

We aim to reduce the negative influence of noisy soft labels
by evaluating the credibility of these soft labels for each
sample and reweighting the contributions of samples with
error-prone predictions in the NCE loss and KD loss. In order
to improve learning on such samples, we divide them into the
following three parts: uncertainty estimation, weighted hard
labels and weighted soft labels.
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1) Uncertainty Estimation: A crucial step in achieving
dynamic supervision is estimating the prediction uncertainty.
Entropy [65] is an information-theory-based method for calcu-
lating uncertainty and is commonly employed for this purpose.
It is also common to utilize approximate Bayesian inference
methods, such as MC-Dropout [66] and Ensemble [67], to
model uncertainty. Using the difference in the prediction re-
sults of numerous inferences on the same input, these methods
evaluate the uncertainty of models. This mode can significantly
increase the training time (more model inferences) and is
unsuitable for networks with a large number of parameters
(e.g., teacher networks used in distillation). The objective of
our work is to obtain information about the uncertainty of
prediction distribution, which can be obtained by averaging
the entropy of multiple matched or unmatched samples’ scores
and feeding the data directly into the network with negligible
computation time. So we use the average predictive entropy
to estimate uncertainty.

2) Weighted Hard Labels: We use naive entropy to weight
the hard labels in the task loss term, similar to previous
works [53], [48] that assign sample-wise weights. In contrast
to [49], we focus on self-exploration of task loss and reduce
attention to the most difficult samples. Intuitively, the greater
the teacher’s uncertainty about the output of a sample, the
lower the reliability of the output. Therefore, we improve the
student model of self-exploration by increasing its attention to
the sample of task loss in which the teacher is highly uncertain.

Given N instances in one batch, the corresponding output
matching scores probability distribution of the student model
over the positive-and-negative pair index y (position 0 is the
positive pair, and the others are negative pairs) is p(y | xi)
like Equation 1, denoting the model confidence towards the
positive pair. The uncertainty score u of teacher about the
output of xi can be defined as Equation 8 with negligible
computational overhead:

uxi
= −

∑
y

p(y | xi) log p(y | xi) (8)

Then we normalized the uncertain results to get the weight of
the corresponding sample.

wi = − uxi∑K
i=1 uxi

(9)

Finally, we combine the previous ITM loss to get the final
weighted task loss as shown in Equation 10.

LWITM = −
K∑
i=1

wi log

 exps(qi,k
+
i )

exps(qi,k
+
i ) +

∑M ′

j=1 exp
s(qi,k−

ij)


(10)

3) Weighted Soft Labels: Similar to [50], we found that
reducing the weight of the hardest samples in the distillation
term is beneficial to students’ learning. It is possible that the
teacher didn’t generate the correct matching scores since these
examples weren’t well learned. As a result, if we focus on
these harder samples, the supervisory information provided
by teachers will be limited and may not be correct, and such
errors may propagate to the student.

Therefore, we reduce the soft label loss term to pay attention
to such samples in order to re-learn the samples that the teacher
failed to master in a relatively correct training direction for the
student network. However, even if these more hard samples
need to be weighted down, they can still provide some useful
information for the student. Therefore, even if we reduce the
weight of such samples, we should not use the focal loss
style weights [53] to make the weight difference between
these samples too large. As a result, we defined the following
reversed weights c based on the forward weights calculated
by teacher entropy:

ci =
exp(1−wi)

2∑K
i=1 exp

(1−wi)2
(11)

Therefore, we combine the previous MSE loss to get the final
weighted distillation loss as shown in Equation 12:

LWDS =

K∑
i=1

ci||zi(θs)− zi(θ
t)||22 (12)

C. Overall Learning Objective

The training objective in our method is finding the optimal
θs by minimizing the combination of the above two weighted
losses:

L′ = αLWDS + (1− α)LWITM (13)

V. EXPERIMENTS

A. Datasets

We conducted experiments on two widely-used benchmarks:
MS-COCO [68] and Flickr30k [69], which consist of 123,287
and 31,783 images, respectively, and each image has five
corresponding sentence descriptions. We closely followed [70]
to split the datasets. Concretely, the processed Flickr30k
dataset contains 1,000, 1,000, and 29,783 images for testing,
validation, and training, respectively. As for MS-COCO, 5,000
images for testing and 5,000 for validation, the rest 113,287
images are left for training.

During inference, the performance for image-text retrieval is
reported by Recall at K (R@K), which represents the ranking
proportion of queries with ground-truth within the top K.
R@1, R@5 and R@10 are our evaluation metrics.

B. Implementation Details

We validated our proposed dynamic contrastive distillation
on two state-of-the-art vision-language pretrained models,
ViLT [29] and METER [30], where ViLT is used for the main
experiments (§V-C1-§V-C4) to demonstrate the effectiveness
of our method, and METER is used in §V-C5 to show the
universality. Specifically, in the main experiments, we use
ViLT with 12 Transformer layers as a teacher model for all
scenarios that require distillation. While we use a 6 layers
of Transformer as the student network for both Flickr30k
and MS-COCO, we leave their best settings in the original
paper [29] as the default. We compress the original model for
40 epochs and for 20 epochs on Flickr30k and MS-COCO
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TABLE I
COMPARISONS OF EXISTING METHODS EXPERIMENTAL RESULTS ON FLICKR30K AND MS-COCO TEST SETS. “*” REPRESENTS THE RESULTS OBTAINED

FROM [71], WHICH REMOVED THE EXCESSIVELY TIME-CONSUMING ONLINE HARD SAMPLE MINING PROCESS.

Visual Embed Model Param Time
(ms)

Flickr30K MS-COCO
Text Retrieval Image Retrieval Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Region

SCAN [24] ∼73M ∼900 67.4 90.3 95.8 48.6 77.7 85.2 72.7 94.8 98.4 58.8 88.4 94.8
CAMP [37] ∼94M ∼1000 68.1 89.7 95.2 51.5 77.1 85.3 72.3 94.8 98.3 58.5 87.9 95.0
VSRN [31] ∼204M - 71.3 90.6 96.0 54.7 81.8 88.2 76.2 94.8 98.2 62.8 89.7 95.1
SAEM [32] ∼178M ≫900 69.1 91.0 95.1 52.4 81.1 88.1 71.2 94.1 97.7 57.8 88.6 94.9

ViLBERT-Base* [26] ∼285M ∼920 76.8 93.7 97.6 59.1 85.7 92.0 77.0 94.1 97.2 62.3 89.5 95.0
UNITER-Base* [25] ∼174M ∼900 78.3 93.3 96.5 62.9 87.2 92.7 74.4 93.9 97.1 60.7 88.0 93.8

Linear DCD (Ours) ∼66M ∼7 75.6 91.0 94.6 53.7 81.4 88.2 76.5 94.1 98.0 59.7 89.7 95.7

TABLE II
PERFORMANCE OF THE TEACHER AND STUDENTS WITH DIFFERENT LOSS RE-WEIGHTING METHODS. “*” INDICATES THAT DYNAMIC SAMPLE SELECTION
AND KNOWLEDGE ADJUSTMENT ARE USED. “N/A” MEANS THE TRAINING PROCESS DOES NOT CONVERGE, AND IT IS ALMOST IMPOSSIBLE TO RETRIEVE

CORRECT RESULTS.

Method Flickr30K MS-COCO Avg.TR@1 IR@1 TR@1 IR@1
ViLT [29] (12L Teacher) 83.7 62.2 83.7 68.4 74.5

6L Student
Directly fine-tuning 63.3 42.0 68.6 47.5 55.4
Vanilla KD [16] 71.8 50.6 72.8 54.7 62.5
WSL KD* [72] 74.4 51.7 74.4 57.2 64.4
Student-Uncertainy* N/A N/A N/A N/A N/A
DCD* 75.6 53.7 76.5 59.7 66.4

Fig. 3. The effects on retrieval (“R@1”) and training time (“Running Time”)
when inputting the different numbers of samples for teacher and student. “(X,
Y)” in the horizontal coordinate indicates the numbers of samples randomly
inputting to the teacher and student, respectively. The green line represents
the corresponding running time of each setting, while the red and blue lines
show R@1 for text and image retrieval, respectively.

datasets, respectively. We train our models on 8 SuperPoD
NVIDIA A100 GPUs. Due to the limitation of computational
resources and in order to achieve a better trade-off between
training time and retrieval performance (see discussion in
Section V-C2), we set the number of negative samples to 63
and 7 for the teacher (i.e. M in §IV-A) and student (i.e. M

′

in §IV-A), respectively, for dynamic data selection.

C. Results and Analysis

1) Image-text Retrieval Results: In this section, we com-
pare the two datasets of Flickr30K and MSCOCO to ver-
ify the effectiveness of our framework. Table I shows the

experimental results of Flickr30K and MSCOCO 1K test
sets. For a comprehensive comparison, we list not only the
retrieval results (“R@K”) of the existing image-text retrieval
methods, including SCAN [24], CAMP [37], VSRN [31],
SAEM [32], ViLBERT [26], and UNITER [25], but also their
corresponding model sizes (“Param”) and inference latency
(“Time”).

a) Time and Param: Our distilled student model is based
on patch features [73], which have negligible computational
consumption and can be fed directly into the modality interac-
tion transformer to obtain the final multimodal features. The
traditional image-text retrieval models [26], [24], [37], [31],
[32], [25] involve region supervision (i.e., the pretrained off-
the-shelf object detector such as Faster-RCNN [74]) to obtain
a better retrieval recall rate but add more time consumption
(requiring the time-consuming regional selection). As shown
in Table I, the inference speed of our compressed model
(“Ours”) is significantly faster than that of the existing region-
based models, where the speedup is at least 129× (7ms vs.
900ms). Also, our approach has the smallest model size among
them, achieving up to 4.1× parameter compression (comparing
to ViLBERT-Base).

b) Retrieval Results: Regarding retrieval performance,
our compressed model achieves competitive, if not better, per-
formance compared to the existing state-of-the-art in image-
text retrieval. Specifically, compared with similar-sized method
SCAN [24], we achieve 8.2% and 5.1% improvements in
R@1 text and image retrieval, respectively, in the Flickr30k
dataset. In the MS-COCO 1K dataset, our method also obtains
3.8% and 0.9% improvement in text and image retrieval,
respectively. Meanwhile, our compressed model gains con-
sistent improvement compared to those larger non-pretrained
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(a) The matching score of the positive pair. (b) The matching score of the most similar negative pair.

(c) The matching score of the second similar negative pair. (d) The matching score of the third similar negative pair.

Fig. 4. Comparison of different dynamic supervisions, i.e. “Student w/ {Vanilla KD [16]/ WSL KD [72]/ DCD (Ours)}” in terms of the matching score of
true positives (a) and true negatives (b, c, d). The outputs of the teacher model are reported as the reference.

modal interaction models, i.e. CAMP [37], VSRN [31], and
SAEM [32]. And encouragingly, compared to the state-of-the-
art pretrained models, i.e. VILBERT [26] and UNITER [25],
our compressed model achieves better performance with sig-
nificantly fewer parameters, such as TR@1, TR@10, and
IR@10 on MS-COCO.

These results demonstrate that DCD can achieve a balance
between retrieval performance, the number of parameters
(storage consumption), and calculation time (calculation con-
sumption) in comparison to other robust region-based models.

TABLE III
THE IMPACT OF COMPONENTS IN FLICKR30K

Method
Flickr30K

Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Vanilla KD 71.8 90.3 94.1 50.6 79.8 87.6
+DS&KA 73.7 90.7 94.4 51.5 80.0 87.2

+HW 75.5 90.0 94.2 53.5 81.4 88.4
+SW 74.6 89.7 94.4 51.7 80.1 87.7

+FULL 75.6 91.0 94.6 53.7 81.4 88.2

2) Analysis of Dynamic Data Selection: Recall that we
denote the M and M ′ by the number of negative samples
as input to the teacher and student network, respectively.
These two factors may significantly influence both retrieval
performance (Recall) and training costs (Time). To achieve

TABLE IV
THE IMPACT OF COMPONENTS IN MS-COCO

Method
MS-COCO

Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Vanilla KD 72.8 92.5 96.6 54.7 86.3 93.8
+DS&KA 73.9 93.2 97.5 57.1 87.8 95.2

+HW 74.5 93.4 97.5 58.1 87.6 94.7
+SW 75.2 93.9 97.6 57.0 88.0 95.0

+FULL 76.5 94.1 98.0 59.7 89.7 95.7

TABLE V
THE GENERALIZABILITY OF DCD UPON THE SOTA VLP MODEL –

METER [30]. “*” INDICATES THAT DYNAMIC SAMPLE SELECTION AND
KNOWLEDGE ADJUSTMENT ARE USED.

Method
Flickr30K

Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

METER[30](6L Teacher) 94.3 99.6 99.9 82.2 96.3 98.4
3L Student

Directly fine-tuning 80.3 96.4 98.3 55.2 86.7 93.3
Vanilla KD 92.7 99.4 99.8 79.8 96.4 98.4
WSL KD* 92.9 99.3 99.8 80.9 96.6 98.6
DCD* 93.4 99.3 99.8 81.9 96.6 98.7

the desired trade-off, we carefully investigate the effects of
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them spanning a reasonable range, that is, (M+1, M ′+1)1 ∈
{(16, 16), (32, 4), (32, 8), (64, 4), (64, 8), (64, 16)} shown
in Figure 3. Note that the training costs of adding negative
samples to the teacher network is substantially lower than that
of the student network. We therefore can reduce the time cost
of the student when mining difficult samples by increasing the
sample input of the teacher network.

As seen in Figure 3, increasing the number of (negative)
samples can basically obtain better text and image retrieval
results (see the red and blue lines) but significantly enhance the
training costs (see the green line), validating the effectiveness
of negative samples in our dynamic contrastive distillation
frameworks. We also show several interesting findings: 1)
increasing the number of hard negative samples of students
does not improve the retrieval if we set a relatively small
number of negative samples for teachers, e.g. (M+1, M ′+1)
changes from (32, 4) to (32, 8), demonstrating the necessity
of setting a relatively large number of negative samples for
teachers; 2) increasing the number of negative samples for
students causes the retrieval results to rise first and then
decline. It shows that while there are some hard samples in
the batch, it also increases the number of simple sample pairs,
which hurts the network’s final result. This is similar to what
VSE++ [27] reported. Based on observations, to achieve the
desired trade-off, we set the number of negative samples to
63 and 7 (in total 64 and 8) for the teacher and student,
respectively, for hard sample dynamic selection.

3) Analysis of Dynamic Supervision Adjustment: We
first empirically show the superiority of dynamic supervision
adjustment, then discuss where the improvement comes from?

a) The Empirical Superiority of Our Method: In order
to investigate the influence of different dynamic supervision
adjustment strategies, we carefully compared our approach
with existing competitive methods in Table II, including 1)
“ViLT” 12 layers ViLT [29] as a teacher to provide soft labels
and weights, 2) “Directly fine-tuning” directly finetuning 6
layers ViLT using downstream loss without distillation, 3)
“Vanilla KD” 6 layers ViLT distilled by 1), 4) “WSL KD”
is an existing strong baseline – weighted soft labels KD [72],
which dynamically weights the sample level by combining
elements like teacher and student losses, as well as the training
step, and 5) “Student-Uncertainty” follows our framework
but supervised with the student uncertainty rather than teacher.

Clearly, “vanilla KD” improves the image-text retrieval
results by averaged 7.1 points compared to directly fine-tuning
the 6 layers ViLT without KD, i.e. “Directly fine-tuning”,
proving the effectiveness of knowledge distillation. Going a
step further, the WSL weighting method “WSL KD” that
combines multiple factors can push the effects of distillation
to a significantly better level, i.e. averaged 1.9 points of
improvements against the static “vanilla KD”.

Surprisingly, we discovered that using student uncertainty
as a weight for dynamic supervision caused the model to fail
in convergence, denoted by “N/A”. One possible reason is
that students’ optimization directions may be incorrect. And

1“+1” means our settings take one positive sample and the rest are negative
samples.

such incorrect supervisions are propagated to the students’
learning process, exacerbate the errors, and eventually make
the networks collapse.

“DCD” that employs the uncertain information from the
knowledge-rich teachers to obtain dynamically weighted sig-
nals, by contrast, makes the training process stable, leading
to further improvements. Compared with the “Vanilla KD”
and competitive “WLS KD”, DCD brings an average R@1
improvement of 4 and 2 points, respectively, validating the
superiority of our approach.

b) Where Do the Improvements Come From: In order to
more intuitively show where the improvements come from, we
visualize the learning dynamics of the student network in terms
of the matching score of true positives and true negatives on
MS-COCO. Figure 4 depicts the matching scores of positive
pair and top-3 negative pairs, including the matching score
of a) the positive pair, b) the most similar negative pair,
c) the second similar negative pair, and d) the third similar
negative pair. When performing image-text retrieval tasks, we
normally expect that matched image-text pairings have higher
matching scores while dissimilar pairs have lower matching
scores. Namely, a well-trained model is expected to have a
high degree of separability between positives and negatives.

Overall, compared to the static “Student w/ vanilla KD”
and dynamic supervision method “Student w/ WSL KD”, our
method (DCD) “Student w/ Ours” obtains a higher degree of
separability between positives and negatives.

In particular, we show this with the matching score of the
POSITIVE pair in Figure 4(a). Although our method is slightly
lower than students with vanilla and WSL KD, the difference
is not significant, or even comparable.

However, as for NEGATIVE samples, our method signifi-
cantly reduces the matching score of negative examples, that
is, our method could distinguish the true negatives better than
other students, as shown in Figure 4(b), 4(c) and 4(d). Match-
ing score observations on true positives and true negatives
demonstrate that our dynamic supervision empowers students
with a higher degree of separability between positives and
negatives, thus leading to improvements.

4) Ablation Studies: To demonstrate the effectiveness of
our dynamic contrastive distillation framework, a compre-
hensive component wise ablation analysis is performed. The
results are reported in Table III and IV. Here, we use the
vanilla KD described in Section III-B as the baseline. On both
datasets, with our data selection and knowledge adjustment
(“DS&KA”), we get an average improvement of almost 2
points beyond the baseline. Also, it can be seen that, based
on the strategy “DS&KA”, our soft-label weighting (“SW”)
and hard-label weighting (“HW”) further obtain consistent
improvements on both datasets. In particular, our “HW” gets
more improvement on R@1, with averages of 1.9 and 0.8
points on Flickr30K and MS-COCO. Finally, combining all
components “FULL”, we achieve a further improvement, on
average.

5) Generalizability of the Dynamic Distillation Frame-
work: To verify our framework as a plug-and-play component
applicable to other vision-language pretraining (VLP) models
that are based on modal interaction fusion, we conduct ex-
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periments upon a current SOTA VLP model METER [30].
METER is a dual-stream architecture that performs training
of image-text pair similarity by means of a heavier modal
encoder to obtain the encoding of the respective modalities
and a heavier modal interaction layer for fusion encoding.
Using our framework, its fused modal encoding (co-attention
layers [26]) can be compressed, and the results are shown in
Table V. We compress the co-attention layer [26] of METER
from 6 layers to 3 layers and report the retrieval performance
on Flickr30K with fine-tuning only, vanilla KD, WSL [72]
weighting, and our distillation framework. The settings are
consistent with the original paper [30]. The results show that
our distillation framework works well on compression co-
attention, demonstrating its universality.

6) Hyper-parameter Sensitivity: A motivation for DCD is
to allow teachers to transmit their knowledge dynamically.
In order to have the ability to dynamically adjust during the
learning process, it is natural to expect the DCD to be more
insensitive and more robust to changes in settings. Here, we
evaluate the performance of DCD for different temperatures
and different loss weights.

a) Temperature: In [62], they verified experimentally
and theoretically that LMSE is superior to LKL in certain
circumstances. Using LMSE instead of LKL as distillation
loss in DCD eliminates the need to set the temperature
parameter, thereby reducing the difficulty of hyperparameter
adjustment. Based on this motivation, we conduct relevant
experiments on distillation for image-text retrieval, try four
temperatures with the original LKL in KD and illustrate the
retrieval performance of the student on Flickr30K and MS-
COCO, as shown in Figure 5.

The following findings can be obtained from Figure 5: 1)
As described in Section III-B, LMSE can produce improved
student retrieval results within a specific temperature range,
compared to LKL. The best results for Flickr30K text retrieval
and image retrieval w/MSE are approximately two points
better than w/KL. On MS-COCO, the results of w/MSE were
similarly significantly superior to the best results of w/KL,
gaining over one point in text retrieval and over two points
in image retrieval, respectively. 2) The results for w/KL are
sensitive to temperatures, i.e., the variance of their results is
large. On both Flickr30K and MS-COCO, Figure 5 shows that
the difference between the best results and the worst R@1 for
the students after distillation is close to two points.

b) Loss Weight: In KD as well as in our DCD, loss
weight is an important balancing factor that balances the
importance of soft and hard labels. To test the robustness of
DCD at different loss weights, we perform experiments using
our previous best settings with different α shown in Figure 6
(Equation 13, from 0.1 to 1). It can be found that DCD has
good robustness when its weight is small, e.g., 0.1 to 0.3. In
the range of 0.1 to 0.3, the difference between the results of
the DCD text retrieval are less than 0.5 points (MS-COCO is
close to 0.5 points and Flickr30K is only 0.2 points), while
the results of the image retrieval are also within one point.
This indicates that hard labels and soft labels through our
dynamic data selection and dynamic supervision adjustment
can have a good balance in this interval to enhance the final

(a) Text retrieval (b) Image retrieval

Fig. 5. Results with different temperature on Flickr30K and MS-COCO.
The w/MSE and w/KL mean using LMSE and LKL as the distillation loss,
respectively.

(a) Text retrieval (b) Image retrieval

Fig. 6. Results with different loss weight α on Flickr30K and MS-COCO.

distillation results. Also congruent with the findings of [16]
is the discovery that soft labels cannot replace hard labels,
but do play a role in the optimization of the student network.
When employing only soft labels (α = 1.0), the distillation
results deviated from the best retrieval results on Flickr30K
and MS-COCO by roughly 2 and 3 points, respectively.

VI. CONCLUSION

In this paper, we proposed a play-and-plug dynamic con-
trastive distillation framework named DCD, which consists
of two major aspects, dynamic data selection and dynamic
supervision adjustment, for the image-text retrieval task. Ex-
tensive experiments upon different VLP models (ViLT and
METER) demonstrate that dynamic adjustments in both data
and supervision according to teachers’ uncertainty estimation
can effectively improve student performance and learning
efficiency. Further analyses reveal that the improvement comes
from 1) fully mining the hard negative samples, and 2)
providing a higher degree of separability between positives
and negatives. We hope that our method could shed light on
more image-text tasks in the future.
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