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A Novel ML-based Symbol Detection Pipeline for
Molecular Communication

Valerio Selis, Daniel Tunç McGuiness, and Alan Marshall, Senior Member, IEEE

Abstract—Molecular Communication (MC) is the process of
sending information by the use of particles instead of elec-
tromagnetic (EM) waves. This change in paradigm allows the
use of MC in areas where EM transmission is undesirable.
These include underground, underwater and even intra-body
communications. While this novel paradigm promises new areas
for communication, one of the major setbacks is its relatively
low throughput caused by the propagation speed. This can
be improved by decreasing the symbol duration; however, this
can be a detriment to the correct decoding of symbols. This
paper proposes a novel symbol detection pipeline to increase
the possible throughput without increasing the error rate of the
communication. This is based on a machine-learning algorithm
for classification tasks using an L-point discrete time moving
average filter and a wide range of features. Extensive simulations
with long sequences at different signal-to-noise ratio (SNR) values
were performed to determine how well the proposed method
detects symbols. The results show that our method can detect
symbols received when On-Off Keying (OOK) modulations are
used with a 10 dB gain, even when transmissions with untrained
SNR values occur.

Index Terms—Molecular communications, symbol detection,
machine learning, signal processing.

I. INTRODUCTION

MOLECULAR Communication (MC) is generally de-
fined as the use of particles to convey information

across a wide variety of distances [1]–[4]. This is a stark
contrast to using electromagnetic (EM) or acoustic waves.
This paradigm shifts from waves to particles allows novel
implementations to areas where EM or acoustic would prove
to be inefficient. These areas can include underwater [5]–
[7], underground communication and infrastructure monitoring
[8] where the wave (EM or acoustic) communication’s poor
performance was shown, such as strong attenuation when
transmitting through the water-air boundary or its limited
bandwidth [9]. For these environments, MCs have been studied
as a possible alternative [10]–[12].

Another approach and a major attraction of MC is its
possible use in biological systems [13]. Numerous studies
were conducted for potential use in cell signalling applications,
such as studying the process of calcium signalling [14]. It
can also be used in nano-bot communication [15] to allow
nano-scale robots to communicate with each other in in-vivo
environments such as the human body [16], [17]. Of course,
these are not the only areas in which MC is proposed to be
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useful, as it is also studied for possible use in other healthcare
applications [18], [19], to study biological species such as
microbial communities [20] and robotic communications [21].

An advantage of MC is, in itself, not bounded by any
scale, whereas EM has physical limits within which a re-
ceiver/transmitter (i.e., an antenna [22]) can be constructed.
This lower bound of EM has garnered interest in MC for
use in micro- and nano-scale (nm - `m) environments with
possible applications in intra-cellular communication [23],
drug delivery systems [24], etc. These studies allowed further
understanding of the various aspects of this novel communi-
cation paradigm such as testing established error correction
methodologies such as Reed-Solomon codes [25], calculating
the channel capacity of different mediums such as air or water,
designing transmission protocols and initiating standardisation
efforts [26] and, possible applications and examinations of
security properties.

A significant hurdle that MC needs to overcome is its
throughput speed or lack thereof. Unlike EM, where trans-
mission is done comparable to the speed of light (2), MC
relies on the use of particles. While it is currently a pipe
dream to make MC comparable to EM in terms of speed,
nevertheless, it can be considerably improved from its current
standpoint. A major contributor to the poor throughput is
the ISI (inter-symbol interference). This is caused by the
physical constraints of the sensors used in detection or the
environment itself where the propagation happens. As the
transmission is done via particles, sensors physically interact
with them to detect the received message. Due to this, the
sensor needs to be given a time frame where it can remove
the detected particle from the communication channel. If
adequate time is not given, the channel will be saturated by
particles from different transmissions. This would increase the
background noise experienced by the sensor, which in turn
would cause errors in decoding the received signal. However,
if an appropriate method is used to decode the signal with
a less than ideal time frame for removing the particles, the
adverse effects of the increased background noise could be
compensated, and a higher throughput may be achieved, which
this paper proposes.

Authors in [27] have proposed a method to perform the sym-
bol detection based on whether the last mass value received is
below or above a static threshold (g). We believe that a simple
threshold detector is inefficient in decoding received symbols
efficiently, especially in the presence of noisy channels.

The main contributions of the paper are as follows:
1) A novel pipeline to detect the symbols received using

molecular communications is defined.
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2) An extensive number of long sequences of encoded
data have been systematically used to train and test the
proposed method.

3) A machine learning algorithm to improve the received
symbol detection is developed and analysed.

4) Demonstrate the advantage of our solution compared to
previous work.

5) The reliability and performance of the detection pipeline
are validated when applied to unknown received se-
quences with different channel conditions.

The rest of this paper is organised as follows. Section
II introduces the propagation theory behind the molecular
communication used in this paper. In Section III, we describe
and discuss a novel symbol detection pipeline. This is done
by providing an analysis of the received signal and showing
the steps required to train a machine learning algorithm
for classification tasks. The results of the proposed symbol
detection method are shown in Section IV. Finally, we present
our conclusion and future work in Section V.

II. MOLECULAR COMMUNICATION:
A THEORY OF PROPAGATION

A transmission involving particles, such as molecules, can
be described using the generalised advection-diffusion equa-
tion (ADE) [28]. Depending on the environment studied, this
equation is also known in the literature as convection–diffusion
equation or generic (scalar) transport equation [29]. The 3-
dimensional description is presented as follows:

m2

mC
= ∇ · (D∇2) − ∇ · (u2) +  , (1)

where 2 is the concentration of the mass in the environment
(kg/m), C is the duration of the mass transfer process (s), D
is the vector value for the coefficient of diffusivity (cm2/s), u
is the vector value of the velocity (i.e., advection process)
(cm/s) and  is the sink and/or the source depending on
the environment and its condition. If the system is a closed
one,  is assumed negligible. For this work, it is assumed
the environment possesses neither a sink nor a source ( 
= 0), there is no physical medium to guide the propagation
(i.e., transmission is done in open air), and the change in
the diffusion coefficient is deemed negligible (m�/mC = 0)
during the propagation and absorption process and only the G-
dimension is considered. Therefore, the boundary conditions
for the 1-dimensional ADE are:

2( |G | > 0, C0) = 0 , (2a)
2(G = 0, C0) = "0 X(G) , (2b)

2( |G | → ∞, C) = 0 , (2c)

where "0 is the initial mass injected into the environment
(kg), G is the Cartesian propagation dimension, C0 is the initial
time (s) and X(G) is the dimensional Dirac delta function.
These conditions are known as the “thin-film solution” in the
literature [30]. The solution with an unbounded domain can
be expressed as:

2(G, C) = "0√
(4c�GC)

exp
(
− (G − DGC)

2

4�GC

)
, (3)

where DG is the vectorial elements of u and �G is the
vectorial elements of D in the x-axis. To estimate the diffusion
coefficient in a particular medium, the following equation is
employed [31]:

� =
2
3

√
:3

B)
3

c3

√
1

2<A
+ 1

2<B

4
%(3A + 3B)2

, (4)

where :� is the Boltzmann constant (:� = 1.380609 ×
10−23J × K−1), % is pressure, ) is temperature, <�, <� and
3�, 3� are the molecular masses and diameters of chemical
A and B respectively. One of these chemicals can be the
signalling chemical and the other one is the chemical that
is the medium (i.e., air), as the diffusion of the chemical
depends on the medium it is propagating. Eq. (3) quantifies the
concentration value of the sample in a given time (C) and space
(G). The mass in a given transmission (\) can be calculated by
integrating the concentration function in the desired volume:

\ =

∫
2 3G . (5)

The system has no sink/source ( = 0). Therefore, the
particles used in the transmission process can either be in
transmission (\) ) or have been absorbed by the detector (\�).
Both the aforementioned mass values must add up to the initial
introduction of mass at the beginning of the transmission.

"0 = \) + \� . (6)

The absorbed mass (\�) (i.e., the transmission of bit 1) can
be calculated simply by subtracting from the initial mass ("0).

\� = "0 − \) . (7)

The particles present in the environment can be calculated
by integrating the concentration function with respect to space.
To calculate the chemicals absorbed by the detector (\�), the
integration function is subtracted from the injected mass ("0)
[12], [32]–[35].

\�(G, C) = "0 −
∫ +G3

−Gn
2(G, C) 3G , (8)

where G3 is the distance from the detector to the origin point
(G0 = 0) (m) and Gn is the distance particles travel against the
flow (m). This term is of diminutive value and can be treated
as 0 (Gn ≈ 0) if the system has an advection element. The
solution to the integration given in Eq. (8) for transmission
with no boundaries is given below:

\1 (G3 , Gn , C) = "0 −
"0
2

[
erf

(
G3 − DGC√

4�GC

)
+ erf

(
Gn + DGC√

4�GC

)]
,

(9)
where erf (G) = 2/

√
c
∫ G

0 4−C
2
3C. The chemicals absorbed by

the detector (\1) in a given period of )B are given below:
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Fig. 1. A representative diagram of how the transmission is simulated with an example transmission of a bit sequence of 011100111000 with states of the
transmission shown above the transmission. The first part of the simulation is to analyse the sequence based on the states. In this context, the states are defined
as a bit value, which in this example are 0 and 1. In this example, there are five states which are 0-1-0-1-0 with durations of 1T -3T -2T -3T -3T. After this
assessment, the system carries out the following procedures to initiate the simulation. In this example at time-point (1), the detector starts absorbing particles
with the absorbing function \1 and this function continues until the time period of the state concludes at (4), in which the duration of the state is shown as
the feedback loop to the state itself, with each bit-1 value having the absorbed mass value of \1(x, T), \1(x, 2T) and \1(x, 3T), respectively. When the time
duration passes the time mark (4), the removal function (\0) initiates and starts removing the particles from the detector based on how many particles it has
absorbed in the previous state [27].

"' = \1 (G3 , 0, C = )B) − \1 (G3 , 0, C = 0) . (10)

Therefore, the removal of chemicals from the detector (\0)
(i.e., the transmission of bit 0) to the outside environment can
be expressed by the following expression.

\0 (G3 , Gn , C) =
"'

2

[
erf

(
G3 − DGC√

4�GC

)
+ erf

(
Gn + DGC√

4�GC

)]
.

(11)
As shown in Eq. (9) and Eq. (11), the mass parameter is

different in each equation: the former being the mass injected
into the environment ("0), and the latter being the mass ab-
sorbed by the detector ("'). The theoretical model presented
in this work, which was used to generate the transmission
data, is based on the experimental work carried out in [32]–
[35], where for the transmitter an odour generator is used and
for the detector a membrane inlet mass spectrometer is used.
This model assumes that there isn’t any sensor saturation at
the detector. A detailed diagram of its working is presented in
Fig. 1, and additional details regarding the inner workings of
the model are presented in [27].

A. Transmission Model and Coding Scheme

In this study, a channel model (CH ) in which open-air
transmissions occur is used, as previously described.
An On-Off Keying (OOK) modulation with an adapted
Non-Return-to-Zero (NRZ) line code was implemented, where
depending on the bit transmitted, either particles were intro-
duced to the receiver (\1) or removed from the receiver (\0).

TABLE I
SIMULATION PARAMETERS

Simulation Parameter Symbol Value Unit

Advective flow in G-axis DG 0.12 cm/s
Transmission Distance G3 2.5 cm

Diffusivity1 � 0.124 cm2/s
Symbol Duration )B 20 s

1 Modelled after diffusivity of acetone in laboratory conditions.

In the standard NRZ line code used in digital communications,
there is a high voltage representing binary 1 and a low voltage
representing binary 0 for the entire symbol period. In our
adapted NRZ line code for MCs, there is an instantaneous
injection of particles or an absence of particles’ injection only
at the beginning of the symbol period to represent binary 1
and 0, respectively. The parameters for the model can be seen
in Table I. The noise is modelled as Additive White Gaussian
Noise (AWGN) after the experimental validation of the noise
characteristics presented in [32].

III. SYMBOL DETECTION PIPELINE FOR MOLECULAR
COMMUNICATIONS

The demodulation mechanism based on a static threshold
for molecular-based transmissions may not perform well in
specific environmental conditions, as previously identified.
For this reason, a new pipeline based on a machine-learning
algorithm is proposed in this paper. We have carried out several
steps to obtain a trained machine learning algorithm that can
be used as the basis of our symbol detection pipeline for MCs.
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Fig. 2. Summary of the steps required to train and test the machine learning
algorithm.

These steps consist of (i) creating the dataset containing the
transmitted sequences and the corresponding received signal;
(ii) the received signal is filtered; (iii) features are extracted
from it; (iv) the extracted features are selected using their
importance; and (v) the Random Forest classifier is trained
and tested with different parameters. The steps are summarised
in Fig. 2 and explained in more detail in the following
subsections.

A. Tx sequences, Rx signals and Tx/Rx dataset

Random bit sequences have been generated to simulate
several transmissions using MCs based on the OOK modu-
lation with an adapted NRZ line code. The symbol duration
or window size ()B) is set to 20 seconds. The transmission
process consists of generating binary symbols by instanta-
neously injecting (1-bit) or not injecting (0-bit) particles at
the beginning of the symbol period. To detect the start of
a transmission, a synchronisation bit (1B) is used, which is
identified by symbol 1. Let B: be the :-th bit sequence, which
is going to be transmitted using the OOK modulation, in which
1
9

:
is the 9-th bit in B: , then B: can be represented as:

B: = 1
1
: , 1

2
: , 1

3
: , ..., 1

=
: , (12)

where = is the length of B: and 11
:
= 1B .

At the receiver, the signal is measured as the absorbed mass
of the injected particles with a sampling rate of 1 second
( 5 A4@ = 1 Hz). Therefore, the sampling of each transmitted
symbol consists of 5 A4@ ·)B = 20 consecutive readings of the
absorbed mass values from the sensor.

Let 0: be the :-th received signal, in which � 9
:

is the 9-th
)B absorbed mass values in 0: , then 0: can be represented as:

0: = �
1
: , �

2
: , �

3
: , ..., �

=
: , (13)

where = is the length of 0: . Let " 8 · 9
':

be the 8-th absorbed mass
value for the 9-th )B of 0: , for 8 = 1, · · · , )B and 9 = 1, · · · , =,
then the transmitted 9-th bit 1 9

:
of B: (input � to the channel)

can be represented as the received bit � 9
:

of 0: (output $ from
the channel) as:

1
9

:

�→ CH $→ �
9

:
= "

1 9
':
, "

2 9
':
, · · · , ")B · 9

':
. (14)

Fig. 3 shows an example of a transmitted bit sequence
containing the text “Hi” by using the parameters shown in
Table I.

The text “Hi” is converted into binary by using the Ameri-
can Standard Code for Information Interchange (ASCII), and
the 1B symbol is attached before its physical transmission,
resulting in the following Tx bit sequence ((Hi):

1B 12
Hi · · · 117

Hi
(Hi = 1 01001000 01101001

The bit sequence is then transmitted as shown in Fig. 3 (Tx
signal) and simulated by using the method in [27]. As shown in
this figure, the transmitted signal follows the OOK modulation
with the adapted NRZ line code (left y-axis). In particular, for
binary 1, a mass of 1 g is instantaneously injected into the
environment, whereas for binary 0, there is the absence of
particles’ injection (0 g). At the receiver, a sensor is used to
measure the absorbed mass (g) over time (right y-axis).

In Fig. 3, two examples of received signals are shown.
One example of a received signal is when the signal-to-noise
ratio (SNR) tends to infinity (Rx signal ideal), making this
an ideal scenario as the transmitted mass is mostly absorbed
over time. As expected, when there is a binary transmission
of 1, the received signal increases as particles are injected into
the environment and received over time. Whereas when there
is a binary transmission of 0, the received signal decreases
as the injected particles are absorbed by the receiver and/or
evaporate/sublimate into the air. Moreover, when there is a
transition stage from bit 1 to bit 0 or vice versa, the received
signal fluctuates, making a peak or a valley, respectively.
Around these fluctuations, the value of the absorbed mass
changes rapidly. In the second example, the SNR value is set
to 1 (Rx signal SNR 1), indicating that there is still more
signal power than noise at the receiver. In this example, it can
be seen that the received signal is difficult to be demodulated
just by observing the absorbed mass values as these values
highly fluctuate, also becoming negative due to the noise.

An initial dataset, called Tx/Rx dataset, has been created
to analyse the received signals and obtain a trained machine
learning algorithm. As per its name, this dataset contains the
set ( of transmitted bit sequences (B: ∈ () and the set �
of the corresponding received signals (0: ∈ �). Each B:
consists of = = 1 million consecutive bits, starting with 1B and
followed by randomly generated 999,999 bits. The simulated
received signals for different channel conditions based on
SNR have been simulated using the method in [27] and the
parameters in Table I. SNR ranged from -20 to 50 dB with
a step value ()BC4?) of 5. For each SNR, the transmission of
10 bit sequences was simulated. Therefore, the Tx/Rx dataset
contains a total of 150 transmitted bit sequences for a total of
150 million bits, and the correspondent 150 received signals
formed by 3 billion absorbed mass values.
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Fig. 3. Transmission (Tx) and reception (Rx) of the text “Hi” using molecular communications with the OOK modulation and the adapted NRZ line code.
A binary 1 is represented by instantaneously injecting 1 g of mass, whereas a binary 0 is represented by the absence of particles’ injection (0 g).

B. Filtering

When the SNR decreases, the received signal becomes noisy
and difficult to be decoded, as can be seen in Fig. 3 (Rx
signal SNR 1). For this reason, after receiving the signal, a
filtering step has been introduced for each )B to reduce the
noise component. This step is achieved by applying an !-point
discrete time moving average filter to the :-th received signal
given by [36]:

5 �
9

:
[<] = 1

!

!−1∑
8=0

�
9

:
[< − 8] , (15)

where �
9

:
[] is the 9 received bit in the :-th received signal

in input to the filter, ! is the filter length and 5 �
9

:
[] is the

average of ! points in output from the filter. The number of
points for each )B decreases so that the filtered window size
5 )B will be equal to )B − !. This is a low-pass Finite Impulse
Response (FIR) filter with an excellent time domain response
that takes ! = )B/4 = 5 samples in input and produces as
output a single value equal to the !-samples’ average.

Let 5 0: be the :-th filtered received signal, then it can be
represented as:

5 0: = 5 �1
: , 5 �

2
: , · · · , 5 �

=
: , (16)

where = is the length of B: . Let 5 "
8 · 9
':

be the 8-th filtered
absorbed mass value for the 9-th 5 )B of 0: , for 8 = 1, · · · , 5 )B
and 9 = 1, · · · , =, then � 9

:
can be represented as:

�
9

:

�→ CH $→ 5 �
9

:
= 5 "

1 9
':
, 5 "

2 9
':
, · · · , 5 " 5 )B · 9

':
. (17)

Moreover, filtering the signal will also cause a delay (3 5 )
in the filtered output signal of ! seconds, as can be seen in
Fig. 3 (Filtered Rx signal ideal and SNR 1). It is important to
note that the filtering has been done per each )B as this reflects

what will happen in a real transmission in which a symbol is
received every )B seconds.

C. Features’ extraction and Features’ dataset

To characterise the filtered received signals and calculate
the variability of each 5 �

9

:
, =<B statistical methods were used

(=<B = 37). These methods consisted of extracting features
from the statistical and temporal domains from the filtered
received signal in each 5 )B . For each symbol, =<B features
were extracted, leading to a total of 5.85 billion values being
generated for all the received signals present in the Tx/Rx
dataset.

Let E: be the feature vectors representing 5 0: , + 9
:

be the
feature vector representing 5 �

9

:
, and 4

; · 9
:

be the ;-th feature
of the 9-th + 9

:
, for ; = 1, · · · , =B< and 9 = 1, · · · , =, then:

5 0: → E: , (18)

and a filtered received symbol can be represented as:

5 �
9

:
→ +

9

:
=

(
4

1 9
:
, 4

2 9
:
, ..., 4

=B< · 9
:

)
, (19)

so that:

E: = +
1
: , +

2
: , ..., +

=
: . (20)

A new dataset is created containing {+, (}, called the
Features’ dataset, where + is the set containing all E: . As
there is a huge amount of data in this dataset, and not all the
chosen features may be required to decode a symbol properly,
a features selection step has been done. This allows to reduce
the size of the Features’ dataset and improve the machine
learning algorithm performance. Moreover, by using fewer
features, the demodulation phase of each symbol will be faster,
and the computational resources required will be lower.
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D. Features’ selection and Train/Test dataset

In this work, Random Forest (RF) has been used for binary
classification tasks, which is a collection of flow chart-like
structures (forest) composed of nodes and leaves. Each node
contains rules for the classification, which are obtained from
the available features. At the same time, each leaf contains
the resulting symbol, 0-bit or 1-bit. Several reasons have led
to the use of RF; it can be used for binary and multiclass
classification tasks, is computationally efficient, can handle
high dimensional data, and can be used to select the most
important features.

The Features’ dataset has been used to perform 10 random
permutations with a 70% training set and 30% testing set split.
For each random permutation, the randomly chosen training
set has been used to select the best ? features. These have
been obtained using the feature importance attribute from RF.

The ascending order rank of the feature importance has been
calculated using the following:

A0=: (-) =
⋃ {

A0=: (H0 = =B<)
A0=: (H8) = A0=: (H8−1) − 1 ;

for 8 = 1, ..., = , (21)

where - is an ascending sorted set with the sum of how many
times each feature is selected, H8 is the 8-th element in - and
= is the number of elements in - . The rank value of =B<
will represent the best feature chosen, and the rank value of 1
will represent the worst feature. Fig. 4 shows for each feature
the value obtained from the ascending order of its rank for
each SNR value. Moreover, features have been grouped into
three main ranges: the first range highlighted in yellow-orange
shades with SNR values less than 0 dB [-20 dB, 0 dB); the
second range highlighted in green shades with SNR values
between 0 dB and 15 dB [0 dB, 15 dB]; third range highlighted
in blue shades with SNR values above 15 dB (15 dB to 50
dB]. These ranges have been helpful in understanding which
features can be used when there is more noise than signal
power (first SNR range), when there is slightly more signal
power than noise (second SNR range) and when there is high
signal power than noise (third SNR range).

From the figure, it is possible to see that the best feature is
the upper bound (*1), whereas the worst feature is the count of
values higher than the mean (count > `). Moreover, the mean
(`) is the best feature for SNR less than 0 dB, whereas the
root mean square ('"() is the best feature for SNR greater
than and equal to 0 dB. Despite this, '"( is not a good
feature to be used within the first SNR range, making its use
for classification not as good as other features which have
obtained better overall importance across all SNR ranges, such
as B;>?4, last filtered window value ( 5 " 5 )B · 9

':
), <4380= and

mean change (`2ℎ0=64). The last filtered window value is a
better feature than the upper bound feature for the second
range. Furthermore, the B;>?4 feature is slightly better than
the upper bound feature for the third range. Table II shows the
best ? = 14 features used with RF.

TABLE II
BEST ? = 14 FEATURES [37], [38].

Feature Equation
Mean ` = 1

#

∑#
8=1 G8

Last filtered window value 5 "
5 )B · 9
':

Slope B;>?4 = polyfit(H, -, 1) [0]

Root mean square '"( =

√
1
#

∑
8 G

2
8

Upper bound *1 = ` + f

Median G̃ = 1
2

(
G #

2
+ G #

2 +1

)
of B>AC (- )

Mean change `2ℎ0=64 = 1
1−# (G# − G1)

Mean diff `38 5 5 = 1
#

∑#−1
8=1 (G8+1 − G8)

Absolute energy � =
∑
8,...,= G

2
8

Autocorrelation 2GG (:) =
∑#−:−1
==0 G=+: · G∗=

Maximum value max(- )

Lower bound !1 = ` − f

Peak to peak distance p–p = |max(X) −min(X) |

Absolute maximum 5 (G" ) = |max(X) |

- = all samples; G8 = i-th sample;
# = number of samples; B>AC = values in sorted order;

f =

√
1
#

∑#
8=1 (G8 − `)2; H = [0, · · · , 5)B ].

Let BE: be all feature vectors with ? selected features rep-
resenting 5 0: , (+ 9

:
be the selected feature vector representing

5 �
9

:
, and B4? · 9

:
be the ?-th feature of the 9-th (+ 9

:
, then:

5 0: → BE: , (22)

and a filtered received symbol can be expressed as:

5 �
9

:
→ (+

9

:
=

(
B4

3 9
:
, B4

4 9
:
, ..., B4

? · 9
:

)
, for ? = 3, · · · , 14 .

(23)
Using the best ? features, a dimensionality reduction of the

Features’ dataset is achieved, and this will also reduce the
time required to detect the symbol. New datasets were created
containing {(+, (}, called the Train/Test datasets, where (+
is the set containing all BE: which are the samples, and (

contains all B: which are the classes. The Train/Test datasets
were created by selecting the ? best features, as shown in
Table III.

E. Best parameters search & Cross-Validation

The last important step, which is used as the core of our
proposed solution, consists of training RF classifiers that can
be used to detect the symbols. As handling the Train/Test
datasets still require a lot of memory, a randomised grid search
has been used to select the hyperparameters for each classifier.

This step has been done by splitting the Train/Test datasets
into a 70% training set and 30% testing set split. A strati-
fied KFold cross-validation method has been used to avoid
underfitting and overfitting the classifiers to the training set. It
randomly splits the training set into K parts, and each part
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Fig. 4. Ascending order rank of the feature importance values for each SNR.

TABLE III
SELECTED FEATURES TO CREATE TRAIN/TEST DATASETS.

Feature Equation
? = 1 `

? = 2 ? = 1 feature and 5
<
5)B
· 9

:

? = 3 ? = 2 features and B;>?4

? = 4 ? = 3 features and '"(

? = 5 ? = 4 features and *1

? = 6 ? = 5 features and G̃

? = 7 ? = 6 features and `2ℎ0=64

? = 8 ? = 7 features and `38 5 5

? = 14 ? = 8 features, � , 2GG (:) , max, !1 , p–p and 5 (G" )

has the same quantity of the best ? features per symbol.
Successively,  − 1 parts are used by the classifier to learn,
and one part is used to test how well it can decode each
symbol. This process is repeated  times to retrieve the best
parameters, which gave the highest classification accuracy;
in this case,  = 3. The hyperparameters used and the best
selected hyperparameters (highlighted in bold) are shown in
Table IV.

The trained RF classifiers with the chosen hyperparameters
are then used to assign each 5 �

9

:
described by the best ?

features to a specific symbol, 1-bit or 0-bit.

F. Application to Molecular Communications

In a real scenario in which our OOK modulation will be
used for MCs, the transmitter needs to inject particles at the

TABLE IV
RANDOM FOREST CLASSIFIER HYPERPARAMETERS [39].

Parameter Value

n estimators 10, 20, 50*, 100, 200, 250, 500, 1000, 1500,
2000, 5000

criterion gini, entropy*
max features auto, sqrt*, log2

max depth None, 10*, 20, 30, 40, 50, 60, 70, 80, 90,
100, 110

min samples split 2, 5*, 10
min samples leaf 1, 2*, 4

bootstrap False*, True

* best hyperparameters.

beginning of the transmission, representing the synchronisa-
tion bit. Then every 20 seconds, the transmitter needs to inject
particles only if the symbol 1-bit needs to be transmitted.
The receiver demodulates the signal received after sampling
20 measured values gathered from the sensor. The received
signal is obtained by measuring the absorbed mass values for
each window size, as explained in Subsection III-A (Stage 1).
Each sampled received signal for the given window size is
then filtered using the 5-point discrete time moving average
filter described in Subsection III-B (Stage 2). Following the
filtering, the best ? features obtained in Subsection III-D are
extracted (Stage 3). Finally, the trained RF classifiers obtained
in Subsection III-E are used to estimate the transmitted bit
(E[1]) by using the extracted features (Stage 4). Algorithm
1 shows the pseudo-code for the proposed symbol detection
pipeline with the highlighted four stages, where:

• read sensor() is a blocking function that reads an ab-
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sorbed mass value from the sensor every second.
• lfilter() is the function that implements the 5-point dis-

crete time moving average filter.
• best p features() is the function that extracts the best ?

features.
• trained RF() is the function that implements the trained

RF classifier with the chosen hyperparameters and ?

features.

Algorithm 1 Pseudo-code for the symbol detection algorithm
used for molecular communications.
Input: = (length of the sequence), )( (bit duration)
Output: E[1 9 ] (estimated transmitted bit)

1: for 9 = 1 to = do
2: � 9 ← new List // Stage 1
3: for 8 = 1 to )( do
4: "

8 · 9
'
← read sensor()

5: Append "
8 · 9
'

to � 9

6: 8 ← 8 + 1
7: end for
8: 5 � 9 ← lfilter(� 9 ) // Stage 2
9: (+ 9 ← best p features( 5 � 9 ) // Stage 3

10: E[1 9 ] ← trained RF((+ 9 ) // Stage 4
11: end for

IV. SIMULATION AND RESULTS

To test the proposed symbol detection pipeline, a new
dataset has been created, called the Unknown dataset. As
per its name, this dataset contains the unknown set *( of
simulated bit sequences (DB: ∈ *() and the set *� of the
corresponding unknown received signals (D0: ∈ *�). As
for the Tx/Rx dataset, each DB: consists of = = 1 million
consecutive bits, starting with 1B and followed by randomly
chosen 999,999 bits. The simulated received signals for SNR
ranging from -20 to 50 dB with )BC4? equal to 2.5 have been
generated using the method in [27]. It is important to note
that the )BC4? value used for generating the Tx/Rx dataset
was equal to 5. Therefore, in the Unknown dataset, there are
received signals which may be completely different from the
signals used to train the RF classifiers, e.g. received signals
simulated with SNR = -17.5 dB were not included in the Tx/Rx
dataset. The Unknown dataset contains 290 transmitted bit
sequences (DB: ) and the corresponding 290 received signals
(D0: ). Despite having the transmit bit sequences inside the
dataset, these are used only to check whether the estimated
received bits are correct or not. Algorithm 1 is then used
to estimate the unknown transmitted bits (E[D1 9

:
]) in *�

for different ? features. Simulations have been performed by
implementing Algorithm 1 in Python 3 using the NumPy [37],
SciPy [40], Scikit-learn [39] and tsfresh [38] modules.

A DB: for a specific SNR value is used to simulate a
real transmission in MCs. Each value in the correspondent
D0: is then given in input to Algorithm 1 to simulate the
read sensor() function. The proposed pipeline returns each
E[D1 9

:
] for the given D0: . The estimated received bits are

then compared with the transmitted bits in DB: to determine
how well the proposed method detects received symbols.

Fig. 5. F1 score of RF classifiers for each ? best features and SNR ranges.

This is a binary classification problem with two classes: 0-
bit symbol (positive class), and 1-bit symbol (negative class).
When the estimated values E[D1 9

:
] are compared with the real

values D1 9
:
, a confusion matrix can be created where:

• True Positives (TP): a 0-bit is classified as a 0-bit (correct
result);

• True Negatives (TN): a 1-bit is classified as a 1-bit
(correct absence of result);

• False Positives (FP): a 1-bit is classified as a 0-bit
(unexpected result);

• False Negatives (FN): a 0-bit is classified as a 1-bit
(missing result).

To evaluate how the classifiers performed, the balanced
F-score (F1 score) performance measure has been used, which
is the harmonic mean of the precision and recall metrics,
where:
• Precision measures how many samples are classified as

positive and are actually positive
(
% = ) %

) %+�%
)
;

• Recall measures how many positive samples are classified
as positive

(
' = ) %

) %+�#
)
;

so that the F1 score can be calculated as:

�1 = 2
% × '
% + ' . (24)

The F1 score performance measure gives equal importance
to FP and FN, and it is useful when the datasets are unbal-
anced, which may be the case as bits were randomly generated
and the 1B is always 1. Results from this performance measure
are between 0 (worst result) and 1 (best result). Fig. 5 shows
the performance of RF classifiers for each ? best features and
SNR ranges. As it can be seen in this figure, there is a plateau
when the number of best ? features selected is equal to three.
When ? ≥ 3, the F1 score value is around 76%, 99.75% and
100% for the first, second and third SNR groups, respectively.
The results obtained show that the proposed RF classifiers will
classify bits received with an SNR value greater and equal to
0, whereas it may struggle to classify bits received with an
SNR value less than 0.
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Fig. 6. Simulation results showing the bit error rate for each signal-to-noise
ratio value of the proposed RF classifiers with the best ? features and the
method proposed in [27].

As we are interested in determining how well the proposed
pipeline detects the received symbols, the bit error rate (BER)
measure is used. This is commonly used for digital transmis-
sions, and it is calculated by using the following equation:

��' =
#4AA>AB

#18CB
=

�% + �#
)% + )# + �% + �# , (25)

where #4AA>AB is the number of bits that were wrongly
received and #18CB is the number of transmitted bits.

Results of the proposed RF classifiers compared with the
method proposed in [27] are shown in Fig. 6. This shows
the high efficiency of our method in terms of bit detection
performance compared to the method proposed in [27]. As
expected, when the best ? ≤ 2 features are used, the perfor-
mance of the proposed RF classifiers is not the best that can be
reached. The best performance can be achieved using the RF
classifier trained with only the best ? = 3 features. This was
also expected as we had a plateau in Fig. 5 for that number of
selected features. When the best ? = 3 features are used, the
best performance is also achieved for SNR values less than 0,
where the F1 score for the first SNR range was lower than the
other two SNR ranges.

As discussed in Subsection III-D, SNR ranges are helpful in
understanding which features can be used. To further evaluate
their importance in selecting the best ? features, a comparison
between the best ? = 3 features (? = 3 best) and the ? = 3
features having the maximum rank values (? = 3 max rank)
has been performed. Results are shown in Fig. 7 and it is
possible to observe that the proposed RF classifier using the
best ? = 3 features (`, 5

<
5)B
· 9

:

and B;>?4) outperform the RF
classifier using the ? = 3 features having the maximum rank
values (*1 , ` and 5

<
5)B
· 9

:

).

Fig. 7. Simulation results showing the bit error rate for each signal-to-noise
ratio value of the proposed RF classifier with the best ? = 3 features (? = 3
best) and the RF classifier with the ? = 3 features having the maximum rank
values (? = 3 max rank).

V. CONCLUSION

In this paper, we have presented a novel pipeline to detect
symbols received during MCs. This has been evaluated by
simulating the transmission of long sequences composed of 1
million bits using the OOK modulation. Simulated transmis-
sions for SNR values between -20 and 50 dB with a 5 dB
step were used for creating a reference dataset for training RF
classifiers. Successively, a new dataset composed of simulated
transmissions for the same SNR range with a 2.5 dB step was
used for creating an unknown dataset for testing. The final
pipeline uses three features from the filtered received mass
values in each window: the mean, the last received value and
the slope. This allows the detection of bits received with a
10 dB gain compared to the previous solution, even when
completely unknown transmissions occur. This shows that the
proposed pipeline is reliable even when there are variable
SNR values during a transmission. Future research will involve
the adoption of this pipeline with different model parameters,
more than one compound used to transmit bits and the use of
different line codes like Manchester to transmit other types of
information.
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