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Abstract

Most words cannot be given a single precise definition, but instead consist of multiple
senses related to each other like members of a family. In cognitive approaches to
semantics, this kind of category is described by a lexical network, a diagram in which
nodes represent senses and arrows represent sense connections. However, lexical
network theory is not compositional: it does not explain how lexical networks are
combined together to yield the meanings of phrases and sentences. The aim of this
thesis is to develop lexical network theory in a formal, compositional setting. I argue
that a traditional approach to formal semantics based on the simply-typed lambda
calculus is not rich enough to implement lexical networks because it is unable to
type the arrows which link word senses together. Instead, I propose replacing simple
type theory with Martin-Löf Dependent Type Theory, and show how this allows for
a fully compositional implementation of lexical networks. The resulting theory is
applied to the description of the English spatial adjectives – high, low, tall, long,
short, deep, shallow, thick and thin. These adjectives are an ideal starting point
for studying the interaction between lexical and compositional semantics, since
they have been studied extensively from both points of view. I illustrate how a
compositional theory of lexical networks can provide an interface by which the
insights of cognitive semantics can be imported into formal semantics, and vice versa.
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1.1 Motivation
Meaning in language can be approached from two perspectives starting from the
level of individual words. The first perspective, that of lexical semantics, looks
‘downwards’ at the meanings of individual lexical items, how these are grounded
in cognition and perception, and how they are connected together. Consider, for
instance, all the situations which can be described as running: running a race,
running for president, running a business, running a program, a running river, etc.
The lexical/conceptual approach is concerned with questions such as: How many
senses of run are there? How is the perceived similarity between different senses to be
explained? Which senses are typical and which atypical? How are the different senses
related to perception and bodily experience?, and so on. A common theoretical
tool in lexical semantics is the lexical network, a way of mapping the senses of an
individual word, or the relations between multiple words, using nodes and edges (e.g.
Lakoff 1987, Norvig & Lakoff 1987, Brugman & Lakoff 1988, Tyler & Evans 2001).

The second perspective, that of compositional or formal semantics, looks ‘upward’
at how words combine together to yield the meanings of phrases and sentences, and
how sentences contribute to an ongoing discourse. To illustrate, consider the two
sentences: Running a marathon takes 4 to 5 hours and As he ran, John enjoyed the
evening sunset. Both depend on the meaning of the verb run, but in very different
ways: in the second sentence, John is understood as the agent of ran, whereas in the
first sentence there is no particular person who does the running; the first sentence
describes a generic situation whereas the second sentence describes a particular
event; and so on. The goal of formal semantics is to specify a procedure which,
given meanings for individual words, together with information about how they
have been combined, can be used to derive the meaning of a larger expression (e.g.
Montague 1973, Partee 1986, Heim & Kratzer 1998).

However, despite being studied in separate fields, lexical relations and com-
position are highly interactive. The relations which exist between words can be
preserved by composition, projecting to the level of entire sentences. For example,
just as run has multiple senses – locomotion, standing in an election, managing
a project or business, etc. – so the phrase run well or run badly has multiple
senses, each corresponding to a particular sense of run. A whole sentence will often
exclude all but one sense from consideration, as in John ran down the street, but
sometimes multiple senses remain at the level of the sentence, requiring context to
disambiguate, as in John ran last year (which might refer either to competing in a
race or standing in an election). At present, the interaction between polysemy and
composition is not easily explained within lexical/conceptual semantics, with its
focus on sub-lexical structure, nor within compositional/formal semantics, which
tends to treat individual word meanings as atomic.

The aim of this thesis is to start with a small group of words and ‘look in both
directions at once’, exploring both their lexical semantics and their compositional
semantics, with a view to developing a general theory of polysemy-composition
interaction. The words I have chosen for this purpose are the English spatial
adjectives – high, low, tall, long, short, wide, narrow, deep, shallow, thick and
thin – which are an important point of intersection for lexical and compositional
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theories. On the lexical side, there have been a number of detailed studies of spatial
adjectives by authors such as Vandeloise (1988, 1993), Dirven & Taylor (1986),
Linde-Usiekniewicz (2002) and Vogel (2004). On the compositional side, spatial
adjectives fall into the class of gradable adjectives, which are the main topic of
interest in the area known as degree semantics (e.g. Cresswell 1976, Klein 1980,
von Stechow 1984, Kennedy 1999). Because of this overlap, spatial adjectives are
an ideal starting point for developing a hybrid theory.

In brief, this thesis proposes a compositional theory of lexical networks. The
meaning of a word is represented by a network in which nodes correspond to senses
and arrows correspond to implications between senses. Implication is transitive, so
if a network contains an arrow S1 → S2 and an arrow S2 → S3, then it also contains
the composed arrow S1 → S3. Every sense in a network has the same semantic
type: one can have a network of noun senses, a network of gradable adjective senses,
a network of transitive verb senses, a network of generalized quantifier senses, and
so on. The type of a network’s senses dictates how it can be composed with other
networks – for instance, a network of noun senses and a network of intersective
adjective senses may be combined using intersective adjective + noun composition.
The result of composing two networks is a third network whose structure reflects
that of the two input networks. In other words, composition can preserve the
implications between senses, lifting not only senses but also sense connections.

Implementing a theory of this kind requires a different formal framework from
what is usually adopted in formal semantics. Since Montague, the dominant
approach to formal semantics has been to translate natural language expressions
into the simply-typed lambda calculus, which is then interpreted in a set-theoretic
model. The simply-typed lambda calculus is not well-suited to describing lexical
networks, since although it provides types for senses (nouns, gradable adjectives,
generalized quantifiers, etc.), it does not provide types for arrows. We therefore
need to extend the type system by introducing dependent types and some associated
constructions, resulting in what is known as Martin-Löf Dependent Type Theory
(Martin-Löf 1984). This greatly enriches the type system, endowing it with its own
internal logic, and allowing it to play the model-theoretic role usually played by set
theory. The result is a quite different approach to formal semantics in which natural
language expressions are interpreted directly in the type system itself (Sundholm
1989, Ranta 1994, Luo 2012, Chatzikyriakidis & Luo 2020).

The structure of this introductory chapter is as follows. Section 1.2 introduces
the concept of a lexical network and distinguishes two major types of networks which
have been proposed in the lexical semantics literature. Section 1.3 is a literature
review of lexical approaches to spatial adjectives. Section 1.4 is an introduction to
degree semantics, which describes the compositional behaviour of spatial adjectives
and other gradable adjectives. Section 1.5 addresses the question of whether formal
semantics and cognitive semantics are compatible. Finally, Section 1.6 provides
an outline of the rest of the thesis.
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1.2 Lexical networks

1.2.1 Introduction to lexical networks
The origin of lexical networks is Wittgenstein’s (1958) notion of a family resemblance
category. Wittgenstein noted that many lexical concepts, such as the concept of
a game, cannot be given a precise definition in terms of necessary and sufficient
conditions, since for any proposed condition (e.g. ‘a game must have multiple
players’), one can give a counterexample (e.g. patience/solitaire). Rather, different
types of game are related to each other like members of a family, by a network of
overlapping features. No member of the category need possess all of the features, nor
is there necessarily a single feature which all members of the category possess. Rather,
certain combinations of the features are sufficient for membership in the category,
and a member can always possess more features than strictly required. For instance,
basketball possesses many conditions associated with being a game, including
multiple players, competitiveness, enjoyment, rule following, physical activity, and
so on, whereas solitaire satisfies only a few, namely enjoyment and rule following.

The family resemblance concept was extended by Eleanor Rosch (1973, 1975,
1999, etc.), who added the idea that members which satisfy more conditions are
judged to be more central/prototypical. Rosch conducted numerous experiments
showing that semantic judgements were subject to typicality effects. In one
experiment, college students were asked to rate objects on a scale from 1 to 7
based on whether they were a good example of furniture. Results ranged from very
good examples, such as chair and sofa, to middling examples such as television,
to bad examples such as fan and counter. Similar typicality effects were shown
for other categories, such as fruit, vehicle, weapon, and so on. Rosch’s explanation
for this was that participants were judging an object’s degree of membership in a
category by comparing it to a prototypical exemplar, which she identified with the
most central node in the lexical network. The more conditions a member shares
with the central node, the more prototypical it is judged to be.

Following the insights of Wittgenstein and Rosch, a major aim of lexical semantics
has been to identify distinct senses of a word and provide a ‘map’ of how they are
related to each other. This information is represented using a collection of nodes and
arrows, where the nodes represent senses and the arrows represent sense connections.
Each network is a miniature cognitive theory: it is intended to convey something
about the lexicon as represented in the mind of a language user (Lakoff 1987, Tyler
& Evans 2001). The structure of a network embodies claims about which senses
people will judge to be typical and which atypical; which pairs of senses people judge
to be similar and which dissimilar; and so on. In so far as predictions like these are
found to be correct, the lexical network captures important generalizations.

Early lexical networks were based on Fillmore’s (1976) concept of a frame. A
frame is a collection of knowledge about the meaning of a word, which becomes
available whenever that word is encountered, and relates it to other words in a
language user’s lexicon. For example, the verb sell evokes the frame commercial
transfer, which includes knowledge about sellers, buyers, goods, money, shops,
pricing, and so on – all the concepts involved in understanding and using the word.
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The same frame is also evoked by numerous other words, such as buy, cost, shop,
barter, and supermarket. Formally speaking, a frame is understood as a collection
of roles with associated types, as well as knowledge about how the various roles
relate to each other. For instance, in the commercial transaction frame, the
buyer and seller roles are of type Person, whereas the shop is of type Location,
and the transaction itself is of type Event. For a recent incarnation of Fillmore’s
frame semantics, see the online lexical database FrameNet1.

Other lexical networks are based on image schemas. An image schema is
a reoccurring structure which is abstracted from basic perceptual and motor
experiences and used to organize higher-level cognitive abilities such as conceptual
reasoning and language understanding (Johnson 1987, Lakoff 1987). Examples
of image schemas include object, vertical axis, path, surface, container,
contact and blockage (Johnson, ibid.). They are often considered to arise from
experiences relating to one’s own body – the vertical axis schema derives from
the experience of standing upright, the path schema from the experience of moving
through space, the contact schema from the experience of touching objects, and so
on. Unlike frames, image schemes are often represented in geometric or topological
terms, using diagrams rather than symbolic features or attributes.

1.2.2 Implication networks
An implication network is a lexical network in which all of the arrows represent
implication. Other names for this type of network include: family resemblance
category, radial category (Lakoff 1987), preference rule system (Jackendoff 1983)
and cluster concept (Jackendoff 2002). A simple example of an implication net-
work is Jackendoff’s (2002, p. 353) analysis of the verb climb. Consider the
following sentences:

(1) a. Bill climbed (up) the mountain. [rising and clambering]
b. The snake climbed (up) the tree. [rising only]
c. Bill climbed down the mountain. [clambering only]
d. ?The snake climbed down the tree. [neither]

Jackendoff analyses climb as involving two independent conditions: the individual
is travelling upwards (‘rising’), and the individual is moving with grasping motions
(‘clambering’). An event which satisfies both rising and clambering, as in (a), is a
prototypical instance of climb; an event which satisfies only rising or only clambering,
as in (b) and (c) respectively, is a less typical instance; and an event which satisfies
neither condition, as in (d), cannot be described as climbing at all. Jackendoff writes:

One possible account of this would be to say that climb is ambiguous
or polysemous between the readings ‘rise’ and ‘clamber’. But this does
violence to intuition: [the sentence Bill climbed the mountain] is not
ambiguous between these two senses. Rather, other things being equal,

1https://framenet.icsi.berkeley.edu/fndrupal/
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it satisfies both of them. Another possible account would be to say that
the meaning of climb is the logical disjunction of the two senses: ‘rise or
clamber’. But this is too crude: a disjunction isn’t “more prototypically
satisfied” if both disjuncts are true, as climb is. (ibid., p. 353-354)

One way to express the prototype effect identified by Jackendoff is in terms of a
simple lexical network with three senses – rising and clambering, rising only and
clambering only. The structure of the network is shown below:

(2)

climbrise, clamber

climbclamberclimbrise

This is an implication network because the arrows correspond to implications or
inclusions: the leftmost arrow represents the fact that any instance of climbrise, clamber
is also an instance of climbrise; the rightmost arrow represents the fact that any
instance of climbrise, clamber is also an instance of climbclamber. Many implication
networks display a similar radial structure, with multiple peripheral senses diverging
from a common central prototype.

To give a slightly more complex example of an implication network, consider
Norvig’s (1989) analysis of the noun meat. According to Norvig, the central
sense of meat is:

1. The edible muscle tissue of a mammal (especially a bovine), when stripped
from a mammal and intended for consumption

This can then be weakened in several directions:

2. Allow fowl as well as mammals.
3. Allow fish as well as fowl and mammals.
4. Allow organ meat as well as muscle tissue.
5. Allow skin as well as muscle tissue.
6. The interior edible part of any food (e.g. coconut meat).
7. (metaphor) The core or essence of something.

To justify that each of these senses is distinct, we must be able to find a sentence
which includes only what is covered by that sense, whilst excluding everything else.
The following sentences can serve to distinguish senses 1-7:

(3) a. Bring me beef, not chicken; I only eat meat1.
b. Bring me chicken, not fish; I only eat meat2.
c. Bring me fish, not rice; I only eat meat3.
d. Bring me liver, not skin; I only eat meat4.
e. Bring me skin, not liver; I only eat meat5.
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f. I’ll eat the flesh of the apple, but not the skin; I only eat meat6.
g. This part of the talk is just the introduction; I’m only interested in the

meat7.

According to Norvig, all of the peripheral senses are derived directly from sense
1, except for sense 3 which is derived from sense 2. This gives the following
radial network:

(4)

meat-1

meat-2

meat-3

meat-4 meat-5 meat-6 meat-7

As before, this is an implication network. For example, the arrow from meat-1
to meat-2 represents the fact that any instance of meat-1 is also an instance of
meat-2. Likewise, any instance of meat-2 is also an instance of meat-3. Since
implication is transitive, there is an implicit arrow from meat-1 to meat-3 which
is not drawn on the diagram.

An important point to note about implication networks is that all of the
senses are of the same syntactic type: for instance, all of the senses in the climb
network are verbs and all of the senses in the meat network are nouns. It therefore
makes sense to talk about adjective networks, noun networks, preposition networks,
and so on. Moreover, the arrows in an implicational networks are idiosyncratic
and do not express patterns which apply across the lexicon. Each implication
network must be acquired separately by the learner: there is no sense in which
the arrow from meat-1 to meat-2, for example, can be predicted on the basis of
a general rule. As Lakoff puts it,

variants [in an implication network] are not generated from the central
model by general rules; instead, they are extended by convention and
must be learned one by one. But the extensions are by no means random.
The central model determines the possibilities for extensions, together
with the possible relations between the central model and the extension
models. (Lakoff 1987, p. 91)

Other examples of implication networks include Lakoff’s (1987) mother network;
Coleman & Kay’s (1981) description of the verb lie; Jackendoff’s analysis of the
verb see (1983) and the preposition in (2002); and Zwarts’s (2004) description
of the preposition around.

Almost all of the implication networks proposed in the literature have a radial
structure, consisting of a single prototype surrounded by peripheral senses. Authors
have tended to assume that networks must be radially divergent because a number
of key examples have that structure, notably categories such as furniture and
bird which were discussed by Rosch. As a result, authors often neglect parts of the
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network where senses converge. This mistake is reinforced by the idea that peripheral
senses are ‘derived from the prototype’, since the term ‘derive’ suggests divergence:
two senses cannot be ‘derived’ to the same thing. A term more suited to implication
networks would be ‘weaken’: a prototype like meat-1 is ‘weakened’ in various ways,
giving rise to more general senses. Convergence happens when two specific senses
can be weakened to a more general sense which subsumes both of them.

To illustrate, a major problem with Norvig’s meat network is that it contains
no sense which covers the intended meaning of the following sentence:

(5) I don’t eat meat, I’m a vegetarian.

The usual interpretation of meat here is very general: ‘any edible part, interior or
otherwise, of any animal’. Norvig’s network does not contain this maximally general
sense, covering only specific cases, e.g. skin as well as muscle tissue, organs as well
as muscle tissue, fish as well as land animals, and so on. This is because Norvig does
not consider the possibility of convergence: senses only ever become different from
each other, never joining back up. The sense intended in (5), which I shall refer to
as meat-8, appears as the common join of meat-3, meat-4 and meat-5, as follows:

(6)

meat-1

meat-2

meat-3

meat-4 meat-5 meat-6 meat-7

meat-8

We can arrive at meat-8 by either (i) starting at meat-3 and allowing organ meat
and skin, (ii) starting at meat-4 and allowing skin, fowl and fish, or (iii) starting at
meat-5 and allowing organ meat, fowl and fish. Just as meat-1 is the strongest or
most prototypical sense of meat, meat-8 is the weakest or least typical sense. (The
reason why meat-8 is the default interpretation of (5) is the presence of negation,
which reverses the direction of implication, making meat-8 the prototype.)

The general structure of an implication network is a partial order. In other
words, given some implication network N :

(7) • For any two senses S1, S2 in N , there can be at most one arrow S1 → S2.
• Any sense S in N has an implicit arrow S → S (a sense always implies

itself).
• For any two senses S1, S2 in N , if S1 → S2 and S2 → S1 then S1 = S2

(two senses cannot be related in both directions).
• For any three senses S1, S2, S3 in N , if S1 → S2 and S2 → S3 then there

is an implicit arrow S1 → S3 (implication is transitive) .
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Given two senses S1 and S2 in an implication network, we can talk about lower and
upper bounds. An lower bound for S1 and S2 is a sense S ′ such that S ′ → S1 and
S ′ → S2; conversely, an upper bound is a sense S ′′ such that S1 → S ′′ and S2 → S ′′.
The most immediate lower bound, if unique, is called the meet and the most
immediate upper bound, if unique, is called the join. For example, in the network in
(6), the meet of meat-2 and meat-5 is meat-1, whereas the join of meat-2 and meat-5
is meat-8. Two senses with a common meet are derived from the same prototype,
whereas two senses with a common join are subsumed by the same generalization.

Zeugma is a kind of semantic anomaly caused by trying to coordinate two
distinct senses of the same word, as in:

(8) ? The dining table was very long and so was the meal.

This sentence strikes us as strange because it involves two distinct senses of long
– a spatial sense and a temporal sense. Notice that the problem disappears in
the following sentence:

(9) The dining table was very long1 and the meal was very long2.

which sounds stilted but is not unacceptable in the same way. The problem with (8) is
that a single occurrence of long cannot be interpreted in both a spatial and a temporal
sense. Two senses without a common join will always give rise to zeugma when
coordinated. For instance, returning to the meat network, it sounds strange to say:

(10) ? John ate the [chicken and coconut] meat.

because there is no sense of meat which subsumes both meat-2 and meat-6. In
other words, there is no single interpretation of meat which yields a consistent
interpretation for the whole sentence. However, it does make sense to say:

(11) John ate the [skin and liver] meat.

since meat-4 and meat-5 are both subsumed by meat-8. We can use the presence
or absence or zeugma as a diagnostic for whether two senses in an implication
network share a common join. To put it another way, the structure of an implication
network makes predictions about which senses give rise to zeugma when coordinated
and which do not.

1.2.3 Derivation networks
All of the lexical networks discussed in this thesis are implication networks. However,
there exists an entirely separate class of networks which are also frequently called
‘lexical networks’; I shall refer to these as derivation networks. Unlike implication
networks, in which all of the senses have the same syntactic type, the senses in a
derivation network can belong to distinct syntactic types. The arrows in a derivation
network do not represent implication, but rather processes of meaning extension
which are analogous to the operations of derivational morphology. These processes
can be more or less productive, some occurring throughout the lexicon, others
limited to specific cases. To give an example of a derivational network, consider
the following meanings of the word smoke, discussed by Jackendoff (1996):
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(12) smokea ‘wispy substance’
X smokesb ‘X gives off smokea’
X smokesc Y ‘X causes Y to smokeb, where Y is a a cigarette, pipe, etc.,

by puffing’
X smokesd ‘X smokesc something’
X smokese Y ‘X causes smokea to go into Y, where Y is meat or fish, by

hanging over a fire in an enclosed space’

As Jackendoff notes, the nominal sense smokea forms a kind of semantic core, with
the other senses arranged in a branching chain as follows:

(13)
smokea smokeb smokec smoked

smokee

Notice that this is not an implication network. For instance, the arrow from smokea
to smokeb does not mean ‘any instance of smokea is an instance of smokeb’: it is not
clear what this would even mean, since smokea is a kind of substance whereas smokeb
is a kind of event. Rather, the arrow indicates that the meaning of smokeb depends
on or incorporates the meaning of smokea. Unlike in an implication network, the
nodes can have distinct syntactic types: smokea is a noun, smokeb is an intransitive
verb, smokec is a transitive verb, and so forth.

Unlike implicational networks, the concept of typicality does not seem to apply
to derivational networks. Is smokea a more typical sense than smokeb? It is difficult
to answer this question, because they belong to completely different syntactic and
semantic types. To be sure, smokea is more fundamental than smokeb, in the sense
that the definition of smokeb relies on that of smokea. Similarly, smokeb is more
fundamental than smokec, which is more fundamental than smoked, and so on.
However, fundamentality is not the same thing as typicality. For a sense S1 to be
more typical than a sense S2, a speaker should consistently prefer S1 over S2 in a
context where both senses are possible. However, because senses in a derivation
network can be distinguished syntactically, this criterion cannot be applied.

An important characteristic of derivation polysemy is that the connections
linking together the different alternatives can have parallels in other lexical items.
Some of these connections are highly productive, occurring throughout the lexicon;
others are found in only a few other cases. Jackendoff lists the following examples:

(14) • smokea → smokeb (N 7→ ‘give off N’): steam, sweat, smell, flower
• smokeb → smokec (V 7→ ‘cause to V’): open, break, roll, freeze
• smokec → smoked (V 7→ ‘V something’): eat, drink, read, write
• smokea → smokee (N 7→ ‘put N into/onto something’): paint, butter,

water, powder, steam
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Although all the connections in the smoke network are also found in other words,
the particular combination which smoke participates in is unique. What is more,
each connection also adds some idiosyncratic information which is not present in
parallel versions: for instance, smokec means not only ‘cause to smoke’, but ‘cause
to smoke by puffing, whilst taking smoke into the mouth’. As a result, the derivation
network for each individual lexical item must be learned separately.

The reason for the term ‘derivation polysemy’ is that the connections in a
derivation network resemble those of derivational morphology. As Jackendoff writes:

[The various senses of smoke] are not more closely related to each other
than they are to, say, smokey and smoker (the later meaning either a
person who smokesc, or a vessel in which one smokese things). And
in a morphologically richer language than English they might not be
phonologically identical (say outsmoke for [smokeb] and ensmoke for
[smokee]). (Jackendoff 1996, p. 113).

In other words, a connection in a derivation network behaves similar to a phonolog-
ically null derivational morpheme. This suggests that whatever mechanism is used
to describe derivational morphology should also be applied to derivational networks.
Jackendoff suggests that patterns such as this should be handled by lexical rules,
semiproductive rules which capture generalizations inside the lexicon. For example,
the lexical rule relating smokea and smokeb might be expressed informally as follows:

(15) A noun N denoting a substance which is pronounced /X/ may be related to
a verb also pronounced /X/, meaning ‘give off N’

Such rules do not apply in all cases where their application conditions are met:
there is no verb water meaning ‘give off water’. Nor do they transparently predict
the meaning of the derived form: the meaning of sweat ‘give off sweat’ is quite
different from the meaning of smoke ‘give off smoke’, for example. Rather, one must
individually learn cases in which the rule does apply, along with any idiosyncratic
aspects of meaning associated with the derivation.

A single word may participate in both implication polysemy and derivation
polysemy. For example, in their study of the preposition over, Brugman & Lakoff
(1988) distinguish the following three senses (among several others):

(16) overa ‘located in an upwards direction from X’, e.g. the painting is over
the mantle

overb ‘path passing through a location overa X’, e.g. the plane is flying
over the hill

overc ‘location at end of path overb X’, e.g. Sam lives over the hill

This is clearly a case of derivation polysemy. Overb is derived from overa by a
rule which takes a location description and returns a path description that passes
through the location, as in John walked in the room, Mary jumped out the window,
and so on. Overc is in turn derived from overb by a rule which takes a path
description and returns a location description corresponding to the endpoint of
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the path, as in John was standing across the hall, the house is 2m along the river,
etc. We therefore have the following derivation network:

(17) overa overb overc

However, as Jackendoff (1996, p. 24-25) points out, there is also a different kind of pol-
ysemy associated with the basic locative sense of over, which he illustrates as follows:

(18) a. The blimp is over the field. [vertical separation]
b. The cloth is over the table. [two-dimensional covering]

One feels that these two senses ought to be connected, but the connection is
clearly not a matter of derivation, since neither is more fundamental than the
other. Moreover, they belong to the same syntactic type, and the connection
between them is idiosyncratic, suggesting that they are connected implicationally
rather than derivationally. Since neither implies the other, they must be connected
through additional senses. Assuming that the blimp in (18) is idealized as a zero-
dimensional point whereas the cloth is idealized as a two-dimensional surface, I
would propose the following tentative analysis:

(19) overa
0d, vert vertical separation of pointlike object, e.g. the blimp is over

the field
overa

vert, cover vertical separation and two-dimensional covering, e.g. the
awning is over the patio

overa
vert general vertical separation, e.g. the blimp is over the field and

so is the cloud layer
overa

cover general two-dimensional covering, e.g. the board is over the
hole

These would then be connected by implicational links as follows:

(20)

overa
0d, vert

overa
vert

overa
vert, cover

overa
cover

The important point here is that the implicational network in (20) is not the same
as the derivational network in (17); nor are they both part of some larger network.
Rather, all of the senses in the implicational network pertain to a single node in
the derivational network, overa (hence the superscript a). The kind of polysemy
represented by the implicational network is more fine-grained.

Let us temporarily refer to the nodes in an implicational network as microsenses
and the nodes in a derivational network as macrosenses. Some authors represent
microsenses and macrosenses as part of a single network. For example, the over
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network proposed by Brugman & Lakoff (1988) (as well as a more recent version
by Tyler & Evans 2003) includes the senses overa, overb and overc together with a
separate two-dimensional covering sense corresponding roughly to overcover. However,
collapsing the two kinds of network in this way creates confusion and misses out
on generalizations. For example, when we go from the locative macrosense overa
to the path macrosense overb, every microsense gets mapped individually, giving
rise to a new network of microsenses, as follows:

(21)

overa
0d, vert

overa
vert

overa
vert, cover

overa
cover

overb
0d, vert

overb
vert

overb
vert, cover

overb
cover

where examples of the overb microsenses are given below:

(22) overb
0d, vert The blimb flew over the field.

overb
vert, cover The cloud layer passed over the field.

overb
vert The blimp and the cloud layer passed over the field.

overb
cover Her eyelashes moved over her eyes.

In other words, derivation networks can preserve the structure of implication
networks. This kind of behaviour is another motivation for distinguishing between
macrosenses and microsenses. For the remainder of this thesis, I shall use the term
sense to refer to microsenses, unless otherwise specified.

1.2.4 Implication networks and composition
A feature of implication networks which is of central importance to this thesis is the
way they behave under composition. This closely resembles the interaction between
implication and derivation discussed in the previous subsection. Recall Jackendoff’s
climb network, a radial network consisting of the prototype climbrise, clamber and
the two peripheral senses climbrise and climbclamber:

(23)

climbrise, clamber

climbclamberclimbrise

As discussed, the two arrows represent weakening the prototype by dropping
the clambering condition or the rising condition respectively. Now consider the
sentence John climbed quickly. This is compatible with all three senses of climb,
and therefore has three distinct interpretations: [John climbed quickly]rise, [John
climbed quickly]clamber and [John climbed quickly]rise, clamber. Notice that, just as the
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most prototypical interpretation of climb is climbrise, clamber, the most prototypical
interpretation of John climbed quickly is [John climbed quickly]rise, clamber. Moreover,
just as climbrise, clamber can be weakened by dropping the clambering condition or
the rising condition, so [John climbed quickly]rise, clamber can be weakened in the
same way, giving either [John climbed quickly]rise or [John climbed quickly]clamber.
In other words, the interpretation of John climbed quickly is a network with exactly
the same structure as climb:

(24) climbrise, clamber

climbrise

climbclamber

[John climbed quickly]rise, clamber

[John climbed quickly]rise

[John climbed quickly]clamber

As shown, the context John X-ed quickly preserves the structure of implication, allow-
ing the arrows in the climb network to become entailments between entire sentences.

Some kinds of composition preserve implication, but in the opposite order. For
example, consider the sentence no one climbed. As before, this has three possible
interpretations corresponding to the different senses of the climb network: [no one
climbed]rise, clamber, [no one climbed]rise and [no one climbed]clamber. However, the
arrows linking them appear in the opposite order, as follows:

(25) climbrise, clamber

climbrise

climbclamber

[no one climbed]rise, clamber

[no one climbed]rise

[no one climbed]clamber

In other words if no one climbed in the rising sense, then this implies that no
one climbed in the rising and clambering sense; likewise if no one climbed in the
clambering sense then this also implies that no one climbed in the rising and
clambering sense. When implication is reversed in this way, meets become joins and
joins become meets. The most prototypical sense in the original network, in this case
climbrise, clamber yields the least typical sense in the derived network, and vice versa.

The preservation of implication by composition is referred to as monotonicity.
Suppose we have a function F which takes an implication network and returns a
new implication network. F is said to be monotone iff:

(26) S1 → S2 implies F (S1) → F (S2) for all senses S1, S2

that is, it preserves arrows without reversing their directions. Conversely, F is
said to be anti-monotone iff:

(27) S1 → S2 implies F (S2) → F (S1) for all senses S1, S2
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that is, it preserves arrows but reverses their directions. As we have seen, the
context John X-ed quickly lifts the climb network monotonically, whereas the
quantifier no one lifts the climb network anti-monotonically. The distinction
between the monotone and anti-monotone patterns is usually discussed in the
context of generalized quantifiers and the distribution of negative polarity items.
For instance, it is a well-known observation that anti-monotone quantifiers license
negative polarity items like ever, any, at all, somewhat, and so on, whereas monotone
quantifiers do not (Fauconnier 1975, Ladusaw 1979). When the meaning of words
is represented by implication networks, monotonicity is no longer just a property of
generalized quantifiers: any network which acts on another may do so monotonically
or anti-monotonically.

Not all kinds of composition are arrow-preserving, i.e. monotone or anti-
monotone. For example, consider the sentence Mary enjoys climbing. As before, we
can identify three senses corresponding to the three senses of climb: [Mary enjoys
climbing]rise, clamber, [Mary enjoys climbing]rise and [Mary enjoys climbing]clamber.
However, these three senses are no longer connected by implicational arrows. The
fact that Mary enjoys climbing in the ‘rising and clambering’ sense does not imply
that she enjoys climbing in the ‘clambering only’ sense, nor the reverse. The
context Mary enjoys X-ing lifts only the senses of climb, deleting the information
about how they are connected together:

(28) climbrise, clamber

climbrise

climbclamber

[Mary enjoys climbing]rise, clamber

[Mary enjoys climbing]rise

[Mary enjoys climbing]clamber

A function with this behaviour is called non-monotone. We can think of it as
taking a network and returning an unstructured set.

Following composition, some parts of an implicational network may collapse
due to inconsistency. This is the case even in implication-preserving contexts. For
example, consider the directional adverb down. Generally speaking, composition of
down with an event description is monotonic. However, when down is combined with
the climb network, as in John climbed down, the only surviving sense is climbclamber
because climbrise, clamber and climbrise both necessarily involve upwards motion. Since
intersective adverb composition in general preserves network structure, we must
assume that anomalous senses are detected and removed following composition
by a process of inconsistency detection, as follows:
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(29) climbrise, clamber

climbrise

climbclamber

[John climbed down]rise, clamber

[John climbed down]rise

[John climbed down]clamber

[John climbed down]clamber

As indicated, one can first derive the interpretation network for John climbed down,
and then prune the resulting network by removing inconsistent senses. To recognise
this inconsistency, the interpreter must identify a conflict between the semantics of
down and the rising condition present in and climbrise. Climbrise,clamber can then be
ruled out automatically because it has an arrow into an inconsistent sense.

A common observation regarding prototypes and composition is that the most
prototypical interpretation of an expression is not always a function of the most
prototypical interpretations of its parts (Osherson & Smith 1981, Kamp & Partee
1995, Fodor & Lepore 1996). This is often called the pet fish phenomenon, since a
typical pet fish is neither a typical pet nor a typical fish. As critics of prototype theory
have pointed out, the pet fish phenomenon is problematic for a theory in which
meanings are simply identified with prototypes, because whatever meanings are they
are supposed to be compositional, and prototypes are clearly not compositional.
The lexical network point of view avoids this criticism because it does not identify
meanings with prototypes; rather, a prototype is just a maximal/initial sense in a
lexical network. Assuming that lexical networks are subject to consistency checks
following composition, it is no surprise that maximal interpretation of a composed
network is not in general given by the maximal interpretations of its parts. (This
is apparent from (29).) In the combination pet fish, the maximal interpretation
of pet and the maximal interpretation of fish are presumably incompatible, so the
resulting sense is pruned following composition.

A more serious challenge to the account of network composition sketched above is
the claim by some authors that prototypes are never preserved by composition, and
therefore have no role to play in formal semantics. Connolly et al. (2007) criticise
what they call the default to the stereotype (DS) view of concept combination.
Connolly et al. show that people’s confidence in a sentence like apples are round
is usually higher than their confidence in a sentence like purple apples are round.
This contradicts DS, which predicts that their confidence in both sentences should
be the same, the typical shape of purple apple being the same as that of apple.
The authors conclude:

Subjects do not default to the stereotypes of the conjuncts of a combined
concept when interpreting a novel combination. This is hardly surprising
since the more words/concepts combine, the less likely it becomes that they
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refer to things that satisfy their stereotypes. We typically use adjectival
modifiers in noun phrases when we are talking about something other
than typical instances of the head noun. (ibid., p. 15)

As a replacement to DS, Connolly et al. propose a Classical Theory of composition,
according to which “concepts remain inert under combination”, with “separate ma-
chinery that introduces pragmatic and knowledge-dependent inferences” (ibid., p. 1).

Connolly et al. assume that prototypes are statistical generalizations about the
properties which members of a category tend to have. This is indeed how prototypes
are understood in some formulations of prototype theory (e.g. Smith et al. 1988).
However, from the lexical network point of view, the notion of prototype is logical
rather than statistical: the prototype is the logically strongest sense which implies
all of the others, not the average or most common sense. In fact, the prototypical
sense is always less common than any of the peripheral senses derived from it,
because it is more specific. For instance, the prototypical sense of meat refers to
the muscle tissue of a land animal, cooked and intended for consumption, but most
instances of meat do not fall into this category. Similarly, the fact that the strongest
interpretation of purple apple is one in which the apple is round does not imply that
a purple apple chosen at random is likely to be round. Connolly et al.’s objection
therefore applies only to the statistical notion of prototype, not the logical notion.

From the lexical network point of view, prototypes support inference, not
because of their statistical likelihood, but because of pragmatic considerations.
For example, suppose you hear the sentence

(30) We’re having meat for dinner.

It is natural to infer that the speaker has in mind the flesh of a land animal,
although there is a much more inclusive (and therefore more likely) interpretation
which refers to the flesh of a land animal or fish. This inference is licensed by
the standard Gricean assumption that the speaker is being as informative as
possible, the same assumption which is needed to generate scalar implicatures
(Grice 1975, Horn 1984). The idea that the interpreter should assume the strongest
consistent interpretation of a sentence, unless there is some good reason why
this interpretation does not apply, is sometimes known as the Strongest Meaning
Hypothesis (Dalrymple et al. 1994, Winter 1996).
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1.3 Lexical approaches to spatial adjectives
This section is a brief introduction to previous research on the lexical semantics of
spatial adjectives. Two distinct categories of approaches can be identified: those
based on distinctive features, and those based on ideas from cognitive linguistics.
Featural approaches (e.g. Bierwisch 1967, Lang 1989, 2001, Weydt & Schlieben-Lange
1998, Stolz 1996) describe spatial adjectives using combinations of semantic features,
which are also present in the lexical entries of nouns. A spatial adjective can only
combine with a noun if the features in their lexical entries match up. The presence or
absence of features allows nouns to be classified into different dimensional types, each
of which admits a different combination of spatial adjectives. Cognitive approaches
(e.g. Vandeloise 1988, 1993, Dirven & Taylor 1986, Goy 2002, Vogel 2004), on the
other hand, are concerned with mapping the various senses of spatial adjectives in
networks and grounding their meanings in perceptual/bodily experience.

1.3.1 Bierwisch’s axis trees
The early work of Manfred Bierwisch (1967) was one of the first attempts to
formally describe the properties of spatial adjectives. Like other authors at that
time, Bierwisch was influenced by the phonological methods of the Prague linguistic
circle, who described phonemes using collections of binary distinctive features. The
concept of distinctive feature was imported into lexical semantics, for example by
Katz & Fodor (1963), who call them semantic markers. Just as in phonology, the
aim was to “construct a metatheory which contains an enumeration of the semantic
markers from which the theoretical vocabulary of each particular semantic theory
is drawn.” Working within this tradition, Bierwisch proposed the following basic
features which describe the axes of an object:

(31) (n dim) encodes the dimension of an axis: 1, 2 or 3.

(±main) an object’s ‘significantly extended’ axes are (+main), all
other axes are (−main)

(±vert) vertical axes are (+vert), horizontal axes are (−vert)

(±max) a maximal axis is (+max), all other axes are (−max)

(±second) a secondary axis is (+second), other axes are (−second)

(±inherent) an axis intrinsic to an object is (+inherent), an extrinsic
axis is (−inherent)

(±observer) an axis aligned with the speaker is (+observer)

(±round) round axes are marked +round

These features are present in the lexical entries of both nouns and adjectives. In
nouns, they are grouped into feature trees, whose structure is governed by special
lexical rules. Each path down the tree from the root node corresponds to an
axis of an object. For example, Figure 1.1a shows the lexical entry for Schrank
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‘cupboard/closet’. The vertical axis corresponds to the path terminating at 1,
the lateral (side-side) axis terminates at 2, and the frontal axis terminates at
3. Bierwisch’s theory also allows multiple axes to be assigned exactly the same
features when they cannot be distinguished due to symmetry of the object, forming
what he calls an ‘integrated’ axis. For example, in the lexical representation of
Stange ‘rod’ shown in Figure 1.1b, the two dimensions of the rod’s thickness are
grouped together under (−main).

(3 dim)

(+main)

(+vert)

1

(−vert)

(+second)

2

(+observer)

3

(a) Schrank ‘cupboard/closet’

(3 dim)

(+main)

(+max)

(−second)

1

(−main)

2 3

(b) Stange ‘rod’

Figure 1.1: Part of the lexical entries for two nouns, from Bierwisch (1967).

The representation of dimensional adjectives take the form of rules which instruct
the grammar to place the feature (±pol), indicating a larger- or smaller-than-usual
extent, at a particular location (marked by ∗) in an axis tree. For this to happen,
the axis tree given in the rule must unify with the axis tree of the noun. For
example, the adjective hoch ‘high/tall’ is represented by the rule:
(32) (+pol) [(+main)[∗[(−inherent)[(+vert)]]]]

which instructs the grammar to insert (+pol) into the tree, in such a way that
it is subordinate to (+main), but subordinate to (−inherent) and (+vert).
Impossible combinations, such as ?hocher Apfel ‘high apple’ are the result of
unification failure. Bierwisch’s theory covered only adjective + noun combination:
it did not explain how a spatial adjective could be applied to an individual as
in John is taller than Mary.

1.3.2 Lang’s object schemas
Lang (1989, 2001) took Bierwisch’s theory as a starting point. His aim was to
simplify Bierwisch’s formalism whilst increasing its scope. Like Bierwisch, he
was concerned with explaining which spatial adjective + noun combinations were
possible and which impossible. He also took from Bierwisch the idea that nouns
can be sorted into dimensional classes based on the presence or absence of features
encoding properties of the object’s axes. Lang’s features are unary rather than
multivalued, and include the following:
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(33) max the most extended axis of an object

sub either the minimal axis of a surface or the small cross-section of
a cylinder

dist the ‘inside’ extent of a hollow object, such as the internal diameter
of a hollow tube or box

vert the vertical axis of an object

obs the axis of an object which is aligned with an observer’s line of
sight

across a horizontal axis which is either secondary in comparison to max
or orthogonal to obs

Features are composed into object schemas, Lang’s equivalent of Bierwisch’s axis
trees. Object schemas are matrices whose columns, labelled ⟨a b c⟩, represent the
axes of an object ordered according to prominence. As in Bierwisch’s theory, axes
can be integrated, meaning that their prominence cannot be distinguished, which is
indicated by grouping axes in parentheses: thus, a pole is a ⟨a (b c)⟩ object, whereas
a disk is a ⟨(a b) c⟩ object. The other rows of the matrix are used to assign features
to axes according to a collection of well-formedness rules, with integrated axes being
treated as a single axis for the purpose of feature assignment. For example, (34)
shows the object schemas for pole, desk and wine bottle:

(34) pole
⟨ a (b c) ⟩

max min

desk
⟨ a b c ⟩

max obs vert

wine bottle
⟨ a (b c) ⟩

max dist
vert

Like Bierwisch, Lang sees adjective + noun composition as involving a kind of
unification. He associates each antonymous pair of German adjective with a
particular feature, as follows:

(35) • lang ‘long’ / kurz ‘short’: max
• dick ‘thick’ / dünn ‘thin’: min
• weit ‘wide/far’ / eng ‘narrow’: dist
• hoch ‘high/tall’ / niedrig ‘low’: vert
• tief ‘deep’ / flach ‘shallow’: obs
• breit ‘broad/wide’ / schmal ‘narrow’: across

For an adjective to combine with a noun, either the relevant feature must be already
present in the noun representation, or it must be possible to extend the noun
representation so as to include the feature without violating the well-formedness
rules. Lang’s analysis concerns the compatibility of adjectives and nouns, e.g. the
fact that long pole is acceptable but ?long apple is not. It does not tell us what
it means for a pole to be long: Lang leaves this as a question for the interpretive
or model-theoretic component of semantics.
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Lang’s taxonomy of object schemas was taken up by Stolz (1996), who applies
Lang’s system to Yucatec Maya. She finds that the kinds of distinctions which
are relevant to German spatial adjectives – dimensionality, integratedness, relative
extension, vertical/horizontal orientation, alignment with the observer, and so on –
are precisely what is needed to characterise the Yucatec spatial adjectives. Following
Lang, Stolz groups nouns into dimensional types or ‘combinatorial classes’ depending
on which dimensional terms they can occur with. For instance, Class 6 consists of
all 2D objects with a maximal horizontal axis such as fields, streets and surfaces:
all objects which can be described as chowak ‘long’ and kòoch ‘wide’. One difference
with Lang’s work is that, for Stolz, membership in a particular combinatorial class
is not lexical but a matter of how the object is conceptualized – for instance, a
tortilla belongs to Class 2 (2D objects) when thought of as a flat two-dimensional
object, but Class 15 (3D objects with an 2D integrated axis and a small thickness)
when its thickness is taken into account. Rather than each noun being inherently
associated with a particular dimensional class, each noun makes a range of different
classes available depending on the geometry of the object it denotes.

1.3.3 Vandeloise: Spatial adjectives as complex categories
One obvious criticism of featural approaches is their use of tailor-made primitives,
which seem to directly encode the concepts they are intended to explain. This
aspect of featural approaches was criticised by the cognitive linguist Vandeloise
(1988, 1993), who saw his work as a direct response to Bierwisch. Vandeloise
rejected a straightfoward mapping between spatial adjectives and semantic features,
instead opting for a detailed lexical analysis of their different senses. In his study
of length and width, he criticises Bierwisch for only taking into account geometry
and neglecting factors such as the motion and function of an object. He points
out that the length of an object does not always refer to its maximal dimension: if
this was the case, then a sentence like the airplane is wider than it is long would
be contradictory. Instead, he distinguishes four different senses of length, each
of which has a corresponding notion of width:

(36) • L1/W1: The length/width of a linear entity or path is its extent evaluated
along its actual shape / a direction perpendicular to its actual shape.

• L2/W2: The length/width of a mobile entity is its extent evaluated
along a direction parallel/perpendicular to its direction of movement.

• L3/W3: The length/width of a immobile, relatively symmetric entity
is its extent along a direction parallel/perpendicular to the speaker’s
general orientation.

• L4/W4: The length/width of an entity is its greatest/smallest non-
vertical extent.

L1/W1 covers pathlike objects like roads, rivers and corridors, whose length is
evaluated along a curve rather than in a straight line. L2/W3 covers mobile objects
like vehicles and other artifacts with a canonical direction of motion; it explains
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why the frontal axis of a vehicle can be referred to as a length even when it is
less than the object’s width. L3/W3 covers large objects like buildings, which are
described differently depending on the viewpoint of the speaker. Finally, L4/W4
covers other objects which do not fall into the previous categories, and corresponds
to the usual ‘maximal’ definition of length described by Bierwisch.

Clearly, it is no accident that the same word is used to cover concepts L1
through L4. To explain how these senses are connected, Vandeloise proposes
what he calls ‘pragmatic bridges’ – canonical situations in which two or more
separate senses coincide:

(37) • L1 and L2: When an object moves forward along a path, its direction of
motion (L2) is parallel to the tangent of the path (L1) at every point.

• L1 and L3: When an observer travels forward along a path, their line of
sight (L3) is parallel to the tangent of the path (L1) at every point.

• L2 and L4: The direction of motion of a mobile entity (L2) is typically
also its maximal dimension (L4), because this minimizes air resistance.

• L2 and L3: When one walks towards an entity, the direction in which
it exhibits relative motion (L2) is the direction parallel to one’s line of
sight (L3).

Vandeloise combines the senses and pragmatic bridges into a kind of lexical network,
using bidirectional arrows to represent bridging rules:

(38)
L1 L2

L3 L4

There is also a width network which is isomorphic to the length network, since
each concept of length has a corresponding notion of width. What was important
about Vandeloise’s approach was his general methodology of identifying distinct
senses and sense connections, rather than trying to formulate abstract definitions
to cover as many senses as possible. In a later paper entitled The role of resistance
in the meanings of thickness (1993), he applies a similar methodology to the
analysis of thick and thin.

The networks proposed by Vandeloise describe what I have called implicational
polysemy: they express idiosyncratic relations between microsenses. Notice, however,
that (38) does not have the same form as the implicational networks discussed
in the previous section, due to its bidirectional arrows. To convert a Vandeloise
network into an ordinary implicational network, the ‘pragmatic bridges’ must be
turned into meets. Recall that a pragmatic bridge is a situation in which one or
more senses is satisfied simultaneously, which is precisely the definition of a meet.
The length and width networks would be rewritten as follows:
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(39)

L1 L2

L3 L4

L1,2

L1,3 L2,3 L2,4

Note how each bidirectional arrow has been converted into a sense with arrows
into the two original senses. This is now a well-formed implicational network
in the sense of Section 1.2.2.

1.3.4 Spatial adjectives and prototype theory
Another study to reject the featural approach in favour of complex categories was
Dirven & Taylor (1986). This was one of the first applications of prototype theory,
in the sense of Eleanor Rosch, to the semantics of adjectives. In an experimental
paradigm inspired by Rosch’s work, participants were asked to rate the acceptability
of different combinations of ‘tall + noun’ on a scale from 1 (most acceptable)
to 7 (least acceptable). They found that combinations with high average scores
included tall person (1.05), tall building (1.83) and tall pillar (2.00); medium
average scores included tall shadow (4.25), tall door (4.52) and tall infant (4.99);
and low average scores included tall table (6.04), tall cloud (6.40) and tall hair
(6.94). To explain these results, the authors propose that the acceptability of tall
+ noun is governed by a conceptual prototype:

(40) Tall prototypically applies to objects (Dirven & Taylor 1986):
a. with a canonical vertical orientation (tall person is better than tall

infant)
b. whose vertical dimension is maximal (tall mountain is better than tall

hill)
c. whose vertical dimension is sufficiently large (tall fence is better than

tall ribbon)
d. which are solid rather than hollow (tall tree is better than tall wardrobe)
e. profiled against a background (tall bookcase is better than tall door)
f. which have acquired their height through a process of growth or con-

struction (tall building is better than tall window)

A situation in which the object meets all of these criteria is judged as highly typical
(e.g. tall person), whereas a situation in which only some criteria are met is judged
as less typical (e.g. tall lorry). Dirven & Taylor’s model can form the basis for an
implicational network in which the central sense is given by (40) and other more
peripheral senses correspond to smaller sets of conditions which are nevertheless
sufficient for an object to count as tall.

D&T’s work was built on by Goy (2002) in her study of the Italian adjectives
alto ‘high/tall’ and basso ‘low’. Goy begins from the assumption that a complete
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Figure 1.2: Marr’s 3D Model system is based on the generalized cylinder, which is any
volume generated by sweeping a cross section of constant shape but varying size along an
axis. Any cylinder can be broken down by an ‘elaboration rule’ into a collection of smaller
cylinders. This rule can be applied iteratively, resulting in a hierarchy of coordinate
systems in which the top-level node contains the most abstract description of the shape
and lower-level nodes contain more fine-grained detail.

account of lexical semantics requires a link between language and perception. Spatial
adjectives are seen as accessing a level of spatial representation which is derived
from perceptual experience. The theory of shape representation which Goy assumes
is Marr’s (1982) 3D Model, a viewpoint-independent system of shape representation
designed for visual object recognition (see Figure 1.2). The lexicon contains a
canonical shape description for each concrete noun in the speaker’s lexicon. For
example, the 3D model for pesce ‘fish’, specifies the shape of a typical fish, including
typical values for body length, fin shape, tail shape, and so on.

Following D&T’s methodology, Goy conducted a short experiment in which
participants were presented with ‘alto/basso + noun’ combinations and asked to
rate their acceptability from 1 (‘completely acceptable’) to 7 (‘not understandable’).
Nouns scored highly if they could be conceptualized as vertical cylinders (e.g. torre
‘tower’), or if they had a vertical axis which was at least as large as a human being
(e.g. muro ‘wall’). Goy’s analysis is that alto and basso modify an object’s relevant
vertical oriented axis (RVOA). This can be either a top-level vertical axis, such as
the generating axis of the human figure shown in Figure 1.2, or a particularly salient
vertical axis lower down in the hierarchy, such as the vertical neck axis of a giraffe.
According to Goy, The meaning of the adjectives alto and basso is a procedure which
finds and modifies an object’s RVOA by either increasing it (alto) or decreasing it
(basso). The unique aspect of Goy’s account was its reliance on a non-linguistic
system of object representation which interfaces with spatial language.
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1.3.5 Vogel: Bringing everything together
The cognitive approach to spatial adjectives culminated in the work of Anna Vogel
(2004), which combines the complex categories of Vandeloise, the empirical approach
of Dirven & Taylor, and Goy’s concern with perceptual experience. One aspect of
Vogel’s analysis which is missing from previous theories is her use of the cognitive
linguistics notion of image schema. Recall that an image schema refers to a basic
pattern which is abstracted from perceptual/bodily experience, such as container,
contact, blockage, and so on (Johnson 1987, Lakoff 1987). Although image
schemas have parts, they are supposed to be primitive in the sense that the whole
is conceptually prior to the parts, being grasped as a kind of gestalt. Vogel uses
image schemas to characterise the selectional restrictions associated with particular
adjectives. For example, she links Swedish djup ‘deep’ and grund ‘shallow’ to the
container image schema which is also involved in English in, into and inside. For
an object to be described as djup or grund, it must be possible to conceptualize it
as a container with an open top; hence combinations like djup skål ‘deep bowl’
and djup brunn ‘deep well’ are acceptable, whereas combinations like ?djup cykel
‘deep bicycle’ and ?djup jordglob ‘deep globe’ are not.

An adjective may be associated with more than one image schema, in which case
the relevant schemas are grouped together into a network. The more central a node
in this network, the more prototypical it is judged to be. Networks with multiple
prototypes are called ‘polysemous’ networks; those with only a single prototype are
called ‘monosemous’ networks. Vogel’s methodological strategy is to identify the
most prototypical sense(s) of an adjective using a combination of corpus data and
questionnaire responses. She then uses the same data to enumerate a collection
of peripheral senses, which she connects in various ways to the prototype. The
links between nodes represent transformations which can change or drop elements
of the prototype. For example, according to Vogel, the adjective tjock ‘thick’
prototypically refers to the cross-section of a cylinder, which is (a) minimal in
extent, (b) graspable by the hands, and (e) resistent to deformation. Other senses
of tjock are derived from this prototype by weakening or altering these conditions,
giving the network shown in Figure 1.3.

Vogel’s networks clearly represent what Section 1.2.2 refers to as implicational
polysemy: they describe idiosyncratic relations between microsenses of the same
lexical item. However, it can be difficult to interpret her lexical networks in
implicational terms. For example, it is not clear how the ‘hard flat object’ sense of
tjock, as in tjocka väggar ‘thick walls’, can be derived from the cylindrical sense, as
in tjock grubbe ‘thick man’. Nor can these two senses share a common meet, because
being a flat object is incompatible with being a cylinder. Instead, they appear to
share a common join; this is supported by the observation that, in English, one can
say something like the stick is thicker than the plate, which compares a cylindrical
thickness and a surface thickness. Other links proposed by Vogel seem to represent
meets, and others straightforward implications. My view is that all of the network
proposed by Vogel could be converted into standard implicational networks of the
sort explained in Section 1.2.2, potentially with some additional senses.

Vogel’s ideas were taken up by Shimotori (2013), in a comparative study of
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Figure 1.3: Vogel’s (2004) network description of tjock ‘thick’, with the prototype shown
in bold.

spatial adjectives in Swedish and Japanese. Shimotori found that the two languages
show a great deal of agreement in the most central, spatial senses of these adjectives.
For example, like Swedish vid ‘wide’, Japanese horoi ‘wide’ is mostly associated with
empty two-dimensional spaces or areas, such as umi ‘ocean’, sora ‘sky’, heya ‘room’
and sôgen ‘grassland’. A major difference is that Japanese distinguishes between
futoi ‘thick’ / hosoi ‘thin’ for the thickness of a cylindrical object, and atsui ‘thick’
/ usui ‘thin’ for the thickness of a flat object. When it came to the non-spatial
or metaphorical usages of spatial adjectives, there was much less agreement. For
example, thickness has a positive connotation in Japanese which is lacking in Swedish:
someone who is kind-hearted is described as having atsui ninjou ‘thick empathy’.

1.3.6 Summary of lexical approaches
Looking at the various lexical approaches to spatial adjectives, there appears to be
quite widespread agreement on the kinds of conceptual primitives which are relevant
to their semantics. These include concepts such the relative extension of axes,
whether two axes are distinguished or integrated, the orientation of axes, the notion
of a canonical observer, the concept of a container, the concept of path/passage,
and so on. These primitives are important not only to the English spatial adjectives,
but also to their analogs in other languages, suggesting that they originate in some
non-linguistic faculty of spatial cognition. However, although the primitive notions
appear to be similar across languages, the way they are packaged into adjectives
can differ. For example, the English distinction between high and tall is not present
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in most languages, e.g. German hoch ‘high/tall’, Italian alto ‘high/tall’, Yucatec
Maya ka’nal ‘high/tall’. Similarly, the distinction between cylindrical thickness
and surface thickness, present in Japanese (futoi vs. atsui) Yucatec Maya (polok
vs. píim), is neutralized in most Germanic languages.

A single spatial adjective does not correspond to a single primitive, but rather
to a network of senses, where each sense is a collection of primitives. For instance,
consider the English adjective wide. Relevant conditions include being secondary in
extent (wide ribbon), being orthogonal to a canonical observer (wide desk), being
horizontal, being an open area (wide ocean), being conceptualized as a passage
(wide corridor), etc. Some of these conditions are sufficient by themselves, others
are sufficient only in combination with others; some combinations are compatible,
others incompatible; and so on. In short, they form a family resemblance category,
also known in this thesis as an implicational network. Some adjectives, such as tall,
form a radial category with only a single prototype; others, such as wide, contain
multiple prototypes. Likewise, some adjective networks contain a single final sense,
so that all of their senses are mutually compatible; others contain multiple final
senses, giving rise to zeugmatic readings.

Lexical approaches are primarily concerned with explaining the attributive
behaviour of spatial adjectives: for example, the fact that tall person is acceptable
but ?tall marble is not. This can easily give the impression that a spatial adjective
is a kind of procedure for modifying a noun (indeed, some authors such as Goy
state this explicitly). However, there are also various predicative uses of spatial
adjectives – such as the positive (X is tall), the comparative (X is taller than
Mary), the superlative (X is the tallest person in the room), and measure phrase
combination (X is 150cm tall) – where the adjective does not modify a noun but
instead describes a property of individuals. The focus on the attributive in the
lexical semantics literature creates a disconnect with formal semantics, where the
predicative use is generally considered to be more basic, the attributive being
derived through intersection of the noun denotation with the positive form of
the adjective. The next section tells the other side of the story, introducing the
formal semantics of degree constructions.
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1.4 Introduction to degree semantics
Degree semantics is a branch of truth-conditional model-theoretic semantics which
is concerned with gradable adjectives and the constructions they support, e.g. the
comparative and superlative, as well as other gradable phenomena. The founding
assumption in model-theoretic semantics is that the semantics of a natural language
should be given in the same way as the semantics of a formal language (e.g. first-
order logic), by specifying a relation between expressions of the language and
elements of a model, a mathematical structure containing entities that the language
‘talks about’. The relation, called interpretation, is such that composition of words in
the language is mirrored by composition of elements in the model, a correspondence
known as compositionality. The basic goal of this kind of semantics is to use the
notion of interpretation with respect to a model to give a general characterisation
of the conditions under which sentences are true or false. It is conventional to
interpose a formal language F between the natural language and the model, the
advantage being that the interpretation of formulas of F is already well-understood,
so the difficult problem of how to directly interpret expressions in the natural
language is replaced by the slightly less difficult problem of how to translate natural
language expressions into formulas of F .

In this section, I assume the usual choice for F , which is the simply-typed
lambda calculus. One introduces two basic types – individuals (e) and truth values
(t) – together with an infinite ladder of function types relating them – (e → t),
(e → (e → t)), ((e → t) → t), and so on – terms of which are lambda expressions.
Proper nouns denote individuals and are typed e; common nouns, intersective
adjectives and intransitive verbs denote properties and are typed e → t; sentences
denote truth values and are typed t. Compositionality is modelled by applying
lambda expressions to arguments. Note that, although it is adopted here for
expository purposes, the simply-typed lambda calculus is not the formalism which
I shall eventually advocate in this thesis. For a more formal introduction to the
simply-typed lambda calculus, see Section 2.2. For some of the limitations of
Montague semantics, see Section 2.3.

1.4.1 Scale structure
Degree semantics begins with the intuition that some properties are not all-or-
nothing, but rather come in degrees. For example, one cannot divide all individuals
into those who are happy and those who are not happy – rather degrees of happiness
form a scale, with some individuals being happier than others. This behaviour is
not well-expressed by assigning happy the type e → t, since then it behaves as
an all-or-nothing property. In most versions of degree semantics, one therefore
introduces a new ontological type, d, to describe the extent to which an individual
possesses a property. One then distinguishes between gradable adjectives, which
involve degrees, and non-gradable adjectives, which are all-or-nothing properties.
An easy way to tell whether an adjective is gradable or non-gradable is to ask
whether it supports comparison. Hence, happy is gradable, since one person can be
happier than another, whereas married is non-gradable, since one person cannot
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be ‘more married’ than another.
Degrees are collected into ordered structures called scales, which are associated

with particular properties – the length scale, the weight scale, the intelligence scale,
and so on. A scale is generally thought of as a triple ⟨D, ≤, δ⟩, where D is a set of
degrees, ≤ is a total order relation on D, and δ is a dimension parameter telling
you the dimensions of the scale – distance, time, weight, temperature, etc. (this
formulation of scales comes from Kennedy & McNally 2005). For two degrees to be
compared, they must lie on the same scale. Consider the following sentences:

(41) a. John is taller than Susan.
b. John is taller than the table is wide.
c. John is shorter than the table is narrow.
d. ? John is taller than Susan is old.

Sentence (a) is a typical example of comparison which compares the height of
two people; (b) compares the height of a person to the width of a table, which is
acceptable since tall and wide denote degrees on the same scale (the distance scale);
(c) is also acceptable and resembles (b) except that the two adjectives are negative
rather than positive. However, sentence (d) is unacceptable because tall and old
involve degrees on different scales (distance and age respectively).

Besides having different dimensions, scales can also vary with respect to the
order relation. Antonymous pairs, such as long/short, big/small, old/new, etc., have
the same dimensions but opposite order relations. For instance, the scale associated
with the adjective big is the same as that of small, but with the opposite order.
There are two major advantages of this analysis. Firstly, given that scales like size
are total orders, it allows us to derive the inference that x is bigger than y iff y
is smaller than x. Secondly, the fact that big and small project their arguments
onto distinct scales explains why they cannot be compared in a sentence like ?the
house is bigger than the car is small, which on this account is unacceptable for the
same reason as cross-dimensional comparisons like sentence (41d).

Another way in which scales can vary is the structure of the set of degrees itself.
The topological possibilities for a scale are the same as those of an interval – in either
direction (upwards or downwards), the scale may be either unbounded, bounded and
closed, or bounded and open. For example, the scale of temperature is unbounded in
both directions; the scale of distance is upwards unbounded but downwards bounded
and open; the scale of purity, as in the water is pure, is upwards bounded and open
but downwards bounded and closed; and the scale of fullness, as in the glass is full,
is bounded and closed in both directions. The topology of scales is relevant to the
selectional restrictions associated with proportional modifiers like completely, mostly,
half, and so on (Kennedy & McNally 2005). For example, the modifier completely
requires a scale which is upwards bounded and closed – hence completely full is
acceptable, but ?completely tall is unacceptable. Note that if a scale is upwards
bounded and closed, then its opposite is downwards bounded and closed (and vice
versa). Hence completely pure is acceptable but ?completely impure is unacceptable.
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1.4.2 Typing gradable adjectives
Although different degree-based approaches broadly speaking agree about the nature
of scale structure, there is some disagreement on the semantic type of gradable
adjectives. Recall that an ordinary intersective adjective has type e → t, a function
from individuals to truth values. Some authors (e.g. Cresswell 1976, Bierwisch
1989, Heim 2000) treat gradable adjectives as elements of type d → e → t, that
is, relations between individuals and degrees. On this view, a gradable adjective
like tall is interpreted as follows1:

(42) JtallK := λd . λx . tall(x) = d

where tall is some function of type e → d, which takes an individual and returns its
degree of tallness. On this analysis, JtallK(d)(x) is true iff x’s degree of tallness is
exactly d. An alternative analysis is to weaken the strict equality to ‘greater
than or equal to’:

(43) JtallK := λd . λx . tall(x) ≥ d

In other words, JtallK(d)(x) is true iff x’s degree of tallness is at least d. The
motivation behind this approach – which is advocated for example by Klein (1980)
– is the intuition that a sentence like the fence is 2m tall should not rule out the
possibility that the fence is actually taller than 2m. The exact equality reading
is then explained as a scalar implicature arising from the fact that the speaker
might have said the fence is taller than 2m.

One issue with this relational account of gradable adjectives, which was pointed
out by Kennedy (1999), is the lack of scope ambiguities in certain contexts. To
illustrate, consider the comparative morpheme more/-er, which on the relational
account is interpreted as follows (assuming the exact equality analysis given in 42):

(44) Jmore/-erK := λg . λd . λx . ∃d′[d′ > d ∧ g(d′, x)]

In other words, Jmore/-erK(g)(d)(x) is true iff there exists some degree d′ > d
which measures the extent to which x is g. The following example shows how
this works for John is taller than 150cm:

(45) JJohn is taller than 150cmK

= Jmore/-erK(JtallK)(J150cmK)(JJohnK)
= λg.λd.λx.∃d′[d′ > d ∧ g(d′, x)] (λd . λx . tall(x) = d) (150cm) (John)
= λd.λx.∃d′[d′ > d ∧ tall(x) = d′] (150cm) (John)
= λx.∃d′[d′ > 150cm ∧ tall(x) = d′] (John)
= ∃d′[d′ > 150cm ∧ tall(John) = d′]

1To avoid the need for type specifications on arguments, I use the variables {x, y, z} for type
e, {d, d′, d′′} for type d, {g, g′, g′′} for type e → d → t, {f, f ′, f ′′} for type e → d, and {p, p′, p′′}
for type e → t.
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As shown, on this analysis, John is taller than 150cm is true iff there is some degree
d′ greater than 150cm which measures the extent to which John is tall. Now consider
the well-known scope ambiguity associated with sentences like the following:

(46) Everybody loves a song.
a. ∀x : person(x)[∃y : song(y)[love(x, y)]]
b. ∃x : song(x)[∀y : person(y)[love(y, x)]]

where (a) corresponds to the reading ‘for each person, there is some song that they
love’, and (b) corresponds to ‘there is some song which every person loves’. If the
existential analysis of comparatives is correct, then we might expect comparatives
to show a similar ambiguity. For example, the sentence everybody is taller than
150cm should have the following two interpretations:

(47) Everybody is taller than 150cm.
a. ∀x : person(x)[∃d′[d′ > 150cm ∧ tall(x) = d′]]
b. ∃d′[∀x : person(x)[d′ > 150cm ∧ tall(x) = d′]]

where (a) can be paraphrased as ‘for each person, their degree of height is greater
than 150cm’, and (b) can be paraphrased as ‘there is some degree d greater than
150cm, such that every person is d-tall’. However, interpretation (b), under which
everybody in the context has the same height, does not occur to people, suggesting
that the existential analysis of more/-er is mistaken.

To solve this problem, Kennedy (1999) proposed an alternative account of
gradable adjectives, following an earlier suggestion by Bartsch & Vennemann
(1974). The idea is to treat gradable adjectives purely as elements of type e →
d, that is functions from individuals to degrees. In fact, functions of this type
were already presupposed in the relational account, where there is a function
like tall : e → d for each adjective. We now simply equate the meaning of the
adjective with this function:

(48) JtallK := tall

On this view, relations between individuals and degrees are not an inherent part
of the meaning of a gradable adjective, but are introduced separately by degree
morphology. The comparative morpheme no longer involves an existential quantifier,
but is represented as follows:

(49) Jmore/-erK := λf . λd . λx . f(x) > d

that is, given a gradable adjective f (now a pure measure function of type e → d),
a degree d and an individual x, Jmore/-erK(f)(d)(x) is true iff f applied to x is
greater than d. Given this definition, the sentence everybody is taller than 150cm
has only one reading, namely:

(50) ∀x : person(x)[tall(x) > 150cm]
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which is what we would expect.
Kennedy’s analysis of gradable adjectives as measure functions is associated with

a standard syntactic analysis, according to which a gradable adjective must appear
wrapped inside a Degree Phrase (DegP), just as a verb appears wrapped inside an
Inflectional Phrase (e.g. Abney 1987, Corver 1991, Grimshaw 1991, Kennedy 1999,
2007). The head of a DegP is a degree morpheme (e.g. more/-er, most/-est, very,
too, enough, half ), which takes the adjective as an internal argument. For instance,
a phrase like taller than 150cm would have the following structure:

(51) DegP
e → t

Deg′

e → e → t

Deg
(e → d) → e → e → t

more/-er

A
e → d
tall

PP
d

than 150cm

This transparently supports the semantic analysis given in (45), where Jmore/-erK
takes JtallK as an argument.

1.4.3 The positive/unmarked form
The term positive is used to refer to the unmarked form of a gradable adjective, as
in John is tall, the Nile is long, semantics is interesting, and so on1. The positive
is vague, meaning that it does not separate individuals into two sharply bounded
sets. For instance, people with a height of 200cm are clearly tall, whereas people
with a height of 100cm are clearly short; but there are people in-between who
are difficult to categorize as either tall or short. Compare this to other degree
constructions such as the comparative or measure phrase combination, where there
is a definite fact of the matter. For example, the truth of John is taller than Mary
and John is 150cm tall can be decided by someone who knows all the relevant facts,
namely the heights of John and Mary. In contrast, one can know John’s height
and still be unsure whether John is tall is true or false. For this reason, despite
its apparent morphological simplicity, the positive has proven the most difficult
degree construction to describe from a semantic point of view.

In addition to vagueness, the positive also exhibits context-dependence, meaning
that its interpretation depends on a comparison class. For example, someone with
a height of 180cm might be considered tall in the context of people in general,
but short in the context of basketball players. The comparison class can appear
explicitly in the sentence, as in John is tall/short for a basketball player. If no

1The use of the term positive to refer to a kind of degree construction should not be confused
with positive vs. negative polarity.
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explicit comparison class is provided, then the comparison class is provided either
by the noun which the adjective modifies (e.g. John is a tall man) or by the
general discourse context (e.g. “John is tall”, said in a room full of basketball
players). Context-dependence occurs not only in the positive form, but also in the
superlative – for instance, the truth of the sentence John is the tallest depends
on the set of people to whom John is being compared. In contrast, a comparative
sentence like John is taller than Sally is not context-dependent since it does not
presuppose a comparison class.

The usual analysis of the positive in degree-based approach is in terms of a
contextually determined standard value (Bartsch & Vennemann 1974, Cresswell
1976, von Stechow 1984, Klein 1980, Kennedy 1999, Kennedy & McNally 2005).
The basic idea is that a sentence like John is tall can be paraphrased as “the degree
to which John is tall exceeds some contextually-determined standard degree s”.
Context-dependence is explained by the dependence of the standard on a comparison
class. Theories differ as to exactly how the comparison class enters into the semantics,
with some treating it as a logical argument to the positive morpheme and others as
a free variable whose value is filled in by pragmatic considerations. The vagueness of
the positive is explained through the ‘fuzziness’ or lack of certainty associated with
the standard. Again, theories differ as to how exactly this fuzziness is understood.

To give a typical example, Bartsch & Vennemann (1974) treat the positive as
a silent morpheme with the following denotation:

(52) JposK := λf . λp . λx . f(x) > norm(p)(f)

where f is a measure function, p is a property representing the comparison class,
and norm : (e → t) → (e → d) → d is a function which returns the average
degree to which members of p are f. Given this definition, the interpretation of
John is tall for a basketball player would be:

(53) JJohn is pos tall for a basketball playerK
= JposK(JtallK)(Jbasketball playerK)(JJohnK)
= λf . λp . λx . f(x) > norm(p)(f) (tall) (basketball-player) (John)
= λp . λx . tall(x) > norm(p)(tall) (basketball-player) (John)
= λx . tall(x) > norm(basketball-player)(tall) (John)
= tall(John) > norm(basketball-player)(tall)

That is, the sentence is true iff John’s degree of height is greater than that of
the average height of a basketball player.

1.4.4 The alternative: gradable adjectives as vague predicates
In a standard degree-based approach, the initial formalization of gradable adjectives
is crisp, and vagueness is added ‘on top’ in the form of supervaluation or some other
mechanism for constructing fuzzy interpretations. There is an alternative approach
to gradable adjectives, sometimes called the ‘delineation’ or ‘vague predicate’
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approach, in which vagueness is built in from the beginning (Kamp 1975, Klein 1980,
1982). On this account, the difference between non-gradable and gradable adjectives
is that non-gradable adjectives denote functions from individuals to bivalent truth
values, whereas gradable adjectives denote functions from individuals to trivalent
truth values, which are either true, false or undefined. For example, the adjective
tall would partition its domain into three sets: a positive extension containing
individuals which are definitely tall, a negative extension containing individuals
which are definitely not tall, and an extension gap containing individuals which
fall in-between or whose tallness is undefined. To explain context-dependence, the
three-way partition is treated as depending on a context parameter c.

The price of the vague predicate approach is that the idea of comparison,
which is built in to the degree-based approach, must be constructed in a more
roundabout fashion. Given a gradable predicate like tall, each context gives us a
three-way partition into positive extension, negative extension and extension gap.
For coherence, we assume that, given a context c where x is in the positive extension
and y is in the negative extension, there can be no context c′ where the order is
reversed so that y is in the positive extension and x is in the negative extension.
Given this, the family of partitions indexed by c will generate a partial order which
can be used as a basis for comparison. A sentence like John is taller than Mary
will be true iff there is some context c where John is in the positive extension of
tall and Mary is in the negative extension. Similarly, John is the tallest person in
the room is true iff there is some context c where John is in the positive extension
of tall and all the other people in the room are in the negative extension.

The major issue with the vague predicate account, which was pointed out
by Kennedy (1999), is the difficulty of explaining cross-scalar and cross-polar
incommensurability. Recall that, in order to be compared, two adjectives must have
both the same dimensions and the same polarity. However, the vague predicate
analysis does not seem to require this. For example, the analysis of the comparative
sketched in the previous paragraph allows us to assign interpretations to sentences
like the following:
(54) a. ?John is taller than Susan is old: there is some context c such that

John is in the positive extension of tall at c and Susan is in the negative
extension of old at c

b. ?John is taller than Susan is short: there is some context c such that
John is in the positive extension of tall at c and Susan is in the negative
extension of short at c

Both sentences can be satisfied given the right context, which is undesirable since
they are perceived to be anomalous. This problem arises because the extensions
of tall, short and old all contain objects of the same sort, namely individuals.
Attempting to solve this problem requires constructing sortal distinctions between
different kinds of scales, leading to a version of degree semantics in which degrees
are derivative rather than primitive semantic elements. See Lassiter (2017) for an
analysis along these lines, which he calls ‘degree semantics without degrees’. Such
an approach is virtually indistinguishable from an analysis in which degrees are
introduced from the start as primitive semantic elements.
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1.5 On the compatibility of formal and cognitive
semantics

The aim of this thesis is to develop a description of spatial adjectives – and more
generally an approach to semantics – which reconciles the concerns of both formal
and lexical/cognitive approaches. This means unifying the description of polysemy
in authors like Vandeloise (1988), Dirven & Taylor (1986) and Vogel (2004), with
the compositional description of degree constructions developed by authors such as
Bartsch & Vennemann (1974), Klein (1980) and Kennedy (1999). This project of
trying to unite formal and cognitive semantics will seem wrongheaded to those – from
both disciplines – who see them as having nothing to do with each other. For example,
the philosopher of language and proponent of formal semantics, David Lewis, wrote:

I distinguish two topics: first, the description of possible languages or
grammars as abstract semantic systems whereby symbols are associated
with aspects of the world; and second, the description of the psychological
and sociological facts whereby a particular one of these abstract semantic
systems is the one used by a person or population. Only confusion comes
of mixing these two topics. (Lewis 1972, p. 19)

A similar idea is expressed by Vyvyan Evans, a cognitive linguist:

The final difference that we mention here relates to the model of
truth-conditional semantics that is adopted by most formal models
of linguistic meaning. This approach assumes an objectivist position,
which means that it assumes an objective external reality against which
descriptions in language can be judged true or false. In this way, it
builds a model of semantic meaning that can be made explicit by means
of a logical metalanguage . . . This view stands in direct opposition to the
experientialist view adopted within cognitive semantics, which describes
meaning in terms of human construal of reality. (Evans 2006, p. 171-172)

Both authors present essentially the same distinction: formal semantics is about
relating language to “aspects of the world” or “an objective external reality”; whereas
cognitive semantics is concerned with “psychological and sociological facts” and
therefore “describes meanings in terms of human construal of reality.”

The idea that formal semantics and cognitive semantics have nothing to do with
each other stems from a particular interpretation of formal semantics, which we
can call the realist or externalist interpretation. On this view, formal semantics
describes relations between linguistic expressions and elements of reality, where
‘elements of reality’ can include individuals, properties, relations, functions, possible
worlds, propositions, contexts, and so forth – all the machinery needed to describe
the truth-conditions of sentences. The model of the world on which formal semantics
depends is held to be a mathematical description of the way the world is in itself,
independent of how people conceptualize it. As Lewis puts it, semantic relations are
“relations between symbols and the world of non-symbols” (ibid., p. 19). From this
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point of view, formal semantics and cognitive semantics have completely distinct
aims: the former concerns relations between language and the world, whereas the
latter concerns relations between language and the mind.

An alternative to the realist interpretation is the conceptualist or internalist
interpretation. This is the view that “linguistic expressions refer to entities in the
world as conceptualised by the language user” (Jackendoff 1998, p. 1). Conceptualism
is sometimes considered to be incompatible with truth-conditional model-theoretic
semantics. However, as Jackendoff points out, the conceptualist can accept the usual
framework, whilst disagreeing with the realist interpretation of that framework:

[Conceptualism] does not commit one to abandoning model-theoretic
semantics. It does commit one to abandoning the usual construal of
model-theoretic semantics, in which reference is to the model, and the
model is taken to be the world or the infinite set of possible worlds
. . . it is absolutely possible to adopt an alternative construal of model-
theoretic semantics, in which the model is instead taken to be the world
as conceptualized by the language user. [. . . ] Similarly, [conceptualism]
does not does not commit one to abandoning truth-conditional semantics
– only to placing truth-conditions inside the mind of the language user
rather than treating them as framework-free. (Jackendoff 1998, p. 2)

In other words, the conceptualist views the set-theoretic model as a mental construct,
not a depiction of the real world. Examples of authors who have taken this point of
view towards model-theoretic semantics include Bach (1986), Verkuyl (1989) and
Zwarts & Verkuyl (1994). From the conceptualist point of view, formal semantics is
not completely orthogonal to cognitive linguistics: the two fields have similar goals
since they both involve relating linguistic expressions to human conceptualizations.

A consequence of ‘pushing the model inside the mind’ is that notions such as
truth, entailment, reference, and so on, get relativized to particular speakers.
As Jackenfoff puts it,

in a mentalistic account of language, terms like “grammatical”, “true”,
“analytic”, “refer” are taken to be at their foundation dependent on a
language user (just as in special relativity, distances and times are taken
to be dependent on an observer’s initial frame). They can be taken
to be user-independent [. . . ] only to the extent that it is useful and
possible to conveniently ignore the “reference frame” – the presupposition
of agreement among members of a (relatively) homogeneous speech
community.

For the conceptualist, a statement like ‘sentence S uttered in context C is true’
must be considered as shorthand for ‘a typical speaker judges sentence S uttered in
context C to be true’. This is analogous to the syntactician’s claim that ‘sentence
S is grammatical’, or the phonologist’s claim ‘syllable S is well-formed’.

The perspective of this thesis is that of conceptual truth-conditional, model-
theoretic semantics. The goal is to describe the truth conditions of sentences with
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respect to possible models of the world. However, the possible models should not
be conceived as possible versions of reality, but rather as possible versions of reality
as conceptualized by an idealized language user. The various elements of the model
are not constituents of reality but human conceptualizations. To give an example
taken from Janssen & Zimmermann (2021), we talk about a substance such as
water as though every part of it can also be described as water – as though it has
no minimal parts – although physically speaking this is not the case. The partless
conceptualization of substances belongs to our ordinary, commonsense ontology:
what the philosopher Wilfrid Sellers (1963) called the ‘Manifest Image’. Likewise,
all the semantic entities assumed in this thesis – individuals, types, predicates,
degrees, measure functions, spatial vectors, paths, and so on – should be understood
as belonging to Sellers’ Manifest Image.

If the model is taken to be a conceptual construct, located inside the head of
language users, then the various elements of the model must be identified with
mental symbols of some kind or another. For a conceptualist, therefore, semantics
describes a translation between symbols of one kind – natural language expressions –
to symbols of another kind – concepts. One might worry whether anything is really
achieved by this translation. David Lewis put this point as follows:

Semantic markers are symbols: items in the vocabulary of an artificial
language we may call Semantic Markerese. Semantic interpretation by
means of them amounts merely to a translation algorithm from the
object langugage to the auxiliary language Markerese. But we can
know the Markerese translation of an English sentence without knowing
the first thing about the meaning of the English sentence: namely, the
conditions under which it would be true. Semantics with no treatment of
truth conditions is not semantics. Translation into Markerese is at best
a substitute for real semantics, relying either on our tacit competence
(at some future date) as speakers of Markerese or on our ability to do
real semantics at least for the one language, Markerese. (Lewis 1972,
p. 1)

I agree with Lewis that translation into Markerese would be unilluminating if
Markerese was anything like a natural language. However, let us suppose that
what is meant by Markerese is a formal language for encoding and reasoning about
arbitrary human concepts – a kind of formal theory of the Manifest image. The
Markerese translation of a word should encode all the knowledge associated with it:
for example, the Markerese translation for the word cat, should tell us the typical
shape of a cat, its part structure and possible configurations, typical behaviours
associated with a cat, their relationship with humans, and so on. Then it is not
at all obvious that “we can know the Markerese translation of an English sentence
without knowing the first thing about the meaning of the English sentence, namely
the conditions under which it would be true”. Rather, the Markerese translation
of a sentence would encode the complete concept associated with this sentence,
including a specification of the kind of situation in which it is true. The goal of
conceptualist semantics is to develop something like Markerese in this sense.
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(a) The proto-scene for over. (b) The trajectory sense of over.

Figure 1.4: Two senses of over, from Tyler & Evans (2003).

Many cognitive linguists share with Lewis the intuition that an abstract system
of symbols must be devoid of any real semantic content. However, rather than
invoking relations between symbols and the real world, as Lewis does, they instead
try to describe concepts in non-symbolic or ‘sub-symbolic’ terms. A common
approach is to use a kind of imagistic or diagrammatic notation. For example,
in their analysis of the preposition over, Tyler & Evans (2003) identify a number
of distinct senses, which they describe using diagrams, as shown in Figure 1.4.
The diagram in (a) represents the most typical sense of over (the ‘proto-scene’),
as in the helicopter was over the field, whereas the diagram in (b) represents
the trajectory sense, as in the cat jumped over the wall. The claim is that “the
meanings associated with many individual lexemes are instantiated in memory
not in terms of features, nor as abstract propositions, but rather as imagistic,
schematic representations” which “arise from perceptual reanalysis of recurring
patterns in everyday physical experience”.

This kind of diagrammatic notation often gives the impression of being iconic,
of directly portraying the intended concept in such a way as to remove the need
for symbols. However, image schema notation is based on a number of conventions
– dots represent entities, dotted lines represent relations, line thickness represents
salience, arrows represent actions, and so on – which are no less symbolic in character
than the kind of predicate calculus representations which the theory is intended
to replace. As Jackendoff puts it,

Consider also Deane’s treatment of rise, fall, on and onto. In his
diagrams, the notation tr [trajector] is situated in some position relative
to a line, which is close to the notation lm [landmark]. Nothing says
that tr is supposed to be in contact with the line (as opposed to simply
near it); nothing tells us that by contrast lm is not supposed to be near
the line; it is supposed to be the line. If you know what the diagram is
supposed to mean, it is sort of iconic, so it appeals to common sense
in a way that the austerity of features and functions does not. But at
bottom it is no more explicit, and no more psychologically real, than
feature and function notation. [. . . ] I have no objection in principle to
using circles, squares and arrows instead of square brackets, parentheses
and functions. We should just be very clear about their status. (1996,
p. 110)
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Far from removing the need for Markerese, image schema notation is simply another
form of Markerese. Some reasons for preferring a logic-based formalism over
image schema notation are that logic is less ambiguous, has an accompanying
theory of inference, and can be understood by those in other disciplines such as
philosophy and computer science.

For a conceptualist, the symbols of Markerese have genuine semantic content.
This is not a matter of direct reference to external reality, as for Lewis. Nor is
it due to the structure of symbols in some sense iconically resembling that to
which they refer. Rather, the semantic content of a Markerese symbol derives, on
the one hand, from its inferential role within Markerese itself, and on the other
hand, from being appropriately connected to other cognitive systems such as vision,
audition, motor control, emotional understanding, and so forth. For example, the
Markerese translation for cat would be appropriately connected to other symbols
such as those for animal, feline, pet, human, dog, tail, and so forth. At the same
time, it would also be connected to information from visual cognition and spatial
reasoning (the shape and configuration of a cat), audition (the sound of a cat),
motor control (how to interact with a cat), and so on. A Markerese symbol is like
a symbol inside a computer: it has no significance by itself, but only by virtue
of its complex interaction with other symbols.
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1.6 Outline of remaining chapters
As explained above, the aim of this thesis is to investigate a general phenomenon
through a specific lens. The general phenomenon is the interaction between
implicational networks and composition; the specific lens is the semantics of English
spatial adjectives. My hope is to develop a formal, compositional framework
capable of implementing a fine-grained approach to word meaning, and to give
an impression of what formal semantics using such a framework might be like.
Regarding spatial adjectives specifically, the aim is to reconcile the kind of detailed
lexical analysis described in Section 1.3 with the compositional framework of degree
semantics described in Section 1.4.

The goal of Chapter 2 is to introduce a formal framework for doing compositional
semantics with implicational networks. I begin with a formal presentation of
traditional Montague-style semantics, followed by a brief discussion of some of its
limitations. I show how Montague semantics is not well suited to describing lexical
networks because it does not treat proofs as first-class objects. This is followed
by an introduction to Martin-Löf Dependent Type Theory, the formal framework
which provides the setting for the rest of the thesis, and a discussion of what formal
semantics looks like in Dependent Type Theory. I show how Dependent Type Theory
can support a compositional semantics of lexical networks in which sense connections
are fully-fledged semantic objects capable of being composed alongside senses.

Having outlined a general framework, Chapter 3 turns to a detailed case study
of spatial adjectives. The aim of this chapter is to describe the lexical semantics of
the English adjectives high, low, tall, long, short, wide, narrow, deep shallow, thick
and thin, focusing primarily on their spatial meanings. Following Zwarts & Winter
(2000), I take the basic semantic primitives in the domain of spatial language
to be spatial vectors together with a collection of primitive predicates relating
vectors and individuals. The meaning of an adjective is given by an implicational
network of senses in which meets correspond to prototypes and joins correspond
to abstract generalizations. This Chapter draws heavily on the lexical approaches
to spatial adjectives outlined in Section 1.3.

Chapter 4 turns to degree semantics. The aim of this chapter is to formalise
degree morphemes like more/-er, most/-est, very, completely, and so on, in such a
way that they operate, not only on senses, but on entire lexical networks. My analysis
of these morphemes is heavily based on previous approaches, particularly the work
of Kennedy (1999, 2005, 2007). However, one difference with previous approaches,
besides the incorporation of polysemy, is the focus on the dynamic aspect of degree
morphology. Following Discourse Representation Theory, I adopt an approach to
sentence meaning whereby presuppositional content, modelled as constraints on the
background context, is separated from assertive content, modelled as an instruction
for updating the background context with new information. The chapter concludes
with a discussion of how dynamic semantics and polysemy might interact.

Finally, Chapter 5 summarizes the major contributions of the thesis and offers
a brief comparison between my approach and other approaches which describe
something resembling compositional lexical networks.
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2.1 Motivation
As discussed in the previous chapter, this thesis attempts to do justice to the
following intuition. Consider a polysemous word, like the adjective high, which has
various related senses covering spatial position (high airplane), spatial dimension
(high tower), emotion (to feel high), social status (high standing), intensity (high
difficulty), and so on. Some of these senses, such as spatial position and spatial
dimension, are connected. When high occurs in a larger expression like very high,
higher than usual, too high, and so on, the larger phrase inherits the polysemy of the
adjective: it too has a position sense, a dimension sense, an emotion sense, a sense
relating to social status, a sense relating to intensity, and so on. Crucially, if there
is a connection between two original senses, then there should also be a connection
between the derived senses. The positional and dimensional senses of very high
should be connected in exactly the same way as the positional and dimensional
senses of high. Some combinations, such as high voice or 150m high select part of
the high network, preserving certain senses and sense connections but not others.

This chapter will argue that the traditional setting for formal semantics, Simple
Type Theory, is not rich enough to formalize a compositional theory of lexical
networks. Instead, we need to extend Simple Type Theory by allowing types to
depend on values, giving us what is called Martin-Löf Dependent Type Theory
(DTT). DTT was originally developed in the 1970s by the Swedish Logician Per
Martin-Löf as a foundation for constructive mathematics. Nowadays the original
system has many variants, such as the Calculus of Constructions (Coquand 1986)
and Homotopy Type Theory (UFP 2013); it also forms the basis for a number
of programming languages, such as Coq (1997) and Agda (2009). The idea of
basing natural language semantics on DTT is almost as old as the framework itself:
proponents have included Sundholm (1989), Ranta (1994), Boldini (2000), Cooper
(2005, 2012), and Luo (2012, 2020). There are many advantages to this framework
besides the implementation of lexical networks, some of which I shall also touch upon.

The chapter is organised as follows. Section 2.2 introduces Simple Type Theory
and explains its role in traditional Montague semantics. Section 2.3 discusses some of
the limitations of Montague semantics which motivate the introduction of dependent
types. Section 2.4 introduces and motivates the main ideas of DTT. Section 2.5
is an introduction to formal semantics in DTT, which explains how nouns, verbs,
adjectives, and so on, can be analysed. Finally, Section 2.6 brings everything together
by showing how DTT can support a compositional theory of lexical networks.

42



2.2 Semantics with Simple Type Theory

2.2.1 The basic setup
Before exploring what it means to do semantics in DTT, it is worth reviewing
the more traditional Montague approach which is based on Simple Type Theory
(STT). By Montague semantics, I mean any truth-conditional model-theoretic
approach to natural language in which STT is used as an intermediary language
to relate linguistic expressions to their set-theoretic denotations (e.g. Montague
1973, Partee 1986, Dowty et al. 2012). The basic architecture of this approach
can be visualized as follows:

(55)

natural language

STT expressions

denotations

translation

interpretation
wrt a model

As shown, the denotation of an expression is given by first translating it into an
expression of STT, and then interpreting this with respect to a model. Translation
is a mapping from natural language to the formal language of STT, whereas
interpretation with respect to a model M , written J · KM , can be thought of as a
mapping from linguistic to non-linguistic entities. There are three primary kinds of
rules: translation rules, which govern the mapping from linguistic expressions to
STT terms; syntax rules, which govern the formation of STT terms; and semantic
rules, which govern the interpretation of STT terms with respect to a model. The
basic goal of Montague semantics is to use the mapping illustrated in (55) to give a
general description of the conditions under which sentences are true or false.

An important feature of this kind of framework is that the model is allowed to
vary, the goal being to describe those aspects of meaning which remain invariant
under a change of model. As Dowty et al. (2012, p. 45) puts it:

The various choices of a model then are intended to represent the various
ways we might effect the fundamental mapping from basic expressions to
things in the world, while the fixed remainder represents the contribution
to semantic values (and in particular, to truth values of sentences) made
by the semantic theory itself.

One example of an aspect of meaning which survives a change of model are the
interpretations of logical words such as and, not, all, some, and so on; Montague
semantics is therefore ideally suited to studying this kind of vocabulary. On the
other hand, the interpretation of content words like dog, house, eat, see, and so
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on, does not survive a change of model, so Montague semantics has comparatively
little to say about them.

A key property of Montague semantics is compositionality: the meaning of a
complex expression is derived from the meaning of its parts and the way they are
syntactically combined. Syntactic combination is usually translated as function
application in STT. For example, suppose that the translation of John is John : e
and the translation of eats is eats : e → t (I use bold text to distinguish an
expression in natural language from its translation in STT). Then the translation
of John eats is eats(John) : t. The semantic rules ensure that the composition of
terms in STT is mirrored by the behaviour of denotations, so that, for instance,
Jeats(John)KM = JeatsKM(JJohnKM). Given this correspondence, we can draw
a compositional version of the diagram in (55) as follows:

(56)

syntactic combination

composition of STT expressions

composition of denotations

translation

interpretation
wrt a model

2.2.2 The syntax of STT
I shall now introduce the syntax of STT as a formal type system. It is by no means
necessary to set up STT in this manner (see Farmer 2008 for a simpler presentation);
however, familiarity with type rules is crucial for Dependent Type Theory, so they
are introduced here in preparation for Section 2.4. Moreover, since Dependent Type
Theory is an extension of STT, the rules introduced here will carry over into further
sections, albeit in a slightly modified form. A type system is set up by means of
basic sentences called judgements, which have the following structure:

(57) Γ ⊢ d

Γ stands for a typing environment or context, which is an ordered list of distinct
variables together with their types, of the form x1 : A1, . . . , xn : An; d stands for
some kind of declaration, the free variables of which must be drawn from Γ. To
set up STT, we need four basic kinds of judgement, which are distinguished by the
form of the declaration. These are listed below, together with an explanation
of their meaning:

(58) Γ ctx Γ is a well-formed context
Γ ⊢ A A is a well-formed type in Γ
Γ ⊢ x : A x is a term of type A in Γ
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Γ ⊢ x ≡ y : A x and y are definitionally equal terms of type A in Γ

Note that it is important to distinguish between definitional equality (written ≡)
which is used to describe computational behaviour, and propositional equality
(written =) which is a statement within the type system itself and has to be
established by means of proof. This distinction will be explained in greater
detail in Section 2.4.

Type rules are inference rules relating judgements. They assert that, given
a collection of judgements known to be valid, some other judgement follows. A
general type rule has the form:

(59) Γ1 ⊢ d1 . . . Γn ⊢ dn (extra conditions) (rule name)Γ ⊢ d

Γ1 ⊢ d1, . . . , Γn ⊢ dn are the premise judgements and Γ ⊢ d is the conclusion. To
get the process of inference off the ground, there is an axiom to the effect that
the empty context ∅ is a well-formed environment:

(60) (Empty Context)∅ ctx

Another fundamental rule states that, given a well-formed type A and a variable
symbol x not already in the current context, one can extend the context by
appending x : A

(61) Γ ⊢ A (x does not appear in Γ) (Extend Context)Γ, x : A ctx

There is also a trivial rule stating that, given a context containing the declaration
x : A, one can always conclude x : A

(62) Γ, x : A, Γ′ ctx (Memory)Γ, x : A, Γ′ ⊢ x : A

The final component needed is a collection of basic types. A basic type is auto-
matically well-formed in any context:

(63) Γ ctx (T ∈ Basic) (Basic Type Formation)Γ ⊢ T

For the purposes of natural language semantics, we need at least the basic types
e, for entities, and t, for truth values. For the purpose of exposition, I shall
make the minimal choice Basic := {e, t}. In more elaborate versions of Montague
semantics, one also encounters types for possible worlds, events, times, degrees,
and other semantic objects.

Having introduced some fundamental rules, which are sensible in any type
system, we can now proceed to set up STT. We begin by introducing function
types, the rules for which are given below:
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(64) Γ ⊢ A Γ ⊢ B (Function Formation)Γ ⊢ A → B

Γ, x : A ⊢ b : B (Function Introduction)Γ ⊢ (λx : A . b) : A → B

Γ ⊢ f : A → B Γ ⊢ x : A (Function Elimination)Γ ⊢ f(x) : B

Γ, x : A ⊢ b : B Γ ⊢ a : A (a is free for x in b) (Function Computation)Γ ⊢ (λx : A . b)(a) ≡ b[x := a] : B

Γ ⊢ f : A → B (x is not free in f) (Function Uniqueness)Γ ⊢ f ≡ (λx : A . f(x)) : A → B

As shown, given two types A and B, one can form the function type A → B. Terms
of A → B are introduced by λ-abstraction in the usual way. Given a term of type
A → B one can apply it to a term of type A to get a term of type B. The Function
Computation rule, also known as β-reduction, tells us how to compute the result of an
application: by substituting all occurrences of the bound variable with the argument
expression. Finally, function Uniqueness, also known as η-reduction, ensures that
lambda abstracting over the argument of a function yields the original function back.

In addition to function types, it is also useful to introduce product types or
ordered pairs. The rules for products are as follows:

(65) Γ ⊢ A Γ ⊢ B (Product Formation)Γ ⊢ A × B

Γ ⊢ a : A Γ ⊢ b : B (Product Introduction)Γ ⊢ (a, b) : A × B

Γ ⊢ p : A × B (Product Elimination 1)Γ ⊢ π1(p) : A

Γ ⊢ p : A × B (Product Elimination 2)Γ ⊢ π2(p) : B

Γ ⊢ a : A Γ ⊢ b : B (Product Computation 1)Γ ⊢ π1(a, b) ≡ a : A

Γ ⊢ a : A Γ ⊢ b : B (Product Computation 2)Γ ⊢ π2(a, b) ≡ b : B

Γ ⊢ p : A × B (Product Uniqueness)Γ ⊢ p ≡ (π1(p), π2(p)) : A × B

As shown, given two types A and B, we can form the type A × B. Terms of A × B
are ordered pairs of the form (a, b), where a : A and b : B. Given an element of
A × B, we can project out the first component to get a term of type A, or the
second component to get a term of type B. The computation rules ensure that
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the first projection of a pair (a, b) is the element a, and the second projection is
the element b. The Product Uniqueness rule ensures that pairing together the first
and second projections recovers the original pair.

It is useful for many purposes to introduce a unit type, which I shall write as
⊤. The unit type contains a single unique element, written ∗ : ⊤, which may
be introduced in any context:

(66) Γ ctx (Unit Formation)Γ ⊢ ⊤

Γ ctx (Unit Introduction)Γ ⊢ ∗ : ⊤

Γ ⊢ v : ⊤ (Unit Uniqueness)Γ ⊢ v ≡ ∗ : ⊤
The Unit Uniqueness rule ensures that ∗ : ⊤ is unique by requiring that any other
term v : ⊤ is equal to it. The unit type plays a special role because given some other
type A, there is a one-to-one correspondence between terms of A and functions
⊤ → A. For example, the type t has two elements, true and false, so there are
exactly two functions of type ⊤ → t: the function which sends ∗ to true, and
the function which sends ∗ to false.

2.2.3 The semantics of STT
Thus far, I have presented a very general type system which could be applied to
many different natural languages. For a version of STT which can be used in
the analysis of a particular language, e.g. English, we need what is known as a
signature or vocabulary. An STT signature is a pair Σ = (S, Type), where S is a
collection of symbols, and Type is a function assigning each symbol in S to an STT
type. The symbols in S form the primitive constants of the type theory which are
used to build larger terms. For example, Figure 2.1 shows an SST signature for a
fragment of English, where I have indicated the type of each symbol by placing
it on an arrow (for example, the symbol Sally lies on an arrow from ⊤ to e, so
it has type ⊤ → e). Different word classes are associated with different logical
types: proper names have type ⊤ → e; nouns, adjectives and intransitive verbs
have type e → t; transitive verbs have type e × e → t; quantificational determiners
have type (e → t) → (e → t) → t, and so on. Some of the symbols in the signature,
such as ∧, ∨, ∃, ∀, ¬, and so on, have standard definitions in terms of lambda
abstraction, function application, and equality.

STT is an interpreted language, whose semantics is given with reference to a
background set theory. We begin by assigning an interpretation to the constants in
the signature through a choice of model. Given an STT signature Σ = (S, Type),
a model for Σ is a pair M = (Dα, I), where:

(67) • Dα is a family of domains (sets) for every type α, such that
– Dt is the set of Booleans {0, 1}
– D⊤ is the singleton set {∗}
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– DA→B is the set of total functions from DA to DB

– DA×B is the Cartesian product of DA and DB

• I is a function sending every symbol s ∈ S to an element of DT ype(s)

Note that the only degree of freedom remaining for Dα is the choice of the domain
of entities De: every other domain is then fixed by the rules.

e

⊤

e → t

t

e × e

(e → t) → (e → t)

t × t

JohnMarySally

the

person

hungry

swims

jogs

likes hatesknows

someone

nobody

∃

no

∀
most

∨

∧

¬

Figure 2.1: An STT signature for a fragment of English.

In order to interpret arbitrary terms, we need to be able to interpret not only
the constants given by the signature but also variables. Given a model M = (Dα, I),
a variable assignment into M is a function φ, mapping every variable x : A to
an element in DA. Once we have a model and a variable assignment, we can
interpret any term in the type system built on the signature. The interpretation
function J · KM,φ is defined in (68):
(68) Given a model M = (Dα, I) and a variable assignment φ, an arbitrary term

t is interpreted as follows:

• If t is a constant, then J t KM,φ = I(t)
• If t is a variable then J t KM,φ = φ(t)
• If t is of the form f(x) then J t KM,φ = J f KM,φ(J a KM,φ)
• If t is of the form (λx : A . b), where b : B, then J t KM,φ is the function

f ∈ DA→B given by f(a) = J b KM,φ′ , where φ′ is like φ but with the
additional assignment x 7→ a
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• If t is of the form (a, b) then J t KM,φ = (J a KM,φ, J b KM,φ)

Roughly speaking, interpretation can be thought of as a map sending every type
to a set, and every term to a function between sets, in a way which preserves the
behaviour of function types and product types.

As mentioned, the goal of Montague semantics is to give a general account of
the truth conditions of natural language sentences. This is now automatic from the
way the theory is set up. A sentence S : t is true with respect to a model M iff
JSKM,φ = 1. For example, the sentence John doesn’t swim is true with respect to M
iff JJohn doesn’t swimKM,φ = JnotKM,φ(JswimsKM,φ(JJohnKM,φ)) = 1. Along
with an account of truth, model-theoretic semantics also provides an concept of
entailment. A sentence S1 entails a sentence S2 iff there is no model M in which
JS1KM = 1 but JS2KM = 0. For example, John is a hungry person entails John is
a person because in every model M where JJohn is a hungry personKM = 1, it
is also the case that JJohn is a personKM = 1. A logical tautology is a sentence
which is interpreted as 1 under every model.
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2.3 Limitations of semantics with STT
The theory described in the previous section, together with modest extensions, has
formed the basis for a great deal of work in semantics. It has been particularly
successful at studying ‘logical’ aspects of language such as generalized quantifiers
(Montague 1973, Barwise & Cooper 1981), negative polarity (Ladusaw 1980),
plurals and mass terms (Link 1980, Carlson 1977), modality and conditionals, and
gradability (Cresswell 1976). Because of the success of Montague-style semantics,
any proposal which radically alters it requires a thorough justification. This section
will examine various shortcomings with a semantics based on STT, focusing on
those which motivate the introduction of Dependent Type Theory. Some of these
limitations are well-known and already have established solutions; I argue that
Dependent Type Theory is to be preferred over the existing solutions.

2.3.1 Proofs are not first-class objects
From the perspective of this thesis, the most important limitation of STT is that it
does not implement proofs directly as elements of the type system. (More accurately,
it does not implement proofs in predicate logic.) Proofs appear in lexical semantics
as the arrows linking together the different senses in a lexical network. For example,
recall the simple lexical network discussed by Jackendoff (2002, p. 353), consisting
of three different senses of the verb climb:

(69) climbrise, clamber rising and clambering, e.g. the man climbed the tree
climbrise rising only, e.g. the snake climbed the tree
climbclamber clambering only, e.g. the monkey climbed down the tree

The three senses form the simple network shown below:

(70)

climbrise, clamber

climbclamberclimbrise

The arrows can be thought of as proofs of universal statements. The arrow from
climbrise, clamber to climbrise represents the proof that any instance of rising and
clambering is also an instance of rising (by dropping the clambering component);
and likewise the arrow from climbrise, clamber to climbclambering represents the proof
that any instance of rising and clambering is an instance of clambering (by dropping
the rising component).

How might a network like (70) be implemented in STT? One possibility would be
a decompositional approach. Instead of introducing climbrise, clamber, climbrise and
climbclamber as basic predicates, one would instead define them in terms of simpler
predicates. A potential decomposition is given below (assuming a neo-Davidsonian
event semantics in which the type of events is added to the set of basic types):
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(71) climb rise
clamber

:= λx.λe.rising(e) ∧ theme(e, x) ∧ clambering(e) ∧ agent(e, x)

climbrise := λx.λe.rising(e) ∧ theme(e, x)
climbclamber := λx.λe.rising(e) ∧ theme(e, x)

Given these definitions, one can prove that, for all x and e, climbrise, clamber(x)(e)
entails climbrise(x)(e), and climbrise, clamber(x)(e) entails climbclamber(x)(e). How-
ever, this proof takes place entirely within the metalanguage of judgments, by
chaining together inference rules; there is no way to ‘internalise’ the proof as a
term of the type system itself.

Because proofs are not the kinds of things which can be taken and returned by
functions, it is not possible to implement a compositional theory of lexical networks
in STT. That is, it is not possible to implement a function which takes the network
in (70) and returns a new network, mapping both senses and arrows, as follows:

(72) climbrise, clamber

climbrise

climbclamber

[climb quickly]rise, clamber

[climb quickly]rise

[climb quickly]clamber

quickly

Instead, the best that we can do is operate on each sense individually, and then verify
that the entailments still hold following composition by means of some post-hoc
inference procedure, which we might visualize as follows:

(73) climbrise, clamber

climbrise

climbclamber

[climb quickly]rise, clamber

[climb quickly]rise

[climb quickly]clamber

quickly

[climb quickly]rise, clamber

[climb quickly]rise

[climb quickly]clamber

(inference)

Assuming that the arrows in lexical networks instantiate useful information, a theory
in which entailments are lifted automatically, as in (72), is preferable to one in which
they are ‘reconstructed’ following composition, as in (73), because proof discovery
is difficult to automate and the proofs required can often be quite complicated.

An alternative strategy for formulating the climb network in Montague semantics
would be to make use of meaning postulates (Carnap 1952, Montague 1973). Meaning
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postulates are axioms which are provided alongside a signature Σ; the class of possible
models for Σ is then restricted to those models which satisfy the axioms. In the
case of the climb network, instead of decomposing the predicates climbrise, clamber,
climbrise and climbclamber as in (71), one would simply stipulate the relationship
between them by introducing the following two axioms:

(74) ∀x . ∀e . climbrise, clamber(x)(e) ⇒ climbrise(x)(e)
∀x . ∀e . climbrise, clamber(x)(s) ⇒ climbclamber(x)(s)

Any model would be required to satisfy these two axioms by insisting that:

(75) J∀x . ∀e . climbrise, clamber(x)(e) ⇒ climbrise(x)(e)KM,φ = 1
J∀x . ∀e . climbrise, clamber(x)(s) ⇒ climbclamber(x)(s)KM,φ = 1

for any M and φ. One could view these two meaning postulates in (74) as in some
sense implementing the two arrows in the climb network.

Like proofs, meaning postulates are not the kind of things which can be taken
and returned by functions, so it is difficult to make them compositional. There
is a sense in which meaning postulates can be made compositional by adding
additional postulates. For example, we could try to describe the lifting property
of quickly via the following postulate:

(76) ∀V, W . ∀x . ∀e .
(V (x)(e) ⇒ W (x)(e)) ⇒
(V (x)(e) ∧ quickly(e) ⇒ W (x)(e) ∧ quickly(e))

which states that, for all intransitive verbs V, W , if V entails W , then the intersection
of V with quickly entails the intersection of W with quickly. I see two issues with
such an approach. The first is that it requires a vast number of meaning postulates:
one for every word capable of acting on an implicational network. The second is
that it is not very explanatory: it does not tell us why intersection of two event
predicates with quickly should preserve an arrow connecting them, but simply
stipulates that this is the case. It is difficult to see how a rule like this could be
discovered by a learner without being told it explicitly.

One could try to solve both of these problems simultaneously by replacing
specific postulates like (76), which pertain to individual words, with more general
postulates like ‘intersection preserves implication’, which apply in a wide variety of
situations. However, then we would have to reason from the fact that quickly is
an intersective predicate to the fact that it preserves implication, which is a more
complicated process. The issue is that the more general meaning postulates become,
the more they begin to resemble abstract rules of inference, and we are back with
the problem of how to design an effective inference engine. A similar point is made
by Jackendoff (1989) in relation to the following inference:

(77) a. x killed y ⇒ y died

As Jackendoff points out, a system of meaning postulates must either explain
this via a unique postulate, in which case it misses the common generalization
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‘x caused E to occur ⇒ E occurred’ – or else it must encode this generalization
itself as a meaning postulate, combined with a causal decomposition of the verb
kill. In the latter case, there is little difference between applying a meaning
postulate and discovering a proof.

To summarize, STT is not well-suited to describing a compositional theory of
lexical networks. The basic problem is that it does not treat the arrows which link
senses together as first-class objects which can be taken and returned by functions.
As we shall see, Dependent Type Theory does treat proofs as first-class objects,
allowing for a compositional theory of lexical networks with no need for either
ad hoc rules or background inference.

2.3.2 Selectional restrictions
Another limitation of a semantics based on STT is describing the selectional
restrictions which predicates place on their arguments. For example, consider the
colour adjective red. In its basic non-metaphorical sense, red can only apply to
a concrete physical object which is capable of having a colour. Hence red ball
and red dog are fine, but ?red meeting and ?red idea are unacceptable. Similar
kinds of restrictions apply to spatial adjectives, which are the subject of the next
chapter. For example, the dimensional sense of the adjective deep requires a hollow
object with an opening and an internal axis. Hence, deep cup and deep cupboard
are acceptable, but ?deep stick and ?deep slab are not acceptable – rather, they
trigger a different, ‘positional’ sense of deep. The same phenomenon occurs in
verbs: for example, the verb walk generally requires an animate subject – a person
or a dog can walk but not a car or a desk.

These kinds of restrictions are a problem for ordinary Montague semantics,
where adjectives and verbs are generally assigned types like e → t, which apply to
all individuals. One potential solution is to preserve uniform types for adjectives
and verbs, but treat anomalous combinations as contradictory. On this account,
sentences like X is a red idea or the car walked down the road would be inherently
false because they involve contradictory predicates. However, this fails to capture the
intuitive distinction between nonsense sentences and sentences which are perfectly
meaningful but false. A meaningful but false sentence like Berlin is the capital
of France makes a clear claim about the world which happens not to be the case.
A nonsense sentence like ?Beauty is a red idea fails to be true or false because
it is not clear what it is claiming. It involves a kind of presupposition failure,
the presupposition in this case being that ideas are the kinds of things which
can have colours.

A better technique for dealing with selectional restrictions within STT is to
encode them using the types themselves, by greatly expanding the number of basic
types. The most developed system along these lines is that proposed by Asher
(2011). Asher extends STT by the introduction of a subtype relation between types,
which involves a new kind of judgement:

(78) Γ ⊢ A < B A is a subtype of B in Γ
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The basic idea is that every value described by A is also described by B in a unique
way, so any term of type A can be safely used by a procedure expecting a term of
type B. Asher implements this behaviour through the following rules:

(79) Γ ⊢ a : A Γ ⊢ A < B (Subsumption)Γ ⊢ a : B

Γ ⊢ A′ < A Γ ⊢ B < B′
(Function Subtypes)

A → B < A′ → B′

Having introduced the subtype relation, Asher then introduces many additional basic
types, all of which are subtypes of e. Examples include physical object, animal,
information, event, institution. The extended selection of basic types is
used to represent the selectional restrictions of predicates. For example, heavy
is assigned type physical object → t as it selects a physical object, whereas
interesting is assigned type information → t as it selects an informational object.
The Subsumption rule ensures that an entity belonging to a specific type can be
described by a predicate on a more general type. For example, a member of animal
can be described as heavy, because animal is a subtype of physical object.

One problem with Asher’s system which arises due to the structure of STT is a
loss of type uniformity. For example, there can be no general type of intersective
adjectives (the analogue of Montague’s e → t) because two intersective adjectives
will in general have different selectional restrictions. Similarly, there is no unified
type of intransitive verbs, transitive verbs, gradable adjectives, and so on. Type
uniformity is important because one often needs to write functions which can take
elements with distinct selectional restrictions. For example, a tense morpheme like
-ed takes an arbitrary verb meaning, and the degree morpheme more/-er takes an
arbitrary gradable adjective. In Dependent Type Theory, this problem does not arise
because one can write functions which are parametric in the selectional restrictions
of predicates. However, this requires constructions such as type universes and the
dependent product, which are not available in STT.

Another issue with Asher’s system is that it appears to duplicate the information
which is already available in predicates. Asher introduces types like animal,
information, person, and so on, which are also encoded by nouns animal,
information, person, with no explanation of the connection between the two, other
than a stipulation that any noun meaning can give rise to a basic type. Ideally, one
would like to avoid this duplication by either identifying noun denotations with
types, or somehow deriving types like animal, information and person from
their corresponding noun denotations. However, neither of these two options will
work in STT because there is no mechanism for relating predicates and types.

In the literature on Montague semantics, one sometimes sees the following
kind of notation:

(80) λx : e | P (x)

to indicate a partial function which is defined only for those individuals which satisfy
the predicate P . For example, Kennedy (2007, p. 14) proposes that combinations
of the form ‘Adj for a NP’, e.g. expensive for a Honda, should be analysed as
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partial functions from e → d (where d is the type of degrees) whose domain is
restricted by the NP denotation:

(81) λx : e | honda(x) . expensive(x)

One can imagine implementing the selectional restrictions of adjectives and verbs
along similar lines. For example, the adjective red might be translated as the
following partial function from e → t:

(82) λx : e | has-colour(x) . red(x)

ensuring that the predicate red is only applied to individuals satisfying the condition
has-colour. In STT, it is not immediately clear how an expression like (82) should
be typed, or what its semantics ought to be, since STT only allows for total functions.
In Dependent Type Theory, on the other hand, this kind of notation makes perfect
sense, and we can think of ‘e | has-colour(x)’ as a type, namely the type of all
entities which satisfy has-colour. A partial function from e → t is simply a total
function whose domain is some restricted subtype of e. The more standard notation
for e | has-colour(x) in Dependent Type Theory is:

(83)
∑
x:e

has-colour(x)

This is an example of a dependent product type, which is explained in Section 2.4.2.

2.3.3 Dynamic interpretation
Another limitation of traditional Montague semantics which motivates the intro-
duction of Dependent Type Theory is the well-known problem of binding without
c-command. Consider the following example:

(84) Jane owns a cat. It is grey.

The pronoun of it in the second sentence should be co-referential with the entity
Jane’s cat, which was introduced by the first sentence. This causes a problem for
traditional Montague semantics, where the expression a cat is not translated as a
referential expression, but rather as an existential quantifier. (This analysis seems
to be forced upon us by sentences like Jane does not own a cat, which do not permit
subsequent reference to Jane’s cat.) Theoretical approaches aimed at solving this
problem go under the heading of dynamic semantics. They share the feature that
interpreting a sequence of sentences involves the growth of information in time,
with each new sentence providing additional information. Certain indefinite noun
phrases can introduce discourse referents into the context.

Approaches to dynamic semantics fall into two major groups. On the one
hand there are frameworks like Discourse Representation Theory (Kamp 1980)
where the primary objects of interpretation are discourses or narratives. On this
view, it is an entire discourse which has truth conditions, the role of an individual
sentence being to prompt the hearer to modify their representation of the discourse.
This necessitates a radical revision of the meaning language, which becomes a
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language of discourse contexts. On the other hand, there are approaches like
Dynamic Predicate Logic (Groenendijk & Stokhof 1991), where the syntax of the
meaning language is much closer to that of Montague semantics, but sentences are
analysed as denoting relations between information states, modelled as variable
assignments. The Dependent Type Theory approach to dynamic semantics is
more similar to the approach of Discourse Representation Theory: contexts are
modelled as syntactic objects which get updated by sentences. However, it is also
different from both approaches in that the meaning language is not interpreted
in some further set-theoretic model.

The advantage of the Dependent Type Theory approach to dynamic semantics
is that there is no need to introduce anything into the theory beyond what is
fundamentally available. As many authors have noted (e.g. Sundholm 1989, Ranta
1994, Boldini 2000, Chatzikyriakidis & Luo 2014), the basic ideas of dynamic
semantics are already latent within type theory itself. As we saw in Section 2.2.2,
terms in type theory are not formed in a vacuum, but depend on variables of
particular types. The collection of variables in use at any one time, together with
their associated types, forms the context Γ. The form of a variable may depend
on that of a variable introduced earlier. In Dependent Type Theory, not only the
form but also the type of a variable can depend on a previously introduced variable.
This means that contexts to be used to represent information states of a discourse
or narrative. For example, consider the following small story:

(85) A woman owns a cat. She loves it very much. One day, she returns from
work and the cat is missing. She searches a nearby field and finds it. It is
stuck in a fence.

In a type theoretic approach to dynamic semantics (e.g. Ranta 1994), this can
be represented by one long context, as follows:

(86) x1 : e, x2 : e, x3 : Woman(x1), x4 : Cat(x2), x5 : Loves(x1, x2), x7 :
Returns(x1), x8 : Missing(x2), x9 : Searches-For(x1, x2), . . .

Notice how the dependence structure of the context mirrors that of the narrative.
Variables introduced earlier, such as the woman and the cat, are used to form the
types of variables introduced later. Facts and situations, such as the fact that x1 is
a woman, or the event of x1 searching for x2, are also assigned labels and can be
referred to later in the discourse. Note that (86) does not make sense in STT because
it includes types like Woman(x1) and Loves(x1, x2) which depend on terms.

In addition to its inherent treatment of contexts, Dependent Type Theory
automatically implements the idea that existential quantification introduces a new
referent. In fact, this was the original motivation for type theoretic semantics
(Sundholm 1989). Consider the following version of the famous ‘Donkey sentence’:

(87) If John owns a Donkey then he beats it.

This causes a problem for traditional Montague semantics because the standard
translation of a Donkey as an existential quantifier leaves the variable it unbound:
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(88) ∃x[donkey(x) ∧ owns(John, x)] ⇒ beats(John, x)

Moreover, trying to widen the scope of the quantifier to incorporate the unbound
x results in an incorrect translation:

(89) ∃x[donkey(x) ∧ owns(John, x) ⇒ beats(John, x)]

which is satisfied by substituting any non-donkey object for x. In Dependent
Type Theory, a proposition is represented by a type whose terms are proofs of the
proposition. Giving a proof that John owns a donkey means exhibiting an individual
which is both a donkey and is owned by John. This is expressed by the following type:

(90)
∑
x:e

(donkey(x) × owns(John, x))

As the notation suggests, this type plays a similar role to the expression ∃x[donkey(x)
∧ owns(John, x)]. However, a crucial difference is that, given a term of this type,
we can access the individual x using the first projection π1. This allows us to write
a type corresponding to the entire sentence, which is given below:

(91)
∏

z :
(∑

x:e
(donkey(x) × owns(John, x))

)
beats(John, π1(z))

A term of this type is a function which takes a proof that John has a donkey and
returns a proof that he beats it. This is a well-formed version of the non-well-formed
formula in (88). Other dynamic frameworks also provide an analysis of Donkey
sentences, but the Dependent Type Theory solution is particularly natural as it
follows automatically from the introduction of the Π and Σ constructions. As
Sundholm puts it:

In this manner, the type-theoretic abstractions suffice to solve the
problem of the pronomial back-reference in [Donkey sentences]. It
should be noted that there is nothing ad hoc about the treatment, since
all the notions used have been introduced for mathematical reasons in
complete independence of the problem posed by [Donkey sentences].
(1989, p. 503)

The meaning of the Π and Σ symbols is explained further in the next section.
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2.4 Introduction to Dependent Type Theory

2.4.1 Propositions as types
The starting point for Dependent Type Theory (DTT) is a precise analogy between
the behaviour of types and the behaviour of propositions. I shall begin by introducing
this correspondence in the context of STT. Recall the product construction given in
Section 2.2.2, which given any two types A and B allows us to form a new type A×B.
We can deconstruct an element of A × B by projecting out the first component to
get an element of A, or the second component to get an element of B. Now consider
the standard natural deduction rules for logical conjunction, given below:

(92) A B (Conjunction Introduction)
A ∧ B

A ∧ B (Conjunction Elimination 1)
A

A ∧ B (Conjunction Elimination 2)
B

Notice how these exactly parallel the rules Product Introduction, Product Elim-
ination 1 and Product Elimination 2 given in Section 2.2.2. We are led to the
conclusion that logical conjunction behaves in exactly the same way as the product:
if we think of the two propositions A and B as types, then the proposition A ∧ B
corresponds to the type A × B. In a similar way, the proposition A ⇒ B (‘A
implies B’) corresponds to the function type A → B. Again, this can be easily
seen from the natural deduction rules for implication: Implication Introduction
corresponds to lambda abstraction and Modus Ponens corresponds to applying
a function to an argument.

As my notation suggests, the type-theoretic analog of the true proposition
is the unit type ⊤. To complete the correspondence between type theory and
propositional logic, we need constructions corresponding to the false proposition,
logical disjunction, and negation. The analogue of the false proposition is the empty
type, which I shall write ⊥. It is defined by the rules:

(93) Γ ctx (Empty Formation)Γ ⊢ ⊥

Γ ⊢ A Γ ⊢ e : ⊥ (Empty Elimination)Γ ⊢ abortA(e) : A

Γ ⊢ e : ⊥ Γ ⊢ A Γ ⊢ x : A (Empty Uniqueness)Γ ⊢ abortA(e) ≡ x : A

As shown, given a term of ⊥, one can construct an arbitrary term x : A, where A is
any type. This is the analogue of the logical principle that the false proposition
implies every other proposition (the ‘Principle of Explosion’). As in logic, it is
impossible to construct a proof of ⊥, since there is no introduction rule.
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The type-theoretic analog of logical disjunction A ∨ B is the sum type A + B.
A term of type A + B is either a term of type A, tagged as ‘inl’, or a term of
type B, tagged as ‘inr’. The rules are given below1:

(94) Γ ⊢ A Γ ⊢ B (+ Formation)Γ ⊢ A + B

Γ ⊢ a : A Γ ⊢ B (+ Introduction 1)Γ ⊢ inl(a) : A + B

Γ ⊢ A Γ ⊢ b : B (+ Introduction 2)Γ ⊢ inr(b) : A + B

Γ ⊢ s : A + B Γ, x : A ⊢ c1 : C Γ, y : B ⊢ c2 : C (+ Elimination)
Γ ⊢

case s of inl(x) then c1

| inr(y) then c2

 : C

Γ ⊢ a : A Γ, x : A ⊢ c1 : C Γ, y : B ⊢ c2 : C (+ Computation 1)
Γ ⊢

case inl(a) of inl(x) then c1

| inr(y) then c2

≡ c1[x := a] : C

Γ ⊢ b : B Γ, x : A ⊢ c1 : C Γ, y : B ⊢ c2 : C (+ Computation 2)
Γ ⊢

case inr(b) of inl(x) then c1

| inr(y) then c2

≡ c1[y := b] : C

Γ ⊢ s : A + B Γ, h : A + B ⊢ c : C (+ Uniqueness)
Γ ⊢

case s of inl(x) then c[h := inl(x)]
| inr(y) then c[h := inr(y)]

≡ c[h := s] : C

As shown, a term a : A is included in the sum type as inl(a) : A + B, whereas a
term b : B is included in the sum type as inr(b) : A + B. The Sum Elimination
rule states that, to use a term of A + B, we should specify what should be done for
the two ways in which it could have been constructed. The notation I shall use for
this is a case expression with two branches, as shown in the rule. The computation
rules ensure that an element tagged with inl triggers the left branch of the case
expression, whereas an element tagged with inr triggers the right branch. Finally,
the Sum Uniqueness rule ensures that unpacking an element of A + B and then
packing this back into A + B is the same as not unpacking at all. The rules Sum
Introduction 1, Sum Introduction 2 and Sum Elimination are the type-theoretic
analogs of the rules of disjunction in logic.

If each proposition is really a type then how should we think about its terms?
The answer is the terms of a proposition P are proofs or guarantees that P is true.
Proving P corresponds to constructing a term p : P . A crucial point is that, before
a term of P has been constructed, P cannot be assigned a definite truth value.
The logic of type theory is therefore a constructive or intuitionistic logic. It lacks

1All the rules involving substitution have an additional ‘freeness’ requirement. For example,
to form the expression c1[x := a], a must be free for x in c1.
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the classical laws of Excluded Middle (P ∨ ¬P ) and Double Negation (¬¬P ⇒ P )
which are not valid from the point of view of a finite agent whose knowledge is
bounded by what they can prove. Instead, Excluded Middle and Double Negation
become theorems which hold only in certain domains. Intuitionistic logic therefore
applies to a broader range of situations than classical logic, just as geometry without
Euclid’s parallel postulate applies to a broader range of situations than Euclidean
geometry. In an intuitionistic logic, the negation of a proposition P is defined as:

(95) ¬P ≡ P ⇒ ⊥

That is, proving ¬P means showing that given a proof of P , one can derive a proof
of ⊥. Since there are no proofs of ⊥, it follows that P itself must not have any
proofs. This definition carries over into type theory, where it is written as:

(96) ¬P ≡ P → ⊥

In other words, an element of ¬P is a function from P to the empty type.
We have now informally described a complete correspondence between intuitionis-

tic propositional logic and STT, which is known as the Curry-Howard correspondence.
It is summarized in the following table:

(97) intuitionistic logic STT
a proposition A a type A

a proof of A a term x : A

conjunction A ∧ B product type A × B

disjunction A ∨ B sum type A + B

implication A ⇒ B function type A → B

true ⊤ the unit type ⊤
false ⊥ the empty type ⊥
negation ¬A the type A → ⊥

Note that we do not yet have a fully fledged predicate logic, because we do not
have type-theoretic analogs of predicates and quantifiers: this is what is added
by DTT. It is worth pointing out that, although STT has its own internal logic
– intuitionistic propositional logic – this is not the kind of logic which is relevant
to traditional Montague semantics. Rather, Montague semantics uses STT to
implement the syntax of classical higher-order logic, whose semantics is then
given in model-theoretic terms.

If every proposition corresponds to a type, does every type correspond to a
proposition? In the original version of DTT described by Martin-Löf (1984), the
answer was yes: even types which represent sets have a propositional interpretation.
However, modern versions of DTT, such as Homotopy Type Theory (UFP 2013),
work with a more restricted notion of proposition, according to which a proposition
is a type with at most one inhabitant. The idea is that, given a proposition P ,
the important question is whether P is true (inhabited) or false (uninhabited):
we are not interested in keeping track of which particular proof of P is being
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used. This is in contrast to set-like types (e.g. e, t), where we care about which
element of the set we are working with. The collection of all propositions is denoted
Prop. The correspondence given in (97) should be thought of as holding when
A and B are elements of Prop.

2.4.2 Dependent types
The key innovation of DTT is that types are permitted to depend on terms. This
is achieved by blurring the distinction between terms and types, so that types
themselves belong to types. Every judgement of the form:

(98) Γ ⊢ A

meaning ‘A is a well-formed type in Γ’, is replaced by a typing judgement of the form:

(99) Γ ⊢ A : Typei

meaning ‘A belongs to the i-th level type universe’. All the types we have encountered
up to this point – including basic types like e, t and ⊤, as well as all function and
product types derived from them – are members of the 0th level type universe
Type0. Type0 is not a member of itself, which would be inconsistent: rather, it
belongs to the 1st level type universe Type1, which in turn belongs to Type2, and
so on in an infinite hierarchy. The rules for type universes are:

(100) Γ ctx (Universe Introduction)Γ ⊢ Typei : Typei+1

Γ ⊢ A : Typei (Cumulative Universes)Γ ⊢ A : Typei+1

Since the majority of types in this thesis belong to the 0th level I shall often refer
to this without a subscript, writing Type for Type0.

Unlike in STT, Types are allowed to depend on variables from the context. For
example, given a natural number n, we can set up the type Leq(n), whose terms are
the natural numbers less than or equal to n. This type would be written as follows:

(101) n : Nat ⊢ Leq(n) : Type

Each natural number gives rise to a distinct type: Leq(0), Leq(1), Leq(2), and
so forth. Dependent types can be used to represent predicates. For example,
the dependent type:

(102) n : Nat ⊢ IsEven(n) : Type

expresses the fact that n is an even number. Unlike Leq(n), which is set-like and
can have many distinct inhabitants, IsEven(n) is a proposition, meaning it is has
at most one inhabitant. Given some n, an element of IsEven(n) is a proof that
n is even: hence IsEven(0), IsEven(2) and IsEven(4) are inhabited, whereas
IsEven(1), IsEven(3) and IsEven(5) are uninhabited.
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Given a dependent type, there are two fundamental constructions: the dependent
sum and the dependent product. I shall introduce these constructions by presenting
an intuitive example, followed by the general rules. Consider the dependent type
n : Nat ⊢ Leq(n) : Type assinging to each n : Nat the type of numbers less than
or equal to n. The dependent sum, written

(103) ∑
n:Nat Leq(n)

consists of all pairs (n, m), where n : Nat and m : Leq(n). Notice that the type
of the second component depends on the value of the first component: 0 is paired
only with elements of Leq(0), 1 only with elements of Leq(1), 2 only with elements
of Leq(2), and so on. We can visualize the type ∑n:Nat Leq(n) as follows:

(104)

(0, 0) (1, 0)

(1, 1)

(2, 0)

(2, 1)

(2, 2)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

. . .

Notice the difference between this type and the product type Nat × Nat, in which
every natural number is paired with every other. The rules for the dependent
sum are given in (105):

(105) Γ ⊢ A : Typei Γ, x : A ⊢ B(x) : Typei (Σ Formation)Γ ⊢ ∑x:A B(x) : Typei

Γ ⊢ a : A Γ ⊢ b : B(a) (Σ Introduction)Γ ⊢ (a, b) : ∑x:A B

Γ ⊢ p : ∑x:A B(x) (Σ Elimination 1)Γ ⊢ π1(p) : A

Γ ⊢ p : ∑x:A B(x) (Σ Elimination 2)Γ ⊢ π2(p) : B(π1(p))

Γ ⊢ a : A Γ ⊢ b : B(a) (Σ Computation 1)Γ ⊢ π1(a, b) ≡ a : A

Γ ⊢ a : A Γ ⊢ b : B(a) (Σ Computation 2)Γ ⊢ π2(a, b) ≡ b : B(a)

Γ ⊢ p : ∑x:A B(x) (Σ Uniqueness)Γ ⊢ p ≡ (π1(p), π2(p)) : ∑x:A B(x)

As shown, terms of a dependent sum are introduced by pairing and eliminated
by projection, just like the ordinary product type, and are subject to similar

62



computation and uniqueness rules, the only difference being that the type of the
second component is allowed to depend on the value of the first. The ordinary
product can be defined as a version of dependent sum in which there is no
dependence, as follows:

(106) A × B := ∑
x:A B

In practice, I shall continue to write the ordinary product using ×, since this
notation is more intuitive.

The other fundamental operation on a dependent type is the dependent product.
Returning to our example of the dependent type n : Nat ⊢ Leq(n), the dependent
product is written:

(107) ∏
n:Nat Leq(n)

An element of this type is a function sending each natural number n to a number
in Leq(n). The range of the function is not fixed but varies depending on the
value of its input: 0 must be sent to a number in Leq(0), 1 to a number in Leq(1),
2 to a number in Leq(2), and so on. This is different to the ordinary function
type, where the range remains fixed across different input values. We can visualize
an element of ∏n:Nat Leq(n) as follows:

(108)

0 0

1

0

1

2

0

1

2

3

0

1

2

3

4

. . .

0 1 2 3 4 . . .

As indicated, each such function has one choice for where it sends 0, two choices
for where it sends 1, three choices for where it sends 2, and so forth. It should be
clear that there are far fewer elements of ∏n:Nat Leq(n) than of the function type
Nat → Nat, where there are an infinite number of choices for where to send each
natural number. The rules for the dependent product are:

(109) Γ ⊢ A : Typei Γ, x : A ⊢ B(x) : Typei (Π Formation)Γ ⊢ ∏x:A B(x) : Typei

Γ, x : A ⊢ b : B(x) (Π Introduction)Γ ⊢ (λx : A . b) : ∏x:A B(x)
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Γ ⊢ f : ∏x:A B(x) Γ ⊢ a : A (Π Elimination)Γ ⊢ f(a) : B(a)

Γ, x : A ⊢ b : B(x) Γ ⊢ a : A (Π Computation)Γ ⊢ (λx : A . b)(a) ≡ b[x := a] : B(a)

Γ ⊢ f : ∏x:A B(x) (Π Uniqueness)Γ ⊢ f ≡ (λx : A . f(x)) : ∏x:A B(x)

As shown, terms of a dependent product are introduced by lambda abstraction
and eliminated by application, in the same way as ordinary functions, and obey
analogous computation and uniqueness rules, the only difference being that the
range type can depend on the input value. The ordinary function type is a special
case of the dependent product, which can be defined as as follows:

(110) A → B ≡ ∏
a:A B

As before, I shall continue to use the symbol → to denote the ordinary function type.
When they operate on propositions, the dependent sum and dependent product

correspond to existential and universal quantification respectively. For an intuitive
sense of why this is the case, recall the predicate

(111) n : Nat ⊢ IsEven(n) : Type

where IsEven(n) expresses the proposition that n is an even number. Now consider
the proposition ‘there exists an even number’. In an intuitionistic logic, proving
an existential statement requires exhibiting an object which satisfies the relevant
property, so a proof of ‘there exists an even natural number’ must exhibit a natural
number n together with a proof that n is even. Such a proof is precisely a term of the
dependent sum type ∑n:Nat IsEven(n). Conversely, consider what it would mean
to have a term of the dependent product type ∏n:Nat IsEven(n). This would be a
function taking every natural number n to a proof that n is even. In other words, it
would constitute a proof of the universal statement ‘every natural number is even’.
Of course, there is no such proof, so the type ∏n:Nat IsEven(n) is uninhabited.
In contrast, the type ∏n:Nat IsEven(n) + IsOdd(n), representing the proposition
‘every natural number is even or odd’, is inhabited. (Its inhabitant is an inductive
proof that every natural number is either exactly divisible by 2 or divisible by 2
with remainder 1.) We can now extend the correspond between intuitionistic logic
and type theory to include predicates and quantifiers, as follows:

(112)

intuitionistic logic type theory

a predicate B(x) a dependent type x : A ⊢ B(x) : Type

existential quantification ∃x.B(x) dependent sum type ∑x:A B(x)

universal quantification ∀x.B(x) dependent product type ∏x:A B(x)
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2.4.3 Identity types
There is one important concept missing from the table in (112) which is needed to
have a fully-fledged logic, namely propositional equality. Given any two elements x
and y belonging to the same type A, we introduce an identity type, written x =A y,
which encodes the proposition that x and y are equal terms of type A. As mentioned
previously, this should not be confused with definitional equality x ≡ y : A, which
is an assertion that x and y are equal by definition, i.e. reduce to the same normal
form. The following rules for identity types will be relevant to this thesis:

(113) Γ ⊢ A : Typei Γ ⊢ x : A Γ ⊢ y : A (Identity Formation)Γ ⊢ x =A y : Typei

Γ ⊢ A : Typei Γ ⊢ x : A (Identity Introduction)Γ ⊢ reflx : x =A x

The introduction rule ensures that any term x : A can be considered trivially equal
to itself through the automatic introduction of a reflexivity term reflx : x =A x. It
follows from Identity Introduction that definitional equality implies propositional
equality, since if we have that x ≡ y : A, we can get a proof of x =A y by substitution.
The reverse does not hold: two terms can be propositionally equal without being
equal by definition. For the elimination and computation rules for identity types,
readers should consult the standard textbook on Homotopy Type Theory (UFP
2013, Section 1.12) which covers this topic at length.

Two facts about identity types will be of particular importance in this thesis.
The first is that, for any type A and elements x, y, z : A, there is a function of type:

(114) (x =A y) × (y =A z) → (x =A z)

which performs the concatenation of identity proofs. Given some p : x =A y and
q : y =A z, the concatenation is written p • q. Reflexivity proofs act as identities
with respect to concatenation, so that reflx •p = p• refly = p. The second important
fact is that identity proofs are automatically lifted by functions. For any function
f : A → B, there is an operation:

(115) apf : (x =A y) → (f(x) =B f(y))

which takes identities of elements in A to identities between their images in B.
Application of a function respects composition and reflexivity proofs. In other
words, we have that:

(116) apf (p • q) = apf (p) • apf (q)
apf (reflx) = reflf(x)

For definitions of concatenation and the ap operation, I again refer the reader to
the Homotopy Type Theory textbook, Sections 2.1 and 2.2.

We can use identity types to formally define what is meant by a proposition.
Recall that propositions are supposed to be those types with at most one element.
A type A is a proposition iff the following type is inhabited:
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(117) IsProp(A) := ∏
x:A

∏
y:A(x =A y)

That is, for every two terms x, y : A, there should be a proof that they are equal
(if A happens to be empty, then this is automatically satisfied). The type Prop
is then defined as a dependent sum over elements of a type universe:

(118) Prop := ∑
A:T ype IsProp(A)

Any type A can be ‘truncated’ to a proposition, written |A|, by forcing all of its
terms to be equal. |A| is inhabited if there is at least one term of type A, and
uninhabited otherwise. An important fact about propositional truncation is that if
B is a proposition and we have some function f : A → B, then we get an automatic
function |f | : |A| → B. In other words, any proposition which follows from an
element of A follows from the mere fact that A is inhabited. For more details on
the truncation operation, see UFP (2013, Section 3.7).

2.4.4 Useful notation
Before discussing what it means to do semantics in DTT, it is useful to adopt
some additional features for the purpose of clear and concise notation. A data type
which gathers together many different components, such as a discourse context,
generally necessitates a large sequence of Σ types. It is therefore convenient to adopt
an alternative notation for Σ types based on the syntax of records (e.g. Cooper
2005, 2012). Given a sequence of Σ types:

(119) ∑
x1:A

∑
x2:A2 . . .

∑
xn−1:An−1 An

I shall write this as follows:

(120)



x1 : A1

x2 : A2
...

xn−1 : An−1

An


where the highest label corresponds to the outermost summand. A term of this type:

(121) (a1, (a2, (. . . , (an−1, an)))) : ∑x1:A
∑

x2:A2 . . .
∑

xn−1:An−1 An

will instead be written as:

(122)



a1

a2
...

an−1

an


:



x1 : A1

x2 : A2
...

xn−1 : An−1

An
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As indicated, a dependent sum type is written in square brackets whereas a term
of a dependent sum types is written in parentheses. It is also convenient to define
projection functions which are more suited to this ‘flat’ structure. Given a term
a of type ∑x1:A

∑
x2:A2 . . .

∑
xn−1:An−1 An, I shall use the notation a.i to refer to

the i-th projection. This is defined in terms of the ordinary first and second
projection functions as follows:

(123) a.i :=


π1 ◦ . . . ◦ π2 ◦ π2 ◦ π2︸ ︷︷ ︸

n − 1 times

(a) if 1 ≤ i < n

. . . ◦ π2 ◦ π2 ◦ π2︸ ︷︷ ︸
n − 1 times

(a) if i = n

It is worth pointing out that, despite the similarity in notation, this is not intended
as an implementation of record types, as in Type Theory with Records (Cooper
2005, 2012), but simply as an alternative notation for Σ types. In a Σ type, the
label we choose for the summand is irrelevant: that is, ∑n:Nat Even(n) is the same
type as ∑x:Nat Even(x). This is not the case for genuine record types, where two
types with identical data but distinct labels are not considered equal.

Another feature which is useful from the point of view of notation is the ability
to locally define one expression for use in another, larger expression. This is known
as a let expression. I shall write

(124) let x := t1 in t2

to mean ‘substitute every occurrence of x in t2 with the result of evaluating
t1’. (Note that, like a lambda abstraction, the binding x := t1 is associated
with a particular scope and cannot be accessed outside of that scope.) To give
an example, the expression:

(125) let x := 2 ∗ 5 in x2 + x

reduces to 102 + 10 = 110. The motivation for let expressions is to avoid having to
write out the same expression multiple times. They are defined by the following rules:

(126) Γ ⊢ a : A Γ, x : A ⊢ b : B (Let Formation)Γ ⊢ (let x := a in b) : B

Γ ⊢ a : A Γ, x : A ⊢ b : B (Let Computation)Γ ⊢ (let x := a in b) ≡ b[x := a] : B

In other words, let expressions simply implement the meta-theoretic concept
of substitution.

When writing a term of a dependent sum type, it is frequently useful to bind
the first component to a variable which can then be used in writing the second
component. That is, one often needs to write something of the form:

(127) let x := a1 in
x

a2(x)
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This situation is so common that I shall abbreviate it by writing the binding
x := a1 inside the parentheses, as follows:

(128)
x := a1

a2(x)


This should be understood as simply an alternative notation for (127).
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2.5 Semantics with DTT

2.5.1 The basic setup
Like Montague semantics, DTT Semantics is concerned with giving an abstract
description of the truth conditions of sentences. However, its analysis of truth
conditions is quite different because of the richer structure of the type system.
Consider the sentence:

(129) All penguins live in Antarctica or South America.

In Montague semantics, the truth conditions of (129) are described by first trans-
lating it into a formula of STT, roughly as follows:

(130) ∀x . penguin(x) ⇒ lives-in(Antarctica)(x) ∨ lives-in(South America)(x)

One then considers the interpretation of (130) with respect to a model M , rep-
resenting a mapping from basic expressions to things in the world. The truth
conditions of the sentence are expressed in terms of the interpretation function. In
DTT semantics, on the other hand, a sentence like (129) is translated as a type:

(131) ∏
x:e penguin(x) → lives-in(Antarctica)(x)+lives-in(South America)(x)

Having made this translation, the truth conditions are completely fixed, without
reference to a further interpretation: the sentence is true iff there exists a term of type
(131), and false otherwise. In general terms, the difference between DTT Semantics
and Montague Semantics is that, instead of the type system functioning as an
intermediary for relating natural language and set theory, it becomes the end result
of the semantic derivation. Following Luo (2010), I use semantic brackets to indicate
the mapping from natural language to DTT, and refer to this as ‘interpretation’:

(132) natural language dependent type theory
J · K

Notice that, in this approach, we loose the distinction between translation and
interpretation, because DTT subsumes the role of both logic and set theory.

One might worry that by not invoking a model in which the type system is
interpreted, we are inappropriately fixing the truth of sentences. The job of semantics
is not to specify which sentences are true or false, but to give a general description
of the conditions under which sentences are true or false. In Montague semantics,
the use of an arbitrary model reflects the fact that neither speakers nor semanticists
have complete knowledge about the state of the world: one does not have access to
the set of all penguins and their locations, for example. In DTT Semantics, the locus
of this kind of uncertainty is the background context Γ. A proposition like (130) is
not judged as true or false simpliciter, but true or false in a particular context. Some
contexts entail (130), others entail ¬(130), and others do not entail either (130) or
¬(130). Because interpretation does not specify the background context in which a
proposition is asserted, it does not inappropriately fix the truth of sentences.

69



DTT Semantics is sometimes described as proof-theoretic, in contrast with
model-theoretic approaches. ‘Proof-theoretic’ refers to the idea that the meaning
of a proposition or logical connective should be described in terms of its overall
inferential role within the system of inference it inhabits (Dummett et al. 1991). For
example, from a proof-theoretic point of view, the meaning of the logical connective
‘and’ is given by its introduction and elimination rules, rather than by its set-theoretic
interpretation. The semantics of DTT itself can be viewed as proof-theoretic since
each of its constructions is exhaustively described in terms of inference rules without
dependence on a set-theoretic background. However, as Luo (2014) has pointed
out, when DTT is used for the purpose of natural language semantics, it plays
a role analogous to set theory, representing semantic entities such as individuals,
properties, sets, situations, and so on. The correct statement, therefore, is that
the semantics of DTT is proof-theoretic, whereas natural language semantics with
DTT is model-theoretic. I use the term ‘DTT Semantics’ to refer to the latter.

2.5.2 Common nouns
I now turn to the question of how different sorts of semantic objects should be
typed in DTT. A fundamental distinction in DTT Semantics is between approaches
in which common nouns are represented by predicates (e.g. Krahmer & Piwek 1999,
Bekki 2014, Tanaka et al. 2017), and those in which common nouns are represented
by types (e.g. Ranta 1994, Luo 2012, Chatzikyriakidis & Luo 2017b, 2020). In the
former approach, a noun like dog is interpreted as a function Ind → Prop (the
analog of Montague’s e → t) or alternatively Ind → Type; the sentence Rover
is a dog is interpreted as Dog(Rover); and the type of other semantic elements
such as adjectives, verbs, quantifiers, and so on, closely resembles their Montague
type. In the alternative approach, dog is interpreted as a type Dog; the sentence
Rover is a dog becomes the typing judgement Rover : Dog (or a proposition
encoding this judgement); and the types of adjectives, verbs, quantifiers and other
elements must be revised accordingly.

In this thesis, I shall adopt the more conservative position and interpret nouns
as predicates. Nevertheless, most of the central ideas of the thesis – including
implication networks and the automatic preservation of implication by composition
– are neutral with regard to this question and could equally be developed within a
‘Nouns as Types’ framework. One could argue that treating nouns as types is closer
to the spirit of DTT. Just as in mathematics, where a nuanced type theory does
away with general concepts like ‘number’ in favour of specific types like Nat, Int,
Bool, Real, and so on, so the Nouns as Types approach abolishes the indiscriminate
type of ‘entities’, replacing it with functionally meaningful distinctions like Person,
Animal, Institution, Information, etc. Moreover, a powerful feature of the Nouns
as Types approach is that it allows each noun to specify its own identity criteria.
Consider the following two sentences, discussed by Chatzikyriakidis & Luo (2017b):

(133) a. EasyJey has transported 1 million people in 2010.
b. EasyJet has transported 1 million passengers in 2010.
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(a) and (b) are not equivalent because where one and the same Person can count
as two different instances of Passenger on different journeys. In the Nouns as
Types framework, this is explained by the different identity criteria associated
with Person and Passenger.

However, the same features of the Nouns as Types approach which make it
powerful can also be difficult to work with in a decompositional setting. For example,
suppose one wants to give a decompositional analysis of a noun like dog. In the
Nouns as Types framework, this means defining a type Dog, together with its
identity conditions, i.e. what counts as a proof of x =Dog y. Presumably, Dog is
not a primitive type, but built from a complicated product of domains like shape,
size, colour, behaviour, relationship with humans, and so on. However, most of this
information is not relevant to the identity conditions: a dog’s shape, size, colour,
behaviour, and so on, can change throughout its life without it becoming a different
dog. It is very difficult to formulate appropriate identity conditions for dogs, or
indeed any other category, on the basis of a semantic decomposition. One is left
with the statement that two dogs are the same iff they are the same ‘underlying
individual’, but this assumes a general type of individuals, about which ‘dogness’ is
predicated, which is essentially equivalent to the nouns as predicates approach.

My assumption in this thesis will be that a common noun like dog is typed as

(134) JdogK : Ind → Type

that is, a function from individuals to types1. The reason for typing nouns as
Ind → Type rather than the more obvious choice Ind → Prop is that nouns carry
information: for instance, each dog has a certain shape, size, colour, behaviour,
etc. The information provided by nouns must be accessed by adjectives and verbs:
a large dog is a dog whose size is big, a black dog is a dog whose colour is black,
and so on. It follows from this that terms of JdogK(x), representing all the different
ways that x can be a dog, should not be collapsed into a single proposition. Note,
however, that although a proof of JdogK(x) carries a great deal of information,
this information is not relevant to the identity conditions for x, which are instead
determined by Ind. Given the noun meaning JdogK : Ind → Type, we can use
propositional truncation to derive the type of all dogs, as follows:

(135) Dog :=
x : Ind

|JdogK(x)|


As shown, an element of this type consists of an individual x, together with a proof
that JdogK(x) is inhabited. The identity conditions for this type are determined by
Ind, because all elements of |JdogK(x)| are identical. Notice that in this approach,
the type of all dogs is derived from the noun meaning JdogK, rather than these
being the same thing as in Chatzikyriakidis & Luo (2017b).

1Henceforth, I use Ind instead of e for the type of individuals, this being a more common
notation in DTT Semantics.
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2.5.3 Sentences
If types are not used to represent common noun meanings, then how should we
think of them? I shall follow the interpretation of types in authors such as Cooper
(2012) and Tanaka et al. (2017), where they are used to represent discourse contexts.
Contexts are already present on the meta-theoretic level, where they appear on the
left hand side of judgements, and there is a straightforward way to take any context
and represent it internally as a type. Given any context of the form:

(136) x1 : A1, x2 : A2(x1), . . . , xn : An(x1, x2, . . . , xn−1)

this is represented by the following dependent sum type:

(137)


x1 : A1

x2 : A2(x1)
. . .
xn : An(x1, x2, . . . , xn−1)


where the position of a variable in the dependent sum corresponds to its position in
the context. Like contexts, dependent types can also be ‘internalized’ where they
become functions into a type universe. Given a dependent type:

(138) x1 : A1, x2 : A2(x1), . . . , xn : An(x1, x2, . . . , xn−1)
⊢ B(x1, x2, . . . , xn) : Type

this is internalized as a function:

(139) B :


x1 : A1

x2 : A2(x1)
. . .
xn : An(x1, x2, . . . , xn−1)

→ Type

sending (x1, x2, . . . , xn) 7→ B(x1, x2, . . . , xn). We can think of the types A1, A2(x1),
. . . , An(x1, x2, . . . , xn−1) as presuppositions which must be satisfied in order for
the type B(x1, x2, . . . , xn) to be formed.

The representation of discourse contexts as types leads naturally to a type-
theoretic implementation of dynamic semantics in which the meaning of a sentence
is represented as an instruction for updating a context with new information. The
presuppositions of a sentence appear as conditions which the context must satisfy
prior to the update, whereas the assertion is the information added by the update
itself. I shall represent a context update by an element of the type:

(140) Update :=
P : Type

P → Prop


Terms of this type are pairs (P, A), where P is a type encoding the presuppositions
of the update, and A is a proposition dependent on P representing the assertion.
The dependence of A on P ensures that the assertion can only be formed provided
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its propositions are satisfied. Note that the presupposition type is a context (an
element of Type) because there can be many different situations which satisfy
it, whereas the assertion is a proposition (an element of Prop), because it is a
simple statement which is either true or false1. Update is similar to the type
used to represent context updates in some versions of Type Theory with Records
(e.g. Larsson 2015, Cooper 2016); it also resembles what is called a ‘preliminary
representation’ in Discourse Representation Theory (Kamp et al. 2011).

To give an example of a context update, consider the sentence John quit smoking.
Without going into the details of how the meaning of this sentence is derived
compositionally, we might interpret it as follows:

(141) JJohn quit smokingK : Update

JJohn quit smokingK =



P :=



t : Time

s : State

smoker(s)
theme(s, John)
holds-at(t, s)
past(t)


λp : P . ¬holds-at(now, p.2)


In other words, John quit smoking presupposes that there is some time in the past
at which the state of John smoking held, and asserts that it no longer holds at the
present time. If there is no time in the past at which John was a smoker, then
the assertion that he quit smoking cannot be formed.

One advantage of explicitly separating presupposed information from asserted
information is that it allows us to write functions which manipulate presuppositions
and assertions differently. For example, it is a well-known observation that
presuppositions project out of negative contexts, whereas assertions do not: John quit
smoking and John didn’t quit smoking have identical presuppositions, despite their
opposite assertions. This motivates the following analysis of the negative particle not:

(142) JnotK : Update → Update

JnotK := λU : Update .

U.1
λp : U.1 . ¬U.2(p)


As shown, not is a modifier of sentence meanings which takes a context update and
negates its assertion, leaving its presuppositions untouched. This has the intended

1Strictly speaking, the type Update ought to be indexed to a particular type universe:

Updatei :=
[

P : Typei

P → Propi

]

because the presupposition type may contain types belonging to universes higher than Type0. I
use the expression Update polymorphically to mean Updatei for any i.
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result that presuppositions project out of negated contexts. Other facts relating
to presupposition projection can be explained in a similar way.

Given a current context Ct : Type, and an update U : Update, one can try to
use U to update Ct with new information. The first step in the update procedure
is to find a function s : Ct → U.1, which shows how the current context satisfies
the presuppositions of the update. Assuming such a function can be found, one
then forms the updated context as follows:

(143) Ct+1 :=
c : Ct

U.2(s(c))


The updated context contains both the original context Ct together with the
assertion of U . The presuppositions of U which are needed to derive the assertion
are supplied by means of the function s. In general, there might be several different
choices of s, leading to multiple potential new contexts. If no supply function can
be found, then one can attempt to accommodate the information present in U ’s
presupposition type which cannot be supplied by the context. The context update
procedure is discussed in greater detail in Section 4.7.

2.5.4 Intersective adjectives
An intersective adjective like red or 10cm tall is the kind of thing which takes an
individual and returns a sentence meaning. It is therefore an element of the type:

(144) Ind → Update

The selectional restrictions of the adjective appear as the presuppositions of the
resulting update. For example, the adjective red would be interpreted roughly as fol-
lows:

(145) JredK : Ind → Update

JredK := λx : Ind .

P :=
c : Colour

has-colour(x, c)


λp : P . red′(p.1)


where Colour is some type of colour values, and red′ : Colour → Prop is a
predicate of colour values. In other words, JredK(x) presupposes that x has a certain
colour value, and asserts that this colour value can be described as red. If JredK is
applied to an individual which is incapable of having a colour, then the resulting
presupposition type will be empty and the update infelicitous.

The treatment of selectional restrictions as presuppositions contrasts with
approaches where they are treated as domain restrictions on predicates. For
example, in the Nouns as Types approach of Chatzikyriakidis & Luo (2017b),
intersective adjectives have type D → Prop, where D is the domain to which the
adjective can apply. Hence, JhappyK would be typed as Person → Prop, JheavyK
as Physical → Prop, JinterestingK as Information → Prop, and so on. One
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disadvantage of this approach is that there is no overall type for intersective adjec-
tives: different adjectives have different types reflecting their different selectional
restrictions. In order to write a function which applies to arbitrary intersective
adjectives, one needs to introduce a special type universe containing all the types
which can function as selectional restrictions (Chatzikyriakidis & Luo call this
cn); one then writes functions which are polymorphic over this universe. In my
approach, this solution is unnecessary because all intersective adjectives belong
to a unified type, namely Ind → Update.

Unlike in Montague semantics, I do not treat common nouns and intersective
adjectives as having the same type. This reflects their distinct syntactic behaviour:
for example, a quantificational determiner can apply to a noun (every boy) but not
to an adjective (*every red). Moreover, nouns do not have selectional restrictions
in the same way as adjectives: to say that something is red is to presuppose that
it has a colour, whereas to say that something is a dog carries no presuppositions.
Accordingly, nouns are functions from individuals to contexts (elements of Ind →
Type) whereas adjectives are functions from individuals to context updates (elements
of Ind → Update). This correlates with the distinction in philosophy between
sortal and non-sortal predicates.

Intersective adjective + noun composition is exactly analogous to the process of
updating a context with new information. It can be viewed as a kind of ‘local’ context
update in which the noun provides the background context and the adjective provides
the update. The result is an updated noun, that is a new element of Ind → Type.
To illustrate how this works, consider the adjective red, interpreted as shown in
(145), and the noun apple, which for the sake of example I shall represent as follows:

(146) JappleK : Ind → Type

JappleK := λx : Ind .



c : Colour

has-colour(x, c)
apple-colour(c)
s : Shape

has-shape(x, s)
apple-shape(s)
t : Taste

has-taste(x, t)
apple-taste(t)
. . .


where Colour, Shape, Taste are perceptual spaces representing possible colours,
shapes and tastes respectively. In order for red to combine with apple, it must be
possible to use the information provided by apple to supply the presuppositions
of red. In other words, there must be a function:

(147) s : ∏x:IndJappleK(x) → JredK(x).1

Given our assumptions, this is implemented as follows:
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(148) s := λx : Ind . λp :



c : Colour

has-colour(x, c)
apple-colour(c)
s : Shape

has-shape(x, s)
apple-shape(s)
t : Taste

has-taste(x, t)
apple-taste(t)
. . .



.
p.1

p.2



As shown, s simply projects out the first and second components of JappleK(x).
Given this supply function, the combination Jred appleK is defined as follows:

(149) Jred appleK : Ind → Type

Jred appleK = λx : Ind .

c : JappleK(x)
JredK(x).2(s(c))



= λx : Ind .



c :



c : Colour

has-colour(x, c)
apple-colour(c)
s : Shape

has-shape(x, s)
apple-shape(s)
t : Taste

has-taste(x, t)
apple-taste(t)
. . .


red′(c.1)


The first component of the combination contains all of the information associated
with the noun apple and the second component contains the assertion of red.
The presuppositions associated with red are supplied by applying the function
s to the first component.

To generalize from this example, given an arbitrary noun meaning N : Ind →
Type and intersective adjective meaning A : Ind → Update, the combination is given
by:

(150) AN := λx : Ind . Update(N(x), A(x))

where ‘Update’ refers to the context update procedure described in the previous
section. Implicit in this definition is the assumption that adjective + noun
composition involves a process of proof discovery. In general, we cannot assume
that the presuppositions required for the adjective are ‘just sitting there’ in the
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noun, since adjectives can have very specific and idiosyncratic restrictions. For
example, the adjectives thick and thin have unique selectional restrictions, requiring
a physical object which can be schematized as either a cylinder (thick stick) or
a surface (thick slab). The possibility of combining with thick/thin cannot be
immediately ascertained from a noun’s lexical representation. Rather, one must
first discover an appropriate ‘schematization’ which shows how an entity of that
type can be conceptualized as a cylinder or a surface.

The analysis of selectional restrictions as involving active proof discovery
contrasts with approaches where it is handled automatically by means of subtyping
(e.g. Luo 2012, Chatzikyriakidis & Luo 2017b). In the subtyping approach, the fact
that red apple is a valid combination is a consequence of the fact that JappleK is
a subtype of the domain type of JredK (i.e. the type of coloured objects). This
analysis predicts that a noun should always be compatible with an adjective in
a unique way, since a subtype is included in a supertype by means of a unique
coercion. However, this does not appear to be the case: for example, the expression
silver tree might refer either to the colour of the tree’s leaves, or to the colour of its
bark, suggesting the presence of two distinct coercions. This phenomenon is very
common in spatial adjectives: thick spoon might refer to the thickness of a spoon’s
handle, the thickness of its bowl, or some combination of the two. In the context
update approach to selectional restrictions, the possibility of a noun satisfying the
presuppositions of an adjective in more than one way is automatic.

As in discourse-level processing, adjective + noun composition can involve
accommodation. For example, consider the combination tall stick. The adjective
tall requires an axis which is either vertical in the environment or can be somehow
conceptualized as vertical (e.g. in the object’s canonical orientation). Neither of
these conditions is provided by stick, which does not contain orientation information
in its lexical entry. However, it is possible to modify the meaning of stick by
adding the concept of verticality without inconsistency, leading to the concept
of a stick which is pointing upwards, or which is canonically pointing upwards.
The modified noun meaning can then be felicitously combined with the adjective
tall in the normal way.

2.5.5 Determiners
This thesis will not have a great deal to say about determiners; nevertheless I
include them here for the sake of completeness. In Montague semantics, the
standard type of quantificational determiners like all, some, most, exactly four, etc.,
is (e → t) → (e → t) → t, that is a relation between sets of entities (Montague
1973, Barwise & Cooper 1981). Quantified noun phrases like every student or most
apples then become generalized quantifiers, that is elements of (e → t) → t. In
DTT Semantics, the appropriate type for quantifiers depends on one’s assumptions
about how nouns and properties are typed. Given that we are representing nouns
as elements of Ind → Type and properties as elements of Ind → Update, the
appropriate type for a quantificational determiner is:

(151) (Ind → Type) → (Ind → Update) → Update
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that is, a function from nouns and properties to sentence meanings. A quantified
noun phrase like all students will therefore have type (Ind → Update) → Update.

To give an example, the determiner all can be implemented as follows:

(152) JallK : (Ind → Type) → (Ind → Update) → Update

JallK := λN : Ind → Type .

λP : Ind → Update .C := ∏
x:Ind N(x) → P(x).1

λc : C .
∏

x:Ind

∏
n:N(x) P(x).2(c(x)(n))


Notice how all involves two universal propositions: one as a presupposition and
one as an assertion. The presupposition is that every individual which satisfies
the noun argument also satisfies the presuppositions of the property argument.
This is needed to explain the difference between:

(153) a. All apples are red.
b. ? All meetings are red.

Sentence (a) is felicitous, albeit false, because the presupposition that every apple
has a colour is satisfied, whereas sentence (b) is infelicitous since (in most contexts)
it is not clear what it means for a meeting to have a colour.

Determiners like all, some and no, which do not make explicit reference to
the size of collections, can be easily implemented in DTT. Things become more
complicated with determiners like most, at least 2, exactly 12, and so forth, which
require explicit reference to cardinality. The ease with which these are formalized
in Montague semantics has to do with its set-theoretic background. In DTT, one
does not know ahead of time what all the elements of a type are: they have to be
explicitly constructed. The only way to know that a type has a certain cardinality is
by constructing a bijection between it and a type of known cardinality. For instance,
one knows that a type has a cardinality of 3 if one can construct a bijection between
it and a special three-element type 3. For a formalization of numerosity-dependent
generalized quantifiers in terms of bijections, see Tanaka (2014).

When it comes to articles such as the and a/an, I shall assume that these can
also be treated as quantificational determiners. I adopt an approach to the definite
article in which existence appears as a presupposition:

(154) JtheK : (Ind → Type) → (Ind → Update) → Update

JtheK := λN : Ind → Type .

λP : Ind → Update .
C :=


x : Ind

N(x)
P(x).1


λc : C . P(c.1).2(c.3)
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As shown, JtheK presupposes (i) the existence of an individual x, (ii) that x
satisfies the noun argument N, and (iii) that x satisfies the presupposition of
the property argument P. Given these presuppositions, the assertion is that x
satisfies the assertion of P1.

Table 2.4 summarizes the correspondence between semantic categories and types
which I shall assume for the remainder of the thesis. In the next chapter, this table
will be updated to include positive and negative gradable adjectives. In making these
choices, I have been guided by the principle, carried over from Montague semantics,
that semantic types should reflect syntactic behaviour. Hence syntactically relevant
categories like ‘intersective adjective’ and ‘quantificational determiner’ correspond
to unified types. Nuances such as the different selectional restrictions of intersective
adjectives or the distinct presuppositions of different determiners are not reflected
on the type level, but are packaged into the presuppositional information carried
by context updates. Nevertheless, much of what I have to say in this thesis is not
affected by these specific decisions, and could be translated into any framework
which relies on DTT as a modelling language.

Semantic Category Type

Context Type

Assertion Prop

Common noun Ind → Type

Sentence Update :=
P : Type

P → Prop


Sentential modifier Update → Update

Intersective adjective Ind → Update

Quantificational determiner (Ind → Type) → (Ind → Update) → Update

Generalized quantifier (Ind → Update) → Update

Table 2.4: Some semantic categories and their corresponding types.

1Note that I have opted not to include uniqueness in the presuppositions of JtheK, although
this could easily be done. Following authors such as Ludlow & Segal (2004), I assume that
the unacceptability of the in contexts where more than one individual satisfies P is a matter of
ambiguity rather than presupposition failure.

79



2.6 Lexical networks with DTT

2.6.1 Implementing basic networks
We are now in a position to begin developing a compositional theory of lexical
networks in DTT. As discussed in Chapter 1, lexical networks are motivated by a
basic observation in lexical semantics, which is that most words cannot be given
a precise definition in terms of necessary and jointly sufficient conditions. Rather,
natural categories consist of clusters of conditions in which no one condition is
necessary and various different combinations can be sufficient (Rosch 1975). This
same organisation is seen across many different semantic categories, including nouns,
adjectives, verbs and prepositions. As we saw in Chapter 1, the structure of a
cluster concept can be represented by an implicational network in which nodes
correspond to senses and arrows correspond to implication.

Unlike STT, DTT permits an implementation of implicational networks in
which the arrows are represented directly as terms. To illustrate this, recall
Norvig’s (1989) meat network, discussed in Section 1.2.2. According to Norvig,
meat permits the following senses:

(155) 1. The edible muscle tissue of a mammal, intended for consumption.
2. Allow fowl as well as mammals.
3. Allow fish as well as fowl and mammals.
4. Allow organ meat as well as muscle tissue.
5. Allow skin as well as muscle tissue.
6. The interior edible part of any food (e.g. coconut meat)
7. (metaphor) The core or essence of something.

I also proposed the additional sense:

8. Any edible part, interior or otherwise, of any animal.

These eight senses are partially ordered by implication into the following network:

(156)

JmeatK1

JmeatK2

JmeatK3

JmeatK4 JmeatK5 JmeatK6 JmeatK7

JmeatK8

As discussed, the meet of two senses represents a common prototype and the join
of two senses represents a common generalization.
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Let us begin by formalizing the senses. All the senses in the network are of
type Ind → Type, since they are all noun meanings. The most prototypical sense,
JmeatK1 could be implemented as follows:

(157) JmeatK1 := λx : Ind .


edible(x)
from-mammal(x)
muscle-tissue(x)


where the predicates edible(x), from-mammal(x) and muscle-tissue(x) should be
understood as shorthand for a collection of further conditions. Senses 2-8 are then
formulated as weakened versions of JmeatK1, as follows:

(158) JmeatK2 := λx : Ind .


edible(x)
from-mammal(x) + from-fowl(x)
muscle-tissue(x)



JmeatK3 := λx : Ind .


edible(x)
(from-mammal(x) + from-fowl(x)) + from-fish(x)
muscle-tissue(x)



JmeatK4 := λx : Ind .


edible(x)
from-mammal(x)
muscle-tissue(x) + organs(x)



JmeatK5 := λx : Ind .


edible(x)
from-mammal(x)
(muscle-tissue(x) + organs(x)) + skin(x)



JmeatK6 := λx : Ind .

edible(x)
interior-part(x)


JmeatK7 := λx : Ind .

[
interior-part(x) + essential-part(x)

]

JmeatK8 := λx : Ind .

edible(x)
from-animal(x)


Having described the senses, we can now turn to the arrows, which are formalized
as dependent functions. For example, consider the arrow from JmeatK1 to JmeatK2,
which I shall call JmeatK2

1. This should take a proof that x is meat in the sense
of being the muscle tissue of a mammal, and show that it belongs to the broader
sense of meat which includes fowl. Its type is:

(159) JmeatK2
1 : ∏x:IndJmeatK1(x) → JmeatK2(x)

It is implemented by injecting the proof of from-mammal(x) into the left-hand side
of the sum type from-mammal(x) + from-fowl(x), as follows:
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(160) JmeatK2
1 := λx : Ind . λt :


edible(x)
from-mammal(x)
muscle-tissue(x)

 .


t.1
inl(t.2)
t.3


Notice that all the components except the second component are simply copied.
Most of the other arrows in the network are implemented in a similar way, by
dropping components and/or injecting components into sum types. Some of the
other arrows are slighly more sophisticated: for instance, the arrow from JmeatK1 to
JmeatK8 requires going from a proof of muscle-tissue(x) to a proof of interior-part(x).

Given two consecutive arrows in a lexical network, we can combine them to
get a composite arrow. For example, consider the arrow JmeatK3

2 from JmeatK2
to JmeatK3, which is given by:

(161) JmeatK3
2 : ∏x:IndJmeatK2(x) → JmeatK3(x)

JmeatK3
2 := λx : Ind . λt :


edible(x)
from-mammal(x) + from-fowl(x)
muscle-tissue(x)

 .


t.1
inl(t.2)
t.3


We can compose the arrows JmeatK2

1 and JmeatK3
2 to get an arrow JmeatK3

1 which
goes from JmeatK1 to JmeatK3 in a single step:

(162) JmeatK3
1 : ∏x:IndJmeatK1(x) → JmeatK3(x)

JmeatK3
1 := λx : Ind . JmeatK3

2(x) ◦ JmeatK2
1(x)

= λx : Ind . λt :


edible(x)
from-mammal(x)
muscle-tissue(x)

 .


t.1
inl(inl(t.2))
t.3


where ◦ is ordinary function composition. As shown JmeatK3

1 takes a proof of
JmeatK1(x) and performs JmeatK2

1(x) followed by JmeatK3
2(x).

Recall that the arrows in an implicational networks should form a partial order,
that is they should be reflexive, antisymmetric and transitive. The antisymmetry
of the meat network is apparent from its structure. Transitivity is given by the
composition of arrows which I have just described. The remaining property needed
to ensure that we have a partial order is reflexivity. Given a network diagram like
(156), each sense should be understood as having a unique implicit arrow to itself,
known as the identity arrow. The identity arrow is a function which ‘does nothing’.
For example, the identity arrow at JmeatK1 is given by:

(163) JmeatK1
1 : ∏x:IndJmeatK1(x) → JmeatK1(x)

JmeatK1
1 := λx : Ind . λt :


edible(x)
from-mammal(x)
muscle-tissue(x)

 . t
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Note that composing JmeatK1
1 with any other arrow yields that arrow back, in other

words JmeatK1
1 acts as the identity with respect to composition. The presence of

identity arrows is what ensures the reflexivity property. To summarize, given a
common noun N , an interpretation network for N is given by:

(164) • A set of senses {JNKi : Ind → Type}

• A set of arrows {JNKj
i : ∏x:IndJNKi(x) → JNKj(x)}

subject to the following conditions for all i, j, k:

• There is at most one arrow JNKj
i

• JNKi
i = λx : Ind . λn : JNKi . n

• Given arrows JNKj
i and JNKi

j then i = j

• Given arrows JNKj
i and JNKk

j then JNKk
i = λx : Ind . JNKk

j (x) ◦ JNKj
i (x)

The conditions ensure that the network is a partial order.
I assume that the interpretation network for a noun – including both senses

and arrows – is part of its lexical entry. One could imagine an alternate account in
which the lexical entry consists of simply a list of senses JNK1, JNK2, JNK3, and so
on, with the arrows connecting them left implicit. Arrows between senses would
then be recovered by means of subtyping. For instance, the arrow from JmeatK1 to
JmeatK2 would be a consequence of the fact that JmeatK1(x) < JmeatK2(x) for all x.
This approach can be made to work for common noun networks, where each sense
is of type Ind → Type, but does not generalize to more complex kinds of networks.
In particular, it does not work for networks involving context updates, since unlike
elements of Type, elements of Update are not related by the subtype relation.

2.6.2 Networks with presuppositions
The previous subsection described networks relating different noun senses. These
are particular easy to implement, since they involve only one polymorphic variable,
namely a generic individual x. However, a major finding in cognitive linguistics
is that network structures are found in all parts of the lexicon, not only in nouns.
For each of the types introduced in Section 2.5 – intersective adjectives, verbs,
determiners, and so on – we would like to introduce a notion of arrow which
describes a connection between senses of that type. Some of these are slightly
more complicated to implement because of the presence of presuppositions. It is
convenient to begin with arrows between context updates, since other kinds of
arrows can be seen as parameterized versions of update arrows.

Recall that a sentence meaning is an element of Update which is defined as fol-
lows:

(165) Update :=
P : Type

P → Prop
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where the first component is the presupposition type and the second component is
the assertion. Suppose we have two elements U, V : Update and we would like to
formulate an arrow from U to V . This is given by an element of the following type:

(166) U →Update V :=
f : U.1 → V.1∏

p:U.1 U.2(p) → V.2(f(p))


Just as an element of Update has two components – a collection of presupposi-
tions and an assertion – so an arrow between updates has two components – a
presupposition map and an assertion map. The presupposition map f goes from
the presuppositions of U to the presuppositions of V . The assertion map specifies,
for any element p of U ’s presupposition type, how to go from the assertion of
U at p to the assertion of V at f(p) (note that we cannot take the assertion of
V at p directly, because p belongs to U ’s presupposition type). Arrows between
updates can be composed. Given three sentence meanings U, V, W : Update, and
two arrows F : U →Update V and G : V →Update W , we can compose F and G
to get an arrow G ◦Update F : U →Update W which goes from U to W in a single
step. This is implemented as one would expect:

(167) G ◦Update F : U →Update W

G ◦Update F :=
G.1 ◦ F.1

λp : U.1 . G.2(G.1(p)) ◦ F.2(p)


Moreover, given some update U : Update, this has an automatic identity arrow
to itself, which is given by:

(168) idU : U →Update U

idU :=
λp : U.1 . p

λp : U.1 . λq : U.2(p) . q


It follows that networks of context updates form partial orders.

To illustrate what a network of context updates looks like, it is useful to
consider an example. Recall Jackendoff’s analysis of the verb climb as consisting
of three senses:

(169) JclimbKrise,clamber rising and clambering, e.g. the man climbed the tree

JclimbKrise rising only, e.g. the snake climbed the tree

JclimbKclamber clambering only, e.g. the monkey climbed down the tree

Climbrise„ clamber is the prototypical sense, whereas climbrise and climbclamber are
less typical. Note that ascending and clambering have different presuppositions:
roughly speaking, rising presupposes that the subject is a physical object, whereas
clambering presupposes both that the subject is animate and that it has limbs
which can be used to grasp (an animal such as a snake or worm cannot clamber
because it lacks the necessary anatomy). Consider the simple statement:
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(170) John climbed.

This will have a network of interpretations corresponding to the different senses
of climb. Without specifying how these senses are derived, we might represent
them as follows:

(171) JJohn climbedKrise,clamber, JJohn climbedKrise, JJohn climbedKclamber : Update

JJohn climbedKrise,clamber :=



P :=


x : Ind

John(x)
physical(x)
has-limbs(x)



λp : P .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



e : Event

t : Time

clambering(e)
rising(e)
past(t)
agent(p.x, e)
theme(p.x, e)
happen-at(e, t)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



JJohn climbedKrise :=



P :=


x : Ind

John(x)
physical(x)



λp : P .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



e : Event

t : Time

rising(e)
past(t)
theme(p.x, e)
happen-at(e, t)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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JJohn climbedKclamber :=



P :=


x : Ind

John(x)
physical(x)
has-limbs(x)



λp : P .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



e : Event

t : Time

clambering(e)
past(t)
agent(p.x, e)
happen-at(e, t)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


As shown, JJohn climbedKrise,clamber presupposes that John is a physical object
with limbs and asserts that he rose and clambered; JJohn climbedKrise presupposes
that John is a physical object and asserts that he rose; and JJohn climbedKclamber
presupposes that John is a physical object with limbs and asserts that he clambered.
The connections between the three senses are derived from the arrows in the
climb network:

(172)

JJohn climbedKrise,clamber

JJohn climbedKrise JJohn climbedKclamber

Consider the arrow from JJohn climbedKrise,clamber to JJohn climbedKrise. This is an
arrow between context updates, so it consists of a presupposition map and an
assertion map. It is implemented as follows:

(173) JJohn climbedKrise
rise,clamber : JJohn climbedKrise,clamber →Update JJohn climbedKrise

JJohn climbedKrise
rise,clamber :=

λp :


x : Ind

John(x)
physical(x)
has-limbs(x)

 .


p.1
p.2
p.3



λp :


x : Ind

John(x)
physical(x)
has-limbs(x)

 .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λq :



e : Event

t : Time

clambering(e)
past(t)
agent(p.x, e)
happen-at(e, t)


.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



p.1
p.2
p.4
p.5
p.7
p.8



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


The presupposition map takes a context in which John is known to be a physical
object with limbs and drops the limbs component, leaving only the proof that he is
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a physical object. The assertion map takes a context in which John is a physical
object with limbs and transforms the assertion that John rose and clambered into
an assertion that he rose, by dropping the components associated with clamber-
ing. Note the use of propositional truncation, which ensures that the assertion
map relates two propositions. The other arrow, from JJohn climbedKrise,clamber to
JJohn climbedKclamber, works in a similar way. In a compositional account, both
of these arrows would be derived from the climb network.

given two. . . an arrow is of type. . .

contexts
A, B : Type

A → B

propositions
P, Q : Prop

P → Q

common noun meanings
N1, N2 : Ind → Type

∏
x:Ind N1(x) → N2(x)

sentence meanings
U, V : Update

U →Update V :=
f : U.1 → V.1∏

p:U.1 U.2(p) → V.2(f(p))


sentential modifiers
M1, M2 : Update → Update

∏
U :Update M1(U) →Update M2(U)

intersective adjective meanings
A1, A2 : Ind → Update

∏
x:Ind A1(x) →Update A2(x)

determiner meanings
D1, D2 : (Ind → Type) →

(Ind → Update) →
Update

∏
N:Ind→T ype∏

P:Ind→Update

D1(N)(P ) →Update D2(N)(P )

generalized quantifiers
Q1, Q2 : (Ind → Update) → Update

∏
P :Ind→Update Q1(P ) →Update Q2(P )

Table 2.5: Semantic types and their corresponding arrow types.

Having formalized arrows between context updates, we can generalize this to pa-
rameterized context updates. For example, given two intersective adjective meanings:

(174) A1, A2 : Ind → Update

An arrow from A1 to A2 will be an indexed family of update maps, one for
every individual:

(175) ∏
x:Ind A1(x) →Update A2(x)

Similarly, given two quantificational determiners:
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(176) D1, D2 : (Ind → Type) → (Ind → Update) → Update

An arrow from D1 to D2 consists of a family of update maps, one for every possible
noun and property argument:

(177) ∏
N:Ind→T ype

∏
P:Ind→Update D1(N)(P) →Update D2(N)(P)

We can now associate an arrow type to every class of semantic object introduced
in Section 2.5. Table 2.5 gives, for any pair of objects belonging to the same
semantic type, the corresponding type for an arrow between them. In the next
chapter, this table will be extended to include gradable adjectives. One could also
introduce networks based on other semantic types, such as verbs, prepositions,
tense/aspect morphology, modals, and so on.

2.6.3 Basic compositionality
We have seen how various kinds of lexical networks can be implemented in DTT Se-
mantics, but it remains to be shown that these networks can behave compositionally.
As discussed in Section 1.2.4, the arrows in a lexical network can be preserved by
composition, lifted to the level of entire phrases or sentences. The simplest kind of
network composition is when a network is applied to a non-network argument. This
operation is automatically monotonic, meaning it preserves arrows in their original
direction. To illustrate, suppose we take the meat network discussed previously
and apply it to some individual m : Ind. This is done by taking every sense and
arrow in the meat network and applying it to x, as follows:

(178)


JmeatK1

JmeatK2

JmeatK3

JmeatK4 JmeatK5 JmeatK6 JmeatK7

JmeatK8



(x)

=

JmeatK1(x)

JmeatK2(x)

JmeatK3(x)

JmeatK4(x) JmeatK5(x) JmeatK6(x) JmeatK7(x)

JmeatK8(x)
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This application makes sense because every sense and arrow in a noun network
contains a lambda abstraction over individuals. In general, given a network which
is parameterized by values of some type A, one can always reduce the network
by taking its senses and arrows at some value a : A.

Another kind of network composition is when, rather than a network acting on
an argument, some function acts on a network. For example, suppose we want to
apply the definite article the to the meat network, as shown below:

(179) JtheK


JmeatK1

JmeatK2

JmeatK3

JmeatK4 JmeatK5 JmeatK6 JmeatK7

JmeatK8


In order to evaluate this application, we must know how JtheK acts both on senses
and on arrows. In Section 2.5.5, I proposed the following implementation for JtheK:

(180) JtheK : (Ind → Type) → (Ind → Update) → Update

JtheK := λN : Ind → Type .

λP : Ind → Update .
C :=


x : Ind

N(x)
P(x).1


λc : C . P(c.1).2(c.3)


This describes the action of JtheK on the senses of a noun network, but we have
yet to specify its action on arrows. Suppose we have two arbitrary noun meanings
N1, N2 : Ind → Type which are connected by an arrow:

(181) α : ∏x:Ind N1(x) → N2(x)

For JtheK to act on an entire lexical network, we must be able to lift this to
an arrow of the form:

(182) JtheK(α) : ∏P:Ind→UpdateJtheK(N1)(P) →Update JtheK(N2)(P)

In other words, the lifted arrow JtheK(α) must tell us how to go from JtheK
at N1 to JtheK at N2, for any possible choice of property argument. This is
implemented as follows:
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(183) JtheK(α) := λP : Ind → Update .

λc :


x : Ind

N1(x)
P(x).1

 .


c.1
α(c.1)(c.2)
c.3



λc :


x : Ind

N1(x)
P(x).1

 . λd : P(c.1).2(c.3) . d


As shown, the lifted arrow works by using the original arrow α to convert the
presupposition that there exists some individual satisfying N1 into the presupposition
that there exists some individual satisfying N2. The assertion map is simply the
identity, because the assertion does not contain information pertaining to the noun
argument. Now that we know how JtheK acts on both senses and arrows, we can
evaluate the application in (179) to get the following network:

(184)

JtheK(JmeatK1)

JtheK(JmeatK2)

JtheK(JmeatK3)

JtheK(JmeatK4) JtheK(JmeatK5) JtheK(JmeatK6) JtheK(JmeatK7)

JtheK(JmeatK8)

in which JtheK is applied to all the senses and arrows.
To generalize, any word which is capable of acting on a lexical network must

specify, as part of its lexical entry, both an action on senses and an action on
arrows. Given a function f : A → B, where A and B are semantic types (noun
meanings, context updates, intersective adjectives, etc.), I shall say that f ‘lifts
arrows’ iff given two arbitrary elements a, b : A connected by an arrow a →A b –
that is, an arrow of the appropriate type for elements of A – this can be converted
to an arrow f(a) →B f(b), of the appropriate type for elements of B. A function
may be able to lift arrows in more than one argument position, in which case a
separate rule is required for each argument. For example, in addition to lifting
arrows between noun senses, JtheK can also lift arrows between property senses.
Given two properties P1, P2 : Ind → Update connected by an arrow:

(185) β : ∏x:Ind P1(x) → P2(x)

this is lifted to an arrow:

(186) JtheK(−)(β) : ∏N:Ind→T ypeJtheK(N)(P1) →Update JtheK(N)(P2)

JtheK(−)(β) := λN : Ind → Type .
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λc :


x : Ind

N(x)
P1(x).1

 .


c.1
c.2
β(c.1).1(c.3)



λc :


x : Ind

N(x)
P1(x).1

 . λd : P1(c.1).2(c.3) . β(c.1).2(d)


which goes from JtheK(N)(P1) to JtheK(N)(P2), for arbitrary N .

As discussed previously, some functions have the effect of reversing a network’s
arrows. I shall say that a function f : A → B is ‘anti-monotone’ or ‘downwards
monotone’ iff it lifts arrow a →A b to an arrow in the opposite direction f(b) →B f(a).
For instance, suppose that instead of applying JtheK to the meat network, we instead
apply JallK. The action of JallK on senses was given in Section 2.5.5:
(187) JallK : (Ind → Type) → (Ind → Update) → Update

JallK := λN : Ind → Type .

λP : Ind → Update .C := ∏
x:Ind N(x) → P(x).1

λc : C .
∏

x:Ind

∏
n:N(x) P(x).2(c(x)(n))


Given two noun meanings N1, N2 : Ind → Type and an arrow α : ∏x:Ind N1(x) →
N2(x), this is lifted to an arrow:
(188) JallK(α) : JallK(N2) →Update JallK(N1)
Notice that the direction gets reversed: the original arrow went from N1 to N2 but
the lifted arrow goes from JallK(N2) to JallK(N1). It is implemented as follows:
(189) JallK(α) := λP : Ind → Update .

let E := JallK(N2) inλc : E.1 . (λx : Ind . λr : N1(x) . c(x)(α(x)(r)))
λc : E.1 . λd : E.2(d) . (λx : Ind . λr : N1(x) . d(x)(α(x)(r))


Applying JallK to the meat network therefore yields a network in which all the
arrows are reversed:

(190) JallK


JmeatK1

JmeatK2

JmeatK3

JmeatK4 JmeatK5 JmeatK6 JmeatK7

JmeatK8
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=

JallK(JmeatK1)

JallK(JmeatK2)

JallK(JmeatK3)

JallK(JmeatK4) JallK(JmeatK5) JallK(JmeatK6) JallK(JmeatK7)

JallK(JmeatK8)

As a result, the weakest interpretations of meat give rise to the strongest inter-
pretations of all meat, and vice versa.

When it comes to determiners like the and all, the importance of monotonicity
is widely recognised. For example, it is a well-known observation that downwards
monotone determiners can license negative polarity items like ever, any, at all,
and so on (Fauconnier 1975, Ladusaw 1979). Facts like these suggest that the
monotonicity of a determiner ought to be accessible to the grammar. In a Montague-
style semantics, a determiner’s monotonicity is difficult to ascertain from its lexical
entry, unless hard-coded in the form of a syntactic marker or meaning postulate.
By contrast, in a compositional theory of lexical networks based on DTT, the
monotonicity of a determiner is simply its action on arrows, which is part of its lexical
entry. In the framework I am proposing, the notion of monotonicity is extended far
beyond determiners to encompass all words which are capable of acting on a network.

It is worth pointing out that not all words which act on the senses of a lexical
network will also lift arrows. A function f : A → B which has has no effect on
arrows a →A b is called ‘non-monotone’. For example, suppose that we alter the
interpretation of the by adding a uniqueness presupposition, as follows:

(191) JtheK′ : (Ind → Type) → (Ind → Update) → Update

JtheK′ := λN : Ind → Type .

λP : Ind → Update .
C :=


x : Ind

N(x)
P(x).1∏

y:Ind N(y) → y =Ind x


λc : C . P(c.1).2(c.3)


The added presupposition requires that x should be the only individual satisfying
the noun denotation N. Now it is no longer possible to write a lifting rule for arrows
between noun senses. Roughly speaking, this is because the fact that there is a
unique referent of the N for some strong interpretation of N does not imply that
there is a unique referent for some weaker interpretation of N, nor the reverse.
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2.6.4 Applying networks to networks
Thus far, we have covered applying a network to a single argument and applying a
single function to a network. In the general case, one applies an entire network of
functions to an entire network of arguments. I shall now describe how this works
abstractly. Suppose that we have a network of arguments, in which all the senses
are of type A. Consider two senses a, b : A linked by an arrow f : a →A b:

(192) a bf
A

Now suppose we have a network of senses of type A → B, each of which can
take an element of A as an argument. Consider two senses F, G : A → B which
are connected by an arrow α:

(193) F Gα

A → B

Since both F and G have type A → B, the type of α must be ∏x:A F (x) →B

G(x). Finally, suppose that F and G are monotone, so they not only act on
senses of type A, but are also capable of lifting →A arrows. We can therefore
apply (193) to (192), as follows:

(194) F Gα

A → B

 a bf
A


Notice that F can act on either a or b, and likewise G can act on either a or b.
The result is four senses of type B forming a square:

(195) =

F(a) F(b)
F(f)

G(a) G(b)
G(f)

α(a) α(b)

B

✓

The horizontal arrows correspond to lifting the arrow f under F or G respectively,
whereas the vertical arrows correspond to taking the component of α at a and b
respectively. Notice that there are two ways to get from F (a) to G(b), depending
on which path one takes around the square. This square commutes (indicated by
✓), meaning that the two paths give the same result, in other words α(b) ◦ F (f) =
G(f) ◦ α(a).. We can view the entire commuting square as the composition of
the arrow f with the arrow α.

In general, when one network acts on another in a composition N(M), the
number of senses multiplies, giving us one sense for every pair n(m), where n
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is a sense in N and m is a sense in M . Each arrow in N combines with each
arrow in M to give a commuting square, in the manner just described. It follows
that the number of potential interpretations for an expression grows exponentially
in the number of words. This is a potential problem from the point of view of
real-time semantic interpretation, since the number of possible interpretations will
quickly overwhelm the resources of the interpreter. For example, a sentence with
10 words, each of which has 5 possible senses, will have 510 = 9765625 possible
interpretations. This problem is discussed further in Section 4.7. In brief, my
solution is that the interpreter aims to find the strongest possible assertion which is
compatible with the context. This is done by building the interpretation network
in a gradual breadth-first manner, beginning with the weakest or most general
senses and gradually strengthening those which are found to be felicitous. When
a sense is found to be inconsistent or infelicitous, the interpreter removes it from
consideration, along with all the senses with arrows into it. This has the effect of
dramatically reducing the number of senses which the interpreter needs to consider.

2.6.5 Skew monotonicity
Thus far, we have seen examples of monotone functions like JtheK and anti-monotone
functions like JallK. However, the usual story about monotonicity is complicated
by the fact that we are explicitly representing presuppositions. Some functions
which return context updates act monotonically with respect to presuppositions
but anti-monotonically with respect to assertions. The paradigmatic example is
not, whose action on senses is repeated below:

(196) JnotK : Update → Update

JnotK := λU : Update .

U.1
λp : U.1 . ¬U.2(p)


As shown, JnotK takes an update and copies its presuppositions whilst negating its
assertion. It follows that, given a map of context updates α : U →Update V, JnotK
preserves the direction of the presupposition map whilst reversing the direction of
the assertion map. I shall write the type of the lifted arrow JnotK(α) as follows:

(197) JnotK(α) : JnotK(U) ⇄Update JnotK(V)

As the notation ⇄Update suggests, the presupposition map goes from the update
on the left to the update on the right, whereas the assertion map goes in the
opposite direction, from the update on the right to the update on the left. I refer
to this as a ‘skewed’ update arrow, in contrast to the ordinary ‘parallel’ kind of
update arrow, signified by →Update. The type of a skew update arrow is defined
as follows, for any updates A and B:

(198) A ⇄Update B :=
f : A.1 → B.1∏

p:A.1 B.2(f(p)) → A.2(p)


Given this definition, the implementation of JnotK(α) is:
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(199) JnotK(α) := let U′ := JnotK(U) in
let V′ := JnotK(V) inλp : U′.1 . α.1(p)

λp : U′.1 . λq : V′.2(α.1(p)) . (λr : U′.2(p) . q(α.2(p)(r)))


To understand this implementation, recall the intuitionistic definition of negation
as a function type: ¬A ≡ A → 0.

Like parallel networks, skew networks form partial orders. Given three context
updates A, B, C : Update and two skew arrows α : A ⇄Update B and β : B ⇄Update C,
the composition is defined as follows:

(200) β ◦Update α : A ⇄Updt C

β ◦Update α :=
β.1 ◦ α.1

λp : A.1 . α.2(p) ◦ β.2(α.1(p))


As one would expect, the two presupposition maps are composed in the reverse
order to the two assertion maps. Finally, any context update U : Update, is
associated with a unique skew identity arrow idU, which is the same as the parallel
version defined in (168). The concept of a skew arrow generalizes from context
updates to parameterized context updates. Table 2.6 shows some semantic types
which can have skew arrows.

given two. . . a skew arrow is of type. . .

sentence meanings
U, V : Update

U ⇄Update V :=
f : U.1 → V.1∏

p:U.1 V.2(f(p)) → U.2(p)


sentential modifiers
M1, M2 : Update → Update

∏
U :Update M1(U) ⇄Update M2(U)

intersective adjective meanings
A1, A2 : Ind → Update

∏
x:Ind A1(x) ⇄Update A2(x)

determiner meanings
D1, D2 : (Ind → Type) →

(Ind → Update) →
Update

∏
N:Ind→T ype∏

P:Ind→Update

D1(N)(P ) ⇄Update D2(N)(P )

generalized quantifiers
Q1, Q2 : (Ind → Update) → Update

∏
P :Ind→Update Q1(P ) ⇄Update Q2(P )

Table 2.6: Semantic types which can have skew arrows.
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3.1 Motivation
The previous chapter explained how the lexical networks found in cognitive linguistics
can be made compatible with compositional semantics using DTT. The aim of this
chapter is to apply these ideas to the lexical semantics of spatial adjectives such
as long, short, tall, wide, narrow, thick, thin, deep and shallow. These adjectives
are highly polysemous, and hence provide good examples of lexical networks –
for example, the adjective wide can refer to a secondary axis (e.g. wide ruler),
the axis orthogonal to an observer (e.g. wide bus), or the magnitude of an area
(e.g. wide courtyard). The structure of the network reflects prototypicality and
abstract similarity: two senses with a common meet are perceived as deriving
from the same prototype, whereas two senses with a common join are perceived
as having a common generalization. This chapter draws heavily on the work of
cognitive linguists, particularly Clark (1973), Vandeloise (1988, 1993), Dirven &
Taylor (1986), Herskovits (1987) and Vogel (2004).

I have decided to focus primarily on the spatial senses of these adjectives rather
than non-spatial or metaphorical senses, such as the use of long to describe time
(long meeting), or the use of high to describe pitch (high melody). The reason
for this is that the spatial senses are themselves highly complex and in need of
detailed explanation, a task which is complicated significantly by the inclusion of
metaphorical senses. Spatial senses can be described by combining a set of primitive
notions such as ‘axis’, ‘position’, ‘path’, and so on, whereas the internal structure
of non-spatial senses is more difficult to formalize, since the primitives underlying
non-geometric domains are less well understood. Following Vogel (2004), the main
criterion for distinguishing spatial from non-spatial senses is the ability to combine
with distance-denoting measure phrases – for instance, long table is a spatial sense
since one can say 10m long table, but long meeting is not, since one cannot say
?10m long meeting in reference to its temporal duration.

In order to formalize spatial senses, I make two additions to the usual semantic
ontology: degrees and vectors. Degrees are abstract representations of the extent
to which an individual possesses a certain property (length, weight, intelligence,
loudness, etc.). As we saw in Chapter 1, degrees organised into scales can explain
a wide range of gradable phenomena, including comparison, polarity and cross-
scalar incommensurability (Cresswell 1976, von Stechow 1984, Klein 1980, Bierwisch
1989, Kennedy 1999, Kennedy & McNally 2005). Vectors are geometric entities
with a direction and magnitude. Originally introduced into semantics to describe
locative prepositions (Zwarts 1997, Zwarts & Winter 2000), they have been fruitfully
applied to a number of other phenomena, including directional prepositions and
telicity (Zwarts 2005), gradability and measure phrase combination (Faller 2000,
Winter 2001a), and general spatial vocabulary relating to place, size, orientation,
shape and parts (Zwarts 2003).

This chapter is organised as follows. Section 3.2 explains the representation
of degrees, gradable adjectives and gradable adjective networks. Section 3.3 is an
introduction to Vector Space Semantics and introduces the semantic primitives
involved in spatial adjectives. With these theoretical tools in hand, Sections
3.4-3.9 are dedicated to the adjectives high/low, tall, long/short, wide/narrow,
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deep/shallow and thick/thin respectively. Each of these sections gives a brief
descriptive introduction to the different senses of that adjective before presenting
my analysis. Having formalized the different spatial senses, I show how they connect
together into a lexical network. The relationship between antonymous pairs of
adjectives is explained in Section 3.4.3 which discusses the relationship between
high and low. From that point on, I discuss only those negative polarity adjectives
which are not perfect antonyms of their positive counterparts. For example, short
has its own section since it is not a perfect antonym of long, whereas low does
not, being a perfect antonym of high.
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3.2 Implementing gradable adjectives

3.2.1 Typing degrees
Recall from the discussion of degree semantics in Section 1.4, that degrees are
organised into scales. In a traditional degree-based approach, a scale is though
of as something like a triple ⟨D, ≤, δ⟩, where D is a set of degrees, ≤ is an order
relation which is at least partial, and δ is a dimension parameter. Scales are built
from degrees, in the sense that each scale has an underlying set of degrees D. This
has some unintuitive consequences. For instance, it suggests that it makes sense
to think of an abstract degree d ∈ D, separate from any particular scale, but it is
not clear what kind of thing d would be. Moreover, the intention is that the set
of degrees for two different scales should be disjoint, but nothing in the definition
forces this to be the case. For instance, nothing seems to prevent the denotations
of John’s height, Jane’s average walking speed and 150kg from being identical as
elements of D. On this account, degrees do not possess their dimension and polarity
inherently, but only when considered as belonging to a particular scale.

From the perspective of DTT, it makes more sense to think of the type of
degrees as being dependent on a scale parameter, so that degrees on distinct
scales are inherently disjoint. Let us assume a type Scale, elements of which
are labels for scales:

(201) dist, weight, temp, prob, durtn, . . . : Scale

For every scale, there is a corresponding type of negative degrees and positive
degrees for that scale, formed as follows:

(202) s : Scale ⊢ Degree(s, +) : Type

s : Scale ⊢ Degree(s, −) : Type

For example, the type Degree(dist, +) would consist of all positive degrees on the
distance scale, whereas the type Degree(weight, −) would consist of all negative
degrees on the weight scale. Given two degrees on the same scale with the same
polarity, we can compare their magnitudes via a comparison predicate which is
unique to that scale and polarity, as follows:

(203) s : Scale, d1, d2 : Degree(s, +) ⊢ d1 ≤(s,+) d2 : Prop

s : Scale, d1, d2 : Degree(s, −) ⊢ d1 ≤(s,−) d2 : Prop

where for any scale s, the predicates ≤(s,+) and ≤(s,−) both satisfy the axioms for
a total linear order1. Two degrees on different scales or with different polarities
cannot be compared because it is impossible to form the proposition that one
is greater than the other.

To express the isomorphism between positive and negative degrees on the
same scale, we need a means for converting between them. This is expressed
using two polymorphic functions:

1See https://mathworld.wolfram.com/TotallyOrderedSet.html
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(204) s : Scale ⊢ negates : Degree(s, +) → Degree(s, −)
s : Scale ⊢ negate−1

s : Degree(s, −) → Degree(s, +)

where negates goes from a positive s-degree to a negative s-degree, and negate−1
s

goes in the opposite direction. These are defined to be mutually inverse, as follows:

(205) s : Scale, d : Degree(s, +) ⊢ d ≡ negate−1
s (negates(d)) : Degree(s, +)

s : Scale, d : Degree(s, −) ⊢ d ≡ negates(negate−1
s (d)) : Degree(s, −)

That is, doing negates followed by negate−1
s is the same as doing nothing, and vice

versa. Furthermore, we must ensure that the order of negative degrees is reversed
compared to positive degrees. In other words, there are two functions:

(206) • s : Scale, d1, d2 : Degree(s, +) ⊢
reverses : d1 ≤(s,+) d2 → negates(d2) ≤(s,−) negates(d1)

• s : Scale, d1, d2 : Degree(s, −) ⊢
reverse−1

s : d1 ≤(s,−) d2 → negate−1
s (d2) ≤(s,+) negate−1

s (d1)

That is, if d1 is a larger positive degree than d2, then one can show that negate(d2)
is a larger negative degree than negate(d1). Likewise, if d1 is a larger negative degree
than d2, one can show that negate−1(d2) is a larger positive degree than negate−1(d1).

We can treat all measure phrases such as 2 meters, 10kg, 50 degrees Celsius,
3.5 seconds, and so on, as belonging to the following type, which contains all
positive degrees on all scales:

(207) Degree(+) :=
s : Scale

Degree(s, +)


The reason for thinking that measure phrases have positive polarity is that they
cannot combine with negative polarity adjectives, e.g. ?2m short, ?10kg light,
?3◦C cold, and so on. To give an example, the measure phrase 2m would have
the following interpretation:

(208) J2 metersK : Degree(+)

J2 metersK :=
dist

2 · m


where m is some positive non-zero constant which converts the inherent units
associated with the distance scale to units of meters. A speaker may be unsure
as to the precise value of m, in which case they can represent the value of the
resulting degree only approximately. The fact that 2 meters has dimensions of
distance explains why it cannot combine with an adjective of different dimensions
as in ?the car is 2 meters old.

In addition to the type of all positive degrees, we can also define the type
of all negative degrees:
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(209) Degree(−) :=
s : Scale

Degree(s, −)


It is also useful to have a type for all degrees, whether positive or negative:

(210) Degree :=


p : Pol

s : Scale

Degree(s, p)


Given any positive or negative degree, we can always consider this as a general
Degree, by inserting a + or − label. This is handled by the following functions:

(211) as_pos : Degree(+) → Degree

as_neg : Degree(−) → Degree

as_pos := λd : Degree(+) .


+
d.1
d.2



as_neg := λd : Degree(−) .


−
d.1
d.2



3.2.2 Typing gradable adjectives
This thesis will follow Kennedy’s (1999) analysis of gradable adjectives as measure
functions. In importing Kennedy’s analysis into DTT, we must deal with the fact
that a measure function like tall is only a partial function, applying only to those
individuals which meet certain presuppositions. Recall from the previous chapter
that an intersective adjective is represented by an element of the following type:

(212) Ind →

P : Type

P → Prop


A gradable adjective is represented similarly, except that instead of returning a
proposition, it returns a degree which measures some aspect of the individual.
Positive and negative gradable adjectives are typed as follows:

(213) Gradable(+) := Ind →

P : Type

P → Degree(+)



Gradable(−) := Ind →

P : Type

P → Degree(−)
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As shown, a positive gradable adjective is a function from an individual x and some
collection of presuppositions P(x) to a positive degree; likewise a negative gradable
adjective takes individual x and some presuppositions P(x) to a negative degree.
The following is an example of a positive polarity adjective:

(214) JtallKup, 1st, large : Gradable(+)

JtallKup, 1st, large := λx : Ind .



P :=


v : V ector

up(v)
1st(x, v)
large(v)


λp : P .

dist
∥p.1∥




This sense will be discussed in more detail in Section 3.5.2. For now, notice that
the presuppositions involve a vector v, which corresponds to the vertical primary
axis of the individual. The measure function takes an element of the presupposition
type and returns a positive degree whose value is the magnitude of v.

It makes sense to distinguish positive from negative polarity adjectives because
they are associated with a range of syntactic differences. For example, positive
adjectives can occur with un-, e.g. unhappy, unkind, unclear, uninteresting, whereas
negative adjectives cannot, e.g. *unsad, *uncruel, *unvague, *unboring. At the
same time, to write expressions for degree morphemes like more/-er, it is also
necessary to have a type for all gradable adjectives, whether positive or negative.
This is defined as follows:

(215) Gradable := Ind →

P : Type

P → Degree


As one would expect, a general gradable adjective is a function from an individual x
and a collection of presuppositions P(x) to an arbitrary degree, which can be positive
or negative. Any element of Gradable(+) or Gradable(−) can be considered as an
element of Gradable, by extending the as_pos and as_neg functions defined in (211):

(216) as_pos′ : Gradable(+) → Gradable

as_neg′ : Gradable(−) → Gradable

as_pos′ := λG : Gradable(+) .λx : Ind .

G(x).1
λp : G(x).1(as_pos(G(x).2(p)))




as_neg′ := λG : Gradable(−) .λx : Ind .

G(x).1
λp : G(x).1(as_neg(G(x).2(p)))
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That is, one explicitly labels the output degree as a positive degree in the case of
Gradable(+) or a negative degree in the case of Gradable(−).

Like other kinds of semantic objects, gradable adjectives form networks. Suppose
we have two terms G, H : Gradable(+), that is two positive gradable adjectives
with different presupposition types. Given some arbitrary individual x, we can
visualize the content of G(x) and H(x) as follows:

(217)

G(x).1

Degree(+)

G(x).2

H(x).1

H(x).2

That is, both G(x) and H(x) provide a presupposition type and a function from
this type to positive degrees. As this diagram suggests, an arrow from G(x) to
H(x) will consist of a function f(x) : G.1 → H.1 which completes the triangle
and makes it commute, as follows:

(218)
G(x).1

Degree(+)

G(x).2

H(x).1

H(x).2

f(x)

✓

The data in (218) can be packaged into the following type, abstracting over
the individual x:

(219) G →Gradable(+) H := ∏
x:Ind

f : G(x).1 → H(x).1∏
p:G(x).1 G(x).2(p) =Degree(+) H(x).2(f(p))


where the first component contains the function between presupposition types
and the second component is the commuting condition. Arrows between negative
gradable adjectives and general gradable adjectives are defined analogously:

(220) G →Gradable(−) H := ∏
x:Ind

f : G(x).1 → H(x).1∏
p:G(x).1 G(x).2(p) =Degree(−) H(x).2(f(p))



G →Gradable H := ∏
x:Ind

f : G(x).1 → H(x).1∏
p:G(x).1 G(x).2(p) =Degree H(x).2(f(p))


The following example is intended to illustrate what an arrow between gradable
adjectives looks like:

(221) JtallKvert, 1st, large
up, 1st, large : JtallKup, 1st, large →Gradable(+) JtallKvert, up, large
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JtallKvert, 1st, large
up, 1st, large := λx : Ind .


λp : JtallKup, 1st, large.1 .


p.1
inl(p.2)
p.3
p.4


λp : JtallKup, 1st, large.1 . refl(dist

∥p.1∥

)


As shown, JtallKvert, 1st, large

up, 1st, large goes from the sense JtallKup, 1st, large which was given in
(214) to a weaker sense JtallKvert, 1st, large. The presuppositions are altered by injecting
one of the components on the left. Since both JtallKup, 1st, large and JtallKvert, 1st, large
return the degree:

(222)
dist

∥p.1∥


the commuting condition is witnessed by the reflexivity proof associated with this
term.

Given an arrow connecting two elements of Gradable(+) or Gradable(−),
this can be converted into an arrow between two elements of Gradable. For
instance, suppose we have two positive gradable adjectives G, H : Gradable(+)
connected by an arrow:

(223) α : G →Gradable(+) H

This can be lifted to an arrow:

(224) as_pos′(α) : as_pos′(G) →Gradable as_pos′(H)

as follows:

(225) as_pos′(α) := λx : Ind .

let G′ := as_pos′(G)(x) inλp : G′.1 . α(x).1(p)
λp : G′.1 . apas_pos(α(x).2(p)))


As shown, the first component of the arrow remains unchanged, and the second
component is altered using the function ap described in Section 2.4.3, which lifts
identities under functions.

As one would expect, arrows between (positive, negative or general) gradable
adjectives can be composed. Given three gradable adjectives G, H, I : Gradable
and two arrows:

(226) α : G →Gradable H

β : H →Gradable I

The composition is given by:
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(227) β ◦Gradable α : G →Gradable I

β ◦Gradable α := λx : Ind .

f := β(x).1 ◦ α(x).1
λp : G.1 . α(x).2(p) • β(x).2(f(p))


As shown, the presupposition maps are composed using ordinary function compo-
sition (◦) and the commutativity proofs are composed using the composition of
identities operation (•) which was described in Section 2.4.3.
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3.3 Vector Space Semantics

3.3.1 Introduction to vector space semantics
The idea that spatial language can be analysed in terms of vectors was first proposed
by John O’Keefe in his description of English spatial prepositions (O’Keefe & Nadel
1978, O’Keefe 1996). He argued that the role of prepositions is to locate objects
with respect to other objects within a cognitive map – an allocentric cognitive
representation of the environment. The relative position of an object is given by
a vector specifying its distance and direction from some reference object. Spatial
prepositions denote sets of position vectors. For example, above denotes the set
of vectors based at the reference object which point upwards, behind denotes the
set of vectors based at the reference object which point backwards; and so on.
O’Keefe links his vector analysis of prepositions to the representation of space in
the hippocampus, proposing that vectors are implemented in terms of place cells
– cells which fire when an animal visits a certain region in its environment. Each
preposition would be associated with a pattern of place cell activation which defines
a spatial field surrounding the reference object.

Zwarts (1997) and Zwarts & Winter (2000) have developed a model-theoretic
implementation of O’Keefe’s ideas. They propose an analysis of locative prepositions
in which the position of the figure (located object) relative to the ground (reference
object) is represented by a ‘located vector’. A located vector is defined as a pair
of ordinary vectors (u, v), where u specifies the location of the base point and v
specifies the vector’s direction and magnitude. A prepositional phrase such as above
the house or beside the car denotes a set of located vectors based at the reference
object defining a ‘search region’ in which the figure might be found (see Figure 3.1).
The correct regions for topological prepositions (in, on, at, etc.) can be defined
solely based on the region occupied by the object, whereas the correct regions for
projective prepositions (above/below, in front of/behind and beside) require the
use of special ‘perspective functions’ called up, front and right, which associate
individuals with unit vectors in their axial directions.

Zwarts (2003) argues that vectors should be used not only to describe the relative
position of objects, but also to represent parts and axes. This idea was already

(a) above x (b) beside x

Figure 3.1: Locative prepositions can be analyzed as denoting sets of vectors based at
the ground object, from Zwarts & Winter (2000).
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present in theories of 3D object representation such as Marr’s (1982) 3D model,
which uses vectors to represent the orientation and size of both whole objects and
parts. The rational for treating axes as vectors is that, like relative positions, they
are characterised by the two pieces of information that define a vector: magnitude
and direction. As shown in Figure 2, one and the same vector v can be used to
represent either the position of some object with respect to a contextually chosen
origin, or the major axis of an object. One advantage of using vectors to describe
both positions and axes is that it allows us to explain parallelisms between the
domain of place and the domain of size or dimension. For instance, the English
spatial adjectives high, low and deep can measure either a position vector or an
axis vector, depending on context. The vector-based analysis correctly predicts
that both senses should be able to combine with distance measure phrases, since
they both involve degrees on the scale of distance.

(a) Position vector. (b) Axis vector.

Figure 3.2: based on Zwarts (2003).

In addition to positions and axes, vectors can also be used to represent paths. A
path is a linearly ordered sequence of vectors, with a defined start point and endpoint.
Directional prepositional phrases such as to the house, from the supermarket, across
the field, and so on, can be analysed as denoting sets of paths, with constraints on
their source, goal or route. See Zwarts (2005) for a fully worked-out version of this
idea, as well as a path-based explanation of prepositional aspect (e.g. the difference
between to the house and towards the house). In addition to describing directional
prepositions, paths are also useful for modelling the axes of objects which curve or
bend and so cannot be described by a single vector, such as the axis of a river or
piece of string (Zwarts 2003). This will be useful for the analysis of length, which
can describe a curve as well as a straight line. Once we have paths, it also makes
sense to think about other geometric objects, such as ribbons, which are like paths
but with an additional width at every point in the path. Ribbons turn out to be
important to the meaning of wide and narrow, as I shall show in Section 3.7.
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3.3.2 Formalizing vectors
In order to introduce vectors, one must first introduce a field of numbers. Henceforth,
I shall assume a type Real, elements of which are real numbers, together with
the usual operations of addition + : Real × Real → Real, and multiplication

· : Real × Real → Real. Moreover, for any two real numbers x, y : Real, there
is a type x ≤ y corresponding to the proposition ‘x is less than or equal to y’. The
structure of the real numbers is then given by axioms involving +, · and ≤. In
brief, (Real, +, ·) must satisfy the field axioms1; (Real, ≤) must be a total order;
and + and · must be compatible with ≤, meaning that for all x, y, z : Real:

(228) • if x ≤ y then x + z ≤ y + z

• if 0 ≤ x and 0 ≤ y then 0 ≤ x · y

Finally, there is the completeness axiom which distinguishes the real numbers from
the rational numbers. This axiom states that every non-empty subset of Real
which is bounded above has a least upper bound in Real. For example, the subset∑

r:Real r2 > 2 has the least upper bound
√

2 : Real. The conjunction of all these
axioms is sufficient to define the real number system up to isomorphism.

All the vectors in this chapter belong to the same vector space, which I shall
simply call V ector. The preferred interpretation of vectors is as arrows in ordinary
three-dimensional Euclidean space, where each arrow has a direction and magnitude
but no fixed location. In the literature on spatial language, it is sometimes assumed
that the concept of vector is subordinate to the concept of reference frame or
coordinate system. For instance, in their discussion of spatial language, Carlson
et al. (2003) write that spatial templates, by which they mean configurations of
vectors, are “tied to, and perhaps defined by, reference frames” (2003, p. 7). However,
mathematically speaking it is only the components or coordinates of a vector that
are dependent on a choice of coordinates, the vector itself being an invariant object
which survives a change of coordinates. This is most apparent in physics, where
vectors are used to represent physical quantities like velocity and acceleration. The
velocity of a car may be described differently in different coordinate systems, but
all these descriptions correspond to the same physical fact.

The type V ector comes equipped with two operations, addition + : V ector ×
V ector → V ector, and scalar multiplication · : Real × V ector → V ector. There
is a unique vector 0 : V ector which plays the role of additive identity. Finally, a
function − : V ector → V ector sends each vector to its additive inverse. These
operations are required to satisfy the following axioms, for all u, v, w : V ector
and a, b : Real:

(229) • u + (v + w) = (u + v) + w
• u + v = v + u
• v + 0 = v
• v + (−v) = 0

1https://mathworld.wolfram.com/FieldAxioms.html
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• a · (b · v) = (a · b) · v
• 1 · v = v
• a · (u + v) = a · u + a · v
• (a + b) · v = a · v + b · v

In addition, I shall assume an inner product between vectors ⟨ , ⟩ : V ector →
Real. The inner product takes two vectors and returns a scalar measuring their
‘degree of separation’. It is defined through the following axioms for all vectors
u, v, w : V ector and a : Real:

(230) • ⟨u + v, w⟩ = ⟨u, w⟩ + ⟨v, w⟩
• ⟨a · u, v⟩ = a · ⟨u, v⟩
• ⟨u, v⟩ = ⟨v, u⟩
• ⟨v, v⟩ ≥ 0
• ⟨v, v⟩ = 0 iff v = 0

Geometrically, the inner product between two vectors ⟨u, v⟩ can be thought of
as the quantity:

(231) ∥u∥∥v∥ cos θ

that is, the product of the length of u, the length of v, and the cosine of the
angle θ between the two vectors. Strictly speaking, however, the notions of length
and angle are defined in terms of the inner product, not vice versa. The length
of a vector v is defined as:

(232) ∥v∥ :=
√

⟨v, v⟩

Because ⟨v, v⟩ is always positive, this is guaranteed to be a positive real number,
as we would expect from a notion of length. The angle between two vectors u
and v is defined through its cosine:

(233) cos θ := ⟨u, v⟩
∥u∥∥v∥

It follows that u and v are orthogonal iff ⟨u, v⟩ = 0.

3.3.3 Spatial primitives
Throughout this chapter, I will make use of a collection of primitive predicates
relating vectors and individuals. The intention is that these primitives should not
only be useful for spatial adjectives, but also locative and directional prepositions,
axial part terms, postural verbs, and so on: they correspond to fundamental concepts
in the spatial domain. One example is the predicate axis(x, v), which encodes the
idea ‘v is an axis of x’. The proofs of primitive predicates provide the interface
between type theory and perception. For example, a proof of axis(x, v) would be
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a piece of visual information showing that v is an axis of x. Such a proof would
consist of whatever data is used to encode the position or axis of an object in the
brain. The role of primitive predicates like axis(x, v) is similar to that of image
schemas in cognitive semantics: they encode basic concepts which are meant to
be directly grounded in sensory/motor experiences. I adopt the convention that
primitive predicates are written in small caps.

Spatial primitives are assumed to be part of spatial cognition, and hence universal
across different languages. Every language somehow expresses basic notions of
axis, path, surface, observer, and so on, although the particular way in which
these primitives get assembled into lexical and grammatical items can differ cross-
linguistically. For example, English thick covers both the minimal dimension of a
surface (e.g. thick plate) and the minimal dimension of a cylinder (e.g. thick stick),
whereas Japanese distinguishes lexically between surface thickness and tubular
thickness, which are encoded by atsui and futoi respectively (Shimotori 2013).
To give another example, English has two words for the vertical axis – high and
tall – whereas Italian combines both into a single lexical item, alto (Goy 2002).
The primitives which appear in English high and tall also appear in alto, but
the particular combination is different.

The following is a list of the primitive predicates assumed in this chapter,
together with their intended interpretations:

Predicate Intended Interpretation

v : V ector
⊢ up(v) : Prop

‘v is pointed upwards’

v : V ector
⊢ down(v) : Prop

‘v is pointed downwards’

v : V ector
⊢ horz(v) : Prop

‘v is horizontal’

v : V ector
⊢ grnd(v) : Prop

‘v describes a point on the ground’

v : V ector
⊢ large(v) : Prop

‘v is at least as large as the average
human height’

x : Ind, v : V ector
⊢ axis(x, v) : Prop

‘v is an axis of x’

x : Ind, b : Bivector
⊢ axis(x, b) : Prop

‘b is a 2D integrated axis of x’

x : Ind, u, v : V ector
⊢ axis(x, u, v) : Prop

‘v is an axis of x, based at the point
described by u’

x : Ind, v : V ector
⊢ top(x, v) : Prop

‘v is the inherently vertical axis of x’
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x : Ind, v : V ector
⊢ 1st(x, v) : Prop

‘v is the primary axis of x’

x : Ind, v, : V ector
⊢ 2nd(x, v) : Prop

‘v is a secondary axis of x’

x : Ind, v : V ector
⊢ intrnl(x, v) : Prop

‘v is an internal axis of x’

x : Ind, u, v : V ector
⊢ posn(x, u, v) : Prop

‘v is the position vector of x with respect
to the point described by u’

x : Ind, p : Path
⊢ path(x, p) : Prop

‘the shape of x is approximated by the
path p’

x : Ind, r : V ector, p : Path
⊢ path(x, r, p) : Prop

‘the shape of x is approximated by a path
of vectors p, centered at the point r’

x : Ind, r : Ribbon, w : (0, ∞)
⊢ ribbon(x, r, w) : Prop

‘the shape of x is approximated by the
ribbon r, with average width w’

x : Ind, p, t, f, r : V ector
⊢ obs(x, p, t, f, r) : Prop

‘x has a canonical observer based at p
with coordinate vectors (t, f, r)’

x : Ind, p : Path, t : (0, ∞)
⊢ cyldr(x, p, t) : Prop

‘x is approximated by a cylinder with axis
p and average thickness t’

x : Ind, s : Surface, t : (0, ∞)
⊢ surf(x, s, t) : Prop

‘x is approximated by the surface s with
average thickness t’

x : Ind, S : V ector→Prop, t : (0, ∞)
⊢ skel(x, S, t) : Prop1

‘the shape of x is approximated by a
skeleton S, with average thickness t’

Table 3.1

Further description of each of these predicate types is given in the discussion of
particular adjectives. This includes the definitions of the types Bivector, Path,
Ribbon and Surface. The type (0, ∞) contains all positive real numbers excluding
0 and is an abbreviation for ∑r:Real r > 0.

I shall not attempt to give a detailed justification for this particular set of
primitives, since I do not regard it as definitive. The list in Table 3.1 is not an a
priori deduction, but consists of the basic notions which I have found necessary in
order to describe the different senses of spatial adjectives. Without a basic choice
of primitives, it is impossible for a decompositional analysis to get off the ground,
but it is important to remember that the fundamental vocabulary might need to be
altered or updated in light of new observations or theoretical developments. An
important point is that – unlike the featural approaches to gradable adjectives
discussed in Section 1.3 – there is not a straightforward correspondence between
primitives and spatial adjective meanings. There is not single primitive which
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encodes the meaning of an adjective like wide, rather wide involves many different
primitives, some of which are also involved in other adjectives. The list in Table
3.1, although designed with spatial adjectives in mind, is not circular in the sense
that it assumes from the beginning the very concepts it attempts to explain.

I do not mean to rule out a deeper analysis in which some of the predicates in the
table are given a more thorough analysis in terms of other, more basic primitives. For
example, up(v), down(v) and horz(v) could be described in terms of a primitive
unit vector up, together with the inner product. The predicates axis(x, u, v),
vert(x, v), 1st(x, v), 2nd(x, u, v) and intrnl(x, v) could all be defined in terms
of axis(x, v) together with some additional conditions. ribbon(x, r, w) could be
defined in terms of path(x, p) and some additional information. In each case,
I have found that attempting to decompose further yields an analysis which is
more complicated and less intuitive. Moreover, further decomposition introduces
a greater degree of speculation, since we do not currently understand how the
brain encodes spatial information.

up(v)

horz(v)

down(v)

¬up(v)

¬horz(v)

¬down(v)

axis(x, u, v)

top(x, v)

intrnl(x, v)

1st(x, v)

2nd(x, v)

axis(x, v)

cyldr(x, p, t)
path(x, p)

path(x, r, p)

Figure 3.3: Some implications between predicates in Table 3.1

Although I shall not attempt to further decompose the primitives in Table 3.1,
it is important to acknowledge some basic connections between them. Some of these
connections are illustrated in Figure 3.3. This can be considered a kind of ‘sub-lexical’
network, since it does not correspond to the meaning of a word. Like the links in a
lexical network, these implications are internalized as terms of the type system. For
example, the implication from 1st(x, v) to axis(x, v) corresponds to a polymorphic
function of type ∏x:Ind,v:V ector 1st(x, v) → axis(x, v). In addition to the simple
implications shown in Figure 3.3 there are also some more complex inferences which
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I have not drawn. For example, if an individual x : Ind has a canonical observer,
then an axis v of x which is parallel to the observer’s intrinsic vertical axis will be
an intrinsic vertical axis of the object, in other words it will satisfy top(x, v).

Now that we have the theoretical tools of degrees and vectors, and understand
how these are implemented in the type system, we can turn to an analysis of
spatial adjectives themselves. Each section henceforth is dedicated to a particular
spatial adjective network. I begin each section with a brief introduction to the
various senses of the adjective, together with some previous attempts to describe
its meaning. I then present a detailed analysis of the spatial senses, using the
primitives given in Table 3.1. As discussed in Section 1.2.2, the following criteria
are used for distinguishing senses:

(234) a. For each sense in the network, one must be able to find a situation or
sentence which is restricted to that sense.

b. If two senses are mutually compatible and typically occur together, then
they have a common meet.

c. If two senses can be coordinated without giving rise to zeugma, then
they have a common join.
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3.4 Height

3.4.1 Introduction to height
A basic observation about the adjectives high and low is that they are ambiguous
between a positional sense, which refers to vertical distance from the ground, and
a dimensional sense, which refers to vertical extension (Clark 1973, Lyons 1977,
Dirven & Taylor 1986). For example, a high bird’s nest can mean either a bird’s
nest which is a significant distance from the ground or a bird’s nest which has a
larger than usual vertical extent. The same alternation occurs in other languages.
For example, Lafrenz (1983) writes that German hoch ‘high/tall’ can describe either
the distance of an object from the ground, as in hohe Decke ‘high ceiling’, or the
distance of an object from base to tip, as in hoher Mast ‘high mast’. The same
alternation has been described for Swedish hög ‘high/tall’ (Vogel 2004), Italian alto
‘high/tall’ (Goy 2002), Polish wysoki ‘high/tall’ (Linde-Usiekniewicz 2002), Japanese
takai ‘high/tall’ (Shimotori 2013), and Yucatec Maya ka’nal ‘high/tall’ (Stolz 1996).

English is unusual in that it has two positive adjectives which involve the vertical
axis – high and tall. In most other languages, these are covered by the same lexical
item. Whereas high is ambiguous between position and dimension, tall has only
a dimensional sense (e.g. tall bird’s nest has only a dimensional interpretation).
Another difference is that the dimension referred to by high must be vertical in the
actual environment, whereas tall can describe an axis which is vertical in the object’s
canonical orientation. For example, a toppled lamppost can still be described as tall,
but the use of high in this situation sounds strange. What is more, tall typically
applies to an axis which is salient in some way, being either the primary axis of an
object (e.g. tall wine glass), or large in comparison to a human being (e.g. tall
fence), whereas high has no such restriction. For these reasons, high and tall are
described in separate sections – see Section 3.9 for a description of tall.

High and low are usually described as measuring vertical displacement with
respect to some reference point or plane (Clark 1973, Fillmore 1997, Lyons 1977,
Dirven & Taylor 1986). In the dimensional sense, the reference point is the base
(lowermost part) of the object, whereas in the positional sense the reference point is
a location on the ground directly below the object. What counts as ground level
can vary depending on context – for example, the positional height of an object in
a room is evaluated with respect to the floor, not with respect to the surface of the
Earth. What counts as an upwards direction can also be contextually determined
– for instance, a page or other 2D surface sets up a local coordinate system, with
its own vertical and horizontal axes, so a figure can be described as high/low on
the page even when the sheet of paper itself is horizontal (Vogel 2004). To have
a positional height, an object must be located above the contextually determined
ground. An object which is located below the ground is thought of as having a
depth rather than a height – for example, the distance from the ground to an ore
deposit is a depth not a height, since it is directed downwards.

An interesting observation which has consequences for the structure of the
height network is that positional and dimensional height can be conceptualized
as the same. For example, the most typical interpretation of the sentence the
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bird is higher than the tree, is one in which the positional height of the bird is
compared to the dimensional height of the tree. For this to be possible, the tree
must be based on the ground, so that its dimensional height is evaluated with
respect to the same reference plane as the bird’s positional height. In this way,
the concept of being based on the ground establishes a kind of semantic bridge
between positional and dimensional height, which I refer to as ‘elevational’ height.
Elevetional height is the join of positional height and a form of dimensional height
in which the object is based on the ground.

In addition to their various spatial senses, high and low also have a wide range
of non-spatial senses. For instance, they can be used to describe pitch (high/low
note), social status (high/low rank), emotion (to feel high/low), and quantity (high
number). What all these senses seem to have in common is the idea of elevation
above some baseline level. In the pitch domain, the baseline is some very low
reference pitch; in the domain of social status, the baseline is the bottom of the
social hierarchy; in emotion, the baseline is ‘rock bottom’, and so on. Nevertheless,
none of these senses can be coordinated with spatial senses without giving rise to
zeugma: for instance, it sounds strange to say ?John’s balcony is high and so is
his voice, or ?John’s balcony is as high as his social standing. I therefore take the
non-spatial senses of high to be disconnected from the spatial senses.

3.4.2 The high network
Let us begin with the positional sense of high. Recall that a positive polarity
gradable adjective is formalized as an element of type Gradable(+), which was
defined in (213). The positional sense can be written as follows:

(235) JhighKposn := λx : Ind .



P :=



u : V ector

v : V ector

grnd(u)
posn(x, u, v)
up(v)


λp : P .

dist
∥p.1∥




As required, it takes an individual and returns a presupposition type together
with a map from that type to positive degrees. The presuppositions are listed
below, in the order in which they appear:

(236) 1. there exists some vector u
2. there exists some vector v
3. u describes a point on the ground
4. the position of x with respect to u is v
5. v is directed upwards
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(a) Positional height: u describes a point on
the ground, v is the position of x with
respect to u.

(b) Dimensional height: v is an upwards axis of
x.

Figure 3.4

Given a context in which these presuppositions are satisfied, the measure function
extracts the magnitude of the v vector, which is a positive degree on the scale of
distance. Notice that the vector u specifies the start point of v, but there is no
information about where u itself originates. The origin of u is intentionally left open
– it might be based at the speaker, at some other observer, or at some contextually
understood location in the environment. The choice of origin for u can be safely
ignored, because nothing depends on it, the relevant quantity being the magnitude
of v. For an illustration of a positional height situation, see Figure 3.4a.

Dimensional height is similar to positional height, except that the vector v
represents an axis of x rather than its position. This can be formalized as follows:

(237) JhighKdim := λx : Ind .


P :=


v : V ector

axis(x, v)
up(v)


λp : P .

dist
∥p.1∥




As shown, dimensional height presupposes that:

(238) 1. there exists some vector v
2. v is an axis of x
3. v is directed upwards

Given a context which meets these requirements, the measure function extracts
the magnitude of the v axis as before. Note that condition (2) rules out axes
which are vertically oriented but directed downwards instead of upwards. This
seems intuitively correct – for instance, the major axis of a stalactite cannot be
described as a height, since it is pointed down rather than up. For an illustration
of a dimensional height situation, see Figure 3.4b.
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Figure 3.5: The sense JhighKdim, grnd: u points to a location on the ground, and v is an
upwards-directed axis of x based at u.

As discussed in the previous subsection, positional and dimensional height are
connected through the idea of being based on the ground. In a sentence like the bird is
higher than the tree, the positional height of the bird is compared to the dimensional
height of the tree, with the understanding that the tree is based at ground level. We
can therefore identify a stronger, more prototypical version of JhighKdim in which
the vector v is not only an axis of the object, but is also based on the ground. This
is encoded using the predicate type axis(x, u, v), meaning ‘v is an axis of x, based
at u’, in combination with grnd(u), meaning ‘u describes a position on the ground’:

(239) JhighKdim, grnd := λx : Ind .



P :=



u : V ector

v : V ector

grnd(u)
axis(x, u, v)
up(v)


λp : P .

dist
∥p.1∥




As shown, JhighKdim, grnd is almost identical to JhighKposn, the only difference being
that v now represents an axis of x based at u, rather than the position of x with
respect to u. See Figure 3.5 for an illustration.

Now that we have the two senses JhighKposn and JhighKdim, grnd, it is easy to see
that they are related through the common notion of ground level. This is what
allows them to be coordinated in a sentence like the bird is higher than the tree.
The join of these two senses, which I refer to as the ‘elevation’ sense, is given below:
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(240) JhighKelev := λx : Ind .



P :=



u : V ector

v : V ector

grnd(u)
posn(x, u, v) + axis(x, u, v)
up(v)


λp : P .

dist
∥p.1∥




As shown, JhighKelev requires either that v represents the position of x with respect to
u, as in JhighKposn, or that v represents the axis of x based as u, as in JhighKdim, grnd.
It therefore covers both situations. In the bird is higher than the tree, the height of
the bird satisfies posn(x, u, v), whereas the height of the tree satisfies axis(x, u, v).

The four senses of high defined above form the simple lexical network shown
in Figure 3.6. It is important to bear in mind that this is not the complete lexical
network for high, since it omits non-spatial senses. Notice that the high network is
not a straightforward radial network of the sort often seen in cognitive linguistics,
since it has more than one prototype and contains joins in addition to meets. The
senses JhighKposn and JhighKdim, grnd have an abstract similarity, which is represented
by their join; whereas the senses JhighKelev and JhighKdim are derived from the
same prototype, represented by their meet.

JhighKposn

JhighKelev

JhighKdim, grnd

JhighKdim

Figure 3.6: The lexical network for high, excluding non-spatial senses.

Given knowledge of how the various senses of high are implemented, it should be
easy to see how the arrows are implemented. Recall that given two positive gradable
adjectives G, H : Gradable(+), an arrow between them is of type H →Gradable(+) G,
which was defined in (219). Consider the arrow JhighKelev

posn, which goes from JhighKposn
to JhighKelev. This is implemented as follows:

(241) JhighKelev
posn : JhighKposn →Gradable(+) JhighKelev(x)
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JhighKelev
posn := λx : Ind .



λp : JhighKposn(x).1 .



p.1
p.2
p.3
inl(p.4)
p.5


λp : JhighKposn(x).1 . refl(dist

∥p.v∥

)


As shown, the presuppositions of JhighKposn are sent to the presuppositions of
JhighKelev by injecting the proof of posn(x, u, v) as a proof of posn(x, u, v) +
axis(x, u, v). As before, the fact that both JhighKposn and JhighKelev return the
same degree is witnessed by the appropriate reflexivity proof. Henceforth, I shall
generally omit discussion of how arrows are implemented where this can be easily
deduced from the implementation of senses.

As discussed above, I take the non-spatial senses of high to be disconnected
from the spatial senses. For example, consider the ‘social status’ sense JhighKsocial,
as in high office, high position, high standing, and so on. On the one hand, it is
clear that this sense cannot be coordinated with any of the spatial senses without
giving rise to zeugma, e.g. ?John’s balcony is as high as his social standing. By our
criteria, this suggests that JhighKsocial does not share a common join with any of the
senses in Figure 3.6. Moreover, although JhighKsocial is mutually compatible with
the spatial senses, the combination does not form a unified prototype: someone
who is high in both a positional and social sense is high in two completely different
ways, not in a single more typical way. This suggests that JhighKsocial does not
share a common meet with any of the spatial senses. Similar observations could
be made with respect to the other non-spatial senses.

However, despite being disconnected from the spatial senses, the non-spatial
senses are still part of the high network. It is important to distinguish between two
disconnected parts of the same lexical network and two distinct lexical networks
which happen to share a common pronunciation. The latter are perceived as
unrelated in meaning, such as the two interpretations of the word bank, ‘financial
institution’ and ‘side of a river’. In contrast, two disconnected pieces of the same
lexical network are perceived as related ‘metaphorically’ or ‘loosely’, like the spatial
and social senses of high.

I would tentatively suggest that the perception of a loose metaphorical connection
between disconnected senses stems from the human ability to quickly construct meets
and joins in lexical networks. For example, given JhighKsocial and JhighKelev, one can
easily imagine a common join in which ground level is identified with the bottom of
the social hierarchy, and distance above ground is identified with social standing.
At the same time, one can also imagine a common meet in which physical elevation
and social status coincide, so that both senses are simultaneously satisfied. On this
account, the difference between a metaphorical sense connection and an ordinary
sense connection is that a metaphorical sense connection is computed ‘on the fly’,
whereas an ordinary connection is lexically available. In order for a metaphorical
connection to be constructed, the two senses must belong to the same network.
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JhighKposn

JhighKelev

JhighKdim, grnd

JhighKdim

JhighKemot

JhighKsocial

JhighKpitch

JhighKquant

Figure 3.7: The non-spatial senses of high are disconnected from the spatial senses, but
still part of the same network.

3.4.3 Representing antonymy: the low network
The negative adjective low is a perfect antonym to high. Like high, low has both a
positional interpretation, as in low airplane, and a dimensional interpretation, as in
low tower. It also shows a general ‘elevation’ interpretation which unites the two,
as in the plane is lower than the tower. What is more, low is parallel to high in
most if not all of its non-spatial applications, including emotion (to feel low), social
status (low rank), pitch (low note), quantity (low number), and so on. In other
words, the structure of the low network is the same as the high network. The same
goes for other pairs of perfect antonyms, such as thick/thin, big/small, light/heavy,
and so on, though not for imperfect antonyms like long/short.

How should the relationship between antonymous adjectives be represented?
Recall that arrows within a lexical network are idiosyncratic – they capture unique
relationships between senses of a particular lexical item – whereas the relationship
between a positive polarity adjective and its negative polarity counterpart is always
the same: high is to low, as big is to small, as light is to heavy, as remarkable is
to unremarkable, and so on. This suggests that antonymy should be described
by a function which applies to an entire lexical network. I shall call the function
which implements antonymous opposition un, after the un- morpheme. un converts
a network of positive adjective meanings into a network of negative adjective
meanings. Its action on senses is shown below:

(242) un : Gradable(+) → Gradable(−)

un := λG : Ind → Gradable(+) .

λx : Ind .


P := G(x).1

λp : P .

G(x).2(p).1
negate(G(x).2(p))




That is, un- acts on a sense by negating the degree returned by its measure
function. To give an example, applying un to the sense JhighKdim, grnd gives us
the antonymous sense JlowKdim, grnd, as follows:
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(243) JlowKdim, grnd := un(JhighKdim, grnd)

= λx : Ind .


P := JhighKdim, grnd(x).1

λp : P .

JhighKdim, grnd(x).2(p).1
negate(JhighKdim, grnd(x).2(p))




= λx : Ind .



P :=



u : V ector

v : V ector

grnd(u)
axis(x, u, v)
up(v)


λp : P .

dist
−∥p.1∥




As shown, JlowKdim, grnd is exactly the same as JhighKdim, grnd, except that instead of
returning a degree with positive polarity, it instead returns a degree with negative
polarity. Since positive degrees on the distance scale are positive real numbers,
it makes sense to represent negative degrees on the distance scale are negative
real numbers. (Note that this does not necessarily work for every scale, since not
all scales are isomorphic to the positive real numbers. Some scales are not really
‘numerical’ at all, in the sense that they do not support operations like addition,
subtraction, multiplication, and so on.)

un acts not only on senses but also on sense connections. Suppose we have two
positive gradable adjectives G, H : Gradable(+) linked by an arrow:

(244) α : G →Gradable(+) H

This can be lifted to an arrow un(α) between their antonyms as follows:

(245) un(α) : un(G) →Gradable(−) un(H)

un(α) := λx : Ind .


λp : un(G)(x).1 . α(x).1(p)

λp : un(G)(x).1 .

α(x).2(p).1
apnegate(α(x).2(p).2)




Note that the only aspect of the original map which needs to be altered is the
second component of the commuting condition, which must be lifted from an
equality between positive degrees to an equality between negative degrees using the
equality-lifting function ap. Knowing how un acts on senses and arrows amounts to
knowing how it acts on an entire network. Figure 3.8 shows how the low network
is derived from the high network through the application of un.

The function un is intended both as the interpretation of the morpheme Jun-K
and as a kind of lexical redundancy rule (Jackendoff 1975, Bresnan et al. 2015): it
can be applied either within the morphosyntax, as in unkind, or within the lexicon,
as in low. In this respect, it resembles other derivational affixes such as -ness,
-(i)fy, -able, -ish, -er, etc., which in addition to being affixes function as derivational
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processes inside the lexicon relating different lexical items. As with other derivational
morphology, lexical application of un can block its morphosyntactic application.
For example, *unbig, *unlong and *unhot strike us as unacceptable because of the
presence of the negative polarity adjectives small, short and cold in the lexicon.

JhighKposn

JhighKelev

JhighKdim, grnd

JhighKdim

JhighKemot

JhighKsocial

JhighKpitch

JhighKquant

JlowKposn

JlowKelev

JlowKdim, grnd

JlowKdim

JlowKemot

JlowKsocial

JlowKpitch

JlowKquant

un

Figure 3.8: un acts on the high network to derive the antonymous low network.
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3.5 Tall

3.5.1 Introduction to tall
The most detailed description of the English adjective tall comes from Dirven &
Taylor (1986), whose work was discussed in Section 1.3.4. Based on a questionnaire
study in which participants were asked to rate the acceptability of various tall + noun
combinations, they propose that tall is based on the following cognitive prototype:

(246) Tall prototypically applies to objects (Dirven & Taylor 1986):
a. with a canonical vertical orientation (tall person is better than tall

infant)
b. whose vertical dimension is primary (tall mountain is better than tall

hill)
c. whose vertical dimension is sufficiently large (tall fence is better than

tall ribbon)
d. formed of solid material, not hollow (tall tree is better than tall wardrobe)
e. profiled against a background (tall bookcase is better than tall door)
f. which have acquired their height through a process of growth or con-

struction (tall building is better than tall window)

A situation in which the object meets all of these criteria is judged as highly typical
(e.g. tall person), whereas a situation in which only some criteria are met is judged
as less typical (e.g. tall lorry). The authors also mention that tall can block the
application of high in very prototypical situations – for instance, ?high person is
unacceptable since people combine very prototypically with tall.

One issue with Dirven & Taylor’s analysis is that it does not explain why certain
combinations of criteria are sufficient, whereas others are not. For example, an
object which satisfies both (a) and (b) (e.g. a wine bottle) can always be described
as tall regardless of whether it satisfies the other criteria. Similarly, an object which
satisfies both (a) and (c) (e.g. a fence) can always be described as tall. On the
other hand, an object which satisfies only (d) and (e) (e.g. a planet) cannot be
described as tall. The sufficiency of certain combinations of conditions but not
others suggests a lexical network analysis in which arrows are used to express how
the central prototype can be weakened. This supports the view that prototypes by
themselves cannot play the role of concepts. Rather, one needs prototypes together
with ways of acceptably weakening or transforming them.

Most languages do not distinguish tall and high. Rather, something like the
prototype in (246) seems to be associated with the dimensional sense of height.
For example, Goy (2002) conducted a study of Italian alto ‘high/tall’ inspired by
Dirven and Taylor’s methodology, whereby participants were presented with alto +
noun combinations and asked to rate their acceptability. Nouns with high average
scores (e.g. torre ‘tower’, piramide ‘pyramid’, lampione ‘lamppost’) had a vertical
axis which was primary, larger than a human being, and pointed upwards. Nouns
with medium scores (e.g. automobile ‘car’, bichiere ‘glass’, uccello ‘bird’) had only
some of these properties, and nouns with low scores (e.g. serpente ‘snake’, sigaretta
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‘cigarette’, biro ‘pen’) had none. Vogel (2004) found similar results for the Swedish
adjective hög ‘high/tall’: she gives hög träd ‘tall tree’ as a prototypical combination,
hög tillbringare ‘tall jug’ as a less typical combination, and ?hög banderoll ‘tall
banner’ as an unacceptable combination.

An object described as tall must be conceptualized as directed upwards rather
than downwards. For instance, we can describe a tree or a tower as tall, but not
a stalactite or chandelier, since these are conceptualized as pointing downwards.
Instead, objects which are directed downwards are usually described as long, provided
that their downwards axis is sufficiently salient. The same holds for analogs of tall
in other languages. For instance, Geckeler (1997) writes that French haut ‘tall/high’
must describe an upwards-directed object; it cannot describe a thread hanging from
the ceiling, which is instead described as long ‘long’. Similarly, Linde-Usiekniewicz
(2002) writes that Polish wysoki ‘high/tall’ cannot be used to describe objects which
hang from above, like curtains or hanging lights. The upwards constraint may
explain the tendency, often noted in the literature, for tall to prefer rigid over flexible
objects. A flexible object like a piece of string does not ‘stand up’, but must be hung
from above in order to have an identifiable vertical axis. This situation excludes
the use of tall, an object hung from above is perceived as directed downwards.

Does tall have non-spatial senses? Many dictionaries list a sense meaning
‘considerable’ or ‘difficult’, as in tall order or tall price. However, this sense seems
highly collocational, not occurring outside of a few fixed combinations. Novel
combinations, such as ?tall question, ?tall situation, ?tall issue, and so on, seem
bizarre. The same goes for other non-spatial senses, such as the use of tall to mean
‘difficult to believe’, which occurs in combinations like tall tale and tall story but
for most speakers cannot be used productively in new combinations, e.g. ?tall
article, ?tall description, ?tall accusation. For this reason, I have chosen not to
include these senses in the tall network.

3.5.2 The tall network
The spatial senses of tall are all derived from a single prototype. Following the
suggestions of Dirven & Taylor (1986), Goy (2002) and Vogel (2004), I take the
prototypical sense of tall to refer to an axis which is:

(247) a. directed upwards in the environment
b. the primary axis of the object
c. larger than or comparable to human height

Examples of objects which satisfy all the conditions are trees, towers, lampposts,
pillars and mountains.

Regarding the primary axis condition, I am assuming a distinction between the
primary and secondary axes of an object, following work on human and computer
vision (e.g. Marr & Nishihara 1978, Marr 1982, Biederman 1987). An object’s
primary axis, if it has one, is distinguished from its other axes, either by being
significantly larger or by symmetry. For example, the primary axis of a sofa is its
side-side axis, since this is typically larger than the other axes. For an example of
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an axis which is distinguished by symmetry, consider a short bowl whose diameter
is larger than its height. The primary axis of the bowl still refers to its height,
despite the fact that it is not maximal, because this is the bowl’s axis of rotational
symmetry. The primary axis can be found by trying to find a cylinder which best
approximates the shape of the object, where the cylinder is allowed to have an
arbitrarily shaped cross-section (Marr 1982); the axis of the cylinder is then taken
to be the primary axis of the object. Some objects have no primary axis, either
because they have a highly irregular shape, like a crumpled newspaper, or because
they have perfect rotational symmetry, like a football.

I have chosen not to incorporate the rigidity of the object into the tall prototype,
as other authors have proposed. Flexible objects can in fact occur perfectly
acceptably with tall, as in tall grass, tall reed, tall stem, and so on. In so far
as there is a preference for tall to occur with rigid objects, this can be explained
by the fact that flexible objects do not tend to point upwards, as explained in the
previous subsection. Hence, it is not necessary to include a rigidity requirement in
addition to the upwards direction requirement. Dirven & Taylor’s (1986) condition
that the object has acquired its height through a process of growth or construction
is also unnecessary, as shown by combinations like tall pole, tall hat, tall vase, etc.,
which neither grow nor are built upwards incrementally. One could argue that such
objects are conceptualized as exhibiting a kind of fictive motion in the upwards
direction, but the same could be said for any upwards-extended object.

The conditions in (247) can be formalized as follows:

(248) JtallKup, 1st, large := λx : Ind .



P :=


v : V ector

up(v)
1st(x, v)
large(v)


λp : P .

dist
∥p.1∥




where components 2-4 of the presupposition type encode conditions (247a-c)
respectively. Recall that the proofs of primitive predicates are intended to be
pieces of perceptual information:

(249) • A proof of up(v) would involve evidence that the angle between v and
the environmental direction vector up is greater than some threshold.

• A proof of 1st(x, v) would consist of information showing that v is the
primary axis of x.

• A proof of large(v) would involve evidence that the magnitude of v
is greater than some threshold corresponding to the average human
height.

The prototype JtallKup, 1st, large can be weakened in various directions. To begin
with, one can drop the 1st(x, v) or large(v) requirements. For example:
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(250) • Tall wine bottle: the height of a wine bottle satisfies top(x, v), up(v)
and 1st(x, v) but does not satisfy large(v), since it is not comparable
to a human height.

• Tall wall: the height of a wall satisfies top(x, v), up(v) and large(v)
but fails to satisfy 1st(x, v), since it is not primary.

Since they both fail to satisfy one of the tallness conditions, these senses should be
perceived as slightly less typical than JtallKup, 1st, large. They are formalized as follows:

(251) JtallKup, 1st := λx : Ind .


P :=


v : V ector

up(v)
1st(x, v)


λp : P .

dist
∥p.1∥





JtallKup, large := λx : Ind .


P :=


v : V ector

up(v) × axis(x, v)
large(v)


λp : P .

dist
∥p.1∥




Notice that in JtallKup, large, because we have dropped the condition 1st(x, v), we
must add the condition axis(x, v) to ensure that v is an axis of x.

The senses JtallKup, large and JtallKup, 1st are subsumed by a common join. For
instance, consider the following sentence:

(252) The wall is taller than the bollard.

The height of a wall satisfies large(v) but not 1st(x, v), since it is not primary,
whereas the height of a bollard satisfies 1st(x, v) but not large(v), since it is
not of comparable size to a human being. The fact that (252) is interpretable
suggests that there is a sense which collapses the distinction between 1st(x, v)
and large(v) into a single condition, which we can think of as requiring the axis
to be ‘significant’. This is formalized as follows:

(253) JtallKup, sgfnt := λx : Ind .


P :=


v : V ector

up(v) × axis(x, v)
|1st(x, v) + large(v)|


λp : P .

dist
∥p.1∥




Note the use of propositional truncation. This is needed to ensure that there is a
single composite arrow from JtallKup,1st,large to JtallKup,sgfnt, which disregards whether
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one uses the proof of 1st(x, v) or large(v) to show significance. The requirement
that there is only a single composite arrow is part of the conditions for a partial order.

In addition to describing an axis which is actually vertical, tall can also describe
an axis which is canonically vertical. Consider the sentence:

(254) The wine bottle [lying on its side in storage] is taller than the pencil [held
in an upright position].

This suggests that there is a more abstract sense of tall in which the axis is allowed
to be either pointing upwards either in the environment or in the object’s canonical
orientation. We might refer to this as a ‘general’ vertical axis. Each of the senses
defined up to this point – JtallKup, 1st, large, JtallKup, 1st, JtallKup, large and JtallKup, sgnft
– can be weakened to a general vertical axis:

(255) JtallKvert, 1st, large := λx : Ind .



P :=


v : V ector

up(v) + top(x, v)
1st(x, v)
large(v)


λp : P .

dist
∥p.1∥





JtallKvert, 1st := λx : Ind .


P :=


v : V ector

up(v) + top(x, v)
1st(x, v)


λp : P .

dist
∥p.1∥





JtallKvert, large := λx : Ind .


P :=


v : V ector

(up(v) × axis(x, v)) + top(x, v)
large(v)


λp : P .

dist
∥p.1∥





JtallKvert, sgfnt := λx : Ind .


P :=


v : V ector

(up(v) × axis(x, v)) + top(x, v)
|1st(x, v) + large(v)|


λp : P .

dist
∥p.1∥




where the predicate top(x, v) means ‘v is the canonical vertical axis of x’. Note
that the senses JtallKvert, 1st, large, JtallKvert, 1st, JtallKvert, large and JtallKvert, sgnft refer to
an actual or canonical vertical axis, whereas the senses JtallKup, 1st, large, JtallKup, 1st,
JtallKup, large and JtallKup, sgnft refer to an actual vertical axis only. There are no
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senses which refer to a canonical vertical axis only, to the exclusion of an actual
vertical axis. I take this to be because the concept of an actual vertical axis is
presupposed by, and prior to, the concept of a canonical vertical axis.

The various senses of tall form the lexical network shown in Figure 3.9. Notice
how the senses form a lattice in which any two senses have a common meet and
a common join. There is a unique initial sense because all the senses are derived
from a common prototype; and there is a unique final sense because all the senses
are understood to be abstractly similar, allowing them to be coordinated without
zeugma. The more specific a sense – i.e. the fewer arrows are required to reach
it, starting from the prototype – the more typical it is judged to be. Hence,
JtallKup, 1st, large is predicted to be more typical than JtallKup, 1st, which is predicted
to be more typical than JtallKvert, 1st, and so on. If these predictions are found to
be incorrect, the structure of the network would need to be changed accordingly.
Note that unlike Dirven & Taylor’s (1986) analysis, the network not only accounts
for typicality judgements, but also explains which features of the prototype can
be acceptably weakened and which cannot.

JtallKup, 1st, large

JtallKup, large

JtallKup, 1st

JtallKup, sgfnt

JtallKvert, 1st, large

JtallKvert, large

JtallKvert, 1st

JtallKvert, sgfnt

Figure 3.9: The tall network.
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3.6 Length

3.6.1 Introduction to length
The most common description of length is that it refers to an object’s maximal
dimension. For example, in his analysis of German dimensional adjectives, Bierwisch
(1967) assigns lang ‘long’ and kurz ‘short’ the feature +max, indicating a maximal
dimension. Similarly, Lyons (1977) writes that if an object has a maximal extension,
then this is identified as its length, unless canonical orientation causes it to be
labelled as the width – as in the maximal dimension of a sofa – in which case
the object will not have a length. However, other authors such as Lang (1989)
and Fillmore (1997), have criticised the maximal theory. Lang points out that
we can easily interpret sentences like the following, where length refers to the
dimension which is secondary in extent:

(256) Examples from Lang (1989):
a. Die Drillemaschine ist breiter als lang.

‘The drill is wider than it is long.’
b. Unser neues Doppelbett ist 2m lang und 3m breit.

‘Our new double bed is 2m long and 3m wide.’
c. Der Samtrest ist 1.3m in der Breite, aber nur 0.5m lang.

‘The velvet strip is 1.3m in width but only 0.5m long’

On the maximal theory, each of these examples ought to be contradictory. Lang’s
proposed solution is that length refers to whichever dimension is maximal in a
prototypical version of the object. For instance, the front-back dimension of a drill
is prototypically greater than its side-side dimension, so the front-back dimension
can be described as a length even in cases where it is actually smaller. However,
an issue with this analysis is that there may be types of objects whose length is
prototypically shorter than their width. For example, the wingspan of a small
aircraft is usually longer than the length of its fuselage, but the fuselage axis is
nevertheless described as length and the wingspan as width.

Another aspect of length which is widely acknowledged in the literature is its
preference for a horizontal dimension (Greimas 1966, Bierwisch 1967, Lyons 1977,
Lafrenz 1983, Spang-Hanssen 1990). Long and short do not combine well with
objects that are both canonically vertical and pointed upwards in the environment,
as in ?long tower, ?long person, ?long tree, and so on – such expressions tend to
give rise to the implicature that the object is in a horizontal or toppled orientation.
However, long and short do seem to be acceptable with objects which are either
canonically vertical but not actually vertical (e.g. the primary axis of a toppled tree),
or actually vertical but not canonically vertical (e.g. a stick held in an upwards
position). They are also acceptable with a inherently downwards-directed object, as
in long stalactite, long necktie, long curtains, and so on. Because the acceptability
conditions of length are in complementary distribution with those of tall, some
authors (e.g. Vogel 2004), have argued that length has no orientation requirements
of its own – its preference for a non-vertical axis is simply due to blocking by tall.
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(a) The length of a poker is measured in a
straight line, whereas the length of a
thread is measured along a curve.

(b) According to Vandeloise, the length of a mo-
bile entity is evaluated in its canonical direction
of motion.

Figure 10, from Vandeloise (1988).

The most detailed analysis of length comes from Vandeloise’s (1988) study of
length and width, which was discussed in Section 1.3.4. Vandeloise points out that
length is not always evaluated in a straight line. Rather, the length of a flexible
or winding object, such as a thread or a river, is evaluated along the path of the
object itself. Contrast this with a rigid pointed object, like a poker or a fork, whose
length is evaluated in a straight line from base to tip (see Figure 9a). Vandeloise
also argued for a connection between length and motion, arguing that the length of
a mobile entity is evaluated along its canonical direction of motion. For instance,
he argued that the cube shown in Figure 9b has no length until we conceptualize
it as mobile, in which case its length is given by its frontal direction. This is also
intended to explain why the frontal direction of a vehicle such as an aircraft can be
referred to as a length even when it is less than the object’s width.

A more recent analysis of length which is also based on the concept of path has
been put forward by Zwarts (2003). Like Vandeloise, he notes that length may refer
either to straight or curved objects. In the case of straight objects, the primary
axis is simply given by a vector. In the case of a curved object, the primary axis is
given by a path, which Zwarts analyses as a chain of vectors connected end-to-end.
The number of vectors in its path corresponds to the scale or grain-size – a path
containing only a few vectors is a very coarse-grained representation of the object,
whereas a path containing many vectors is more fine-grained. (Paths of this kind are
needed not only to describe length, but also for directional prepositions like around
and across – for example, the sentence the lake was two miles around would involve
a path that encircles the lake.) In Zwarts’ analysis, the adjectives long and short
each have two versions – one applying to vector axes and one applying to paths. The
length of a path is given by summing together the length of all its component vectors.

In addition to its spatial senses, long also has a temporal sense, as in long meeting,
long day, four hours long, and so on. Whereas the spatial sense has dimensions
of distance, the temporal sense has dimensions of duration. The same parallelism
between spatial length and temporal duration appears in many other languages –
for instance, Japanese also uses nagai ‘long’ to describe duration, as in nagai jinsei
‘long life’ (Shimotori 2013). Evans (2013) argues that this parallelism is due to a
conceptual metaphor duration is length, a cross-cultural universal which arises
because of common perceptual and motor experience. There are natural connections
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between duration is length and other conceptual metaphors that have been
proposed in cognitive linguistics, such as time is motion (Lakoff & Johnson 1980),
and temporal sequence is linear position (Moore 2006).

3.6.2 The long network
My analysis of length is comparatively simple. To begin with, I do not agree with
Vandeloise (1988) that length and width are mutually dependent concepts. In fact,
there are many cases in which the duality between length and width breaks down,
either because they refer to the same dimension (e.g. the primary axis of a sofa),
or because the object has a width without having a length (e.g. a circle). At the
same time, it is clear there is some kind of interaction between the two concepts.
Indeed, when an object has two horizontal dimensions, it is often the case that
one is labelled as the length and the other as the width. Rather than encoding
this interaction explicitly – i.e. by directly referring to long in the description of
wide, or vice versa – I prefer to explain interactions between spatial adjectives as
a consequence of the primitives which they contain. Long contains the primitive
1st(x, v), and therefore interacts in a complementary way with wide, which, as we
shall see in Section 3.7, contains the primitive 2nd(x, v). Long also interacts in
a competitive way with tall, since they both contain 1st(x, v).

I also disagree with Vandeloise’s claim that length has to do with the object’s
inherent direction of motion and the perspective from which it is viewed. For
example, the frontal axis of a siege tower is its canonical direction of motion, but
this cannot be described as long. The frontal axis of a desk is the direction in which
it is canonically viewed, but this cannot be described as long either. Rather, the
only condition which an axis is required to satisfy in order to count as a length is
that it is primary – that is, it should satisfy 1st(x, v). For instance, the primary
axis of a stick can be described as long, despite the fact that it typically satisfies
neither L2 nor L3, because it satisfies 1st(x, v). The reason why the wheeled box
in Figure 10 is perceived to have a length whereas the wheel-less box has no length
is not because the wheeled box has a frontal axis and the wheel-less box does not;
but rather because the wheeled box has a unique choice of primary axis due to
its unique plane of symmetry, whereas the wheel-less box has multiple planes of
symmetry and so cannot be assigned a primary axis.

I agree with other authors that long prefers a horizontal axis. However, this is not
a necessary condition, since long can also apply to a diagonal or downwards-directed
axis, as in long curtain, long chandelier, long stalactite, long nose, and so on. The
unacceptability of long with an upwards-directed axis does not need to be encoded
directly, since it can be explained as the blocking of long by tall. For example,
consider the height of a tower block, which satisfies both JtallKup, 1st, large and the
‘primary axis’ sense of length, JlongK1st. Because JtallKup, 1st, large is much more specific
than JlongK1st, the application of long in this situation is perceived as anomalous.
In contrast to this, consider the primary axis of a wine bottle stored in a horizontal
position, which satisfies both JlongK1st, horz and JtallKvert, sgfnt. Because these senses
are roughly equally specific, the primary axis can be described as either long or tall.
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To summarize, the most prototypical case of straight-line length refers to an
axis which is both primary and horizontal. This is encoded as follows:

(257) JtallK1st, horz := λx : Ind .


P :=


v : V ector

1st(x, v)
horz(v)


λp : P .

dist
∥p.1∥




This sense can be weakened by dropping the horizontal condition, as when long
is used to describe a downwards-directed object:

(258) JtallK1st := λx : Ind .


P :=

v : V ector

1st(x, v)


λp : P .

dist
∥p.1∥




As shown, JtallK1st requires only that v is the primary axis of the object being
described. A primary axis need not be maximal but can be determined by other
constraints. For example, the primary axis of a small aircraft is the axis which
runs through the fuselage, although the wingspan axis may in fact be larger. This
is because the fuselage axis lies on the aircraft’s plane of symmetry, which is a
stronger requirement than the maximality requirement.

The senses JlongK1st, horz and JlongK1st involve only a straight-line axis, and so
do not cover the length of pathlike objects such as rivers, threads, ropes or pieces
of string. To express path length we need to introduce paths into the ontology,
which can be done in various ways. One approach would be to treat them as
primitives, introducing basic facts about paths as axioms, in the same way we
have described vectors (see e.g. Piñón 1993, Krifka 1998, Eschenbach et al. 2000).
This approach has the advantage that it stays close to human intuition and avoids
introducing complex mathematical machinery, which is generally seen as implausible
from a cognitive point of view. The alternative is to construct paths from more
basic objects, such as sequences of places (Verkuyl & Zwarts 1992), or functions
from some ordered domain to places (Zwarts & Winter 2000, Zwarts 2005). The
advantage of this approach is its ontological parsimony and formal explicitness.
Other considerations being equal, we prefer to build new types from pre-existing
types rather than introducing them as primitives.

Following Zwarts (2005), I shall represent paths as smooth functions from the
unit interval [0, 1] to vectors. That is, a path will be considered an element of
something like the following type:

(259) Path :=
p : [0, 1] → V ector

smooth(p)
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p.1(0)
p.1(1)

Figure 3.11: A path p is represented as a continuous sequence of vectors emanating from
the same point. The length of a path can be estimated using a piecewise approximation
such as that shown here.

where smooth(p) stands for some constraint encoding the idea that p is smooth. All
the vectors in the path should be thought of as emanating from the same point as
shown in Figure 3.11. As before, I take the origin of vectors to be arbitrary. Given
a path p : Path, its start point is described by p.1(0) and its endpoint by p.1(1).

In addition to paths, we also need a function for computing the length of a path:

(260) length : Path → Real

This is defined to be the usual notion of arc length. Given a path p : Path, consider
any regular partition of [0, 1] consisting of points 0 < t1 < · · · < tn−1 < 1. This
gives a piecewise approximation to p, whose length is ∑n

i=0∥p.1(ti) − p.1(ti − 1)∥.
The arc length is the upper bound of this value over any possible partition:

(261) length(p) := sup
n∑

i=1
∥p.1(ti) − p.1(ti−1)∥

In practice, arc length cannot be computed exactly unless one knows a parametric
equation for the curve which has a closed-form solution. The representation of
a curve as a parametric equation seems implausible from a cognitive point of
view. Nevertheless, even people with little mathematical training understand that
the length of a curve can be estimated by means of a piecewise approximation,
with more fine-grained approximations yielding more precise estimates of length,
eventually converging to the correct value. I therefore take it for granted that
speakers have some notion of the ‘true length’ of a curve, despite being unable
to precisely compute this quantity.

Having introduced paths and a way of understanding their length, we can
now formalize the path sense of long:
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(262) JtallK1st := λx : Ind .


P :=

p : Path

path(x, p)


λr : P .

dist
length(p)




where the predicate path(x, p) means ‘the shape of x is approximated by p’. Like
the other primitives discussed in this chapter, a proof of path(x, p) is intended to
be a piece of perceptual information. Given a path p satisfying path(x, p), the
measure function returns the length of p, as defined in (261).

Path length and straight-line length can be sensibly brought together in a
sentence like the stick is long and so is the rope, which in our system suggests
that they ought to have a common join. One possibility would be to consider
straight-line length as a special case of path length, in which the path consists
only of a single vector. The arrow from straight-line length to path length would
take a primary axis and consider it as a path with a single element. However, this
strikes me as quite unintuitive, since many objects with a primary axis are not
naturally approximated by paths. For instance, a typical desk has a primary axis
in the side-side direction, but its shape cannot be sensibly approximated by a path.
Moreover, there are objects whose straight-line length can be considered separate
from their path length. For example, a corkscrew has a straight-line length from
base to tip, but also a path length which winds around the helix.

Rather than representing straight-line length as a special case of path length, I
take the two kinds of length to share a common generalization JlongKspatial:

(263) JlongKspatial := λx : Ind .



P :=
v : V ector

1st(x, v)

+
p : Path

path(x, p)



λr : P .


dist
case r of

inl(r′) then ∥r′.1∥
| inr(r′) then length(r′.1)




As indicated, JlongKspatial requires either that x has a primary axis v, or that its shape
can be approximated by a path p. In the former case, the measure function returns
the magnitude of v; in the latter case, it returns the length of p. Both cases have
dimensions of distance. The various senses of length form the lexical network shown
in Figure 3.12. Notice how JlongKspatial subsumes both JlongK1st and JlongKpath.

As mentioned, long also has a temporal sense, as in long meeting, long holiday,
long wait, and so on, which I refer to as JlongKdurtn. A common claim in cognitive
linguistics is that spatial conceptualizations get transferred into the temporal domain
by a conceptual metaphor time is space (e.g. Lakoff & Johnson 1980, Radden
2003, Evans 2013). Evans explicitly extends the time is space metaphor to include
duration is length. However, expressions like long meeting are generally not
understood by speakers as being metaphorical (Jackendoff & Aaron 1991). Moreover,
people frequently represent and reason about time and duration without recruiting
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JlongKdurtn

JlongKspatial

JlongK1st

JlongKpath

JlongK1st, horz

Figure 3.12: The long network.

spatial information, such as when deciding on the appropriate tense and aspect of a
verb. These facts suggest that the concept of duration is not somehow derived from
spatial length, but that the two have an equal status in the long lexical network.
Moreover, the temporal sense does not have a common join with any of the spatial
senses, since one cannot say something like:

(264) ? The street was long and so was the party.

which ought to be possible if spatial and temporal length were subsumed under
a common generalization.

3.6.3 The short network
The English adjective short is not a perfect antonym of long. Rather, it appears to
act as an antonym for both long and tall. For instance, a river is described as short
in opposition to long, but a person is described as short in opposition to tall. It
follows that the semantics of short is not given simply by applying the un function
to either the long network or the tall network, but by somehow combining their
features. Like long, short can apply to curved and winding objects such as rivers,
roads and ropes. It can also describe a time in the same way as long, as in short
meeting, short delay, short wait, and so on. However, like tall, short can describe
a vertical axis which is not the primary axis of the object, as in short wall, short
bike, short dog, etc. Like tall, a canonical vertical axis can be described as short
even when the object is not in its canonical orientation – for example, a bike lying
on its side can be described as short. Because it combines the senses relating to
both long and tall, the short network turns out to be rather complicated.

The structure of the short network is shown in Figure 3.13. As expected,
it looks like a combination of the tall network in Figure 3.9 and the long net-
work in Figure 3.12. Every sense in the network is antonymous to a sense
from the tall network or a sense from the long network. There are four initial
senses: JshortKup, 1st, large, JshortK1st, horz, JshortKpath, and JshortKdurtn – which are
the antonyms of JtallKup, 1st, large, JlongK1st, horz, JlongKpath and JlongKdurtn respectively.
There are three final senses: JshortKvert, sgfnt, which subsumes all the antonyms of tall;
JshortK1st/path, which subsumes all the spatial antonyms of long; and JshortKdurtn,
which is both final and initial. What connects the antonyms of tall and long
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JshortKup, 1st, large

JshortKup, large

JshortKup, 1st

JshortKup, sgfnt

JshortKvert, 1st, large

JshortKvert, large

JshortKvert, 1st

JshortKvert, sgfnt

JshortKhorz, 1st

JshortK1st

JshortKpath

JshortK1st/pathJshortKdurtn

Figure 3.13: The short network.

together is the presence of the 1st(x, v) constraint in JshortKvert, 1st (the antonym
of JtallKvert, 1st), which permits an arrow to JshortK1st (the antonym of JlongK1st).

The structure of the network makes predictions about which senses can be
acceptably compared. For example, consider the sentence the wall is shorter than
the car. This has a tallness-based interpretation supported by JshortKup, large, whereby
the vertical dimension of the wall is compared with the vertical axis of the car,
and a length-based interpretation supported by JshortK1st/path, whereby the primary
axis of the car is compared with the path length of the wall. Mixed interpretations
are not possible, however – one does not consider comparing the height of the
wall to the length of the car – because the network contains no sense that would
support this interpretation. Contrast this to the sentence the wall is shorter than
the tower, which has both a height-based interpretation supported by JshortKup, large,
whereby the height of the wall is compared to the height of the tower, and a (less
typical) interpretation supported by JshortK1st/path, whereby the length of the wall
is compared to the height of the tower. This is possible because the height of a
tower satisfies 1st(x, v), and can therefore be compared with a length.

I shall not go into the details of how the various senses and arrows in the short
network are implemented, since this should be obvious given knowledge of how
the senses of tall and long are implemented. It is worth noting, however, that
since short is a negative polarity adjective, its senses are of type Gradable(−)
rather than Gradable(+).
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3.7 Width

3.7.1 Introduction to width
Wide is a complex category which is arguably the most polysemous of all the
English spatial adjectives. A number of studies have attempted to describe various
aspects of the concept. Perhaps the most general point of agreement is that the
spatial meaning of wide is ambiguous between a sense involving the observer’s line
of sight, and a sense involving the inherent proportions of the object (Bierwisch
1989, Lyons 1977, Lang 1989, 2001, Vandeloise 1988, Spang-Hanssen 1990, Vogel
2004), henceforth referred to as ‘lateral width’ and ‘secondary width’ respectively.
The need for this distinction is nicely illustrated by the sofa in Figure 3.14, which
is taken from Vogel (2004). The sofa has two horizontal dimensions – x and z
– both of which can be described as wide/narrow. The x dimension exemplifies
lateral width, since it is orthogonal to the line of sight of a canonical observer/user,
whereas the z dimension exemplifies secondary width, since it is orthogonal to
the sofa’s primary axis and horizontal.

Figure 3.14: The lateral width of a sofa refers to x, whereas the secondary width refers
to z, from Vogel (2004).

Another indication that lateral and secondary width should be distinguished
is that coordinating them gives rise to zeugma. For example, a strip of wood is
usually thought of as having a secondary width, whereas a pair of glasses is thought
of as having a lateral width. It is therefore unclear what the sentence the strip is
wider than the glasses is supposed to mean. To interpret the sentence, one must
either force both widths to be secondary by comparing the shape of the strip and
the shape of the lenses, or force both to be lateral by imagining the strip in some
canonical orientation where it can be assigned a lateral axis that can be compared
with the width of the glasses. Note, however, that whilst secondary and lateral
width cannot be compared, they are not mutually exclusive: rather, a single axis
may be both lateral and secondary, such as the side-side axis of a car.

Secondary width refers to an axis which is orthogonal to the object’s primary
axis, where ‘primary axis’ is understood in the sense of 1st(x, v). It follows that an
object without a primary axis, such as a spherical or disk-like object, cannot have a
secondary width. Some objects, such as rivers, ribbons, roads, corridors, and so on,

137



do not have a global secondary width, but rather many different secondary widths
at different points along their length. To give an example, the width of the river
Nile varies from around 7.5km to around 350m, depending on where it is measured.
Such an object can be represented by a ‘ribbon’ – a sequence of vectors forming
a path, each of which has an orthogonal width vector indicating the width of a
segment. The total width of the ribbon is given by the average over the width of all
of its segments. This explains why we can say the Nile is wider than the Amazon,
despite the fact that there are choices of points for which this is not the case.

Secondary width prefers an axis which is horizontal (Bierwisch 1967, Lyons 1977,
Lafrenz 1983, Spang-Hanssen 1990, Lang 2001, Vogel 2004). For example, imagine
a plank of wood which is 300cm × 15cm × 3cm. When the secondary dimension is
horizontal (as when the plank is oriented like a shelf) it is a very typical example
of width, but if the plank is tilted so that the secondary dimension is vertical the
application of width becomes less acceptable. A similar preference can be seen in
other languages. Lafrenz (1983) writes that German breit ‘broad/wide’ and schmal
‘narrow’ typically describe the smaller of an object’s two horizontal dimensions;
for Spang-Hanssen (1990), French largeur ‘width’ is assigned to an object after
its primary and vertical dimensions have received a label, with the result that it
is always horizontal; Vogel (2004) writes that Swedish bred ‘broad/wide’ refers
to “the smaller dimension in the horizontal plane”.

Lateral width refers to an axis which is orthogonal to the line of sight of some
observer, making it an inherently perspective-dependent concept. There is a natural
connection between lateral width and the so-called projective prepositions such as
in front of, behind, beside, to the left of, and to the right of, which also involve an
observer. For example, imagine facing a television screen in a canonical viewing
situation. The width of the screen is the axis which is orthogonal to your line
of sight, the same axis which is involved in the interpretation of beside, to the
left of and to the right of. In contrast, the prepositions in front of and behind
involve the axis which is aligned with your line of sight. In this way, the axes of
an object inherit their labels from how they are viewed in a canonical situation
(Clark 1973, Fillmore 1997, Miller & Johnson-Laird 1976, Herskovits 1987, Levinson
1996, 2003). An object with multiple possible viewpoints will have multiple choices
of axis labels. For example, a rectangular table in the centre of an empty room
has four possible vantage directions corresponding to its four different sides, each
of which is associated with a different interpretation of wide, and also a different
interpretation of in front of, behind, beside, to the left of and to the right of.

The ‘observer’ associated with a preposition may not correspond to the location
of an actual entity, but can be entirely virtual. Herskovits (1987) illustrates this
using the sentence John is behind the door, said by an observer who is facing the
door at an oblique angle. As shown in Figure 3.15a, this sentence evokes a virtual
observer (shown in parentheses) who is directly in line with the door and facing
it; John is understood to be directly behind the door from the perspective of this
virtual observer. The same virtual perspective is evoked by the sentence The door
is wide, where wide refers to the axis which is orthogonal to the virtual observer’s
line of sight, as shown in Figure 3.15b. For some objects, the virtual observer may
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(a) John is behind the door. (b) The door is wide.

Figure 3.15: Lateral width can involve a virtual observer, just like projective prepositions.
Figure based on Herskovits (1987).

be on or inside the object itself. For example, the axes of a vehicle are labelled from
the perspective of someone inside it, and likewise for a bed, sofa or armchair.

In addition to secondary and lateral width, there is also a further sense of width
which refers to a two-dimensional area, as in wide field, wide beach, wide ocean,
wide view. The area need not be associated with an actual surface, but can also be
a kind of imaginary area ‘swept out’ by a curve, as in wide arc, wide circle, and
so on. Some languages – particularly Germanic languages – distinguish lexically
between the distance senses of width (secondary and lateral) and the area sense.
For example, German uses breit for distance width, but weit for area width. The
claim that weit denotes an area is supported by the fact that it does not combine
with distance-denoting measure phrases like 10m (Lafrenz 1983, Durrell 1988).
Swedish uses bred for distance width, but vid for area width, which likewise cannot
occur with distance measure phrases (Vogel 2004).

Finally, wide also has a non-spatial sense meaning ‘of great range or scope’,
as in wide experience, wide knowledge, wide field of study, and so on. This seems
metaphorically related to a spatial sense in which an area is laid out in front of an
observer, because an observer surveying a wide area has perceptual access to many
different objects contained in that area. An abstract subject is usually described as
having two dimensions: wide and deep, corresponding to the number of topics it
contains and the extent or profundity of those topics. This parallels the description
of area and depth of large horizontal object such as a lake. However, despite this
conceptual connection, the scope sense and the area sense cannot be acceptably
coordinated: ?John’s garden is wide and so is his knowledge of linguistics. I therefore
take the scope sense to be disconnected from the various spatial senses of wide.

3.7.2 Secondary and ribbon width
A secondary axis is encoded by the predicate 2nd(x, v), meaning ‘v is a sec-
ondary axis of x’. Given some x : Ind and v : V ector, 2nd(x, v) can be defined
roughly as follows:

(265) 1. v is an axis of x
2. there is some u : V ector, distinct from v, such that 1st(x, u)
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3. for any other w : V ector, distinct from u and v, which satisfies axis(x, w),
v is not significantly smaller than w

Examples of axes which satisfy 2nd(x, v) include the secondary axis of a plank,
blade, leaf, feather or strip. The reason for condition 3 is to block the application
of width to a small thickness like the minimal dimension of a ruler, which satisfies
all of the other conditions but cannot be described as a width since it is not judged
to be significant in comparison to the other axes.

As mentioned previously, the fact that an axis is primary does not imply that it
is maximal. In fact, an object’s secondary axis can sometimes be larger than its
primary axis due to symmetry considerations. For instance, consider the primary
and secondary axes of a very wide maple leaf. The primary axis of the leaf is its
midvein axis – this is the axis which you would place in a vertical position if told
to hold the leaf “pointing up”. The secondary axis is the side-side axis which runs
orthogonal to the midvein, which may well be larger than the primary axis. The
reason why the midvein axis is primary whereas the side-side axis is secondary is
that the midvein axis lies on the leaf’s unique plane of symmetry.

A prototypical secondary width is horizontal. For instance, the secondary
dimension of a business card is more typically described as a width when the card
is lying flat on a table, compared to when the card is placed upright on a stand.
The horizontal version of secondary width is formalized as follows:

(266) JwideK2nd, horz := λx : Ind .


P :=


v : V ector

2nd(x, v)
horz(v)


λp : P .

dist
∥p.1∥




The horizontal requirement, whilst typical, is not necessary for an axis to count as
a width. For example, imagine a large collection of planks all stacked in different
directions, as one might find in a timber yard. The widest plank in the yard
is the plank whose secondary dimension is largest, regardless of whether this is
oriented vertically or horizontally. This is supported by the following sense, which
requires only that the axis is secondary:

(267) JwideK2nd := λx : Ind .


P :=

v : V ector

2nd(x, v)


λp : P .

dist
∥p.1∥




The senses JwideK2nd, horz and JwideK2nd require that the object being described

is completely straight, so that its primary axis is represented by a single vector.
Path-like objects such as ribbons, strips, roads and corridors, do not have a global
secondary width, but a different secondary width at every point along their length.
Objects like this can be approximated by a configuration called a ribbon, which
I shall describe by the following type:
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(268) Ribbon :=


s : Path

v : Path

∏
i:[0,1]

∥v.1(i)∥ = 1
⟨v.1(i), dir(s, i)⟩ = 0




As shown, a ribbon consists of two paths, s and v. The path s gives the position of
points along the object; whereas v describes the direction and magnitude of the
width at every point. The constraint is that, at every point i : [0, 1] along the path,
the width vector at i must be of unit length and orthogonal to the tangent vector of
s at i (Recall that a path is a smooth function from [0, 1] to vectors, so the notion of
tangent vector at a point is well defined.) To express this constraint, I make use of
a function dir : Path × [0, 1] → V ector which takes a path and a point and returns
the unit tangent vector (the ‘direction’ of the path) at that point. An element of
Ribbon can be visualized as a strip, as shown in Figure 3.16.

Figure 3.16: Visualizing an element of Ribbon. Each point i : [0, 1] along the strip has a
position s.1(i) and normal direction v.1(i).

The connection between a ribbon and an individual is represented by the
predicate ribbon(x, r, w), meaning ‘the shape of x is approximated by the ribbon
r, with average width w’. The width is a positive real number representing the
extension of the ribbon in the orthogonal direction given by the v vectors. Of
course, for a real ribbon-like object such as a river or a road, the width can grow
or shrink as we move along the path of the object. The width value w is intended
as an approximation – it is the average or representative width associated with
the object. Hence, the proposition ribbon(x, r, w) is not intended as ‘the width at
any point along x is exactly w’, but rather ‘the width at any point along x is w,
plus or minus some noise’. It is therefore a kind of statistical approximation to the
underlying shape of x. This kind of approximation is needed if we are to represent
the meaning of a sentence like the Amazon is wider than the Nile.
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Just as the most prototypical case of secondary width is horizontal, the most
prototypical case of ribbon width consists of a ribbon in which all the width vectors
are horizontal, as in a river, road or staircase. This is encoded as follows:

(269) JwideKribbon, horz := λx : Ind .



P :=


r : Ribbon

w : (0, ∞)
ribbon(x, r, w)∏

i:[0,1] horz(r.2.1(i))


λp : P .

dist
p.2




As shown, JwideKribbon, horz presupposes: (i) a ribbon r; (ii) a positive real number
w; (iii) a proof that x is represented by the ribbon r, with average width w; and (iv)
a proof that, for every point along the ribbon r, the normal vector at that point
is horizontal. Given a context satisfying these conditions, the measure function
returns the value w, labelled as a distance. As in the case of secondary width,
the horizontal requirement can be dropped. For example, a strip of cloth can be
described as wide even when its width vectors are not horizontal. This gives us
the most general kind of ribbon width:

(270) JwideKribbon := λx : Ind .


P :=


r : Ribbon

w : (0, ∞)
ribbon(x, r, w)


λp : P .

dist
p.2




which is identical to JwideKribbon, horz except without the horizontal requirement.

A ribbon width can be coordinated with an ordinary secondary width. For
example, one can say something like:

(271) The road is wider than the car.

where the width of the road is evaluated in the ribbon sense and the width of
the car in the secondary sense. To reflect this, we can introduce a common join
of JwideK2nd, horz and JwideKribbon, horz as follows:

(272) JwideK2nd/ribbon, horz :=



P :=


v : V ector

2nd(x, v)
horz(v)

+


r : Ribbon

w : (0, ∞)
ribbon(x, r, w)∏

i:[0,1] horz(r.2.1(i))



λp : P .


dist
case p of

inl(p′) then ∥p′.1∥
| inr(p′) then p′.2
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As shown, JwideK2nd/ribbon, horz presupposes either that x has a secondary horizontal
axis v, or that x is approximated by a ribbon of average width w, each of whose nor-
mal vectors is horizontal. In the former case, the measure function returns the mag-
nitude of v; in the latter case it returns w. Just as JwideK2nd, horz and JwideKribbon, horz
have a common join, the more general senses JwideK2nd and JwideKribbon also have a
common join, which is exemplified by the following kind of sentence:

(273) The shoelace is wider than the paperclip.

where the width of a shoelace is evaluated in the ribbon sense and the width of
a paperclip in the secondary sense. This is represented by the common join
JwideK2nd/ribbon:

(274) JwideK2nd/ribbon := λx : Ind .



P :=
v : V ector

2nd(x, v)

+


r : Ribbon

w : (0, ∞)
ribbon(x, r, w)



λp : P .


dist
case p of

inl(p′) then ∥p′.1∥
| inr(p′) then p′.2




The various senses of secondary and ribbon width form the network shown in Figure
3.17.

JwideK2nd, horz JwideK2nd

JwideKribbon, horz JwideKribbon

JwideK2nd/ribbon, horz JwideK2nd/ribbon

Figure 3.17: Secondary and ribbon width.

3.7.3 Lateral and passage width
Lateral width refers to the axis which is orthogonal to some canonical observer. For
example, the lateral width of a sofa is its primary axis, whereas the lateral width of
a door is its secondary axis. As discussed previously, the canonical observer does not
always correspond to the location of an actual individual, rather it is adopted as an
act of conceptualization. If the object is something which a human can ‘inhabit’, such
as a car, a chair or an item of clothing, then its canonical observer is the perspective
of a typical inhabitant. If the object is something with which humans interact in a
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typical way, like a building, a kitchen appliance or a tool, then its canonical observer
is the perspective of a typical user. For objects which are themselves observers, such
as people, animals or robots, the canonical observer is identical to the perspective
of the object itself – such an object is its own canonical observer.

A lateral width situation consists of the following spatial elements:

(275) • a vector p describing the position of the canonical observer
• three mutually orthogonal unit vectors (t, f, r) describing the top, front

and right directions of the canonical observer respectively
• a vector v describing an axis of the object

such that:

• (p, t, f, r) is a canonical observer for the object
• v is parallel to r

See Figure 3.18 for an illustration of a lateral width situation. As before, the origin
of the position vector p is left unspecified. In the Figure, the width vector v has
been drawn in the same direction as the observer’s right vector r. However, it is
also possible for v and r to be anti-aligned, in which case the width would go from
right to left. All that is required is that there is some scalar a such that v = a · r.

f

r
p

v

Figure 3.18: A lateral width situation, shown from a top-down perspective.

As discussed, there is a close connection between the lateral sense of wide and
the projective prepositions in front of, behind, beside, and so on. In the literature
on prepositions, it is common to distinguish between an ‘intrinsic’ sense, which
involves the inherent top, front and right axes of an object, and a ‘deictic’ or
‘relative’ sense, which involves the axes of an observer. (Clark 1973, Fillmore 1997,
Miller & Johnson-Laird 1976, Herskovits 1987, Levinson 1996, 2003). For example,
the intrinsic sense of the ball is in front of the car would be ‘the ball is in front
of the car from the car’s point of view’, whereas the relative sense would be ‘the
ball is in front of the car from the observer’s point of view’. This terminology is
slightly misleading, however, because the so-called ‘intrinsic’ sense also involves
the conceptualization of an observer, namely the canonical observer. For example,
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Figure 3.19: An object can have more than one canonical observer.

the intrinsic axes of a car are derived from the axes of a canonical observer, which
is the perspective of an imaginary driver. Objects with no canonical observer do
not support the use of intrinsic prepositions.

It is the intrinsic system rather than the relative system which is relevant to the
semantics of wide. To see this, imagine looking at a car side-on so that its frontal
axis is orthogonal to your line of sight. If width involved the actual observer, then
it would be possible to describe the car’s frontal axis as wide/narrow, but this is
not the case. Rather, the width of the car always refers to its inherent left-right
axis, regardless of the location of the speaker or addressee. The only situation in
which the location of the actual observer can be relevant to the interpretation of
wide/narrow is when the object has more than one possible canonical observer, as
in Figure 3.19, in which case the canonical observer which is chosen for evaluating
the width is usually the one which is closer to the location of the speaker or
addressee. The speaker can also make a particular canonical perspective more
salient through gesturing or verbal clarification.

The lateral sense of width can be written as follows:

(276) JwideKlatrl := λx : Ind .



P :=



p : V ector

t : V ector

f : V ector

r : V ector

v : V ector

obs(x, p, t, f, r)
axis(x, v)∑

a:Real v = a · r


λp : P .

dist
∥p.5∥




As shown, JwideKlatrl presupposes three vectors, p, t, f, r and v, such that (p, t, f, r)
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is a canonical observer for x; and v is an axis of x which is parallel to r (there exists
some α : Real such that v = a · r). Given a context satisfying these conditions, the
measure function returns the magnitude of the axis vector v.

There is a natural connection between lateral width and the concept of ribbon
width introduced in the previous subsection. Many ribbon-like objects – such as
roads, rivers, tunnels and footpaths – function as passageways for people or vehicles.
When moving along such an object, one’s frontal axis at any particular point will
typically be tangent to the path at that point, and one’s lateral axis will typically
be orthogonal to the path, so there will be a correspondence between the lateral
width of the path and its ribbon width. The observation that lateral and ribbon
width are linked through the concept of path was also made by Vogel:

What are paths used for? Human beings tend to proceed along paths.
We may easily imagine a situation in which someone is walking along a
path. Thus, there is a functional situation, tied to the path. The human
being is on the path, facing its maximal extension, while its minimal
extension forms the left-right axis. [. . . ] The dimension referred to
as bred ‘broad/wide’ will at the same time be the smaller horizontal
dimension [. . . ] and it will be the left-right dimension for the user.
(2004, p. 130)

I shall refer to this kind of width, where there is a canonical observer associated
to each point along the path, as passage width.

For a ribbon-like object to have a passage width, there must be a canonical
observer at every point along the path, corresponding to the idealized point of view
of someone travelling down the path. At each point, the observer’s front axis is
aligned with the tangent vector to the path, and their right axis is aligned with the
normal vector. The observer’s top axis is given by the cross product of the front and
right axes. Given two vectors u, v : V ector, the cross product u × v is the vector
orthogonal to u and v whose magnitude is proportional to the area they span. I
assume a left-handed convention so that the cross product of a vector pointing
forwards and a vector pointing rightwards is a vector pointing upwards.

I propose to formalize the passage sense of width as follows:

(277) JwideKpassg := λx : Ind .



P :=



r : Ribbon

w : (0, ∞)
ribbon(x, r, w)

∏
i:[0,1] let


p := r.1.1(i)
f := dir(r.1, i)
r := r.2.1(i)
t := f × r


in obs(p, t, f, r)


λp : P .

dist
p.2
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As indicated, JwideKpassg presupposes that x is represented by a ribbon r with width
w. At every point i : [0, 1] on the ribbon, there is a canonical observer whose
position is the location of that point, whose front axis is the direction of the path
at that point, whose right axis is the orthogonal width vector, and whose top axis
is the cross product of the front and top axes. For an illustration of passage width,
see Figure 3.20. Given such a situation, the measure function returns the value
w, which is the average length of the ribbon. It should be clear from (277) that
passage width is a special case of ribbon width: there is an arrow from JwideKpassg to
JwideKribbon which forgets about the canonical observer at each point along the path.

Figure 3.20: Passage width: at every point along the ribbon there is a canonical observer
whose front and right axes are aligned with the tangent and normal vectors at that point
and whose top axis is given by the cross product.

There is a natural connection between the passage sense of width and the
lateral sense of width, since both involve a canonical observer. One can therefore
sensibly say something like:

(278) The piano is as wide as the corridor.

comparing the lateral axis of the piano to the passage width of the corridor.
This suggests that JwideKlatrl and JwideKpassg share a common join, which I shall
refer to as JwideKobs:

(279) JwideKobs :=
λx : Ind .
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P :=



p : V ector

t : V ector

f : V ector

r : V ector

v : V ector

obs(x, p, t, f, r)
axis(x, v)∑

a:Real v = a · r


+



r : Ribbon

w : (0, ∞)
ribbon(x, r, w)

∏
i:[0,1] let


p := r.1.1(i)
f := dir(r.1, i)
r := r.2.1(i)
t := f × r


in

obs(p, t, f, r)



λp : P .


dist
case p of

inl(p′) then ∥p′.5∥
| inr(p′) then p′.2




As indicated, JwideKobs requires either that x has a global lateral axis, as in JwideKlatrl,
or that x is represented by a ribbon along which a canonical observer might travel,
as in JwideKribbon. In the former case, the measure function returns the magnitude
of the lateral axis; in the latter case it returns the average width of the ribbon.

Figure 3.21 collects together all of the different kinds of width which have
been defined up to this point, which we can refer to collectively as the distance
senses, since they all return a degree with dimensions of distance. There are three
prototypes: JwideK2nd, horz, which is the most prototypical case of secondary width;
JwideKpassg, horz, which is the width of a horizontal passage such as a corridor or
road; and JwideKlatrl, which is the lateral width of an object with a canonical
observer. There are two final senses: JwideK2nd/width, which connects secondary
and ribbon width; and JwideKobs, which connects passage and lateral width. The
network predicts that a general lateral width cannot be coordinated with a general
secondary width. For example, the sentence:

(280) ? The monitor is 30 inches wide, and so is the plank.

cannot be interpreted as comparing the lateral width of the monitor and the
secondary dimension of the plank. However, given a long pathlike object which
functions as a passage, its width can be compared with an ordinary secondary width
(due to convergence at JwideK2nd/ribbon) or with an ordinary lateral width (due to
convergence at JwideKobs). For example, the following are both acceptable:

(281) a. The corridor is 30 inches wide, and so is the plank.
b. The corridor is 30 inches wide, and so is the monitor.

A passage can be thought of as having a width both in virtue of its dimensions
and in virtue of having a canonical observer.
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JwideK2nd, horz JwideK2nd

JwideKribbon, horz JwideKribbon

JwideK2nd/ribbon, horz JwideK2nd/ribbon

JwideKpassg

JwideKlatrl

JwideKobsJwideKpassg, horz

Figure 3.21: The distance senses of width.

3.7.4 Area and arc width
As discussed, there is also a sense of wide which refers to the extent of an area.
Examples include wide field, wide plain, wide beach, wide ocean, and so on. As
things stand, the vector space ontology contains no notion of area, so it is difficult
to see how to represent this idea. In physics and engineering, one often treats
oriented areas in terms of the cross product, using the fact that the magnitude of
the cross product u × v is the area of the parallelogram formed by the vectors u and
v. However, the representation of an oriented area in terms of an orthogonal vector
has a number of disadvantages. From a cognitive point of view, it seems unintuitive,
since it involves representing an area in terms of a length. From a mathematical
point of view, it is only valid in three-dimensional space, and does not extend either
downwards to two dimensions or upwards to four or more dimensions. Moreover,
there are cases in which the representation breaks down – for instance, an oriented
area changes sign under reflection in a plane whereas a vector does not.

Luckily, there is a natural way to extend a vector space to incorporate oriented
areas, which is both more intuitive and more general than the cross product
representation. This is done by introducing what is known as the exterior product.
Given two vectors a and b, the exterior product, written a ∧ b, is an oriented area
element called a bivector, which can be visualized as the oriented parallelogram
spanned by a and b (see Figure 3.22a). Like a vector, a bivector has a magnitude
(its area) and an orientation (the plane it lies in), but no fixed location. Because
it represents an oriented patch of area, a bivector can also be freely reshaped, so
long as its area remains the same. Hence the bivector shown in Figure 3.22b is the
same as that depicted in 3.22a. Another important property of a bivector is its sign
(+ or −), which should be thought of as a direction assigned to its boundary. We
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(a) The exterior product of two vectors a
and b is a bivector a ∧ b.

(b) Bivectors can be reshaped so long as their
area is preserved.

Figure 3.22

get a bivector of opposite sign by wedging a and b in the opposite order, giving
us the relation b ∧ a = − a ∧ b. Like vectors, bivectors themselves form a vector
space, which means that they can be added together and multiplied by numbers,
and that these operations satisfy the vector space axioms.

The exterior product of a bivector a ∧ b with a third vector not in the same
plane c results in the trivector a ∧ b ∧ c, which can be visualized as the oriented
parallelopiped spanned by a, b and c. Like vectors and bivectors, a trivector has a
magnitude (its volume) and an orientation (its sign), and can be freely translated
and reshaped as long as its magnitude remains unchanged. In a three-dimensional
vector space, wedging a trivector a ∧ b ∧ c with another vector d gives zero, since
there is no more space available to extrude it in another dimension. Like vectors
and bivectors, trivectors form a vector space – they can be added together and
scalar multiplied. Multiplying a trivector by a number corresponds to scaling its
weight by that number; two trivectors are added together by adding their weights.

Scalars, vectors, bivectors and trivectors are collectively called blades. A blade
with dimension k is said to be a k-blade, where the number k is referred to as
the blade’s grade. Hence, scalars are 0-blades, vectors are 1-blades, bivectors are
2-blades, and trivectors are 3-blades. Assuming that we have four basic types Real,
V ector, Bivector, and Trivector, each of which independently satisfies the vector
space axioms, we can define the type of all three-dimensional blades as:

(282) Blade :=



k : Grade
Real if k = 0
V ector if k = 1
Bivector if k = 2
Trivector if k = 3


Since each grade corresponds to a vector space, Blade inherits the concepts of
addition and scalar multiplication. The exterior product is then defined as a
function ∧ : Blade → Blade satisfying the following axioms:

(283) • A ∧ (B ∧ C) = (A ∧ B) ∧ C
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• A ∧ (B + C) = (A ∧ B) + (A ∧ C)
• (A + B) ∧ C = (A ∧ C) + (B ∧ C)
• A ∧ B = (−1)grade(A)·grade(B) B ∧ A
• a ∧ A = A ∧ a = a · A

All the other properties of the exterior product follow from the above rules. For
instance, it follows that the exterior product is a grade-increasing operation with
the property that grade(A ∧ B) = grade(A) + grade(B). See Dorst et al. (2009)
for a proof of this and other properties which follow from the above axioms.

In addition to building higher-dimensional blades through the exterior product,
we would also like to be able to measure the magnitude of the resulting blades.
This involves extending the inner product between vectors so that it can be used
to compare any two blades of the same grade. Given two k-blades, which can
be factorized into vectors as A = a1 ∧ · · · ∧ ak and B = b1 ∧ · · · ∧ bk, the inner
product ⟨A, B⟩ is defined as follows:

(284) ⟨A, B⟩ := det


⟨a1, bk⟩ . . . ⟨a1, b1⟩

... . . . ...
⟨ak, bk⟩ . . . ⟨ak, b1⟩


That is, we take the determinant of the matrix of inner products between the
vector factors1. It can be shown that this quantity is independent of how A
and B are factorized. If A and B do not have the same grade, then their inner
product ⟨A, B⟩ is defined to be 0. We now use the inner product to define the
magnitude of a general blade as:

(285) ∥A∥ :=
√

⟨A, Ã⟩

where Ã stands for a grade-dependent change of sign, the purpose of which is
to ensure that the quantity ⟨A, Ã⟩ is positive. The magnitude of a scalar is its
absolute value; the magnitude of a vector is its length; the magnitude of a bivector
is its area; and the magnitude of a trivector is its volume.

Like vectors, bivectors and trivectors are primitive geometric elements which
are independent of any particular choice of coordinate system. They should not be
thought of as built up from lists of numbers or any other kind of object. Although we
have arrived at bivectors and trivectors by combining ordinary vectors using the outer
product, this does not make ordinary vectors more fundamental. Rather, scalars,
vectors, bivectors and trivectors are all equally fundamental – we might just as well
have started with trivectors and arrived at bivectors and vectors by considering how
they can be factorized. Bivectors and trivectors are part of our intuitive spatial
understanding – just as we ‘see’ a vector when we look at the axis of an object, or
observe someone pointing at an object, so we can ‘see’ a bivector when we observe
the spatial extent of a field, or the area swept out by a curve: note that both of
these examples can be described as a kind of width – wide field and wide curve.

1See https://en.wikipedia.org/wiki/Determinant for the definition of the determinant
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Figure 3.23: An object with a bivector axis representing its degree of area in a plane.

Recall from Section 1.3 that authors such as Bierwisch (1967) and Lang (2001)
make use of ‘integrated axes’, which combine two or more dimensions into a single
unit. We can represent this kind of two-dimensional axis by a single bivector. Unlike
a vector axis, a bivector axis does not describe the extension of the object in a
particular direction, but rather than amount of area it takes up in some plane.
Given an individual x and a bivector b, I shall use the predicate axis(x, b) to mean
‘A is a bivector axis of x’. We can then write the area sense of wide as follows:

(286) JwideKarea := λx : Ind .


P :=

b : Bivector

axis(x, b)


λp : P .

area
∥p.1∥




As shown, JwideKarea presupposes that x has a bivector axis b. Given such an
axis, the measure function returns the magnitude of b, which is a degree on the
scale of area. For an illustration of an object which can be described as wide
in this sense, see Figure 3.23.

Because JwideKarea returns a degree of area, it should not be able to occur with
a distance-denoting measure phrase like 10cm, 2 meters, 1km, and so on. This
seems correct: for instance, a field cannot be described as 500m wide in the area
sense; to say that a field is 500m wide presupposes an axis measuring its extension
in some direction (usually the direction orthogonal to an imagined observer). In
languages where area width is lexicalized separately from distance width, the area
term typically cannot occur with a measure phrase. For instance, Vogel writes:

The [Swedish] noun vidd ‘width’ cannot easily combine with a measure-
ment expressed in numbers (?vidden är 2 meter ‘the width is 2 meters’),
nor does it combine easily with a measure phrase, although there are
two such instances in the corpus.

It is clear from Vogel’s description of vid that it prototypically refers to a kind
of area width: examples include vid fjärd ‘wide bay’, vida delta ‘wide delta’, vida
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r

Figure 3.24: To have an arc width, an object’s shape must be represented by a path of
vectors which curve around a specific point.

värlen ‘the wide world’, vitt uppspärrad ‘wide open’, and so on. In contrast to
English wide, Swedish vid cannot be used for a secondary width, e.g. ?en vid
kustrema ‘a wide coastal strip’. German weit ‘wide’ seems to behave in a similar way
(see Bierwisch 1967, Lafrenz 1983, Durrell 1988). I suggest that the representation
underlying these adjectives is some kind of bivector.

In addition to the straightforward area sense of width, which refers to a bivector
axis, there is also a sense which refers to the area swept out by a curve. Examples
include wide arc, wide curve, wide gesture, wide swing, and so on. The same sense
occurs in other languages, such as Swedish vida svängar ‘wide bends/turns’ (Vogel
2004), and Polish szeroki łuk ‘wide arc’ (Linde-Usiekniewicz 2002). I shall refer to
this as the ‘arc’ sense of wide. For an object to be described as wide in this sense,
its shape must be represented by a path of vectors all centered at some point, as
shown in Figure 3.24. Unlike the other kinds of path discussed in this chapter, the
origin point is not chosen arbitrarily: rather, it is the specific point about which
the object is understood to turn or bend. I use the predicate path(x, r, p) to mean
‘the shape of x is represented by a path of vectors p which bend around the point r’.

Like path length, path area must be defined as a kind of upper bound to a
certain measuring process. Suppose we have a path p : Path together with a
regular partition of [0, 1] consisting of points 0 < t1 < · · · < tn−1 < 1. This gives
a piecewise approximation to p, like that illustrated in Figure 3.24. The area
swept out by this chain of vectors is given by:

(287)
n∑

i=1

∥p.1(ti−1) ∧ p.1(ti)∥
2

That is, for each successive pair of vectors, we take half the magnitude of their
exterior product, summing over all such pairs. The reason for the factor of 1

2 is to
get the area of the triangle rather than the parallelogram: see Figure 3.24, where
the relevant areas are represented by grey triangles. The true area is defined as
the supremum over all possible partitions:

(288) area : Path → Real
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area := sup
n∑

i=1

∥p.1(ti−1) ∧ p.1(ti)∥
2

As for path length, people are unable to compute this quantity precisely, but can
estimate it by means of a fine-grained approximation.

The arc sense of wide is defined as follows:

(289) JwideKarc := λx : Ind .


P :=


r : V ector

p : Path

path(x, r, p)


λp : P .

area
area(p.2)




As indicated, JwideKarc presupposes that an object is represented by a path of
vectors p which curve around a point r; given such a context, the measure function
returns the area of the path as defined in (288).

My impression is that JwideKarc has a common join with the ordinary area sense
of width, JwideKarea. For instance, one can say something like:

(290) The curve of the bay is as wide as Lake Victoria.

where the curve of the bay evokes an arc width and Lake Victoria evokes an
ordinary area width. The sense which supports this kind of comparison might
be written as follows:

(291) JwideKarea/arc := λx : Ind .



P :=
b : Bivector

axis(x, b)

+


r : V ector

p : Path

path(x, r, p)



λp : P .


area
case p of

inl(p′) then ∥p′.1∥
| inr(p′) then area(p′)




The presupposition is that x either has a bivector axis or is represented by a string
of vectors emanating from a central point. In the former case, the area is given by
the magnitude of the axis; in the latter case it is the area swept out by the path.

We have now completed our study of width and can collect together all of the
different senses into a single network, shown in Figure 3.25. The network can be
divided into three disconnected components: the distance component, the area
component, and the ‘scope’ component, which is the metaphorical sense involved
in a sentence like John has a wide knowledge of linguistics. All of the area senses
are subsumed by JwideKarea/arc, whereas there is no sense which subsumes all of
the distance senses. It follows that some distance-related senses, such as JwideK2nd
and JwideKlatrl, cannot be coordinated together. The antonymous adjective narrow
is a near-perfect antonym of wide, so its lexical representation can be derived by
applying the function un to the wide network.
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JwideK2nd, horz JwideK2nd

JwideKribbon, horz JwideKribbon

JwideK2nd/ribbon, horz JwideK2nd/ribbon

JwideKpassg

JwideKlatrl

JwideKobsJwideKpassg, horz

JwideKarcJwideKarea

JwideKarea/arc JwideKscope

Figure 3.25: The wide network.
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3.8 Depth

3.8.1 Introduction to depth
Like high and low, the adjectives deep and shallow are ambiguous between an
intrinsic or internal sense, which refers to the distance from an object’s opening
to its base, and a positional sense, which refers to its distance below ground. For
example, the expression deep well can mean either a well whose downwards extension
is greater than usual, or a well which is located deep below ground. The same
alternation occurs in other languages: Rakhilina (2000) writes that in Russian,
the phrase glubokie xody ‘deep subways’ can mean either subways which protrude
deep into the ground, or subways located at great depth. Like height, the internal
and positional senses of depth cannot be coordinated unless they share the same
reference plane. For instance, one cannot say something like ?the vase is deeper than
the ore, intending to compare the internal depth of the vase to the positional depth of
the ore; but it does make sense to say the well is deeper than the ore, comparing the
extension of the well below ground to the distance of the ore deposit below ground.

Like positional height, positional depth measures distance from some contextually-
specified reference plane, which is usually taken to be the surface of the earth. To
have a positional depth, an object must be located below the reference plane – an
object which is located above the reference plane is said to have a height rather
than a depth. This creates a kind of spatial duality between the adjectives high/low
and the adjectives deep/shallow, which refer to opposite sides of the reference plane.
What counts as ground level can vary depending on context. For instance, when
standing on the top floor of a tall building, the surface of the floor can provide
a reference plane, so that one can describe objects on lower floors as deep below.
Contrast this with a person standing at ground level outside the building, who
would describe the same objects as high above. In certain contexts, the reference
plane can even be non-horizontal. For instance, when considering the depth of an
object inside a wall, the reference plane is given by the wall itself.

The internal sense of deep/shallow places strong restrictions on the kinds of
objects it can combine with. To be described as deep/shallow in the internal sense,
an object must be either negative – formed of empty space – or hollow – empty
space bounded by a layer of solid material. Examples include deep hole, deep well,
deep vase, deep pocket, deep wardrobe, and so on. An object which is formed entirely
of solid material cannot have a depth, e.g. ?deep tree, ?deep table, ?deep book.
Analogs of deep/shallow in other languages show the same behaviour: for example,
Vogel (2004) writes that Swedish djup ‘deep’ and grund ‘shallow’ can describe a
container, as in djup skål ‘deep bowl’, or a negative object, as in djup grav ‘deep
grave’, but cannot apply to a completely solid object, as in ?djup cykel ‘deep bicycle’.
If an object is overall solid but has a salient part that is negative or hollow, then
deep/shallow will select that part, as in deep spoon, deep pan, deep wine glass.

Moreover, to have an internal depth, an object must have an identifiable hole or
opening through which its interior can be accessed. In her book on spatial cognition,
Herskovits (1987) writes that the interior of an open container is delineated by a
plane which ‘closes off’ the opening. For example, the interior of the bowl shown in
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Figure 3.26: The interior of a hollow object is delineated by a virtual or actual lid.
Internal depth measures the maximal orthogonal displacement v from the lid to the inside
boundary of the object’s base.

Figure 3.26 is bounded by the dashed plane, which seals off the bowl, making it into a
closed container. Herskovits refers to this kind of imaginary plane as a lid. Note that
the lid is always flat and cannot take the form of a curved surface. Internal depth
measures the straight line distance from an object’s lid to the inside boundary of its
base. It answers the question: ‘How far inside the object can one get by starting at
its opening and travelling in a straight line orthogonal to the lid?’. The role of the
lid in internal depth is analogous to the role of the ground in positional depth. As
we shall see, this is what connects the two senses together in the lexical network.

Internal depth is generally directed downwards, as shown in Figure 3.26, but
can also be oriented in some other direction. For example, the depth of a wardrobe,
dishwasher, or oven, is evaluated from front to back, since all of these objects have
an opening at the front. This is true in a wide variety of languages besides
English – including German (Bierwisch 1967), Swedish (Vogel 2004), French
(Spang-Hanssen 1990), Polish (Linde-Usiekniewicz 2002), Russian (Rakhilina 2000),
Japanese (Shimotori 2013), and Yucatec Maya (Stolz 1996). Some objects, such as
armchairs, have an opening both at the front and at the top, so expressions like deep
armchair are ambiguous between a downwards depth and a horizontal depth. Some
authors (e.g. Stolz 1996, Grzegorczykowa 1997) talk about downwards and horizontal
depth as distinct senses. However, they appear to be compatible in a sentence like
the vase is deeper than the wardrobe, where a downwards dimension is compared
to a horizontal dimension. In my analysis, downwards and horizontal depth derive
from two different prototypes, but nevertheless converge to a common sense.

In addition to the positional and internal senses of depth, there is also an
observer-related sense which describes the axis aligned with an observer’s frontal
direction (Lyons 1977, Fillmore 1997). This sense occurs in sentences like the
building is 100m long, 50m high and 90m deep, where deep refers to distance ‘away
from the viewer’ or ‘into the page’. The same usage occurs in some other languages:
Lang writes that German tief ‘deep’ can describe an axis “along the line of sight
of a (potential or actual) observer in normal position” (1989, p. 355), and Vogel
(2004) shows that Swedish djup ‘deep’ can also be used for an observer axis, as in
djup hylla ‘deep shelf’. Unlike the internal sense of depth, the observer sense does
not require the object to be hollow or formed of empty space. Some languages may
lexicalize the internal and observer senses separately – for instance, according to
Lang (2001), Korean uses kiphi for internal depth but selo for observer depth.
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Finally, in addition to its spatial senses, deep also has a non-spatial sense which
is synonymous with profound, as in deep thoughts, deep subject, deep understanding,
deep novel, and so on. Taken together, the scope sense of wide and the profundity
sense of deep are used to describe two orthogonal dimensions of an abstract subject
– the number of distinct topics it embraces and the extent or explanatory power
of those topics respectively. There is a possible connection with the observer-
related sense, since an object which protrudes far in the direction of the observer’s
line of sight has hidden regions which await discovery, just as a profound subject
has hidden ideas or results. As in wide, the canonical observer is equated with
a canonical ‘conceptual observer’ whose gaze encompasses the subject. It is no
coincidence that the two spatial adjectives which involve an observer also extend
to the description of abstract bodies of knowledge.

3.8.2 Internal and positional depth
Let us begin with the concept of an internal axis, like the vector v in Figure
3.26. An internal axis is encoded by the predicate intrnl(x, v), which can be
defined roughly as follows:

(292) • x is a hollow or empty object
• x has an actual or imaginary ‘lid’
• v is orthogonal to the lid
• v describes the maximal displacement from the lid to the base of x

The reason for the ‘maximal’ condition is that there may be many other vectors
orthogonal to the lid which end on the base of the object. For example, in Figure
3.26, there are many vectors which start at the lid of the bowl and end on its base,
but only the maximal displacement v is counted as the depth. The concept of
internal axis is intended to apply not only to containers but also to objects which
are made of liquid, such as rivers, ponds and lakes. The ‘lid’ of such an object
is given by the upper surface where it meets the air.

In a prototypical case of depth, the internal axis will also be pointed downwards in
the environment. Examples include the depth of a mug, bowl, vase, basin or bucket,
assuming the object is in its canonical orientation. This sense is formalized as follows:

(293) JdeepKintrnl, down := λx : Ind .


P :=


v : V ector

intrnl(x, v)
down(v)


λp : P .

dist
∥p.1∥




The presuppositions are that: (i) there is some vector v, (ii) v is the internal axis of x,
and (iii) v is pointing downwards in the environment. As mentioned in the previous
subsection, the downwards requirement, whilst typical, is not strictly necessary. For
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example, the internal axis of a wine bottle can still be described as deep when the
bottle is placed on its side in storage. This gives us the weakened sense:

(294) JdeepKintrnl := λx : Ind .


P :=

v : V ector

intrnl(x, v)


λp : P .

dist
∥p.1∥




which is identical to JdeepKintrnl, down except without the down(v) constraint.

In addition to the internal axis senses of deep, there is also the positional
sense, as in deep cave, deep fossil, deep ore deposit. This involves two vectors,
u and v, such that:

(295) • u points to a position on the ground
• the position of x relative to u is v
• v is directed downwards

Notice that these conditions are identical to those of positional height, which was
formalized back in Section 3.4.2, except that v must be pointing downwards instead
of upwards. Positional depth can be written as follows:

(296) JdeepKposn := λx : Ind .



P :=



u : V ector

v : V ector

grnd(u)
posn(x, u, v)
down(v)


λp : P .

dist
∥p.2∥




For an illustration of positional depth, see Figure 3.27a. One can also describe as
deep an axis which begins at ground level and extends below ground, as in Figure
3.27b. Examples of this usage include deep burrow, deep root system and deep
foundations. I shall refer to this sense as JdeepKaxis,grnd:

(297) JdeepKaxis,grnd := λx : Ind .



P :=



u : V ector

v : V ector

grnd(u)
axis(x, u, v)
down(v)


λp : P .

dist
∥p.2∥
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(a) Positional depth below ground. (b) Extensional depth below ground.

Figure 3.27

Note the difference between JdeepKposn and JdeepKaxis,grnd: the former requires that
v is the position vector of x with respect to u, whereas the latter requires that
v is an axis of x based at u.

Positional depth below ground and extensional depth below ground are subsumed
under a common generalization, as shown by sentences like the ore deposit is deeper
than the root system. This exactly parallels the relationship between JhighKposn and
JhighKdim,grnd which was discussed in Section 3.4.2. The common join of JdeepKposn
and JdeepKaxis,grnd is defined analogously to the sense JhighKgrnd, as follows:

(298) JdeepKgrnd := λx : Ind .



P :=



u : V ector

v : V ector

grnd(u)
posn(x, u, v) + axis(x, u, v)
down(v)


λp : P .

dist
∥p.2∥




The crucial presupposition is the fourth component, which requires either that v
is the position vector of x with respect to u, as in JdeepKposn; or that v is an axis
of x based at u, as in JdeepKaxis, grnd. In either case, v is required to be pointing
down and u is required to describe a point on the ground.

Finally, we can connect the senses of depth which involve ground level and
those which involve an internal axis by noticing that there is a stronger sense of
JdeepKaxis,grnd where the axis is internal. Examples of objects which satisfy this
sense include wells, craters, lakes and fissures – any container whose imaginary
‘lid’ coincides with ground level and which extends downwards into the earth.
This sense is formalized as follows:
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(299) JdeepKintrnl, grnd := λx : Ind .



P :=



u : V ector

v : V ector

grnd(u)
axis(x, u, v)
intrnl(x, v)
down(v)


λp : P .

dist
∥p.2∥




As shown, JdeepKintrnl, grnd presupposes (i) a vector u, and (ii) a vector v, such that:
(iii) u describes a position on the ground; (iv) v is an axis of x starting at the
point u; (v) v is an internal axis of x; and (vi) v is pointing down. See Figure
3.28 for an illustration of this kind of situation.

Figure 3.28: An example of JdeepKintrnl, grnd. Note that the object’s opening coincides
with ground level.

The connection between the various senses of internal and positional depth is
shown in Figure 3.29. There are two initial senses, JdeepKposn, the positional depth of
an object below ground, and JdeepKintrnl, grnd, the internal depth of a container which
protrudes into the ground. There are also two final senses: JdeepKgrnd, representing
position or extension below ground, and JdeepKintrnl, representing an internal axis.
As before, the network makes predictions about which pairs of senses are compatible
and which are incompatible. For instance, it predicts that the internal depth of a vase
(a case of JdeepKintrnl) cannot be compared with the positional depth of an ore deposit
(a case of JdeepKposn). On the other hand, the internal depth of a well or crater, which
is measured from ground level, can be compared with the positional depth of an
ore deposit, since both converge at JdeepKgrnd. The relationship between JdeepKposn,
JdeepKaxis,grnd and JdeepKgrnd exactly parallels the relationship between the senses
JhighKposn, JhighKdim,grnd and JhighKgrnd, which were discussed in Section 3.4.2.
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JdeepKposn

JdeepKaxis,grnd

JdeepKgrnd

JdeepKintrnl,grnd

JdeepKintrnl,down JdeepKintrnl

Figure 3.29: Internal and positional depth.

3.8.3 Observer depth
We can now move to versions of depth which involve an observer. The most
prototypical version of observer depth is when an object has an opening at the
front, so that its internal axis is aligned with the frontal direction of a canonical
observer. For example, when standing in front of a wardrobe, one’s frontal direction
is aligned with the internal axis, which runs from the wardrobe’s opening (the ‘lid’)
to its back surface. Other examples of this kind of situation include looking into a
building through the doorway, looking down a corridor, or looking into the mouth
of a cave. This gives rise to a special case of internal depth which we might call
observed internal depth. It is formalized as follows:

(300) JdeepKintrnl, obs := λx : Ind .



P :=



p : V ector

t : V ector

f : V ector

r : V ector

v : V ector

obs(x, p, t, f, r)
intrnl(x, v)∑

a:(0,∞) v = a · f


λp : P .

dist
∥p.1∥




As shown, JwideKintrnl, obs involves five vectors: p, the position vector of the observer;
t, f and r, the top, front and right axes of the observer; and v, the depth axis itself.
The constraints are that (p, t, f, r) is a canonical observer for x; v is the internal
axis of x; and v is pointing directly forwards from the perspective of the canonical
observer (in other words, there is some positive real number a such that v = a · f).
For an illustration of observed internal depth, see Figure 3.30.
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Starting from observed internal depth, it is possible in English and several other
languages to drop the condition that the axis is internal. This gives rise to the sense
of deep seen in expressions like the building is 100m long, 50m high and 90m deep.
This sense is often considered to be somewhat marginal or technical. For example,
Weydt & Schlieben-Lange (1998) write that German tief ‘deep’ can be used to
describe the ‘third dimension’ of solid rectangular objects, but describe this usage
as “technical language”. I include the ‘pure observer’ sense of depth in the lexical
network, since it seems to operate fully productively, given an appropriate context.

(301) JdeepKobs := λx : Ind .



P :=



p : V ector

t : V ector

f : V ector

r : V ector

v : V ector

obs(x, p, t, f, r)
axis(x, v)∑

a:(0,∞) v = a · f


λp : P .

dist
∥p.1∥




As indicated, JdeepKobs is identical to JdeepKintrnl, obs except the requirement that v
is an internal axis of x has been replaced by the requirement that v is simply an axis
of x. For an illustration of this sense, see Figure 3.30b. As one would expect, there
is an arrow from JdeepKintrnl, obs to JdeepKobs which forgets that the axis is internal.

The full lexical network for deep is given in Figure 3.31. Notice how all of
the spatial senses are connected into one long chain. This chain consists of three
prototypes – JdeepKposn, JdeepKintrnl, grnd and JdeepKintrnl, obs – and three final senses
– JdeepKgrnd, JdeepKintrnl and JdeepKobs. In addition to the spatial senses, there is the

f

r

v

p
(a) Observed internal depth.

f

r

v

p
(b) Observed depth

Figure 3.30

163



non-spatial ‘profundity’ sense exemplified by deep subject, deep understanding, deep
thoughts, and so on. I take this to be disconnected from the spatial senses since one
cannot say something like ?the vase was deep and so was the idea. Moreover, the
spatial senses require a concrete object, whereas the profundity sense requires an
abstract/informational object. Nevertheless, one can imagine various metaphorical
connections between JdeepKprfnd and the different spatial senses.

It is not clear whether the negative adjective shallow should be considered a
perfect antonym of deep. On the one hand, shallow agrees with deep in most of
its senses, including the internal sense (shallow bowl), the observer sense (shallow
wardrobe) and the profundity sense (shallow topic). However, it seems to lack a
counterpart to what I have called the ordinary observer sense, deepobs. For instance,
it seems strange to ask of two buildings “which is shallower?”, meaning which is less
extended along the observer’s line of sight. The positional interpretation of shallow
also seems less acceptable. My impression is that one can say something like the
ore deposit is very shallow, to mean ‘not far below ground’, but I have found some
disagreement on this point. Some languages seem to lack a clear antonym for depth
altogether. For instance, Lafrenz (1983) and Bierwisch (1989) mention both seicht
and flach as potential antonyms to German tief ‘deep’, with seicht being used
mainly for liquids, and flach for empty space. In French, there is no direct antonym
for profond ‘deep’; instead, one typically uses peu profond ‘not deep / of little depth’.

JdeepKposn

JdeepKaxis,grnd

JdeepKgrnd

JdeepKintrnl,grnd

JdeepKintrnl,down

JdeepKintrnl

JdeepKintrnl,obs

JdeepKobsJdeepKprfnd

Figure 3.31: The deep network.
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3.9 Thickness

3.9.1 Introduction to thickness
Unlike most of the other spatial adjectives discussed in this chapter, thick and thin
do not refer to axes of an object. To understand what is meant by this, consider
the combination thick jug. A jug has three axes – vertical, frontal and lateral – but
the adjective thick refers not to one of these axes but to the minimal dimension of
the jug’s walls. Similarly, a letter of the alphabet, say the letter R, has two axes –
its vertical and lateral axes – but its thickness refers to the small distance between
its boundaries as shown in Figure 3.32. Another curious property of thick and thin
is that they can select only part of an object. For example, in the combination
thick knife, the adjective thick is typically taken to refer to the blade of the knife,
rather than the handle or the entire blade + handle combination. If thick selects
a particular part, then this is either the object’s most functionally relevant part
or a part which is significantly larger than other parts of the object.

Figure 3.32: Thick and thin refer to a non-axial dimension.

The adjectives thick and thin are ambiguous between a ‘cylindrical’ meaning
and a ‘surface’ meaning (Bierwisch 1967, Lyons 1977, Lang 1989, Vogel 2004). The
cylindrical meaning refers to the small diameter of a long cylinder, as in thick stick,
whereas the surface meaning refers to the minimal dimension of a surface, as in
thick plate. Sentences which compare two cylindrical thicknesses (the stick is thicker
than the pole) or two surface thicknesses (the plate is thicker than the slab) are
judged as more acceptable than sentences comparing a cylindrical thickness and a
surface thickness (the stick is thicker than the plate). Many languages distinguish
lexically between cylindrical thickness and surface thickness. For example, Japanese
uses futoi ‘thick’ for cylindrical thickness, but atsui ‘thick’ for surface thickness
(Shimotori 2013); Yucatec Maya uses polok ‘thick’ for cylindrical thickness, but píim
‘thick’ for surface thickness (Stolz 1996); and French distinguishes gros ‘fat/thick
(cylinder)’ from épais ‘thick (surface)’ (Vandeloise 1993).

In many languages, there is no distinction between the cylindrical sense of thick
and fat. The fat sense is used not only for roughly cylindrical objects like human
beings, but also for spherical objects with roughly equal dimensions, as in German
dicker Ball ‘large/fat ball’, and Swedish tjocka äpplen ‘thick/fat apples’ (Vogel
2004). In languages which distinguish lexically between cylindrical thickness and
surface thickness, it is always the cylindrical term which is used to mean fat. For
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example, French uses gros for both cylindrical thickness (gros baton ‘thick stick’)
and spherical fatness (gros ballon) ‘large/fat ball’, but not for the thickness of a
surface. Similarly, according to Stolz (1996), the Yucatec Maya adjective polok
‘thick/fat’ covers both cylindrical thickness and fatness, but not the thickness of
a surface, which is instead described as píim ‘thick’.

Besides the distance-related senses, thick can also be used to describe the
resistance to penetration of a substance or collection. Here, it is important to
distinguish two different senses. On the one hand, there is the use of thick to refer
to the density of an aggregate, as in thick forest, thick foliage, thick crowd, thick
grass, and so on. Roughly speaking, this refers to the number of individuals per
unit area, a quantity which can vary across different parts of the aggregate. On
the other hand, there is the use of thick to describe the viscosity or ‘stickiness’
of a substance, as in thick soup, thick honey, thick syrup, thick mud, and so on.
Viscosity is generally thought of as an intrinsic property of a substance, like its
taste or colour: it does not usually vary over different portions of the substance.

How are the different senses of thick connected? This question is taken up by
Vandeloise (1993) in a paper entitled The role of resistance in the meanings of
thickness. As in his previous work on length/width, Vandeloise criticises previous
descriptions of thickness for only taking into account geometry and neglecting
force dynamic and functional factors. He begins by distinguishing four senses of
thickness, named after their French versions:

(302) a. gros1: the diameter of a cylindrical object, e.g. gros cigar ‘thick cigar’
b. gros2: the size of an object with roughly equal dimensions, e.g. grosse

pouce ‘thick flea’
c. épais1: the dimension along which a surface is most likely to break, e.g.

planche épaisse ‘thick plank’
d. épais2: resistance to penetration of a substance or collection, e.g. fourré

épais ‘thick forest’

Senses gros1 and gros2 correspond to what I have called the ‘cylindrical’ and ‘fatness’
senses respectively, whereas épais1 and épais2 correspond to the ‘surface’ and ‘density’
senses (Vandeloise does not distinguish density and viscosity). For Vandeloise, gros1
and épais1 are linked together through the idea of ‘resistance to breaking’, since a
thick cylinder is hard to deform, and so is a thick surface. Meanwhile, épais1 and
épais2 are linked together through the concept of ‘resistance to penetration’, since a
thick surface is difficult to penetrate, and so is a thick substance or collection.

Thick also has a number of more abstract non-spatial senses which are connected
to the idea of resistance to penetration. For instance, a thick accent is an accent
which is difficult to understand, and there is a metaphorical similarity between
understanding something and penetrating or piercing an object, particularly a
surface. Another metaphorical usage is the description of a person as thick to
mean they are unintelligent. The connection here seems to be that, if a person
is unintelligent, then it is difficult for new concepts to ‘get through’ to them, so
they in some sense resistant to penetration. As with other non-spatial senses
discussed in this chapter, the metaphorical similarity between these senses and
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their spatial counterparts is not represented by arrows in a lexical network; I
take them to be diachronic explanations rather than synchronic facts which are
represented in the lexicon.

3.9.2 The thick network
For an object to have a thickness, we must be able to approximate it by a lower
dimensional object plus a small displacement added at every point. An object with
a surface thickness, such as a slab or disk, is decomposed into a two-dimensional
surface plus a small displacement; an object with a cylindrical thickness, such as a
rope or wire, is decomposed into a one-dimensional curve plus a small displacement;
and a small round object, such as a seed or grain of sand, is decomposed into a zero-
dimensional point plus a small displacement. In each case, thickness refers to the
displacement which is added in order to turn the lower-dimensional approximation
into a fully-fledged volume. We might imagine adding a small ball at every point
on the lower-dimensional approximation, whose diameter can vary as the shape
becomes thicker or thinner. Rather than representing the thickness at every point,
I shall instead assume that people represent the thickness statistically, in terms
of some average thickness plus some Gaussian noise.

A cylindrical thickness is encoded using the predicate cyldr(x, p, t), meaning
‘x is approximated by a path p with average displacement t at every point’. This
can be visualized by placing a sphere of diameter t at every point along p, as shown
in Figure 3.33a. The cylindrical sense can be written as follows:

(303) JthickKcyldr := λx : Ind .


P :=


p : Path

t : (0, ∞)
cyldr(x, p, t)


λp : P .

dist
p.2




As indicated, the presuppositions are that there is some path p and positive real
number t such that x is represented by a cylinder (p, t). Given a context satisfying
these conditions, the measure function returns t.

Surface thickness is similar to cylindrical thickness, except that the object is
represented as a thickened surface rather than a thickened curve. Given that we
are treating paths as smooth functions [0, 1] → V ector, I shall take a surface to be
a smooth function from [0, 1] × [0, 1] → V ector, taking points in the unit square
to spatial vectors. We can write the type of surfaces as:

(304) Surface :=
s : [0, 1] × [0, 1] → V ector

smooth(s)


where smooth(s) stands for a constraint encoding the idea that s is smooth. The
connection between an individual and a thickened surface is given by the predicate
surf(x, s, t), meaning ‘x is approximated by a surface s with an average displacement
t at every point. The most basic sense of surface thickness is implemented as follows:
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(305) JthickKsurf := λx : Ind .


P :=


s : Surface

t : (0, ∞)
surf(x, s, t)


λp : P .

dist
p.2




See Figure 3.33b for an illustration of surface thickness.

(a) Cylindrical thickness (b) Surface thickness

Figure 3.33

In English, cylindrical and surface thickness are not only covered by the same
lexical item, but are mutually compatible. For example, one can say something like:

(306) The stick is thicker than the plate.

where the thickness of a stick is understood in the cylindrical sense and the thickness
of a plate in the surface sense. This suggests that cylindrical and surface thickness
share a common join. I suggest that what joins them is the abstract idea of an
object having a ‘skeleton’. A skeleton is a lower-dimensional version of a shape
formed from all the points which are equidistant to its boundary. The skeleton of
a thickened layer of material is a two-dimensional surface; the skeleton of a long
cylindrical object is a one-dimensional curve; and the skeleton of a small object with
roughly equal dimensions is a zero-dimensional point. Some objects have a skeletal
representation consisting of both one-dimensional and two-dimensional pieces: for
example, a coffee mug consists of a surface-like bowl combined with a cylindrical
handle. The concept of skeleton is commonly used in computer graphics applications,
where it is generally approximated using some kind of thinning algorithm such
as the medial axis transform1.

I shall use the predicate:

(307) x : Ind, S : V ector→Prop, t : (0, ∞) ⊢ skel(x, S, t) : Prop1

To mean ‘x is approximated by a skeleton S, with average thickness t’. Note
that the type of S is V ector → Prop, that is a subset of vectors. S consists

1See https://en.wikipedia.org/wiki/Medial_axis for details
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of those vectors which describe points on the skeleton of x. Skeletal thickness
is then formalized as follows:

(308) JthickKskel := λx : Ind


P :=


S : V ector → Prop

t : (0, ∞)
skel(x, S, t)


λp : P .

dist
p.2




In order for skeletal thickness to subsume both cyldrical and surface thickness,
it must be possible to consider a thickened path or surface as a kind of skeleton.
Given an element of Path or Surface, one can easily convert this into a predicate
of vectors, as follows:

(309) path_to_pred : Path → (V ector → Prop)

surf_to_pred : Surface → (V ector → Prop)

path_to_pred := λP : Path .

λv : V ector .

∣∣∣∣∣∣∣
i : [0, 1]
P.1(i) = v


∣∣∣∣∣∣∣


surf_to_pred := λS : Surface .

λv : V ector .

∣∣∣∣∣∣∣∣∣

i : [0, 1]
j : [0, 1]
S.1(i,j) = v


∣∣∣∣∣∣∣∣∣


That is, path_to_pred(P)(v) is true iff v lies somewhere on P, and surf_to_pred(S)(v)
is true iff v lies somewhere on S. Finally, all that is required are functions:

(310) σ1(x, P) : path(x, P) → skel(x, path_to_pred(P))
σ2(x, S) : surf(x, S) → skel(x, surf_to_pred(S))

for any path P and surface S.
The proposed connections between the various senses of thick are illustrated

in Figure 3.34. The distance-related senses appear on the bottom left and the
non-distance-related senses on the top right. The distance related senses consist
of the two prototypes JthickKcyldr and JthickKsurf, together with the common join
JthickKskel, which describes a general skeletal thickness. The non-distance related
senses include JthickKdense, which describes the density of an aggregate, e.g. thick
crowd; and JthickKvisc, which describes the viscosity of a substance, e.g. thick treacle.
As shown, these are linked by a common join, JthickKpenetr which measures a degree
of resistance to penetration. The existence of JthickKpenetr is motivated by the fact
that JthickKdense and JthickKvisc appear to be compatible, e.g. the crowd was thicker
than treacle. In contrast, none of the spatial senses are compatible with either
JthickKvisc or JthickKdense: one cannot say ?the crowd was thicker than the tabletop
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or ?the treacle was thicker than the cylinder. The adjective thin appears to be a
perfect antonym of thick and is therefore given by applying un to the thick network.

JthickKcyldr

JthickKsurf

JthickKskel

JthickKvisc JthickKdense

JthickKpenetr

Figure 3.34: The thick network.
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4.1 Motivation
The previous chapter showed how the lexical semantics of spatial adjectives can
be formalised using lexical networks of measure functions. To get from a gradable
adjective to a sentence meaning, the gradable adjective must combine with degree
morphology. Examples of degree morphemes include the comparative (John is
taller than Mary), the superlative (John is the tallest), the positive (John is tall),
measure phrase combination (John is 140cm tall), as. . . as. . . , (John is as tall as
Andrew), and very (John is very tall). The goal of this chapter is to develop an
analysis of these constructions which is compatible with the kind of fine-grained
polysemy described in Chapter 3. As explained in previous chapters, in order for
the polysemy of individual words to be preserved by entire phrases, composition
must map not only senses but also sense connections. I shall illustrate how most
degree morphemes are monotone functions, lifting both gradable adjective senses
and arrows between gradable adjectives.

Rather than proposing a completely novel theory of degree morphology, I shall
instead work within the framework of degree semantics which was introduced in
Chapter 1 (e.g. Cresswell 1976, von Stechow 1984, Klein 1980, Bierwisch 1989,
Kennedy 1999). Degree semantics can boast a number of theoretical and empirical
achievements, including explanations of polarity, cross-scalar incommensurability,
and the topological restrictions associated with degree modifiers like completely,
mostly, half. I am influenced above all by the work of Kennedy (1999, 2005, 2007),
which I take to be the most detailed version of degree semantics. Following Kennedy,
I treat gradable adjectives as measure functions from individuals to degrees, rather
than relations between individuals and degrees, as in other authors. However, my
descriptions of particular morphemes will not necessarily agree with his.

In addition to incorporating polysemy, another respect in which my analysis
differs from most other versions of degree semantics is that it incorporates a
dynamic account of presuppositions. Degree morphemes typically involve a lot of
background information which does not appear directly in the syntax. For example,
the sentence John is the tallest person presupposes some contextually-relevant
set of people against whom John’s height is measured, and requires John himself
to be a member of this set. The main assertion of the sentence, namely that
John’s height is the greatest in the comparison set, can only be made in a context
where these presuppositions are met. As explained in Chapter 2, Dependent Type
Theory can be used to implement a dynamic approach to sentence meaning whereby
presuppositional content, modelled as constraints on the background context, is
separated from assertive content, modelled as an instruction for updating the
background context with new information.

This chapter is organised as follows. Sections 4.2, 4.3, 4.4 and 4.5 are dedicated
to measure phrase combination, the comparative, the superlative and the positive
respectively. Each of these sections begins with an overview of previous approaches
to that morpheme before presenting my own analysis. Section 4.6 covers some
morphemes which appear less frequently in the literature, including very, too and
enough. Having given an analysis of various degree morphemes, Section 4.7 addresses
the question of how a language user interprets a sentence like the wine glass is 18cm
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tall with respect to a context. I argue that the language user does not construct all
possible interpretations at once, but builds the interpretation network in a breadth-
first manner beginning with the weakest or most general senses and gradually
strengthening them to find the strongest assertion compatible with the context.
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4.2 Measure phrase combination

4.2.1 Background
Measure phrases are expressions like 2m, 2kg, 2 ◦C, etc., which express the exact
degree to which an individual possesses some property. They are combinations of a
number plus an expression like m, kg or ◦C, which indicates a choice of units. All
units are associated with a particular dimension: for instance, meters, kilometers,
inches and yards belong to the dimension of distance; kilograms, grams, tonnes and
pounds belong to the dimension of mass; and degrees Celsius, Kelvin and Fahrenheit
belong to the dimension of temperature. A measure phrase can only combine with
an adjective if its measure unit agrees in dimension with the adjective – one can
say 2m long, 2m high and 2m deep but not ?2m hot, ?2m heavy, ?2m old, and so
on. Another important property of measure phrases is that they can only occur
with positive polarity adjectives: one can say 2m long, but not ?2m short, except in
specific circumstances, such as in answer to the question “how short is it?”.

In degree semantics, measure phrases are usually assumed to denote positive
degrees. For example, 2m would denote a positive degree on the distance scale,
2kg a positive degree on the mass scale, 2 years a positive degree on the age
scale, and so on. One reason for thinking that measure phrases are degrees is that
one can say things like I’m not sure how long the sofa is, but it’s a little longer
than 2m, where a measure phrase is commensurable with an ‘unmeasured’ degree
whose value is unknown. Like measure phrases, unmeasured degrees make use
of operations which are defined on numbers, such as multiplication, as in some
neutron stars are twice as massive as the sun, or difference, as in John is as much
taller than Mary as he is shorter than Sally. Such expressions either require that
degrees are numerical to begin with, or else require some kind of map from the
underlying structure of degrees into numbers.

Measure phrases can occur together with a wide range of degree morphology.
Consider the following sentences:

(311) a. John is 190cm tall.
b. John is 20cm taller than Mary.
c. John is 20cm less tall than Sally.
d. John is 10cm too tall.

(312) a. * John is 190cm the tallest.
b. * Mary is 130cm the least tall.
c. * John is 190cm as tall as Henry.
d. * John is 190cm very tall.
e. * John is 5cm tall enough.
f. * The jug is 2 litres completely full.
g. * The jug is 1 litre half full.

As shown, measure phrases can occur not only with the unmarked form of an
adjective (a), but also with expressions of comparison (b, c) and excess (d). However,
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they cannot occur in the superlative construction (a, b), nor with as. . . as. . . (c),
very (d), enough (c), completely (f), or half (g). This section is concerned only with
the unmarked form of measure phrase combination seen in (a); the occurrence of
measure phrases in other constructions is explained in the sections corresponding
to those constructions.

There is some disagreement in the literature about how to describe unmarked
measure phrase combination. In versions of degree semantics where gradable
adjectives are relations between degrees and individuals (Montague type d →
e → t), a straightforward analysis is that the measure phrase saturates the degree
argument of the adjective. Hence, a sentence like John is 190cm tall would
have the interpretation:

(313) JJohn is 190cm tallK = JtallK(J190cmK)(JJohnK)

This is more or less the analysis given in Cresswell (1976), von Stechow (1984) and
Heim (2000). One potential issue for this account, which has been pointed out by
Schwarzschild (2005), is that the internal argument of an adjective usually appears
to its right, as in sick [of chocolate], whereas measure phrases appear on the left.
An alternative analysis proposed by Klein (1980) and Kennedy & McNally (2005)
is that measure phrases are really a kind of degree morpheme. On this account,
rather than the adjective taking the measure phrase as an argument, the measure
phrase takes the adjective as an argument, as follows:

(314) JJohn is 190cm tallK = J190cmK(JtallK)(JJohnK)

This assumes that 190cm has something like the following interpretation (in
Montague notation):

(315) J190cmK := λg . λx . ∃d[d ≥ 190cm ∧ g(d)(x)]

That is, J190cmK(g)(x) is true iff the degree to which x is g is greater than or equal
to 190cm. The motivation for treating measure phrases as degree morphemes is
that they occur in complementary distribution with other degree morphemes, such
as most/-est, very, enough, completely, and so on. This analysis also explains why
measure phrases appear to the left of gradable adjectives rather than to the right in
the argument position. However, this account has trouble explaining why measure
phrases do occur with some degree morphemes, like more/-er, less and too.

Both the analyses sketched above assume that gradable adjectives are relations
between individuals and degrees, rather than measure functions as assumed in this
thesis. If gradable adjectives are measure functions (Montague type e → d), then
the analysis in (313) is no longer possible since there is no degree argument for the
measure phrase to saturate. The only possibility is something along the lines of
(314), where the adjective functions as an argument to something else. However,
rather than treat the measure phrase itself as a degree morpheme, I instead opt
for an analysis found in Svenonius & Kennedy (2008) whereby a silent morpheme
meas (‘measure’) takes both the adjective and the measure phrase as arguments.
This allows us to preserve the idea that measure phrases themselves are degrees,
which is the role they seem to play in comparatives and other constructions. An
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expressions like 190cm tall is assigned a syntactic structure which parallels that
of a comparative or superlative expression:

(316) DegP
e → t

NumP
d

190cm

Deg′

d → e → t

Deg
(e → d) → d → e → t

Meas

A
e → d
tall

where meas is a silent morpheme with the following semantics:

(317) JmeasK := λg . λd . λx . g(x) ≥ d

That is, JmeasK(G)(d)(x) is true iff the degree to which x is G is at least as large
as d. Notice that, on this approach the ‘greater than or equal two’ relation is
introduced by meas rather than by the adjective or the degree morpheme. If
one is unhappy with silent morphemes, then one can instead think about meas
as a kind of type-shifting rule whose role is to lift a gradable adjective of type
e → d to a relation of type d → e → t.

4.2.2 Action on senses
Before presenting my formulation of the meas morpheme, it is important to review
the analysis of degrees introduced in the previous chapter. Recall that, for every
scale s, there is a type of positive s-degrees and a type of negative s-degrees,
written Degree(s, +) and Degree(s, −) respectively. The types Degree(s, +) and
Degree(s, −) have associated linear orders ≤(s,+) and ≤(s,−). Two degrees on
different scales or with different polarities cannot be compared, because one cannot
form the proposition that one is greater than the other. Positive degrees and
negative degrees on the same scale are isomorphic and have opposite orders. The
type of all positive degrees on all scales is defined as the dependent sum:

(318) Degree(+) :=
s : Scale

Degree(s, +)


and the type of all negative degrees is defined likewise. All measure phrases belong
to the type Degree(+). In addition to the types Degree(+) and Degree(−), there
is also a type of all degrees, defined as follows:

(319) Degree :=


p : Pol

s : Scale

Degree(s, p)
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There are two kinds of gradable adjective: positive adjectives, which return
positive degrees, and negative adjectives, which return negative degrees. These
are represented by the types:

(320) • Gradable(+) := Ind →

P : Type

P → Degree(+)


• Gradable(−) := Ind →

P : Type

P → Degree(−)


Finally, there is the type of all gradable adjectives, which is:

(321) Gradable := Ind →

P : Type

P → Degree


Any element of Gradable(+) or Gradable(−) can be automatically considered
as an element of Gradable by taking its output degree and inserting the label
+ or − respectively.

We can now turn to the semantics of meas, beginning with the ‘greater than or
equal to’ interpretation, which I shall call JmeasK≥. This takes a positive gradable
adjective, a positive degree, and an individual, and returns a sentence meaning
(context update). It is therefore an element of:

(322) JmeasK≥ : Gradable(+) → Degree(+) → Ind → Update

It can be implemented as follows:

(323) JmeasK≥ := λG : Gradable(+) .

λd : Degree(+) .

λx : Ind .P := G(x).1
λp : P . G(x).2(p).2 ≥ d.2


As shown, given some gradable adjective G, degree argument d, and individual
x, JmeasK≥ returns a context update which presupposes that x satisfies the
presuppositions of G. Given a context satisfying these conditions, the main assertion
is that the magnitude of G applied to x is greater than or equal to the magnitude
of d. This is a valid comparison if and only if both degrees have the same
polarity and dimensions.

To illustrate how JmeasK≥ acts on senses, it is useful to consider an example.
The following is a derivation of 190cm tall, assuming the strongest interpretation
of tall, namely JtallKup, 1st, large:

(324) J190cm meas tallK≥, proto

= JmeasK≥(JtallKup, 1st, large)(J190cmK)
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=



λG : Gradable(+) .

λd : Degree(+) .

λx : Ind .P := G(x).1
λp : P . G(x).2(p).2 ≥ d.2







λx : Ind .

P :=


v : V ector

up(v)
1st(x, v)
large(v)


λp : P .

dist
∥p.1∥







dist
190cm



=



λd : Degree(+) .

λx : Ind .
P :=


v : V ector

up(v)
1st(x, v)
large(v)


λp : P . ∥p.1∥ ≥ d.2





dist
190cm



= λx : Ind .


P :=


v : V ector

up(v)
1st(x, v)
large(v)


λp : P . ∥p.1∥ ≥ 190cm


The result takes an individual x and returns a context update which presupposes that
x satisfies the presuppositions of tall – that is, it has an upwards-directed axis which
is maximal and comparable in size to a human height. As one would expect, the main
assertion is that the magnitude of x’s vertical axis is greater than or equal to 190cm.

There are several ways in which measure phrase modification can ‘go wrong’.
For example, suppose that instead of 190cm tall, we have ?190cm short. This leads
to a type error because meas requires a positive gradable adjective, but short is
negative. Now suppose that instead of 190cm tall, we have ?190kg tall. Now the
polarity is correct, but the resulting assertion contains a type error because one
cannot compare a distance and a weight. Finally, another way in which measure
phrase modification can go wrong is if the subject does not satisfy the background
presuppositions of the adjective. For instance, 190cm tall will be infelicitous if
the subject is not the kind of thing which can have a vertical axis, such as an
abstract object or event, and will also fail if the subject is a physical object without
the necessary shape, such as a coin or football.

4.2.3 Action on arrows
To act on networks, meas should lift not only senses but also arrows. Suppose
that we have two positive gradable adjectives G, H : Gradable(+). Recall from the
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previous chapter that an arrow α from G to H is an element of:

(325) α : G →Gradable(+) H

: ∏x:Ind

f : G(x).1 → H(x).1∏
p:G(x).1 G(x).2(p) = H(x).2(f(p))


That is, it specifies, for every individual x, a map from the presuppositions of G(x)
to the presuppositions of H(x) which commutes with the two measure functions. We
would now like to lift α to get an arrow from JmeasK≥(G) to JmeasK≥(H). Given
that JmeasK≥(G) and JmeasK≥(H) are both of type Degree(+) → Ind → Update,
the lifted arrow should be an element of:

(326) JmeasK≥(α) : ∏d:Degree(+)
∏

x:IndJmeasK(G)(d)(x) →Update JmeasK(H)(d)(x)

This is implemented as follows:

(327) JmeasK≥(α) := λd : Degree(+)
λx : Ind .

let G′ := JmeasK≥(G)(d)(x) inλp : G′.1 . α(x).1(p.1)
λp : G′.1 . idG′.2(p)


The key point to notice is that the lifted arrow works by using the original arrow α
to replace the presuppositions of G with presuppositions of H. The asserted content
is left unchanged, so the assertion map is simply the identity.

Now that we know how JmeasK≥ acts on arrows, we know how it acts on an
entire network. For example, beginning with the tall network, in which every sense
has type Gradable(+), we can apply JmeasK≥ to every sense and arrow, giving us
a network in which every sense has type Degree(+) → Ind → Update. We can
then take the resulting network and apply it to a positive degree, giving a network
of Ind → Update senses. Finally, we can apply an individual, giving us a simple
Update network which can be used to update a context. Every step in this process
is monotone, meaning it lifts arrows and preserves their direction. Figure 4.1 shows
the result of applying JmeasK≥ to the entire tall network.

4.2.4 The exact equality reading
Thus far, we have ignored an important observation, which is that the measure
morpheme meas is itself polysemous between two different interpretations: an ‘at
least’ interpretation, represented by JmeasK≥, and a ‘strictly equal to’ interpretation.
For example, consider the following two dialogues:

(328) a. Bob: How tall are you?
Alice: I am 95cm tall.

b. Bob: To go on this ride, you must be 95cm tall.
Alice: I am 95cm tall.
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JtallKup, 1st, large

JtallKup, large

JtallKup, 1st

JtallKup, sgfnt

JtallKvert, 1st, large

JtallKvert, large

JtallKvert, 1st

JtallKvert, sgfnt

JmeasK≥(JtallKup, 1st, large)

JmeasK≥(JtallKup, large)

JmeasK≥(JtallKup, 1st)

JmeasK≥(JtallKup, sgfnt)

JmeasK≥(JtallKvert, 1st, large)

JmeasK≥(JtallKvert, large)

JmeasK≥(JtallKvert, 1st)

JmeasK≥(JtallKvert, sgfnt)

JmeasK≥

Figure 4.1: Applying JmeasK≥ to the entire tall network.
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In dialogue (a), Bob takes Alice to mean that she is exactly 95cm tall, whereas
in (b) this strong interpretation does not arise, and Bob takes Alice to mean that
she is at least 90cm tall, this being the requisite height to go on the ride. As this
example illustrates, the exact equality reading is more typical, with the ‘at least’
reading only arising in a context like (b) where exact equality is not in question.

Many authors take the ‘at least’ interpretation to be the basic meaning of the
meas morpheme, appealing to scalar implicature to explain the exact equality
interpretation (e.g. Cresswell 1976, Klein 1980, Heim 2000, Kennedy & McNally
2005). The idea is that, in a dialogue like (328a), Bob assumes that Alice is being
as informative as possible. He reasons that if Alice was taller than 95cm she would
have said so: therefore she must be exactly 95cm tall. In (b), on the other hand, for
Alice to report her exact height would not be more informative, since the question
at issue is whether or not she is tall enough to go on the ride. If this could be made
to work, then there would be no need to encode the exact equality reading into the
meaning of meas, as it would follow from general pragmatic principles.

In my view, the difficulty with a purely pragmatic analysis of the exact equality
reading is explaining which stronger alternative is supposed to generate this
implicature. A scalar implicature such as:

(329) John ate some of the apples.
⇒ John did not eat all of the apples.

is generated by the presence of the stronger alternative John ate all of the apples,
which is given by a straightforward substitution some 7→ all. In contrast, the
inference in (328a) that Alice is exactly 95cm tall cannot be easily generated by
a single alternative. Consider the following possibilities:

(330) a. I am 96cm tall.
b. I am 97cm tall.
c. I am 100cm tall.
d. I am more than 95cm tall.
e. . . .

There are an infinite number potential alternatives of the form (a), (b), (c), none of
which can generate the right inference individually. For instance, ¬(a) combined
with the original utterance leads to the inference that Alice’s height is somewhere
in the range [95cm, 96cm). Moreover, (d) is ruled out by its complexity, since
the usual assumption is that only alternatives which are at most as complex as
the original can give rise to implicatures (e.g. Katzir 2007). (If this was not the
case, then arbitrary sentences which entail the original, e.g. I am 95cm tall and
a basketball player, would give rise to implicatures.)

For this reason, I assume that the meas morpheme is ambiguous between a
weaker ‘at least’ interpretation and a stronger exact equality interpretation. It is
the presence of this stronger interpretation, in combination with the assumption
that the speaker is being as informative as possible, which generates the scalar
implicature in (328a) and similar contexts. Alongside JmeasK≥, then, there is also
an exact equality sense JmeasK= with the following implementation:
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(331) JmeasK= := λG : Gradable(+) .

λd : Degree(+) .

λx : Ind .P := G(x).1
λp : P . G(x).2(p).2 = d.2


As shown, the only difference between JmeasK≥ and JmeasK= is that the assertion
that the value of d′ is less than or equal to the value of d is replaced by the assertion
that it is strictly equal. JmeasK= also acts on arrows in exactly the same way as
JmeasK≥. As one would expect, there is an arrow from JmeasK= to JmeasK≥ which
works by weakening the strict equality requirement to a greater than or equal to
requirement. This arrow, which I shall label JmeasK≥

=, has the following type:

(332) JmeasK≥
= : ∏G:Gradable(+)∏

d:Degree(+)∏
x:Ind

JmeasK=(G)(d)(x) →Update JmeasK≥(G)(d)(x)

It is implemented as follows, assuming that the type d1 ≤ d2 is defined as
d1 = d2 + d1 > d2:

(333) JmeasK≥
= := λG : Gradable(+)

λd : Degree(+)
λx : Ind .

let M := JmeasK=(G)(d)(x) inidM.1

λp : M.1 . λq : M.2(p) . inl(q)


The presuppositions can be copied without alteration, since they are the same for
JmeasK= and JmeasK≥. The two senses JmeasK= and JmeasK≥, together with the
arrow between them, form a very simple lexical network:

(334) JmeasK= JmeasK≥
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4.3 The comparative

4.3.1 Background
The comparative refers to the morphemes more/-er1 and less, which involve the
comparison of two degrees. A comparative sentence like John is taller than Mary
consists of at least three parts: (a) an individual of which the comparative expression
is predicated; (b) a gradable adjective which is applied to this individual to get
a reference degree; and (c) a than-expression which introduces the comparison
degree against which the reference degree is compared. Another optional feature
of a comparative sentence is the ‘difference degree’ argument, which describes the
difference between the reference degree and the standard of comparison, as in John
is 10cm taller than Mary. As one would expect, the reference degree, standard of
comparison and difference degree (if present) must all agree in dimensions.

It is useful to distinguish between different types of comparative depending on
the type of the than argument. Consider the following:

(335) a. John is taller than Mary.
b. John is taller than 150cm.
c. John is taller than the car is wide.

In (a), the complement of than is a noun phrase, in (b) it is a measure phrase,
and in (c) it is an entire clause. I shall refer to these as nominal, measure phrase,
and clausal comparatives respectively.

Most analyses of the comparative group together measure phrase comparatives
and clausal comparatives as sharing the same underlying structure, as follows:

(336) DegP
e → t

Deg′

d → e → t

Deg
(e → d) → d → e → t

more/-er

A
e → d
tall

PP
d

than 150cm
/ than the car is wide

where the comparative morpheme more/-er is interpreted as:

(337) Jmore/-erK1 := λg . λd . λx . g(x) > d

As shown, the than argument in both measure phrase and clausal comparatives
is assumed to denote a degree. In a measure phrase comparative, this degree is
provided explicitly by the measure phrase, whereas in clausal comparatives it is

1The difference between -er and more is purely morphophonemic, having to do with the
number of syllables in the adjective – it has no effect on the semantics
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provided indirectly by means of a definite description (e.g. von Stechow 1984, Heim
1985, Moltmann 1992, Izvorski 1995). The major challenge with this account is
explaining how an expression like than the car is wide functions as a description
of a degree. The usual explanation is that such expressions are headed by a silent
measurement morpheme – the morpheme which we are calling meas. The degree
argument of meas is bound by a silent operator which is attached at the clause
level like a wh-operator, giving us the following structure:

(338) [PP than [CP opx the car is [DegP dx meas wide]]]

One observation which supports this analysis is that a clausal comparative may
not contain an explicit degree morpheme inside the than clause, suggesting that
the DegP position is already occupied:

(339) a. * John is taller than the car is very wide.
b. * John is taller than the car is too wide.
c. * John is taller than the car is wide enough.

The semantic role of Opx is to abstract over the bound degree argument dx to give
a property of degrees, and then perform maximization over this property, as follows:

(340) Jthan opx the car is dx meas wideK = max(λd . Jthe car is d meas wideK)

giving us the maximum degree to which the car is wide. (The reason for the
maximization is there there is not always one unique degree which satisfies the
property described by the than clause.)

In nominal comparatives like John is taller than Sally, the complement of than
appears to be a simple noun phrase. A number of authors have proposed that
nominal comparatives in fact originate from clausal sources (Bresnan 1973, Lerner
& Pinkal 1995, Hazout 1995). On this view, a sentence like John is taller than
Sally would be an elided form of something like John is taller than Sally is tall.
However, as Kennedy (1999) has pointed out, there are good reasons to think that
the structure of nominal comparatives is just as it appears on the surface, with the
complement of than being an ordinary noun phrase. For example, in a nominal
comparative, the than expression can contain a reflexive pronoun bound by the
subject, but this is not possible in a clausal comparative:

(341) a. No man is older than himself.
b. * No man is older than himself is.

Moreover, nominal comparatives allow the complement of than to be bound by a
wh-operator, whereas material in a clausal comparative cannot be bound in this way:

(342) a. Whoi did you say John is taller than ti?
b. * Whoi did you say John is taller than ti thought?

This suggests an analysis whereby than Sally denotes an individual, as follows:
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(343) DegP
e → t

Deg′

e → e → t

Deg
(e → d) → e → e → t

more/-er

A
e → d
tall

PP
e

than Sally

To deal with the differently typed than argument, this account requires an alternative
version of more/-er with something like the following denotation:

(344) Jmore/-erK2 := λg . λy . λx . g(x) > g(y)

that is, Jmore/-erK2(g)(y)(x) holds iff the degree to which x is g exceeds the
degree to which y is g.

Among previous approaches to the comparative, there has been little attention
paid to the optional difference degree argument. The standard Montague type
system does not allow for optional arguments, instead requiring a distinct version
of the comparative morpheme for each possible combination. The presence vs.
absence of a difference degree argument, combined with the distinction between
clausal and nominal comparatives, would necessitate four different versions. This
is intuitively unsatisfying, however: it suggests that sentences like John is taller
than Mary, John is 15cm taller than Mary, John is taller than Susan believes and
John is 15cm taller than Susan believes all involve different senses of more/-er. As
we shall see, one advantage of using a richer type system is that it allows us to
unify all four versions into the same semantic representation.

We have already discussed the constraint that the dimensions of the reference
degree, comparison degree, and difference degree must all be the same. What of the
polarity? Here the situation is slightly more complicated. In nominal comparatives,
the polarity of the reference and comparison degree are automatically the same,
because they result from applying the same measure function. In the case of
clausal and measure phrase comparatives, however, the polarity of the reference
and comparison degree can be different. Consider the following examples:

(345) a. John is taller (/ less tall) than the car is wide. [positive, positive]
b. John is shorter (/ less short) than the car is wide. [negative, positive]
c. ?John is taller (/ less tall) than the car is narrow. [positive, negative]
d. ?John is shorter (/ less short) than the car is narrow. [negative, negative]

As shown, the reference degree can be either positive or negative, whereas the
comparison degree must be positive. This is compatible with the theory that the
sentences in (345) contain a hidden meas morpheme, since meas can only be
applied to a positive degree, as discussed in Section 4.2.
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4.3.2 Action on senses
Having introduced the comparative in terms of Montague semantics, let us now turn
to its formulation in the type system used in this thesis. Following the usual analysis,
I shall assume that the type of the than argument is Ind in nominal comparatives,
and Degree(+) in clausal and measure phrase comparatives. I shall also assume
that clausal comparatives contain the silent measure morpheme meas, but shall
leave open the question of how exactly the than clause is derived, whether by
movement or some other mechanism for describing long-distance dependencies. One
difference with previous accounts of the comparative will be the use of sum types to
encode both the choice between the two different types of than argument and the
optionality of the difference degree argument. The type of the than argument is:

(346) Ind + Degree(+)

an element of which is either an individual or a positive degree. The type of
the difference degree argument is:

(347) Degree(+)? := Degree(+) + ⊤

an element of which is either a positive degree, or the unique value ∗ : ⊤, which is
used to represent a null argument. Given a type A, the type A? := A + ⊤ is known
as an option type, since it is used to represent an optional element of type A.

The use of sum types to encode argument options has the advantage of avoiding
an unnecessary proliferation of senses. However, the price we pay for this unification
is a more complex theory of the syntax-semantics interface. Instead of a distinct
lexical entry for each version of more/-er, we instead have a single lexical entry
with several distinct composition options. We might represent this somewhat
informally as follows:

(348) more/-er
a. Nominal comparative, with difference degree:

syntax: [DegP NumP [Deg′ [Deg′ A ] [PP than NP] ] ]
semantics: Jmore/-erK(JAK)(inl(JNPK))(inl(JNumPK))

b. Nominal comparative, no difference degree:
syntax: [DegP [Deg′ A ] [PP than NP] ]
semantics: Jmore/-erK(JAK)(inl(JNPK))(inr(∗))

c. Clausal comparative, with difference degree:
syntax: [DegP NumP [Deg′ [Deg′ A ] [PP than CP] ] ]
semantics: Jmore/-erK(JAK)(inr(JCPK))(inl(JNumPK))

d. Clausal comparative, no difference degree:
syntax: [DegP [Deg′ A ] [PP than CP] ]
semantics: Jmore/-erK(JAK)(inr(JCPK)(inr(∗))

e. Measure phrase comparative, with difference degree:
syntax: [DegP NumP2 [Deg′ [Deg′ A ] [PP than NumP1] ] ]
semantics: Jmore/-erK(JAK)(inr(JNumP1K))(inl(JNumP2K))
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f. Measure phrase comparative, no difference degree:
syntax: [DegP [Deg′ A ] [PP than NumP] ]
semantics: Jmore/-erK(JAK)(inr(JNumPK)(inr(∗))

Notice how the complement of than cannot be supplied to the Jmore/-erK function
as it is, but must first be tagged with ‘inl’ or ‘inr’, depending on whether it denotes
an element of Ind or Degree(+). Similarly, if the difference degree argument is
present, it must be tagged with ‘inl’ before it can be supplied as an argument; if
no difference degree argument is present, then the value ‘inr(∗)’ must be supplied
instead. Rather than develop a detailed theory of how this is done, I shall simply
assume that the grammar contains some way to handle these different choices, by
embedding arguments into sum types if required, and supplying the appropriate
null element if no argument is available. For an approach to the syntax-semantics
interface capable of this kind of flexible composition, see Asudeh et al. (2012).

We can now turn to formalising the comparative morphemes more/-er and
less. These morphemes should take a gradable adjective, a than argument, an
optional difference degree, and an individual, and return a context update. Hence,
they are elements of the following type:

(349) Jmore/-erK, JlessK : Gradable → (Ind + Degree(+)) → Degree(+)? → Ind
→ Update

A potential implementation of Jmore/-erK is shown in Figure 4.2. We can understand
the resulting update by breaking it into parts. Given some gradable adjective G,
than argument T, optional difference degree d?, and individual x, the presuppositions
are as follows:

(350) 1. x satisfies the background presuppositions of G
2. there is some degree dref (the reference degree)
3. dref measures the degree to which x is G
4. there is some degree dcomp (the comparison degree)
5. if T contains some individual y, then y satisfies the background

presuppositions of G and dcomp is the degree to which y is G; otherwise,
if T contains some degree d, then dcomp is given by taking d and
adjusting its polarity to be the same as the reference degree (making
it possible to compare the two)

Given a context satisfying all of these presuppositions, the assertion is that the
magnitude of the reference degree is greater than the magnitude of the comparison
degree, and the separation between the two degrees is given by the value of the
difference degree argument d? (if present). To express the second part of the
assertion, I assume that for every scale s and polarity p, there is a function:

(351) sep(s,p) : Degree(s, p) × Degree(s, p) → Degree(s, +)
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Jmore/-erK :=
λG : Gradable .

λT : (Ind + Degree(+)) .

λd? : Degree(+)? .

λx : Ind .

P :=



c : G(x).1
dcomp : Degree

dcomp = G(x).2(c)
dref : Degree

case T of

inl(y) then
c′ : G(y).1
dcomp = G(y).2(c′)


| inr(d) then case dref.1 of

+ then dcomp =


+
d.1
d.2



| − then dcomp =


−
d.1
negate(d.2)




λp : P . p.2.3 > p.4.3 ×

case d? of
inl(ddiff) then sep(p.2.3, p.4.3) = ddiff.2
| inr(∗) then ⊤


Figure 4.2

which takes two degrees on the (s, p) scale and returns a degree on the (s, +) scale
representing the distance between them. The separation between two degrees has
the same dimensions as the original degrees, but its polarity is always positive
regardless of whether the original degrees are positive or negative. As one would
expect, the morpheme JlessK has exactly the same semantic value as JmoreK, except
that the > relation in the assertion is replaced by <.

To understand how the comparative morpheme acts on senses, it is useful to see
an example. Consider the expression 1km shorter than the Nile. This is interpreted
as follows, assuming that short is interpreted as JshortKpath:

(352) J1km shorter than the NileKpath

= Jmore/-erK(as_neg′(JshortKpath))(inl(Jthe NileK))(inl(J1kmK))
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= λx : Ind .



P :=



c :
p : Path

path(x, p)


dref : Degree

dref =


−
dist
∥c.1∥


dcomp : Degree

c′ :
p : Path

path(Nile, p)



dcomp =


−
dist
∥c′.1∥






λp : P . p.2.3 > p.4.3 ×

sep(p.2.3, p.4.3) = 1km


As indicated, the result takes an individual x and returns a context update with
six presuppositions:

(353) 1. x satisfies satisfies the presuppositions of JshortKpath, having a pathlike
shape

2. there is some degree dref (the reference degree)
3. dref measures the shortness (negative length) of x
4. there is some degree dcomp (the comparison degree)
5. the Nile satisfies the presuppositions of JshortKpath

6. dcomp measures the shortness of the Nile

Given a context satisfying these conditions, the first part of the assertion is that
the shortness of x is greater than the shortness of the Nile. The second part of the
assertion is that the separation between the two shortnesses is 1km.

Now instead of the nominal comparative 1km shorter than the Nile, consider
the measure phrase comparative 1km shorter than 15km. This is interpreted as
follows, again assuming that short has the interpretation JshortKpath:

(354) J1km shorter than 15kmKpath

= Jmore/-erK(as_neg′(JshortKpath))(inl(Jthe NileK))(inl(J1kmK))
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= λx : Ind .



P :=



c :
p : Path

path(x, p)


dref : Degree

dref =


−
dist
∥c.1∥


dcomp : Degree

dcomp =


−
dist
15km




λp : P . p.2.3 > p.4.3 ×

sep(p.2.3, p.4.3) = 1km


Now, instead of the comparison degree dcomp measuring the shortness of the Nile,
it is simply set equal to 15cm. Note that the polarity of the comparison degree is
required to be negative, so that it matches the polarity of the reference degree. As
before, the assertion is that the magnitude of the reference degree is greater than
the comparison degree and that the degree of separation between them is 1km.

There are various ways in which a comparative sentence can ‘go wrong’. For
instance, consider the following sentences:

(355) a. ? John is taller (/ less tall) than 150kg.
b. ? John is taller (/ less tall) than Mary is intelligent.
c. ? John is 10◦C taller (/ shorter / less tall / less short) than Mary.
d. ? John is 10cm taller (/ shorter / less tall / less short) than Mary is

intelligent.

Each of these violates the requirement that the reference degree, comparison
degree and difference degree must all agree in dimensions, with the result that the
comparative assertion is not well-formed. The comparative will also be infelicitous
if either the subject or the complement of than fails to satisfy the background
requirements of the adjective, as in:

(356) a. ? John is taller than the meeting.
b. ? The idea was wider than the courtyard.

Both cases lead to a contradictory presupposition type, since the background require-
ments of the adjective cannot be satisfied. Finally, a comparative sentence can also
fail if the complement of than is a negative degree. Consider the following sentence:

(357) ? John is taller than Mary is short.

This leads to a type error because the clausal complement of than denotes a negative
degree, whereas Jmore/-erK requires a positive degree.
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4.3.3 Action on arrows
As with measure phrase combination, the comparative acts not only on senses,
but also on arrows, which it lifts monotonically. Given two gradable adjectives
G, H : Gradable with an arrow:

(358) α : G →Gradable H

we can lift this to an arrow:

(359) Jmore/-erK(α) :∏
T:(Ind+Degree(+))∏

d?:Degree(+)∏
x:Ind

Jmore/-erK(G)(T)(d?)(x) →Update Jmore/-erK(H)(T)(d?)(x)

which is implemented as follows:

(360) Jmore/-erK(α) :=
λT : (Ind + Degree(+)) .

λd? : Degree(+)? .

λx : Ind .

let G′ := Jmore/-erK(G)(T)(d?)(x) in

λp : G′.1 .



α(x).1(p.1)
p.2
p.3
p.4

case T of inl(y) then
α(y).1(p.5.1)

p.5.2


| inr(d′) then p.5


λp : G′.1 . idG′.2(p)


As before, the lifted arrow works by using the original arrow to replace all the
presuppositions of G in the background context with presuppositions of H. The
only components which need to be altered in this way are the first component, and
the fifth component in the case where T contains an individual, since these alone
contains presuppositions associated with G. There is no need to alter the assertion,
so the assertion map is just the identity. The other comparative morpheme less
lifts arrows in exactly the same way, since its presuppositions are the same as those
of more/-er. Knowing how it acts on both senses and arrows, we can now apply
more/-er to an entire network of gradable adjective senses.
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4.4 The superlative

4.4.1 Background
The English superlative refers to the morphemes most/-est1 and least, as in John
is the tallest, Mary is the shortest, this car is the least expensive, and so on. The
superlative morphemes assert that the degree to which the individual possesses the
relevant property is maximal or minimal with respect to some comparison class. For
example, the sentence John is the tallest presupposes a set of individuals against
whom John’s height is evaluated. The truth of a comparative sentence depends on
the comparison class – John may be the tallest in one context but not in another.
Contrast this with measure phrase combination or the comparative, e.g. John is
150cm tall, John is taller than Mary, which are true or false regardless of context.

Superlative sentences are associated with a well known ambiguity, noticed by
Szabolcsi (1986). Consider the sentence:

(361) John climbed the highest mountain.

This is ambiguous between an absolute reading in which John climbed the highest of
all mountains, and a comparative reading in which John climbed a higher mountain
than anyone else (in some contextually relevant set of individuals) climbed. The
absolute reading is only true iff John climbed Mount Everest, assuming this is
the highest mountain; the comparative reading requires only that no other person
in the context climbed a higher mountain.

Within degree semantics, the most influential analysis of the absolute/comparative
distinction is due to Heim (1995). She assumes a relational analysis of gradable
adjectives whereby they denote relations between individuals and degrees of type
d → e → t. They are downwards monotone in the sense that JhighK(x)(d) is true iff
x’s degree of height is at least d. Modified nominal expressions like high mountain
are also assumed to be of type d → e → t. So, for instance, Jhigh mountainK(x)(d)
is true iff x is a mountain whose height is at least d. Given these assumptions, she
proposes the following analysis of the superlative morpheme:

(362) Jmost/-estK := λC .

λg .

λx | x ∈ C .

∃d [ g(d)(x) ∧ ∀y [ y ̸= x ∧ y ∈ C ⇒ ¬g(d)(y) ] ]

where C is a set representing the comparison class, g is a gradable adjective meaning,
and x is an individual which must belong to the comparison class. On this account,
Jmost/-estK(C)(g)(x) holds iff there exists some degree d such that g(d)(x), and
there is no other individual y in the comparison class such that g(d)(y).

Heim proceeds to explain the absolute/comparative distinction as follows. In
an absolute superlative, the superlative morpheme is interpreted within its host
DP, resulting in the following logical form:

1As with more and -er, the distinction between most and -est is morphophonemic.
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(363) John climbed [the [C-est [high mountain]]
‘John climbed the unique mountain x such that x is a d-high mountain and
no other element of C is a d-high mountain’

Notice -est must raise so as to take [high mountain] as its gradable adjective
argument. C is a phonologically null pronominal variable containing some relevant
set of mountains. The comparative superlative, on the other hand, Heim assigns
the following logical form:

(364) John [C-est [1 [climbed a the d1-high mountain]]]
‘There is a degree d such that John climbed a d-high mountain and no other
member of C climbed a d-high mountain’

This interpretation is derived by (i) moving C-est to a position above climb, (ii)
abstracting over the degree argument of high mountain, obtaining a function
d → e → t which takes a degree and returns a set of individuals who climbed a d-high
mountain, and (iii) replacing the definite determiner with an indefinite determiner.
In this reading, C is a set of mountain climbers rather than a set of mountains.

Heim’s description of the absolute/comparative distinction as a kind of scope
ambiguity has been criticised by a number of authors. One problem, pointed out
by Sharvit & Stateva (2002), has to do with the comparative interpretation of
the other superlative morpheme, least. By direct analogy with most/-est, Heim
ought to assign least the following interpretation:

(365) JleastK := λC .

λg .

λx | x ∈ C .

∃d [ ¬g(d)(x) ∧ ∀y [ y ̸= x ∧ y ∈ C ⇒ g(d)(y) ] ]

That is, JleastK(C)(g)(x) is true iff there is some degree d such that ¬g(d)(x), but for
any other individual y in the comparison class we do have g(d)(y). Like most/-est,
least would give rise to both an absolute and a comparative interpretation, as follows:

(366) a. Mary climbed [the [C-least [high mountain]]
‘Mary climbed the unique mountain x such that x is not a d-high
mountain but every other element of C is a d-high mountain’

b. Mary [C-least [1 [climbed a the d1-high mountain]]]
‘Mary (who climbed a mountain) did not climb a d-high mountain, but
every other member of C did climb a d-high mountain’

Sharvit & Stateva point out that interpretation (b) gives the wrong truth conditions
in situations where some individuals climbed more than one mountain. They
give the following as an example:

(367) • C := {Mary, Bill, John}
• Mary climbed one mountain – a 3000ft mountain.
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• Bill climbed two mountains – a 2500ft mountain and a 3500ft mountain.
• John climbed one mountain – a 4000ft mountain.

Intuitively, Bill climbed the lowest mountain in this situation, because he climbed a
mountain which was only 2500ft high. However, under the analysis of least given
above, ‘Mary climbed the least high mountain’ is true, because we can find a degree
d such that Mary did not climb a d-high mountain but everyone else did.

To resolve this problem, Sharvit & Stateva propose doing away with the move-
ment analysis of the absolute/comparative distinction. Instead, the comparative
morpheme is always interpreted in the lower position, inside its host DP. The
difference between the absolute and comparative readings is due to two different
‘strategies’ for determining the comparison class C, as follows:

(368) Mary climbed [the [C-least [high mountain]]
‘Mary climbed the unique mountain x such that x is not a d-high mountain
and every other element of C is a d-high mountain’
a. Absolute interpretation: C is the set of all relevant mountains.
b. Comparative interpretation: C is the set of all mountains climbed by

relevant individuals.

This approach gives the correct truth conditions in the case of (367) because in
both readings the comparison class C is a set of mountains, rather than a set
of mountains in the absolute interpretation and a set of mountain climbers in
the comparative interpretation.

Farkas & Kiss (2000) propose an alternative description of the superlative
morpheme. Like Sharvit & Stateva, they assume that the superlative is always
interpreted inside its host DP, the difference between the absolute and comparative
readings being a matter of interpretation rather than scope ambiguity. However,
unlike Sharvit & Stateva, they adopt the measure function approach to gradable
adjectives pioneered by Kennedy. In line with Kennedy’s theory that gradable
adjectives project a DegP, they propose the syntax in Figure 4.3. Notice that
there is no longer any need for most/-est to raise prior to interpretation, so as
to take [high mountain] as an argument; instead, all elements are interpreted in
their surface positions. The superlative morpheme most/-est is then assigned
the following denotation:

(369) Jmost/-estK := λg . λP . λx . P (x) ∧ ∀y [P (y) ∧ y ̸= x ⇒ g(x) > g(y) ]

That is, Jmost/-estK(g)(P)(x) holds iff x is P and the degree to which x is g is greater
than the degree to which any other P is g. Farkas & Kiss propose that, in the
absolute interpretation, P is identical to the denotation of the NP argument (in this
case mountain), whereas in the comparative interpretation it is implicitly restricted
to some subset of the NP denotation (e.g. all mountains climbed by some relevant
set of individuals). Notice that, unlike the description of the superlative morpheme
in Heim and Sharvit & Stateva, Farkas & Kiss do not include the comparison
class C, which handles the restriction of P to some relevant subset. They argue
that this is simply a matter of ordinary quantifier domain restriction, the same
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DP

D
the

NP

DegP
e → t

Deg′

(e → t) → t

Deg
(e → d) → (e → t) → t

most/-est

A
e → d
high

NP
e → t

mountain

Figure 4.3: The syntax of the superlative, according to Farkas & Kiss (2000).

mechanism involved in interpreting every mountain or the mountains relative to
some context. Assuming quantifier domain restriction is a matter of pragmatics,
the semantic form need make no reference to it.

4.4.2 Action on senses
My analysis most closely resembles that of Farkas & Kiss. Like them, I assume that
gradable adjectives denote measure functions, and that a superlative DP contains a
DegP layer, as shown in (4.3). I agree with both Farkas & Kiss and Sharvit & Stateva,
contra Heim, that superlatives are always interpreted in their base position and
are not subject to raising. The difference between the absolutive and comparative
reading is not explained structurally but involves two different interpretations of the
comparison class. However, I agree with Heim and Sharvit & Stateva, contra Farkas
& Kiss, that the comparison class should be represented as a logical argument to the
superlative morpheme, rather than a pragmatically determined domain restriction.
The reason for this is that certain superlative expressions completely specify the
comparison class via an accompanying PP. Examples include:

(370) a. the highest mountain on Earth
b. the youngest of Mary, Bill and John
c. the tallest man in the UK
d. the tallest among the people in the bar

In cases like this, the comparison class is provided compositionally by the PP and
the resulting expression has only an absolute interpretation. The comparative
interpretation is no longer available, presumably because it requires the comparison
class to be left undetermined by the semantics.
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I therefore treat the superlative morpheme as dependent on both an optional
NP argument and an optional PP argument. If both arguments are present, as in
John climbed the highest mountain on Earth, then the PP acts as a restriction on
the domain given by the NP, and the sentence has only an absolute interpretation.
If the NP argument is present without the PP argument, as in John climbed the
highest mountain, then the domain of the NP is pragmatically restricted, allowing
for either an absolutive or a comparative reading. If the PP argument is present
without the NP argument, as in John climbed the highest on Earth, then the context
supplies an implicit domain (e.g. mountain) which is then restricted by the explicit
PP, allowing only an absolute interpretation. Finally, if neither the NP nor the
PP argument is present, as in John climbed the highest, then the context supplies
both the implicit domain and an implicit domain restriction, allowing for either
the absolutive or the comparative reading.

The superlative morphemes most/-est and least take a gradable adjective, an
optional NP meaning, an optional PP meaning, and an individual, and return a
context update. They are typed as follows:

(371) Jmost/-estK, JleastK : Gradable → (Ind → Type)? → (Ind → Update)? →
Ind → Update

Note that an optional NP meaning is of type (Ind → Type)?, whereas an optional
PP meaning is of type (Ind → Update)? because it carries accompanying presuppo-
sitions. An implementation of Jmost/-estK is shown in Figure 4.4. Given a gradable
adjective G, an optional NP meaning N?, an optional PP meaning P?, and an
individual x, we get the following presuppositions:

(372) 1. there is some noun meaning D, representing the domain of the superla-
tive

2. if the N? argument contains a non-empty value N, then D = N
3. there is some R, a predicate on elements of D, representing the domain

restriction
4. if the P? argument contains a non-empty value P, then (i) elements

of D must satisfy the presuppositions of P, and (ii) R is the predicate
which picks out all elements of D which satisfy the assertion of P

5. x satisfies D
6. x satisfies R
7. x satisfies the presuppositions of G
8. there exists at least one other individual distinct from x which satisfies

D, R and the presuppositions of G

Given a context satisfying these presuppositions, the assertion is that, for every
individual y distinct from x which satisfies D, R and the presuppositions of G, the
degree to which x is G is greater than the degree to which y is G. The morpheme least
has the same semantic value as most, except for the assertion, where > is replaced
by <, ensuring that the degree to which x is G is minimal rather than maximal.
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Jmost/-estK :=
λG : Gradable .

λN? : (Ind → Type)? .

λP? : (Ind → Update)? .

λx : Ind .

P′ :=



D : Ind → Type

case N? of
inl(N) then D = N
inr(∗) then ⊤

R : ∏y:Ind D(y) → Prop

case P? of

inl(P) then


c : ∏y:Ind D(y) → P(y).1
R = λy : Ind .

λDy : D(y) .

P(y).2(c(y)(Dy))


| inr(∗) then ⊤

Dx : D(x)
R(x)(Dx)
G(x).1∣∣∣∣∣∣∣∣∣∣∣∣∣∣



y : Ind

Dy : D(y)
R(y)(Dy)
G(y).1
y ̸= x



∣∣∣∣∣∣∣∣∣∣∣∣∣∣



λp : P′ .
∏


r :



y : Ind

Dy : p.1(y)
p.3(y)(Dy)
G(y).1
y ̸= x




G(x).2(p.7).3 > G(r.1).2(r.4).3


Figure 4.4

To illustrate the action of the superlative on senses, consider the expression
highest mountain on Earth. This is interpreted as follows, assuming the sense
JhighKdim for high:

(373) Jhighest mountain on EarthKdim

= Jmost/-estK(as_pos′(JhighKdim))(inl(JmountainK))(inl(Jon EarthK))
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= λx : Ind .

P :=



D : Ind → Type

D = JmountainK
R : ∏y:Ind D(y) → Propc : ∏y:Ind D(y) → Jon EarthK(y).1
R = λy : Ind . λDy : D(y) . Jon EarthK(y).2(c(y)(Dy))


Dx : D(x)
R(x)(Dx)
JhighKdim(x).1∣∣∣∣∣∣∣∣∣∣∣∣∣∣



y : Ind

Dy : D(y)
R(y)(Dy)
JhighKdim(y).1
y ̸= x



∣∣∣∣∣∣∣∣∣∣∣∣∣∣



λp : P .
∏


r :



y : Ind

Dy : p.1(y)
p.3(y)(Dy)
JhighKdim(y).1
y ̸= x




JhighKdim(x).2(p.7).3
> JhighKdim(r.1).2(r.4).3


The presuppositions are as follows:

(374) 1. there is some predicate D, the domain of the superlative
2. D is equal to JmountainK

3. there is some R, a restriction on the set of mountains
4. mountains satisfy the background conditions for being on Earth (e.g.

having a spatial location), and R is the property of being on Earth
5. x is a mountain
6. x is on Earth
7. x satisfies the presuppositions for dimensional height (having an upwards-

directed axis)
8. there is at least one other mountain on Earth apart from x which

satisfies the presuppositions for dimensional height

The assertion is that for every other mountain on Earth y, the magnitude of y’s
vertical axis is less than the magnitude of x’s vertical axis.

When a PP argument is present, as in highest mountain on Earth, the do-
main restriction is fixed by the semantics and only an absolute interpretation
is possible. Now consider the expression highest mountain without an accom-
panying PP argument:
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(375) Jhighest mountainKdim

= Jmost/-estK(as_pos′(JhighKdim))(inl(JmountainK))(inr(∗))

= λx : Ind .

P :=



D : Ind → Type

D = JmountainK
R : ∏y:Ind D(y) → Prop

⊤
Dx : D(x)
R(x)(Dx)
JhighKdim(x).1∣∣∣∣∣∣∣∣∣∣∣∣∣∣



y : Ind

Dy : D(y)
R(y)(Dy)
JhighKdim(y).1
y ̸= x



∣∣∣∣∣∣∣∣∣∣∣∣∣∣



λp : P .
∏


r :



y : Ind

Dy : p.1(y)
p.3(y)(Dy)
JhighKdim(y).1
y ̸= x




JhighKdim(x).2(p.7).3
> JhighKdim(r.1).2(r.4).3


The resulting update is identical to (373), except that the domain restriction
R is left unspecified. The domain is no longer specifically restricted to the set
of mountains on Earth; rather, the relevant restriction must be supplied by the
discourse context. This is what allows for the comparative reading of John climbed
the highest mountain in which John climbed the highest mountain in some salient
set rather than the highest of all mountains.

As before, the different components of the presupposition type are responsible
for different ways that the superlative can be infelicitous. One possibility is that
the NP and PP meanings are incompatible, as in:

(376) ? the highest mountain of all the rivers in South America

This is infelicitous because mountains are not the kinds of things which can be
rivers in South America. As a result, it is impossible for the subject (or any
other individual) to satisfy both the NP meaning and the PP meaning, and the
presupposition type is uninhabited. Another way that the superlative can be
infelicitous is if the subject fails to satisfy either (a) the domain predicate, (b)
the domain restriction, or (c) the presuppositions of the adjective. Examples
are given below:

(377) a. ? Mount Everest is the longest river.
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(Mount Everest is not a river.)
b. ? Of all the rivers in North America, the Danube is the longest.

(The Danube is not a river in North America.)
c. ? The Danube is the longestaxis river

(The Danube does not have a straight line length.)

The superlative will also be infelicitous if there is no individual besides the subject
which satisfies the domain predicate, the domain restriction, and the adjective
presuppositions. For example, suppose that a coffee table contains several objects,
only one of which has a depth. Then the expression:

(378) ? the deepest object on the coffee table

is infelicitous, since it presupposes that at least one other object on the table has a
depth which can be compared with that of the subject. In this case, it is the final
component of the presupposition type which is uninhabited. Finally, the superlative
is also associated with a uniqueness presupposition. Suppose that the only objects
on the coffee table are two mugs with exactly the same depth. Then (378) will be
infelicitous for a different reason: because there is no unique deepest object on the
table. I take this presupposition to be a contribution of the definite article the, rather
than a feature of the superlative morpheme itself. See Section 2.6.3 for a formulation
of the definite article in which the uniqueness presupposition is made explicit.

4.4.3 Action on arrows
The action of the superlative on gradable adjective arrows is different to that of the
comparative or the meas morpheme. To illustrate, consider the sentence:

(379) The Christmas tree is the highest object in the room.

Let us suppose that this is true under the interpretation JhighKdim, grnd – that is,
where height refers to the vertical dimension of an object based on the ground.
It does not follow that the Christmas tree is the highest object under some more
general notion of height, since when we broaden the concept there may be objects
which are higher than the Christmas tree. For example, if we adopt the more
general notion of elevation from the ground, represented by JhighKelev, a light on
the ceiling could be higher than the Christmas tree. It follows that the superlative
morpheme does not lift gradable adjective arrows in the usual monotone fashion.

However, the superlative still acts on arrows. First notice that the presupposi-
tions are mapped monotonically: if we know that the Christmas tree satisfies the
presuppositions of the stronger sense JhighKdim, grnd, then we know it must satisfy
the presuppositions of the weaker sense JhighKelev. The assertion, on the other
hand, is mapped anti-monotonically: if we know that the Christmas tree is the
highest object under the more general sense, then it must also be the highest object
under the more specific sense. Recall from Section 2.6.5 that the property of lifting
presuppositions monotonically but assertions anti-monotonically is associated with
negation. The fact that the superlative follows the same pattern should come as
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no surprise: to say that something is the highest object in the room is to deny that
there is any other object in the room which is higher than it.

To summarise, given two gradable adjectives G, H : Gradable linked by an arrow:

(380) α : G →Gradable H

this can be lifted to a skewed arrow:

(381) Jmost/-estK(α) :∏
N?:(Ind→T ype)?∏

P?:(Ind→Update)?∏
x:Ind

Jmost/-estK(G)(N?)(P?)(x) ⇄Update Jmost/-estK(H)(N?)(P?)(x)

which is implemented as follows (see Section 2.6.5 for the definition of ⇆Update):

(382) Jmost/-estK(α) :=
λN? : (Ind → Type)? .

λP? : (Ind → Update)? .

λx : Ind .

let

G′ := Jmost/-estK(G)(N?)(P?)(x)
H′ := Jmost/-estK(H)(N?)(P?)(x)

 in



f := λp : G′.1 .



p.1
p.2
p.3
p.4
p.5
p.6
α(x).1(p.7)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λr :



y : Ind

Dy : p.1
p.3(y)(Dy)
G(y).1
y ̸= x


.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



r.1
r.2
r.3
α(r.1).2(r.4)
r.5



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(p.8)


λp : G′.1 .

λq : H′.2(f(p)) .


λr :



y : Ind

Dy : p.1(y)
p.3(y)(Dy)
G(y).1
y ̸= x


. q(



r.1
r.2
r.3
α(r.1).2(r.4)
r.5


)
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As usual, the original map α is used to replace the presuppositions of G with
presuppositions of H. The two components of the presupposition type which need
to be altered in this way are the seventh and eighth components. Recall that the
eighth component contains a proof that there exists some individual other than the
subject which belongs to the domain and satisfies the adjective presuppositions. To
alter this component, we use the fact that any function f : A → B, where B is a
proposition, can be lifted to a function |f | : |A| → B. For the assertion, the idea
is to take the proof that x is maximal with respect to the more general adjective
H, and restrict attention to the more specific adjective G. This is done using the
original maximality proof in combination with α, as shown. The other superlative
morpheme, least, acts on arrows in an exactly analogous way.

We have established that Jmost/-estK is a skew-monotone function of gradable
adjective networks. It also acts skew-monotonically on arrows in its NP and PP
argument positions. For example, if you know that the M6 is the longest road in
the UK and you also know that the M6 is a motorway (a special case of road),
then you know that it is the longest motorway in the UK. In other words, given
two noun meanings N1, N2 : Ind → Type connected by an arrow:
(383) α′ : ∏x:Ind N1(x) → N2(x)
this is lifted to an arrow:
(384) Jmost/-estK(−)(α′) :∏

G:Gradable∏
P?:(Ind→Update)?∏

x:Ind

Jmost/-estK(G)(inl(N1))(P?)(x) ⇄Update

Jmost/-estK(G)(inl(N2))(P?)(x)
Likewise, if you know that the Nile is the longest river in the world, and you
also know that the Nile is in Africa, then you can deduce that the Nile is the
longest river in Africa. That is, given two PP meanings P1, P2 : Ind → Update
connected by an arrow:
(385) α′′ : ∏x:Ind P1(x) →Update P2(x)
this is lifted as follows:
(386) Jmost/-estK(−)(−)(α′′) :∏

G:Gradable∏
N?:(Ind→T ype)?∏

x:Ind

Jmost/-estK(G)(N?)(inl(P1))(x) ⇄Update

Jmost/-estK(G)(N?)(inl(P2))(x)
The implementation of (384) and (386) can be deduced from the action of Jmost/-estK
on senses.
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4.5 The positive

4.5.1 Background
The term positive refers to the unmarked form of a gradable adjective. As discussed
in Chapter 1, the positive is context-dependent, meaning its interpretation depends
on a choice of comparison class, and vague, meaning that it does not separate
entities in its domain into two sharply-bounded sets. The usual analysis of the
positive in the degree-based approach is in terms of a contextually determined
standard value (Bartsch & Vennemann 1974, Cresswell 1976, von Stechow 1984,
Klein 1980, Kennedy 1999, Kennedy & McNally 2005). For example, a sentence
like John is tall can be paraphrased as “the degree to which John is tall exceeds
some contextually-determined standard degree s”. Context-dependence is explained
by the dependence of the standard on a comparison class, whereas vagueness is
explained by the fuzziness of the standard value.

A typical description of the positive was given by Bartsch & Vennemann (1974).
As in this thesis, they assume that gradable adjectives denote measure functions.
The positive is treated as a silent morpheme with the following denotation:

(387) JposK := λg . λp . λx . g(x) > norm(p)(g)

where g is a gradable adjective, p is a property representing the comparison class,
and norm : (e → t) → (e → d) → d is a function which returns the average
degree to which members of p are f. A sentence like John is tall for a basketball
player is then interpreted as follows:

(388) JJohn is pos tall for a basketball playerK
= JposK(JtallK)(Jbasketball playerK)(JJohnK)
= tall(John) > norm(basketball-player)(tall)

In other words, the sentence is true iff John’s degree of height is greater than that
of the average height of a basketball player.

Other authors disagree that the comparison class should be treated as a logical
argument. Kennedy (2007) provides an alternative analysis in which the only
arguments of the positive are a measure function and an individual, as follows:

(389) JposK := λg . λx . g(x) > s(f)

where s is a function from gradable adjectives to degrees that “chooses a standard
of comparison in such a way as to ensure that the objects that the positive form is
true of ‘stand out’ in the context of utterance, relative to the kind of measurement
that the adjective encodes.” (ibid., p. 17). According to Kennedy, an accompanying
noun provides a context in which the property denoted by the noun is highly
salient and therefore has an effect on s(f), but this is a matter of pragmatic
convention rather than composition. As evidence for this, Kennedy points to
sentences like the following

(390) John is a tall basketball player, but he isn’t tall for a basketball player. In
fact, he’s the shortest player in the tournament.
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where the effect of the noun denotation on the standard is explicitly cancelled.
Turning to for-PPs, Kennedy proposes that, rather than functioning as an

argument to the positive, the for-phrase actually combines directly with the adjective
by restricting its domain. For instance, tall for a basketball player would have
the following interpretation:

(391) Jtall for a basketball playerK = λx : Jbasketball playerK(x) . JtallK(x)

That is, it is a function from basketball players to degrees of height, given by
restricting the original tall function to apply only to basketball players. According
to Kennedy, instead of supplying the for expression as an argument to the positive
morpheme, we should instead apply the positive morpheme to the entire adjective
phrase – the adjective plus its modifiers – as follows:

(392) Jpos tall for a basketball playerK

= JposK(Jtall for a basketball playerK)

= λx . [λy : Jbasketball playerK(y).JtallK(y)](x) ≥
s([λy : Jbasketball playerK(y).JtallK(y)])

Note that this analysis correctly predicts a presupposition failure when tall for a
basketball player is applied to an individual who is not a basketball player.

I disagree with Kennedy’s claim that the comparison class is not a logical
argument. In my view, Kennedy’s analysis of the for-PP as restricting the domain of
the gradable adjective function raises more problems than it solves. If the expression
tall for a basketball player denotes a gradable adjective, then we might expect it
to be compatible with other morphemes which take gradable adjective meanings.
Hence, Kennedy’s proposal would seem to predict sentences like the following:

(393) a. # John is 190cm [tall for a basketball player].
b. # John is more (/ less) [tall for a basketball player] than Mary.
c. # John is the most (/ the least) [tall for a basketball player].

Instead, only a few degree morphemes are compatible with a for-PP:

(394) a. John is very tall for a basketball player.
b. John is too tall for a basketball player.
c. John is tall enough for a basketball player.

The most straightforward explanation of this distribution is that pos, very, too
and enough take an optional for-PP argument, whereas other degree morphemes
do not. It is worth noting that the principle motivation for Kennedy’s analysis
is to explain the presupposition that the subject belongs to the comparison class
via a domain restriction on the adjective. However, in a system such as ours,
where presuppositions are not limited to domain restrictions on functions, this
can be represented in a different way.
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4.5.2 Approaches to vagueness
The central phenomenon associated with the positive morpheme, and the reason
why it has received so much theoretical attention, is vagueness. Vagueness is
considered a problem in in philosophy of language because it gives rise to a class
of paradoxes, exemplified in (395):

(395) The Sorites Paradox
P1. Anyone with a height of 200cm is a tall person.
P2. Anyone with a height 1mm less than that of a tall person is tall.
C. Therefore, everyone with a height less than 200cm is a tall person (by

repeated application of P2).

The premises of the argument appear to be true and the reasoning valid, but the
conclusion is clearly false: for instance, it implies that someone with a height
of 50cm is a tall person. Any gradable predicate will give rise to a Sorites-type
argument in a similar way. A resolution of this paradox is generally considered the
the primary desideratum for a theory of vagueness. Most approaches are aimed
at rejecting the induction step (P2).

One approach, known as epistemicism, denies the induction step on the grounds
of ignorance (e.g. Williamson & Simons 1992, Williamson 2002). The idea is that
a predicate like tall person does in fact have a definite extension with a precise
boundary; language users are simply unaware of the exact location of this boundary.
Given this epistemic gap, the inductive step cannot be accepted, since incrementally
adding 1mm might take us over the boundary. The major challenge for this approach
is explaining how sharp boundaries come to be fixed given that speakers do not know
where they lie. Williamson (2002) suggests that the extension of a vague term is
fixed by how it is used, and can vary across different speech communities. Although
speakers do not know exactly where the extension of a vague term begins and ends,
they do have partial or probabilistic knowledge of this boundary, which is why some
individuals can be categorized as a tall person with a very high degree of certainty.

It is difficult to square the epistemic account of vagueness with the conceptualist
view of meaning adopted in this thesis. Epistemicism presupposes an externalist view
of meaning, according to which the relation between a predicate and its denotation
exists independently of whether it is grasped by a language user. For the externalist,
just as water denotes the chemical H2O even in a society with no knowledge of
modern chemistry, tall person denotes a definite set of people even though no
individual has precise knowledge of this set. For a conceptualist or internalist,
on the other hand, the meaning of a word is completely fixed by how words are
conceptualized by speakers, so there is no ‘room’ for an epistemic gap. Speakers
who disagree about the extension of tall person simply have different concepts of
tall person: there is no sense in which some speakers are right and others wrong.

Another approach to vagueness which is commonly encountered in the literature
on gradable adjectives is supervaluationism, which characterises vagueness as
resulting from the hyper-ambiguity of denotations (e.g. Fine 1975, Lewis 1982).
The idea behind supervaluationism is that a vague expression like tall person has
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multiple different ‘precisifications’ corresponding to different exact denotations. For
instance, tall person might be assigned the following precisifications:

(396) a. Jtall personKa = people with a height greater than 180cm
b. Jtall personKb = people with a height greater than 185cm
c. Jtall personKc = people with a height greater than 190cm
d. Jtall personKd = people with a height greater than 190.5cm
e. . . .

In addition to those listed above, all intermediate cut-offs are also possible, giving us
an infinite number of possible precisifications. A sentence is considered ‘supertrue’
iff it is true under every precisification, and ‘superfalse’ iff it is false under every
precisification. Sentences which are true for some precisifications and false for
others are neither supertrue nor superfalse and are considered borderline cases.
Replacing truth with supertruth and falsity with superfalsity leads to a rejection
of the inductive step of the Sorites argument, since by successively subtracting
1mm we can no longer guarantee that a person is tall under all precisifications.
Adopting the supervaluationist view of truth leads to a non-classical logic in which
there are truth-value gaps. An alternative to supervaluationism is subvaluationism,
whereby a predicate is considered true simpliciter iff it is true under at least one
disambiguation, giving rise to a logic in which some sentences are both true and
false (Hyde & Colyvan 2008, Cobreros 2011).

One could imagine a conceptualist version of supervaluationism whereby vague
terms are hyper-ambiguous, with multiple different ‘conceptual precisifications’: a
kind of ultra fine-grained polysemy. However, this is not the approach to vagueness
which I shall adopt. One issue with the supervaluation approach from a conceptualist
point of view is that the truth value gap is treated discontinuously. There is always
a precise height (the lowest precisification) at which tall person goes from being false
to being indeterminate, and a precise height (the highest precisification) at which it
goes from being indeterminate to being true; but people’s intuitive judgements do
not show this kind of discontinuous behaviour. Hence, supervaluationism merely
replaces one imprecise boundary problem – the location of boundary between tall
and not tall – with two imprecise boundary problems – the locations where the
truth value of tall begins and ends. A related issue is that there is no account of
variation across the gap – someone with a height at the higher edge of the gap (e.g.
179cm) is more likely to be judged as a tall person, whereas someone with a height
at the lower edge (e.g. 169cm) is very unlikely to be judged as a tall person.

A third approach to vagueness, distinct from both epistemicism and supervalua-
tionism, is to adopt a many-valued logic from the start. Some authors opt for a
three-valued logic whereby each predicate divides entities into a positive extension,
a negative extension and a truth value gap (e.g. Tye 1994, Field 2003). However,
like supervaluationism, this approach also has problems relating to the discontinuity
of truth value gaps. A more popular solution is to use an infinite valued or ‘fuzzy’
logic, where a truth value can be any real number from 0 (‘completely false’) to
1 (‘completely true’) (e.g. Goguen 1969, Zadeh 1975). Instead of a truth value
gap, this results in a truly fuzzy boundary where the degree of truth increases
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continuously as one approaches the boundary region. On this view, one can reject
the induction step of the Sorites argument because although subtracting 1mm from
a person’s height has only a small effect on their membership in the set of tall people,
iterating this can have a large effect, ultimately resulting in a truth value close to 0.

Despite the intuitive treatment of vagueness in fuzzy logic, this approach is not
widely adopted because it is difficult to define fuzzy versions of the logical connectives
so that they behave intuitively. In fuzzy logic, the truth value of a conjunction is
usually defined as the minimum of the truth value of the two conjuncts, whereas the
truth value of a disjunction is the maximum. This has strange results: for instance,
if John is tall has a truth value of 0.7, then John is tall and not tall also has a
truth value of 0.7, when intuitively speaking it ought to have a truth value of 0.
Another consequence is that adding a ‘hedging expression’ does not increase the
truth value of a sentence – if John is tall has a truth value of 0.7, then John is tall
or of average height also has a truth value of 0.7, despite our intuition that it ought
to be more truthful. Given these problems, it is generally agreed that fuzzy logic,
at least in its traditional formulation, cannot serve as a psychologically realistic
model for vague concepts (e.g. Osherson & Smith 1981, Kamp & Partee 1995).

An interesting approach to vagueness which has been developed in the context
of modern type theory is Cooper et al.’s (2015) Probabilistic Type Theory with
Records (PTTR) framework. PTTR is a model-theoretic version of dependent type
theory in which the extensions of types are given in terms of a background set theory.
As in this thesis, propositions are encoded as types and are considered true iff they
are inhabited. Every typing judgment a : A is assigned a probability p(a : A),
which is the probability that the element a is of type A. Rather than product
and sum types, PTTR uses conjunction (A ∧ B) and disjunction types (A ∨ B),
where the probability that an element belongs to a conjunction or disjunction is
given by the familiar Kolmogorov rules for probabilities:

(397) • p(a : A ∧ B) = p(a : A) ∗ p(a : B | a : A) (conjunction)
• p(a : A ∨ B) = p(a : A) + p(a : B) − p(a : A ∧ B) (disjunction)

The probability that a type A is inhabited (‘true’) is given by the infinite disjunctive
probability of a : A for all a:

(398) p(A) =
∨
i

ai : A

As in fuzzy logic, PTTR leads to a rejection of the inductive step of the Sorites
argument because by successively adding 1mm to John’s height the probability
that he is a tall person decreases monotonically. Unlike fuzzy logic, however,
PTTR does not give rise to unintuitive results associated with connectives. A
proposition like John is tall and John is not tall has a probability of 0, just as
we would expect. Moreover, if John is tall has a probability of 0.7 and John is
of average height has a probability of 0.25, then John is tall or of average height
will have a probability of 0.7 + 0.25 = 0.95 (assuming the probability of John
being both tall and of average height is 0).

In PTTR, judging the truth of a vague predicate is modelled as a perceptual
classification task (Fernández & Larsson 2014, Larsson 2015, Cooper et al. 2015).
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Figure 4.5: A plot of P (h is tall | µtall = 1.5m, σtall = 0.25m) for increasing values of h.

Each vague predicate is associated with a distinct classifier, where the classifier for
a predicate P takes relevant information from the background context and returns a
probability (degree of credence) that P is true in that context. Language users rely
on these classifiers to compute and update their belief in others’ assertions; as well
as deciding what assertions they should make themselves. Fernández & Larsson
(2014) apply this idea to positive gradable adjectives, using tall as an example.
They propose that, given an individual x with height h, a speaker computes their
degree of belief that x is tall by applying a probabilistic threshold-based classifier.
The threshold is modelled as a normal random variable which depends on the
mean height µtall and the standard deviation σtall, both of which are estimated
from the relevant comparison class. The probability that the subject’s height h
exceeds the threshold is given by:

(399) p(h is tall | µtall, σtall) = 1
2

[
1 + erf

(
h − µtall

σtall
√

2

)]
where erf is the Gaussian error function. To illustrate, Figure 4.5 shows the
probability that h is tall for increasing values of h, given µ = 1.5m and σ =
0.25m. Notice how heights above 2m are judged as tall with a very high credence,
whereas those below 1m are judged as tall with a very low credence. In-between,
there is an area of uncertainty, with the mean itself having a credence of 0.5.
There is some evidence that human judgements conform to this statistical model.
For example, Schmidt et al. (2009) presented people with collections of items
of different heights and collected data on which items in each collection were
judged to be tall. They found that human judgements were well predicted by a
threshold-based statistical model with Gaussian noise (although an exemplar-based
model performed equally well).

Unfortunately, PTTR as standardly formulated is incompatible with the kind
of type theory used in this thesis. PTTR is model-theoretic rather than proof-
theoretic: it assumes a background set theory which is used to provide extensions

208



for types. As a result of this set-up, a term may belong to more than one type
simultaneously, and type checking is no longer decidable. Nevertheless, it might
be possible to implement something like the PTTR approach to vagueness within
a proof-theoretic framework. Such a type theory would replace or supplement
ordinary typing judgements with probabilistic judgements of the form:

(400) x :p A

meaning ‘x is evidence of A, with probability p’. Unlike in PTTR, each piece of
evidence would be associated with one and only one type, so the following kind
of context would not be well-formed:

(401) x :p1 A, x :p2 B

Rather, one would need to convert evidence for A into evidence for B by means
of a probabilistic inference f :p3 A → B. An important goal of such a system
would be to preserve the behaviour of ordinary, non-probabilistic types, which
are still needed in many circumstances (e.g. compositionality in semantics). One
possibility would be to replace every classical typing judgement x : A with a
judgement x :1 A of probability 1, as in PTTR. Another possibility might be
to introduce two disjoint type universes: one for probabilistic types and one for
non-probabilistic types. Details aside, the development of a probabilistic version
of Martin-Löf Type Theory is an important goal for future research; in my view,
such a system would be the most appropriate framework for studying vagueness
from a conceptualist/internalist point of view.

4.5.3 Action on senses
Having discussed the issue of vagueness, let us now turn to the formulation of
the positive morpheme itself. Following other authors, I assume that the positive
is derived through a phonologically null morpheme pos, or alternatively a type
shifting rule with the same semantics. As discussed in Section 4.5.1, the positive
morpheme takes an optional comparison class argument, which can be supplied
either by a for-PP or by an accompanying noun. The latter is due to a default
rule, and can be explicitly cancelled in an example like:

(402) John is a tall basketball player, but he isn’t tall for a basketball player.

When no comparison class argument is provided, the presuppositions should contain
an open comparison class variable, whose value is supplied by the background
context. These different compositional options would be listed in the lexical entry
of pos, which we can represent informally as follows:

(403) pos
a. No comparison class argument:

syntax: [DegP A ]
semantics: JposK(JAK)(inr(∗))

b. For-PP argument:
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syntax: [DegP [Deg′ A ] [PP for a(n) NP ] ]
semantics: JposK(JAK)(inl(JNPK))

c. Accompanying noun (default rule):
syntax: [NP [DegP A ] N′ ]
semantics: (JposK(JAK)(inl(JN′K))

As before, these different compositional options would be handled by a flexible ap-
proach to the syntax-semantics interface such as Glue Semantics (Asudeh et al. 2012).

The positive morpheme takes a gradable adjective, an optional NP meaning,
and an individual, and returns a sentence meaning, so it is typed as follows:

(404) JposK : Gradable → (Ind → Type)? → Ind → Update

A potential implementation is given below:

(405) JposK := λG : Gradable .

λN? : (Ind → Type)? .

λx : Ind .

P :=



C : Ind → Type

case N? of
inl(N) then C = N
| inr(∗) then ⊤

C(x)
G(x).1
dµ : Degree

mean(dµ, G, C)
dσ : Degree(+)
stdev(dσ, G, C)


λp : P . exceed(G(x).2(p.4).3, p.5.3, p.7.2)


As shown, given a gradable adjective G, an optional noun meaning N?, and an
individual x, we have the following presuppositions:

(406) 1. there is some property C, the comparison property
2. if the N? argument contains a non-empty value N, then C = N
3. x satisfies C
4. x satisfies the presuppositions of G
5. there is some degree dµ

6. dµ is the average (mean) degree to which elements of C are G
7. there is some positive degree dσ

8. dσ is the standard deviation of elements of C with respect to G
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Note that the mean can be either a positive or a negative degree, depending on
the polarity of the adjective, whereas the standard deviation is always a positive
degree. This is because the standard deviation is the average distance or separation
from the mean, which is always a positive quantity. Given a context p satisfying
the conditions in (406), the assertion is:

(407) exceed(G(x).2(p.4).3, p.5.3, p.7.2)

which encodes the proposition ‘the degree to which x is G exceeds a normal random
threshold with mean dµ and standard deviation dσ’.

To constrain the mean and standard deviation, I assume predicates:

(408) d : Degree, G : Gradable, C : Ind → Type ⊢ mean(d, G, C) : Prop

d : Degree(+), G : Gradable, C : Ind → Type ⊢ stdev(d, G, C) : Prop

The issue of how the appropriate mean and standard deviation are estimated from
the comparison class is a difficult one. In their PTTR-based analysis of the positive,
Fernández & Larsson (2014) assume that language users have access to a data set
of previous observations for each adjective + comparison class combination (e.g.
heights of people, temperatures of buildings, weights of fruit, and so on), from which
they can compute the most likely mean and standard deviation for that adjective
and class. However, it is implausible that a speaker would have access to such a
data set for every adjective + comparison class pair. Even if we grant that speakers
can record every observation – which seems unlikely – most adjective + comparison
class pairs will have an empty observation set, being entirely novel combinations. In
most cases, therefore, we must assume that speakers do not have precise knowledge
of the relevant mean and standard deviation, but are able to simply accommodate
this information. For example, a speaker who is told “John is a tall circus performer”
may be unsure as to the appropriate mean and standard deviation for the height of
circus performers, but understands that whatever the mean and standard deviation
happen to be, John’s height is unusually large in comparison.

The positive assertion itself is described by the predicate:

(409) d, µ : Degree(s, p), σ : Degree(s, +) ⊢ exceeds,p(d, µ, σ) : Prop

That is, for every scale s and polarity p, there is a predicate exceeds,p(d, µ, σ) meaning
‘d exceeds a normal random threshold with mean µ and standard deviation σ’. This
predicate is vague, meaning that a speaker cannot construct a definite proof of
exceeds,p(d, µ, σ) but rather judges it to be true with the following degree of credence:

(410) p[exceeds,p(d, µ, σ)] := 1
2

[
1 + erf

(
d − µ

σ
√

2

)]

where erf is the Gaussian error function. As discussed in the previous subsection, this
yields an S-shaped curve, where values much lower than the mean have probabilities
close to 0, values much higher than the mean have probabilities close to 1, and
there is a region of uncertainty surrounding the mean whose width depends on
the standard deviation.
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As before, it is helpful to illustrate the action of the positive by means of
an example. Consider the expression tall for a basketball player, where tall is
interpreted in its most prototypical sense as JtallKup, 1st, large:

(411) Jpos tall for a basketball playerKup, 1st, large

= JposK(as_pos′(JtallKup, 1st, large))(inl(Jbasketball playerK))

= λx : Ind .



P :=



C : Ind → Type

C = Jbasketball playerK
C(x)
JtallKup, 1st, large(x).1
dµ : Degree

mean(dµ, JtallKup, 1st, large, C)
dσ : Degree(+)
stdev(dσ, JtallKup, 1st, large, C)


λp : P . exceed(JtallKup, 1st, large(x).2(p.4).3, p.5.3, p.7.2)


The resulting update has the following presuppositions:

(412) 1. there is some predicate C
2. C is equal to Jbasketball playerK
3. x is a basketball player
4. there is some degree dµ

5. dµ is the average degree to which elements of C satisfy JtallKup, 1st, large

6. there is some degree dσ

7. dσ is the standard deviation of elements of C with respect to JtallKup, 1st, large

Given a context which satisfies these presuppositions, the assertion is that the
height of x exceeds the normal random threshold given by µ and σ.

There are various ways in which the positive can be unacceptable, which the
implementation in (405) is intended to explain. A positive assertion is always
infelicitous if the subject fails to satisfy the adjective presuppositions, in which
case the fourth component of the presupposition type will be empty. For ex-
ample, the sentence

(413) ? The Nile is tall.

is infelicitous because the Nile does not satisfy the background conditions for tall.
Another way in which the positive can be infelicitous is if the subject does not
belong to the comparison class. In this case, it is the third component of the
presupposition type which is empty. For instance, the sentence

(414) ? The Nile is long for a road.
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is infelicitous because the Nile is not a road. Finally, the positive will also be
infelicitous if the comparison class is incompatible with the adjective, so that it
is impossible to find a corresponding mean and standard deviation. For example,
it sounds strange to say

(415) ? McDonalds is tall for a company.

because companies are not usually the kind of thing which can be assigned a tallness.
As a result, the comparison class does not have an associated mean or standard
deviation, and the sixth and eighth components of the presupposition type are empty.

In a combination of the form [pos A] N (e.g. [pos tall] mountain) the
interpretation of N is intersected with the interpretation of [pos A] by means
of ordinary adjective + noun intersection. Following the description of adjective
+ noun intersection given in Section 2.5.4 – where it is modelled as a kind of
local context update – such a combination is only valid if N can supply the
presuppositions of [pos A]. The following combinations are therefore all invalid
(outside of certain very specific contexts):

(416) a. ? [pos tall] river
b. ? [pos long] sphere
c. ? [pos thick] cavity
d. ? [pos deep] lamppost
e. ? [pos wide] point

because, in each case, the noun is unable to supply the background conditions
associated with A, which are part of the presuppositions of [pos A].

Unlike the other morphemes discussed up to this point, the positive does not
act on gradable adjective arrows. To see this, imagine looking at a tabletop on
which there are a variety of cups of different sizes, some standing upright and
some toppled over. Someone points to one of the cups and says “This one is deep”.
The extent to which one agrees with the speaker will depend on how the adjective
deep is interpreted. The sense JdeepKintrnl, down will take into account only those
cups which are standing upright, so that their depth is directed down, whereas the
weaker sense JdeepKintrnl will take into account the internal dimensions of all the
cups, regardless of orientation. Going from the stronger, more restricted sense to
the weaker, less restricted sense can have an unpredictable effect on the standard
value – it might increase or decrease, depending on the depth of the toppled cups.
Hence, knowing that a cup is deep in the stronger sense tells you nothing about
whether it is deep in the weaker sense, and vice versa. Formally speaking, we can see
that pos does not lift arrows between gradable adjectives because of the presence
of predicates in its presupposition type which depend directly on the adjective,
namely the ‘mean’ and ‘stdev’ predicates. pos also does not lift arrows between
its comparison class argument, for the same reason.
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4.6 Some other degree morphemes

4.6.1 As. . . as. . .
The as. . . as. . . construction shares a number of features with the comparative
morphemes more/-er and less, but instead of asserting that the reference degree
is strictly greater than the comparison degree, it asserts that the reference degree
is greater than or equal to the comparison degree. For instance, if John’s height is
150cm, then Mary is as tall as John iff her height is 150cm or more. The fact that
as. . . as. . . is weaker than the comparative is shown by sentences like the following:

(417) Mary is as tall as John. In fact, she is taller.

where the possibility that Mary is exactly the same height as John is explicitly
cancelled. In contrast to the measure morpheme meas, as. . . as. . . is never used
to assert strict equality. For example, (a) is fine but (b) is contradictory:

(418) a. Mary isn’t 150cm tall. She is 155cm tall.
b. * Mary isn’t as tall as 150cm. She is 155cm tall.

Like the comparative morphemes more/-er and less, as. . . as. . . is associated
with a number of compositional options, occurring with a nominal argument, a
degree argument, or an entire phrase:

(419) a. Mary is as tall as John.
b. Mary is as tall as 150cm.
c. Mary is as tall as the river is deep.

As in the case of the comparative, I shall assume that (b) and (c) have a similar
underlying structure, the difference being that (b) provides a degree argument
directly, whereas (c) does so through a kind of hidden definite description – Mary
is as tall as [the degree to which] the river is deep. The three possibilities shown
in (419) therefore correspond to two choices for the than argument: an individual
or a degree. If a degree argument is provided, then it must agree in dimensions
and polarity with the adjective; hence the following are unacceptable:

(420) a. ? John is as tall as the car is heavy. [dimensions disagree]
b. ? John is as tall as the car is narrow. [polarities disagree: +, −]
c. ? John is as short as the car is wide. [polarities disagree: −, +]

This is in contrast to the comparative, where a polarity disagreement is allowed
provided that the comparison degree is positive, as in John is shorter than the path is
wide.

These observations suggest that as. . . as. . . has the following semantic type:

(421) Jas. . . as. . . K : Gradable → (Ind + Degree(+)) → Ind → Update

A potential implementation is given below:
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(422) Jas. . . as. . . K :=
λG : Gradable .

λT : (Ind + Degree(+)) .

λx : Ind .

P :=



c : G(x).1
dcomp : Degree

case T of

inl(y) then
c′ : G(y).1
dcomp = G(y).2(c′)


| inr(d) then dcomp = d


λp : P . G(x).2(p.1).3 ≥ p.2.3


Given a gradable adjective G, a comparison argument T (individual or positive
degree), and an individual x, we get the following presuppositions:

(423) 1. x satisfies the background presuppositions of G
2. there is some degree dcomp (the comparison degree)
3. if T contains some individual y, then y satisfies the background

presuppositions of G and dcomp is the degree to which y is G; otherwise,
if T contains some degree d then dcomp = d

Note the close similarity to the comparative presuppositions discussed in Section
4.3.2. Given a context which satisfies these constraints, the assertion is that the
value of the reference degree is greater than or equal to the value of the comparison
degree. This is a valid comparison only if the reference and comparison degree
have the same dimensions and polarity.

Like many other degree morphemes, as. . . as. . . lifts arrows monotonically in its
gradable adjective argument. Given two gradable adjectives G, H : Gradable
with an arrow:

(424) α : G →Gradable H

we can lift this to an arrow:

(425) Jas. . . as. . . K(α) :∏
T:(Ind+Degree(+))∏

x:Ind

Jas. . . as. . . K(G)(T)(x) →Update Jas. . . as. . . K(H)(T)(x)

which is implemented as follows:

(426) Jas. . . as. . . K(α) :=
λT : (Ind + Degree(+)) .
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λx : Ind .

let G′ := Jas. . . as. . . K(G)(T)(x) in

λp : G′.1 .



α(x).1(p.1)
p.2
case T of

inl(y) then
α(y).1(p.3.1)

p.3.2


| inr(d′) then p.3


λp : G′.1 . idG′.2(p)


As expected, the lifted arrow uses the original arrow to replace presuppositions of
G with presuppositions of H. The only components which need to be altered are
the first and third components, since these alone contain presuppositions associated
with the G. The assertion does not need to be altered, since it depends only on the
output of the measure function, which remains unchanged when G is replaced by H.

4.6.2 Very
The intensifier very is also a degree morpheme (Wheeler 1972, Klein 1980, von
Stechow 1984, Kennedy & McNally 2005). This is shown by the fact that very
occurs in complementary distribution with other degree morphemes, including
meas, more/-er, most/-est, as. . . as, and so on:

(427) a. * The road is very 1km long
b. * John is very taller than Mary
c. * John is very the tallest
d. * John is very as tall as Sally

Very closely resembles the positive morpheme pos. Like pos, it can occur with a
bare adjective, an adjective + for-PP, or intersected with an accompanying NP:

(428) a. John is very tall.
b. John is very tall for a basketball player.
c. John is a very tall basketball player.

Following the analysis of the positive in Section 4.5, I shall assume that very
has an optional comparison class argument, which can be saturated either by
a for-PP or by the accompanying NP. The latter is handled by a default rule
which can be cancelled, as in:

(429) John is a very tall basketball player, but he isn’t very tall for a basketball
player.

Very exhibits vagueness just like the positive. One can know John’s exact
height and have some fixed comparison class in mind, but still be unsure whether
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he should be considered very tall relative to that comparison class. Intuitively
speaking, the assertive content of very should be identical to pos, except with a
higher standard value. This raises the question of how much higher the standard
value for very should be in comparison to pos. It is clear that very cannot raise
the standard additively, since the amount by which it is raised depends on the
comparison class. For instance, in John is very tall, the standard is raised by
a small amount on the order of tens of centimeters, whereas in that building is
very tall, the standard is raised by a much larger amount on the order of tens or
perhaps even hundreds of meters. An alternative analysis is that very modifies the
standard value by multiplying it by a constant factor, say around 1.4. However,
this is also problematic because it ignores the standard deviation. For instance,
a person only needs to be around 1.2 times taller than average height for them
to be considered very tall, whereas we would not consider a building to be very
tall unless it was about twice as tall as average.

Figure 4.6: The probability of tall (blue) and very tall (yellow), for different reference
heights, assuming µ = 1.5m and σ = 0.25m

A better analysis would be to shift the standard by an amount proportional to
the standard deviation. Instead of requiring the reference degree to be greater than
the mean, we could instead require it to be greater than the mean plus one standard
deviation. For example, suppose that the average height of people is 1.5m, with a
standard deviation of 0.25m. Figure 4.6 shows the probability that a height is tall
and the probability that it is very tall, for different reference heights. Notice how the
probabilistic threshold for very tall is shifted to the right by one standard deviation,
so that it is centered at 1.75m rather than 1.5m. This has a large effect for values
close to the mean: for instance, a height of 1.7m has a probability of around 0.79 for
tall, but a probability of only around 0.42 for very tall. For categories with a larger
standard deviation, the amount by which the threshold gets shifted will be larger.

The morpheme very has the same type as the positive: Gradable → (Ind →
Type)? → Ind → Update. My proposed implementation is given below:
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(430) JveryK := λG : Gradable .

λN? : (Ind → Type)? .

λx : Ind .

P :=



C : Ind → Type

case N? of
inl(N) then C = N
| inr(∗) then ⊤

C(x)
G(x).1
dµ : Degree

mean(dµ, G, C)
dσ : Degree(+)
stdev(dσ, G, C)


λp : P . exceed(G(x).2(p.4).3, p.5.3 + p.7.2, p.7.2)


The presuppositions of JveryK are identical to those of JposK:

(431) 1. there is some predicate C, representing the comparison property
2. if the N? argument contains a non-empty value N, then C = N
3. x satisfies C
4. x satisfies the presuppositions of G
5. there is some degree dµ

6. dµ is the average (mean) degree to which elements of C are G
7. there is some positive degree dσ

8. dσ is the standard deviation of elements of C with respect to G

The assertion of JveryK is similar to JposK, except that the degree to which x is G
must exceed a fuzzy threshold centered at the mean plus one standard deviation.
As before, this is encoded by means of the vague predicate ‘exceed’, giving rise
to the behaviour illustrated in Figure 4.6.

Like the positive, very does not lift arrows in either its gradable adjective
argument or its comparison class argument. For example, suppose you know that a
certain building is very short, where short is interpreted in the sense of JshortKvert, 1st,
that is an upwards-directed primary axis. This does not allow you to conclude
that the building is very short in the sense of JshortK1st because the mean and
standard deviation for JshortK1st may be different from JshortKvert, 1st. Nor is the
reverse inference valid, from JshortKvert, 1st to JshortK1st.

4.6.3 Completely and half
Some degree morphemes are sensitive to scale topology, requiring scales which are
bounded above, below, or both (Paradis 2001, Kennedy & McNally 2005). Recall
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that the topology of scales is that same as that of intervals. A scale has two directions
– right and left – both of which may be either bounded or unbounded. For a bounded
direction, the scale is said to be open in that direction if it includes the boundary
point, and closed if it excludes the boundary point. This gives rise to eight different
possibilities, which are listed below, together with their representative intervals:

(432) a. left- and right-bounded:
i. open: (0, 1)
ii. closed: [0, 1]
iii. left-open, right-closed: (0, 1]
iv. left-closed, right-open: [0, 1)

b. left-bounded:
i. open: (0, ∞)
ii. closed: [0, ∞)

c. right-bounded:
i. open: (−∞, 0)
ii. closed: (−∞, 0]

d. left- and right-unbounded: (−∞, ∞)

Different scales are associated with different topologies. For instance, the distance
scale has the topology (0, ∞), being bounded and open in both directions; the scale
of age has the topology [0, ∞), being bounded and closed on the left and bounded
and open on the right; and the scale of ‘fullness’, as in the glass is half full, has
the topology [0, 1], being bounded and closed in both directions.

Morphemes such as completely and totally refer to the rightmost point on a
scale which is right-bounded and closed. Consider the following combinations:

(433) a. completely full
b. completely empty
c. completely new
d. ? completely old
e. ? completely tall
f. ? completely short

Completely is compatible with full because the scale of fullness is right-bounded
and closed, having topology [0, 1]. Reversing a [0, 1] scale gives a scale of the same
topology, so completely can also occur with the antonym empty. The newness scale
has topology (−∞, 0] and the oldness scale has topology [0, ∞), so completely new
is acceptable but completely old is unacceptable. The tallness scale has topology
(0, ∞) and the shortness scale has topology (−∞, 0), so both completely tall and
completely short are unacceptable.

Another degree morpheme which is sensitive to topology is half, which requires a
scale that is bounded and closed on both the left and the right, given a well-defined
half-way point. Consider the following examples:
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(434) a. half full
b. half empty
c. ? half old
d. ? half new
e. ? half tall
f. ? half short

As shown, only the combinations half full and half empty are acceptable, since the
fullness and emptiness scales are bounded in both directions. In contrast, old and tall
are bounded only on the left, whereas new and short are bounded only on the right.

Completely and half have the same semantic type:

(435) JcompletelyK, JhalfK : Gradable → Ind → Update

A proposed implementation for completely is given below:

(436) JcompletelyK := λG : Gradable .

λx : Ind .
P :=



c : G(x).1
dref : Degree

dref = G(x).2(c)
dmax : Degree(dref.2, dref.1)∏

d:Degree(dref.2, dref.1) d.3 ≤ dmax.3


λp : P . p.2.3 = p.4.3


Given a gradable adjective G and an individual x, the presuppositions are as follows:

(437) 1. x satisfies the background presuppositions of G
2. there is some degree dref (the reference degree)
3. dref measures the degree to which x is G
4. there is some degree dmax (the maximum degree) with the same polarity

and dimensions as the reference degree
5. dmax is maximal, in the sense that it is greater than every other degree

on the same scale

Given a context satisfying these conditions, the main assertion of completely is that
the magnitude of dref is equal to the magnitude of dmax. Note that if the scale does
not permit a maximum degree, as in ?completely tall, then there will be no context
satisfying the presuppositions and the resulting update will be infelicitous.

The morpheme half requires both a maximum and a minimum. It can be
implemented as follows:

(438) JhalfK := λG : Gradable .

λx : Ind .
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P :=



c : G(x).1
dref : Degree

dref = G(x).2(c)
dmax : Degree(dref.2, dref.1)∏

d:Degree(dref.2,dref.1) d.3 ≤ dmax

dmin : Degree(dref.2, dref.1)∏
d:Degree(dref.2,dref.1) d.3 ≥ dmin.3


λp : P .

dmax.3 + dmin.3
2


As shown, JhalfK shares the first five of its presuppositions with JcompletelyK. It
also incorporates two additional presuppositions:

(439) 6. there is some degree dmin (the minimum degree), on the same scale as
dref and dmax

7. dmin is minimal, in the sense that it is less than every other degree on
the same scale

The assertion is that the magnitude of dref is exactly half way between the magnitude
of dmax and the magnitude of dmin. If the scale does not admit either a maximum or a
minimum value, then the resulting update will be infelicitous. For instance, ?half old
is unacceptable because there is no maximum degree, ?half new because there is no
minimum degree, and ?half hot because there is neither a maximum nor a minimum.

The morphemes JhalfK and JcompletelyK both act monotonically on arrows.
Given an arrow α from an adjective G to an adjective H:

(440) α : G →Gradable H

we can lift this to arrows:

(441) JcompletelyK(α) : ∏x:IndJcompletelyK(G)(x) →Update JcompletelyK(H)(x)

JhalfK(α) : ∏x:IndJhalfK(G)(x) →Update JhalfK(H)(x)

This is implemented as follows for JcompletelyK:

(442) JcompletelyK(α) := λG : Gradable .

λx : Ind .

let G′ := JcompletelyK(G)(x) in
λp : G′.1 .



α(x).1(p.1)
p.2
p.3
p.4
p.5


λp : G′.1 . idG′.2(p)
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and likewise for JhalfK:

(443) JhalfK(α) := λG : Gradable .

λx : Ind .

let G′ := JhalfK(G)(x) in

λp : G′.1 .



α(x).1(p.1)
p.2
p.3
p.4
p.5
p.6
p.7


λp : G′.1 . idG′.2(p)
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4.7 Networks and discourse

4.7.1 The basic context update procedure
Context updates have featured heavily in this thesis, but I have not yet discussed
how a context update is used to update a context, except for a brief description in
Section 2.5.3. As mentioned in that section, my treatment of the context update
procedure closely resembles discourse-based dynamic frameworks such as Discourse
Representation Theory (Kamp 1980, Kamp et al. 2011) and the dynamic version of
Type Theory with Records (Larsson 2015, Cooper 2016). Recall that a discourse
context can be represented by a type, typically a large dependent sum type. For
example, suppose one knows that there is some individual John who is 27 years
old, and who has an elder sister. This can be represented as follows:

(444) Ct :=



J : Ind

s : Ind

John(J)
old(J) = 27 years
sister(s, J)
old(s) > old(J)


where ‘old’ is some measure function from individuals to degrees of age (for simplicity,
I am omitting the fact that old carries presuppositions). The role of dependent
sum types is similar to that of discourse representation structures in Discourse
Representation Theory (DRT). Like DRT structures, dependent sums introduce
variables which are related by various constraints, including identifications. The
major difference is that types like (444) are not interpreted in some additional model-
theoretic domain. Rather, they should be thought of as inherently model-theoretic,
corresponding to something like sets of situations.

I shall now illustrate the most basic kind of update by means of a simplified
example. Suppose that some speaker, Alice, represents the current discourse context
as shown in (444), that is Alice knows that there is some individual called John, who
is 27 years old and has an older sister. Alice’s interlocutor, Bob, then announces
“John’s sister is married”. Alice’s first task is to derive the semantic interpretation
of this sentence, which would look something like:

(445) JJohn’s sister is marriedK : Update

JJohn’s sister is marriedK =


P :=


x : Ind

y : Ind

John(x)
sister(y, x)


λp : P . married(p.2)


As shown, the sentence presupposes that there is some individual called John who
has a sister, and asserts that this sister is married. Alice then attempts to update
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her representation of the context Ct to incorporate this new information. For
the update to be successful, its presuppositions must be supplied by the current
context. In other words, there must be a function

(446) s : Ct → JJohn’s sister is marriedK.1

In this case, it is trivial to discover such a function:

(447) s := λc :



J : Ind

s : Ind

John(J)
old(J) = 27 years
sister(s, J)
old(s) > old(J)


.


c.1
c.2
c.3
c.5



Having found a way in which the current context can supply the presuppositions,
Alice then constructs the updated context, as follows:

(448) Ct+1 =
c : Ct

JJohn’s sister is marriedK.2(s(c))



=



c :



J : Ind

s : Ind

John(J)
old(J) = 27 years
sister(s, J)
old(s) > old(J)


married(c.2)


Notice how the updated context includes the previous context together with the
new information added by the update. The new context Ct+1 becomes the input
to the next update event.

The example given in the previous paragraph was deliberately simplified by
ensuring that all of the presuppositions were already satisfied in the context. In
real dialogue, it is frequently the case that the current context does not by itself
satisfy the presuppositions of the sentence and needs to be strengthened by the
addition of extra information, a process known as accommodation (Karttunen 1974,
Stalnaker 1974, Lewis 1979, Heim 1982). For example, suppose that instead of
(444), Alice has the following take on the current context:

(449) Ct :=


J : Ind

John(J)
man(J)
old(J) = 27 years
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That is, all Alice knows is that there is some individual called John who is a 27
year-old man. Then, faced with the sentence John’s sister is married, Alice will
be unable to supply the necessary presuppositions, since the context no longer
contains John’s sister. To fix this problem, Alice must strengthen the context
by accommodating the required presuppositions. The first thing that Alice must
discover is that the current context does satisfy some of the presuppositions, since
it contains an individual named John. This common structure is represented by a
type with functions from both Ct and JJohn’s sister is marriedK.1, as follows:

(450)

x : Ind

John(x)



J : Ind

John(J)
man(J)
old(J) = 27 years




x : Ind

y : Ind

John(x)
sister(y, x)



σ τ

where σ and τ are the obvious functions which simply project out the relevant
components. Alice then combines Ct and JJohn’s sister is marriedK.1, identifying
their common structure, to give the accommodated context C ′

t:

(451)

x : Ind

John(x)



J : Ind

John(J)
man(J)
old(J) = 27 years




x : Ind

y : Ind

John(x)
sister(y, x)





c :


J : Ind

John(J)
man(J)
old(J) = 27 years



p :


x : Ind

y : Ind

John(x)
sister(y, x)


σ(c) = τ(p)



σ τ

.1 .2

C ′
t :=
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As shown, the accommodated context contains (1) the original context, (2) the
required presuppositions, and (3) a constraint requiring that the common structure
is identified. The equality constraint ensures that this is a commutative diagram:
in other words, .1 ◦ σ = .2 ◦ τ . This kind of construction, whereby two objects
with maps to a common object are combined along those maps, is very common in
mathematics, and is known as a pullback. Having formed the adjusted context C ′

t,
Alice must then check it for consistency, since there is no guarantee that combining
the current context and the presuppositions in this way yields a consistent type.
In this case, Alice discovers no inconsistencies, and the updated context is formed
using the adjusted context, as follows:

(452) Ct+1 =
c : C ′

t

JJohn’s sister is marriedK.2(c.2)



=



c :



c :


J : Ind

John(J)
man(J)
old(J) = 27 years



p :


x : Ind

y : Ind

John(x)
sister(y, x)


σ(c) = τ(p)


married(c.2.2)


Note that since the presuppositions are contained explicitly in the adjusted context,
it is trivial to find a function from the adjusted context to the presuppositions,
as needed for the assertion.

It is important to note that accommodation is not always possible. One way in
which accommodation can fail is if the adjusted context is inconsistent. Consider
the following example:

(453) John has never smoked. ?John quit smoking.

The first sentence yields a context in which there is no past event of John smoking,
whereas the second sentence presupposes that John used to smoke. Accommodating
the presuppositions of the second sentence to the context of the first sentence
therefore results in an inconsistent adjusted context. An inconsistency can be
detected automatically when a type contains a proposition P together with its
negation ¬P. In some cases, multiple steps of reasoning might be required before an
inconsistency can be automatically detected in this way. As part of the consistency
test, the language user must therefore search for an inconsistency by enriching the
context with additional information drawn from general knowledge. The problem
of which knowledge should be employed in this search is notoriously difficult and
beyond the scope of the present discussion.
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Inconsistency aside, there are certain kinds of presuppositions, often referred to
as anaphoric presuppositions (Kripke 2009), which do not permit accommodation.
These include pronouns and expressions like too, also and as well. For example,
suppose that instead of “John’s sister is married”, Bob simply says “She is married”.
This prompts Alice to construct roughly the following update:

(454) Jshe is marriedK : Update

Jshe is marriedK :=


P :=


x : Ind

female(x)
person(x)


λp : P . married(p.1)


As shown, the utterance presupposes the presence of some female person in the
context, and asserts of this individual that she is pregnant. In this case, if no female
person is present in the context, then Alice immediately takes Bob’s utterance to
be infelicitous: it is not possible to introduce a referent for she in the same way
as John’s sister. It is therefore necessary to distinguish anaphoric presuppositions
from ordinary, non-anaphoric presuppositions, which can be readily accommodated.

4.7.2 Adding polysemy: the weakest-first strategy
The update procedure described in the previous subsection assumed only a single
context update. However, a typical sentence yields not just a single update, but
an entire network of updates, connected by arrows. We therefore need to combine
the context update procedure with the network approach to polysemy. In doing
so, we immediately run into what I referred to in Chapter 2 as the exponential
growth problem – the fact that the number of potential interpretations for an
expression grows exponentially in the number of polysemous words. For instance,
a sentence with 10 polysemous words, each of which has 5 possible senses, may
have up to 510 = 9765625 possible interpretations. The interpreter therefore
cannot efficiently search the space of all possible interpretations: the only viable
strategy is to construct a small set of hypotheses, which are then tested against
the context and adjusted if necessary.

In accordance with the Strongest Meaning Hypothesis (Dalrymple et al. 1994,
Winter 2001b), the interpreter’s goal is to construct the strongest possible assertion
whose presuppositions are satisfied in the context. This can be achieved by iteratively
building senses, beginning with those whose presuppositions are most general and
proceeding gradually to more specific presuppositions. It might seem strange that,
in searching for the strongest possible assertion, one should begin with the weakest
possible presuppositions. However, this is in fact the only strategy which will
allow the interpreter to efficiently search the space of possible interpretations. To
see this, imagine that a sentence has 22 interpretations, which are structured
into the following network:
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(455)

B F J N R

C G K O S

A V

D H L P T

E I M Q U

Suppose that the strongest assertion compatible with the context happens to be
sense K, shown in bold. Consider two interpretation strategies: a strongest-first
strategy and a weakest-first strategy. The strongest-first strategy begins with the
most specific sense and gradually weakens it in a breadth-first manner, until it
discovers a sense which can be satisfied by the current context. Knowing that a
sense X is infelicitous tells you nothing about whether some sense downstream
of X will be felicitous, so the strongest-first strategy is forced to construct all
senses up to and including the target sense. Before converging on the solution,
it builds the following structure:

(456)

B F J

C G K
A

D H L

E I M

The weakest-first strategy, on the other hand, begins with the least specific sense
and gradually strengthens it in a breadth-first manner, until it encounters senses
which cannot be satisfied by the context. When it encounters a sense X which is
infelicitous, it automatically rules out all senses upstream of X. Assuming that
only senses downstream of K are felicitous, the weakest-first strategy builds the
following structure before converging on the solution:

(457)

N R

K S

V

P T

U

As this example illustrates, the weakest-first strategy is much more efficient,
considering only 8 senses, instead of 13. This is due to the fact that one can
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ignore all senses upstream of a sense which is not felicitous. By the time one gets to
the fourth-weakest layer, there is only one remaining candidate, which is the target
sense K. The number of senses which the weakest-first strategy must construct and
test is dependent on the number of senses which are felicitous in the context. For
example, suppose that the senses T , O and Q are all felicitous. Then the following
structure would need to be built before converging on K:

(458)

N R

K O S

V

L P T

Q U

There are cases in which the number of senses required by the weakest-first strategy
is greater than the number required by the strongest-first strategy. However, the
weakest-first strategy remains more efficient in general since it makes better use
of the implicational structure.

Another huge advantage of the weakest-first strategy is that the way in which
weaker senses are satisfied by the context can guide the search for how stronger
senses are satisfied by the context. Imagine a sentence with two interpretations
A, B : Update connected by an arrow α : A →Update B. Suppose the interpreter
knows that the presuppositions of the weaker sense B can be supplied by the current
context via a function σ : Ct → B.1. The interpreter is interested in whether the
presuppositions of the stronger sense can be supplied by the context. It is helpful to
assume that the way in which the context satisfies the stronger sense is compatible
with the way in which it satisfies the weaker sense. In other words, the interpreter
should search for a function σ′ which makes the following diagram commute:

(459)

Ct

B.1A.1

σσ′

α.1

✓

where σ is the function the interpreter has already discovered and α.1 is given
by the arrow α connecting A and B. Rather than starting from scratch, all the
interpreter needs to figure out is how to supply the extra information which is
present in A.1 but not in B.1. This further illustrates the logic of searching senses
from weakest to strongest instead of strongest to weakest, since the latter strategy
does not allow partial results to constrain the search process.
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Figure 4.7: An illustration of the current context.

4.7.3 A worked example
I shall now go through a detailed example of how a speaker might use a network to
guide the interpretation of a sentence with respect to a context, using the weakest-
first strategy. Consider the scene shown in Figure 4.7. It consists of a small table,
on which stand several objects: a mug, a cube, a toppled wine glass and a frying pan.
Suppose that an agent, Alice, is observing the scene from the perspective shown in
the figure, and is attending to the objects on the table, rather than the table itself.
We can assume that Alice has access to a perceptual representation of the shape of
each object. Let us suppose that she is not concerned with categorizing the objects,
but conceptualizes them only as shapes – rather than as a mug, a cube, a wine
glass, and a frying pan. We might represent Alice’s take on the context as follows:

(460) Ct :=



o1 : Ind

o2 : Ind

o3 : Ind

o4 : Ind

has-shape(o1, )

has-shape(o2, )

has-shape(o3, )

has-shape(o4, )


That is, Alice understands the context to contain four individuals, o1, o2, o3, o4,
each of which has a particular shape. The use of images is intended to leave open
the question of exactly how shape–related information is encoded.
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Now suppose that Alice has a conversation partner, Bob, who is also observing
the scene in Figure 4.7. Bob wishes to draw Alice’s attention to a certain aspect
of the scene, and utters the following sentence:

(461) The wine glass is 18cm tall.

Alice’s aim is to find the strongest assertion which is compatible with the current
context, which in this case is Jthe wine glass is 18cm meas tallKtop,1st,=. Along the
way, she must identify which object Bob means by ‘the wine glass’ and discover
proofs of predicate types such as top(x, v) and 1st(x, v) which are not immediately
available in the context.

Alice begins by constructing the most general interpretation of Bob’s utterance.
This is the interpretation which is derived from the weakest sense of tall, JtallKvert,sgfnt,
and the weakest sense of meas, JmeasK≥:

(462) Jthe wine glass is meas 18cm tallKvert,sgfnt,≥

= JtheK(Jwine glassK)(JmeasK≥(JtallKvert,sgfnt)(J18cmK))

=


P :=



x : Ind

Jwine glassK(x)
v : V ector

(axis(x, v) × up(v)) + top(x, v)
|1st(x, v) + large(v)|




λp : P . ∥p.3.1∥ ≥ 18cm


As shown, this update presupposes that there is some individual x, that x is a
wine glass, and that x satisfies the presuppositions of JtallKvert, sgfnt, namely having
an axis which points up, either in the environment or in the object’s canonical
orientation, and which is either primary or large in comparison to a human being.
Given a context satisfying these conditions, the assertion is that the magnitude
of the wine glass’ vertical axis is greater than or equal to 18cm.

Having formed this context update, Alice must then try to use her represen-
tation of the current context to satisfy its presuppositions. That is, she searches
for a function:

(463) σ : Ct → Jthe wine glass is meas 18cm tallKvert,sgfnt,≥.1

Discovering this function requires some general knowledge, such as knowledge about
the typical shape and orientation of wine glasses, as well as some spatial reasoning,
such as the capacity to extract a primary axis from a 3D model. For our purposes,
it is sufficient to write σ in an abstract form as follows:
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(464) σ := λc :



o1 : Ind

o2 : Ind

o3 : Ind

o4 : Ind

has-shape(o1, )

has-shape(o2, )

has-shape(o3, )

has-shape(o4, )



.



c.3
σwine_glass(c.7)

axes( )[1]
inr(σtop(c.7))
|inl(σ1st(c.7))|





where:
axes : Shape → List(V ector)
σwine_glass : has-shape(o3, ) → Jwine glassK(o3)

σtop : has-shape(o3, ) → top(o3, axes( )[1])

σ1st : has-shape(o3, ) → 1st(o3, axes( )[1])

As indicated, Alice uses her representation of the shape of the individual o3 to pro-
duce proofs that it is a wine glass, and that its longest axis is inherently vertical and
primary. She concludes that the sense Jthe wine glass is 18cm meas tallKvert,sgfnt,≥
is felicitous.

Having found that the most general sense can be supplied by the context, Alice
now attempts to strengthen the interpretation, constructing all senses which can
be weakened to Jthe wine glass is meas tallKvert,sgfnt,≥ in a single step:

(465)
s

the wine glass is
18cm meas tall

{

vert,sgfnt,≥

s
the wine glass is
18cm meas tall

{

up,sgfnt,≥
s

the wine glass is
18cm meas tall

{

vert,1st,≥
s

the wine glass is
18cm meas tall

{

vert,large,≥

s
the wine glass is
18cm meas tall

{

vert,sgfnt,=

Note that the first three candidates are derived by strengthening the interpretation
of tall by one step, whereas the last candidate is derived by strengthening the
interpretation of meas. Alice cannot know ahead of time which kind of strengthening
will lead to the strongest possible assertion. It might seem like this step would take
four times longer than the previous step, since there are now four senses to check
against the context. However, as discussed in the previous subsection, the way in
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which the context satisfies the presuppositions of a stronger sense is assumed to
be compatible with the way in which it satisfies the presuppositions of the weaker
sense. For each of the stronger senses S ′ in (465), Alice searches for an arrow σ′

which makes the following diagram commute:

(466)

Ct

S ′.1
s

the wine glass is
18cm meas tall

{

vert,sgfnt,≥
.1

σ′
σ

✓

where σ is the function she has already discovered. It is easy to see that only two
of the stronger senses admit such a commuting diagram: Jthe wine glass is 18cm
meas tallKvert,1st,≥ and Jthe wine glass is 18cm meas tallKvert,sgfnt,=. Of the other
two senses, Jthe wine glass is 18cm meas tallKup,sgfnt,≥ is ruled out because the wine
glass is not standing upright, and Jthe wine glass is 18cm meas tallKvert,large,≥ is
ruled out because the glass is not large in comparison to a human being.

Having found two stronger candidates which are felicitous, Alice proceeds to
construct all senses which can be weakened to one of these candidates in a single
step, which do not also have an arrow into an infelicitous sense. Only one such
sense exists, namely Jthe wine glass is 18cm meas tallKvert,1st,=:

(467)
s

the wine glass is
18cm meas tall

{

vert
sgfnt
≥

s
the wine glass is
18cm meas tall

{

up
sgfnt
≥s

the wine glass is
18cm meas tall

{

vert
1st
≥s

the wine glass is
18cm meas tall

{

vert
large
≥s

the wine glass is
18cm meas tall

{

vert
sgfnt
=

s
the wine glass is
18cm meas tall

{

vert
1st
=

As before, Alice must find a map from the context to the new candidate which re-
spects the way in which she has satisfied the presuppositions of weaker candidates. In
other words, she must find an arrow σ′′ which makes the following diagram commute:

(468)

Ct

s
the wine glass is
18cm meas tall

{

vert,1st,=
.1

s
the wine glass is
18cm meas tall

{

vert,sgfnt,≥
.1

σ′′ σ

✓
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where σ is the original supply function and the top arrow is the unique horizontal
arrow from Jthe wine glass is 18cm meas tallKvert,1st,=.1 to Jthe wine glass is
18cm meas tallKvert,sgfnt,≥.2 given by the interpretation network. The function
σ′′ is implemented as follows:

(469) σ′′ := λc :



o1 : Ind

o2 : Ind

o3 : Ind

o4 : Ind

has-shape(o1, )

has-shape(o2, )

has-shape(o3, )

has-shape(o4, )



.



c.3
σwine_glass(c.7)

axes( )[1]
inr(σtop(c.7))
σ1st(c.7))





which is identical to σ except that there is no need to inject the proof of 1st(x, v)
into a sum type.

Having discovered that Jthe wine glass is 18cm meas tallKvert,1st,= is a viable
sense, Alice should once more attempt to strengthen the interpretation by one
step, constructing all senses with an arrow into a felicitous sense which do not
have an arrow into an infelicitous sense. At this point, however, there are no
such senses, because every sense with an arrow into Jthe wine glass is 18cm meas
tallKvert,1st,= also has an arrow into one of the senses which Alice has already ruled
out. She therefore concludes that Jthe wine glass is 18cm meas tallKvert,1st,= is
the strongest possible assertion which is compatible with the context. She uses
the arrow σ′′ : Ct → Jthe wine glass is 18cm meas tallKvert,1st,=.1 to construct
the updated context in the usual way:

(470) Ct+1 =
c : Ct

Jthe wine glass is 18cm meas tallKvert,1st,=.2(σ′′(c))
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=



c :



o1 : Ind

o2 : Ind

o3 : Ind

o4 : Ind

has-shape(o1, )

has-shape(o2, )

has-shape(o3, )

has-shape(o4, )


∥axes( )[1]∥ = 18cm


As shown, the new context contains the previous context Ct, together with the
assertion that the magnitude of the wine glass’ primary axis is strictly equal to
18cm. Alice is now in a position to judge the truth or falsity of the sentence with
respect to the context. She takes the sentence to be true iff she can find a proof of
its assertion type, and false iff she can find a proof of its negation.

The above example involved a network of context updates whose presupposition
and assertion arrows go in the same direction. However, there are also ‘skew’
networks whose presupposition and assertion arrows go in opposite directions: as
discussed previously, this pattern is associated with negation and words which
involve negation such as most and least. For networks of this type, the interpretive
strategy is different. For example, suppose that Alice represents the current context
as before, but Bob instead utters the sentence:

(471) The wine glass is not 18cm tall.

As before, Alice’s goal is to find the strongest assertion which is compatible with
the context, in accordance with the Strongest Meaning Hypothesis. She begins in
the same way by constructing the sense with the most general presuppositions:

(472) Jthe wine glass is not 18cm meas tallKvert,sgfnt,≥

= JnotK(Jthe wine glass is meas tallKvert,sgfnt,≥)

=


P :=



x : Ind

Jwine glassK(x)
v : V ector

(axis(x, v) × up(v)) + top(x, v)
|1st(x, v) + large(v)|




λp : P . ¬(∥p.3.1∥ ≥ 18cm)


Note that the presuppositions are the same as those of Jthe wine glass is 18cm meas
tallKvert,sgfnt,≥, but the assertion has been negated. As before, Alice discovers the
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function σ shown in (464). Now, however, due to the skew-monotone action of JnotK,
the sense with the weakest presuppositions also has the strongest assertion. Alice
can therefore terminate without considering senses with stronger presuppositions.
She forms the updated context:

(473) Ct+1 =
c : Ct

Jthe wine glass is not 18cm meas tallKvert,sgfnt,≥.2(σ(c))



=



c :



o1 : Ind

o2 : Ind

o3 : Ind

o4 : Ind

has-shape(o1, )

has-shape(o2, )

has-shape(o3, )

has-shape(o4, )


¬(∥axes( )[1]∥ ≥ 18cm)


As shown, Alice takes Bob to mean that the central axis of the wine glass is not
greater than or equal to 18cm in length. Notice that Alice’s interpretation of the
positive sentence the wine glass is 18cm tall involves the exact equality sense of
meas, whereas her interpretation of the negative sentence the wine glass isn’t 18cm
tall involves the ‘at least’ sense of meas. This is a consequence of the assumption
that the speaker makes the strongest possible assertion licensed by the context.

My goal in this section has been to suggest how an interpreter can take advantage
of network structure in order to find the optimal interpretation of a sentence with
respect to a context. The interpreter cannot consider every possible interpretation of
a sentence, because the number of potential senses grows exponentially in the number
of words. Instead, the interpreter should begin with the most general presuppositions
and work their way backwards through the network, constructing and testing senses
in a breadth-first manner in order to find the strongest assertion which is licensed
by the context. Many of the details remain to be worked out, including the
interaction between network structure and accommodation, and the distinction
between anaphoric and non-anaphoric presuppositions. I leave a full integration of
implicational polysemy and dynamic semantics as a goal for future research.
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Summary and Conclusion
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5.1 Summary of chapters
This thesis has illustrated an approach to formal semantics which takes seriously
the observation from cognitive linguistics that different senses of a word can be
organised into a network (e.g. Brugman & Lakoff 1988, Tyler & Evans 2001). I began
by distinguishing between implicational networks, which represent micro-senses of
the same semantic type, and derivational networks, which represent macro-senses
of potentially different semantic types. When one implicational network acts on
another in a composition N(M), the senses multiply, giving us one sense for every
pair n(m), where n is a sense in N and m is a sense in M . I have argued that
composition should not ‘throw away’ information about how the senses in N and M
are connected together. Rather, this information should be preserved if possible, and
lifted to the level of entire phrases and sentences. The result is a framework with
two kinds of composition – the ‘vertical’ composition of arrows within a network,
and the ‘horizontal’ composition of senses across networks.

In Chapter 2, I argued that a traditional Montague-style semantics based
on Simple Type Theory is not well-suited to implementing the preservation of
implication under composition. This is because Simple Type Theory (STT) does
not treat proofs as first-class objects which can be taken and returned by functions,
so networks can only be described indirectly, for example using meaning postulates.
Instead, I suggested replacing STT with Dependent Type Theory (DTT), a more
elaborate type system originally proposed as a foundation for mathematics (Martin-
Löf 1984). DTT subsumes both the role of set theory and the role of logic, due to its
inherent theory of truth and entailment. Proofs become first-class objects, allowing
for a direct implementation of networks and network-based composition. DTT has
already been advocated as a framework for semantics for a number of independent
reasons, such as its straightforward treatment of Donkey anaphora (Ranta 1994),
selectional restrictions (Luo 2010) and presupposition (Tanaka et al. 2017).

Chapter 3 was a lexical analysis of the English spatial adjectives, drawing on
previous cognitive approaches. This chapter is best seen as a synthesis of three ideas:
the lexical network approach to polysemy, Kennedy’s (1999) analysis of gradable
adjectives as measure functions, and Zwarts’ (2000) use of vectors to describe
spatial language. Each spatial adjective sense is analysed as a measure function
which takes an individual and presupposes a relation between that individual and
a certain configuration of vectors; the function itself then returns the length of
one of the vectors in the configuration. The presuppositions are built from a set
of primitives such as axis, up, path, obs, and so on, which are hypothesized to
be universal across different languages. An arrow between two gradable adjectives
is a map of their presupposition types which commutes with the action of the
measure function. Unlike most previous approaches, my networks contain not only
prototypes (meets, points of divergence), but also generalizations (joins, points
of convergence). Two senses share a common prototype if they are compatible
and typically occur together; two senses share a common generalization if they
can be coordinated without giving rise to zeugma.

Having investigated the lexical semantics of spatial adjectives, Chapter 4 then
turned to their compositional semantics. The aim of this chapter was to describe the
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semantics of degree morphemes such as meas, more/er, less, most, least, pos, and
so on, drawing on the work of previous authors in the degree semantics tradition
(e.g. Klein 1980, von Stechow 1984, Heim 1985, Kennedy 1999, Kennedy & McNally
2005). What distinguishes my approach from previous work is: (1) its close attention
to the presuppositional content of degree morphemes, and (2) the idea that degree
morphemes are capable of acting not only on individual adjective senses, but also
on the arrows which connect senses together. The degree morphemes covered in
this chapter included meas (measure phrase combination), more/-er, less, most,
least, pos (the positive), very, completely and half. The chapter concluded with a
brief description of how, if a sentence has a network of interpretations, this can
be used to search for the best interpretation relative to a context.

The structure of this final chapter is as follows. Section 5.2 summarizes what I
take to be the main theoretical contributions of the thesis, defending them against
some potential objections. Section 5.3 compares my approach to a number of similar
approaches in the literature which might be thought to describe something like
lexical networks, with the aim of bringing out points of agreement and disagreement.
Finally, Section 5.4 provides some very brief remarks on how this thesis relates to
more general questions in the study of language and mind.
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5.2 Novel contributions

5.2.1 Implication networks
In the literature on lexical networks, there is no consensus about what constitutes
a node and what constitutes an arrow. For some, nodes are frames and arrows
are frame relations such as ‘frame addition’ and ‘profile shift’ (e.g. Norvig &
Lakoff 1987); for others nodes are image schemas and arrows are image schema
transformations (e.g. Tyler & Evans 2001); for others, nodes are combinations of
features and arrows correspond to dropping features (e.g. Lakoff’s 1987 analysis
of mother). Moreover, the structure of networks varies widely, from trees in which
everything diverges from a common node (Tyler & Evans 2001), to partial orders
(Zwarts 2004), to undirected graphs (Vandeloise 1993). The large variety of lexical
networks on offer makes it difficult to give a general characterisation of lexical
network theory and how networks compose.

In this thesis, I have focused on a particular category of lexical networks:
implication networks. These are networks in which all of the nodes belong to
the same semantic type: for instance, intersective adjectives, gradable adjectives,
transitive verbs, generalized quantifiers, etc. The different nodes of an implication
network correspond to what we might call microsenses: fine-grained distinctions
between different uses of a word which do not have morphosyntactic consequences.
As shown in Chapter 3, spatial adjectives provide a rich source of examples – for
instance, the distinction between the secondary sense of wide (e.g. wide strip) and
the lateral sense (e.g. wide piano) is a distinction between two microsenses. The
arrows in an implication network represent implicational relationships between
microsenses. For instance, the secondary + horizontal sense of wide (e.g. wide
road) implies the secondary sense.

Implication networks are partial orders, meaning that (a) there can be at most
one arrow between any two nodes, (b) arrows compose transitively, and (c) no
two distinct nodes can form a loop. As partial orders, implication networks can
contain both meets and joins. This distinguishes them from most networks one finds
in the cognitive literature, which contain only meets. I have argued that a meet
between two senses is justified when they are prototypically found in combination,
whereas a join is justified when they can be coordinated non-zeugmatically. For
example, compare the climb network described in Chapter 2 with a portion of
the high network described in Chapter 3:

(474) a. JclimbKrise,clamber

JclimbKrise

JclimbKclamber
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b. JhighKelev

JhighKposn

JhighKdim,grnd

The structure of the climb network reflects the fact that rising and clambering
are typically found in combination. At the same time, it also correctly predicts
that JclimbKrise and JclimbKclamb cannot be sensibly coordinated (e.g. ?the plane
climbed into the air and the monkey down the tree) due to the lack of a common
join. On the other hand, the structure of the high network predicts that position
above ground and extension above ground can be sensibly coordinated (e.g. the
airplane is higher than the building), but do not typically occur in combination, due
to the lack of a common meet. (In fact they are inconsistent with each other.)

One might object to the need for a network analysis in order to express the
behaviour of words like climb and high. Why not simply define JclimbK as ‘rise
or clamber’? As Jackendoff (2002) has pointed out, the definition of JclimbK as
‘rise or clamber’ does not capture the appropriate typicality effects because a
logical disjunction is not ‘more prototypically satisfied’ when both disjuncts are
true compared to only one. Conversely, defining JhighK as ‘position or extension
above ground’ does not capture the fact that a comparison involving a position
and an extension (the plane is higher than the building) is less typical than a
comparison involving two positions (the plane is higher than the cloud) or two
extensions (building A is higher than building B). Moreover, describing both JclimbK
and JhighK in terms of disjunction does not explain why rising and clambering are
zeugmatic, whereas vertical position and extension are not.

The concept of an implication network is not entirely new to this thesis. Rosch’s
family resemblance categories, Lakoff’s radial categories, and Jackendoff’s cluster
concepts all refer to a similar idea. One could also consider taxonomies and
inheritance hierarchies of the sort found in feature-based grammars to be kinds of
implication network. The major contribution of this thesis is the formalization of
implication networks using Dependent Type Theory (DTT). Because DTT encodes
proofs directly as functions, one can write expressions not only for senses but also
for arrows. Distinct semantic types give rise to distinct kinds of implication network:
one can have networks of nouns, intersective adjectives, transitive verbs, intransitive
verbs, prepositions, generalized quantifiers, tense morphemes, and so on. Moreover,
each type of network has an associated (parametric) arrow type. For example, given
two noun senses N, M : Ind → Type, an arrow connecting them is an element of:

(475) ∏
x:Ind N(x) → M(x)

whereas given two generalized quantifiers Q, R : (Ind → Type) → (Ind →
Update) → Update, an arrow connecting them is an element of:

(476) ∏
N:Ind→T ype

∏
P:Ind→Update Q(N)(P) →Update R(N)(P)
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5.2.2 Preservation of implication
One of the central claims of this thesis is that the preservation of implication is an
automatic consequence of semantics, rather than, say, dependent on proof by in
background inference engine. Tracking entailment relations between interpretations
is important for cooperative communication because of the assumption of speaker
informativeness (e.g. Grice 1975, Horn 1984, Levinson et al. 2000, Chierchia 2004).
Given a sentence with multiple possible interpretations, a hearer assumes (a) that
the speaker intends the strongest possible assertion which is compatible with the
context, and (b) that stronger sentences which the speaker might have uttered but
did not are unassertable. Both (a) and (b) require the speaker to use implication
relations at the word level to derive implication relations at the sentence level.
In traditional semantics of the Montague variety, this requires inference, which
is slow in comparison to semantic composition. A great deal of reasoning is
required just to establish all the necessary entailments, before one even gets to
the kinds of inferences described in pragmatics. In semantics based on DTT,
however, implication preservation can be completely automated, removing the
need for the intermediate step.

In a theory where preservation of implication is automatic, every function capable
of preserving implication must have both an action on senses and an action on
arrows. In practical terms, this means that the lexical entries of many words need
to be altered so as to include not only the original semantic interpretation (suitably
rendered in DTT), but also an action on arrows. One might wonder whether such
lifting rules are really necessary, given knowledge of network structure. What
need is there to lift arrows when we already know the relative informativeness of
individual senses? Given a composition N(M), why not take the ‘most informative’
interpretation to be given by nproto(mproto), where nproto is the most informative
sense in N and mproto is the most informative sense in M? The problem is that
this does not always work. To reiterate an example discussed in Chapter 1, the
strongest interpretation of meat refers to the flesh of a land animal, typically a
mammal, whereas the strongest interpretation of John does not eat meat is that
John does not eat animals of any kind, including fish. This is explained by the
fact that not lifts assertion maps anti-monotonically.

The observation that some contexts preserve implication in a monotone direction,
others in an anti-monotone direction, and others not at all, is usually associated
with the distribution of polarity items. It is a well-known observation that negative
polarity items such as anything, ever, any, at all, and so on, are licensed in anti-
monotone contexts (Fauconnier 1975, Ladusaw 1979). This is often discussed in
connection with generalized quantifiers: for instance, everyone is monotone in its
first argument but anti-monotone in its second argument, so (a) is acceptable
but (b) is not:

(477) a. Everyone who has ever been there remembers something.
b. Everyone who has *never been there remembers *anything.

In the framework developed in this thesis, the concept of monotonicity is extended
far beyond generalized quantifiers to encompass many additional semantic types,
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including degree morphology, tense/aspect morphology, sentential modifiers, and so
on: anything which can act on a lexical network. For instance, we saw in Section
4.4 that the degree morpheme most is anti-monotone in its gradable adjective and
comparison class arguments. This is reflected in the distribution of polarity items:
(478) John is the tallest man *everywhere/anywhere.
In a compositional theory of lexical networks, one can easily check whether a
lexical item is monotone, anti-monotone or non-monotone in a particular argument
position simply by inspecting its action on arrows in that position. This is in
contrast to Montague semantics, where the monotonicity of a lexical item cannot
be easily determined by inspection and must be hard-coded, for example using
meaning postulates or syntactic markers.

Another reason why it is important to lift implications from the level of words to
the level of entire sentences has to do with what I have called the exponential growth
problem – the observation that the number of potential interpretations of a sentence
grows exponentially with the number of words. If senses form an unstructured set,
then there is no way to effectively screen out interpretations which are inconsistent or
incompatible with the background context without simply checking them one-by-one.
However, if senses are partially ordered by strength, then one can take advantage of
this structure to efficiently identify the strongest consistent sense. As explained in
Section 4.7, this is done by searching through the network in a breadth-first manner,
beginning with the weakest or most general senses and gradually strengthening them.
When a sense is found to be inconsistent/infelicitous, the interpreter removes it from
consideration, along with all the senses with arrows into it. This has the effect of
dramatically reducing the number of senses which the interpreter needs to consider.

5.2.3 Networks and presupposition
An additional contribution which I take to be novel is the idea that lexical networks
relate not only the assertive content of words but also their presuppositional content.
Following the tradition of dynamic semantics (e.g. Kamp 1980, Heim 1983, Seuren
1994), I describe the meaning of a sentence as an instruction for updating a context
with new information. Presuppositions appear as constraints on the current context
which must be satisfied in order for the update to take place (this is similar to the
‘two-step’ version of Discourse Representation Theory described in Kamp et al. 2011,
and also the implementation of dynamic semantics in Type Theory with Records).
A context update is described by an element of the following dependent sum type:

(479) Update :=
P : Type

P → Prop


where the first component encodes the presuppositions and the second component
takes a proof of the presuppositions and yields an assertion.

I have argued that there are two kinds of update networks: parallel networks
and skew networks. In a parallel update network, an arrow from an update U
to an update V consists of an arrow from the presuppositions and assertion of
U to the presuppositions and assertion of V :
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(480) U →Update V :=
f : U.1 → V.1∏

p:U.1 U.2(p) → V.2(f(p))


In a skew network, on the other hand, an arrow from U to V maps presuppositions
and assertions in the opposite order:

(481) U ⇄Update V :=
f : U.1 → V.1∏

p:U.1 V.2(f(p)) → U.2(p)


Skew networks are associated with negative contexts because negation lifts pre-
supposition arrows monotonically but assertion arrows anti-monotonically. For
instance, consider the various interpretations of

(482) The vase is not 10cm deep.

The stronger the interpretation of deep, the stronger the presuppositions: the sense
JdeepKintrnl,down presupposes that the vase is canonically oriented, whereas JdeepKintrnl
does not. However, a stronger interpretation of deep also results in a weaker assertion
because of the presence of negation: not 10cm deep in the JdeepKintrnl sense entails
not 10cm deep in the JdeepKintrnl,down sense. This is characteristic of a skew network.

Unlike other authors who work in DTT (e.g. Luo 2010, Chatzikyriakidis & Luo
2017a), I analyse the selectional restrictions associated with adjectives and verbs as
presuppositions rather than domain restrictions on predicates. For example, rather
than each intersective adjective having a unique type:

(483) A → Prop

where A is the domain of the adjective (e.g. JredK : Physical Object → Prop,
JhappyK : Animal → Prop, and so on), I instead group all intersective adjectives
together as elements of the type:

(484) Ind → Update

that is, functions from individuals to sentence meanings. The selectional restrictions
of the adjective are then encoded as presuppositions on the resulting update. For
instance, red would presuppose that the subject is capable of having a colour, happy
that the subject is capable of having emotions, and so on.

The advantage of this approach is that it permits type uniformity for syntactically-
relevant semantic categories – intersective adjectives, intransitive verbs, adverbs,
and so on – whilst also capturing their distinct selectional restrictions. Type
uniformity is important because one often needs to write functions which can take
elements with distinct selectional restrictions. For example, degree morphemes
like more/-er, most, pos, etc., take an arbitrary gradable adjective. One can get
around this problem to some extent by introducing universes (types of types). For
example, Luo (2010) introduces a universe he calls cn (‘common noun’), which
contains all noun denotations together with all possible selectional restrictions on
adjectives and verbs. cn is then used parametrically to write functions capable of
taking elements with distinct selectional restrictions. However, I have chosen not
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to follow Luo’s analysis of selectional restrictions for a number of reasons, which
are explained in greater detail in Section 5.3.1 below.

One consequence of my approach to intersective adjectives is that adjective +
noun composition becomes a kind of local context update of the sort described
in dynamic semantics, where the noun plays the role of the discourse context
and the adjective plays the role of the context update. To combine a noun N :
Ind → Type and an intersective adjective A : Ind → Update, one must first find
a function σ : ∏x:Ind N(x) → A(x).1, from the noun contents to the adjective
presuppositions. Assuming such a function can be found, one then forms the
updated noun contents as follows:

(485) AN := λx : Ind .

c : N(x)
A(x).2(σ(x)(c))


which is identical to the procedure for updating a discourse context, except for
the lambda abstraction over individuals. If no function σ can be found, then
one attempts to form an adjusted noun meaning by accommodating the adjective
presuppositions, following the accommodation procedure described in Chapter 4.
As far as I know, this is the first analysis of adjective + noun composition to
emphasize its connections to dynamic semantics.

5.2.4 Contributions to gradable adjectives
Following Kennedy (1999, 2005, 2007), I analyse gradable adjectives as measure
functions from individuals to degrees. This differs from more traditional degree-based
approaches, which describe gradable adjectives as relations between individuals and
degrees (e.g. Cresswell 1976, Bierwisch 1989, Heim 2000). It can also be contrasted
with a vague predicate approach (e.g. Kamp 1975, Klein 1980, 1982), where gradable
adjectives are analysed as predicates with a truth-value gap. The novel aspect of
my approach is that it takes advantage of the resources of DTT in order to (a)
express the structure of scales, (b) represent the presuppositions associated with
gradable adjectives whilst preserving type uniformity, and (c) connect different
senses of gradable adjectives into lexical networks. The resulting framework is
well suited to describing both the lexical structure of gradable adjectives and
their compositional behaviour.

DTT is ideal for expressing the organisation of degrees into ordered scales. One
begins by introducing the type Scale, consisting of labels for scales (dist, weight,
temp, etc.), and the type Polarity, consisting of the two values +, −. For every
scale s and polarity p, one introduces a distinct set of degrees Degree(s, p) together
with a relation ≥(s,p): Degree(s, p) × Degree(s, p) → Prop satisfying the axioms for
a total order. It follows that degrees on different scales or with different polarities
are disjoint and cannot be compared. This contrasts with approaches in which
all degrees belong to the same underlying space (e.g. Faller 2000, Winter 2005,
Kennedy & McNally 2005), where there is no reason in principle why degrees on
different scales must be disjoint. The relationship between positive and negative
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degrees on the same scale is expressed by introducing a bijective order-reversing
function negates : Degree(s, +) → Degree(s, −) for every scale s.

The distinction between positive and negative degrees supports a distinction
between positive and negative gradable adjectives, which are defined as follows:

(486) • Gradable(+) := λx : Ind .


P : Type

P →

s : Scale

Degree(s, +)




• Gradable(−) := λx : Ind .


P : Type

P →

s : Scale

Degree(s, −)




This distinction is syntactically relevant: for example only positive polarity ad-
jectives can occur unmarked with an accompanying measure phrase (15cm tall,
?15cm short). As before, DTT makes it possible to retain type uniformity whilst
expressing differences in selectional restrictions, which appear as components of
the presupposition type P. This is not possible in Simple Type Theory, where all
gradable adjectives would need to belong to a distinct type as a consequence of
their distinct selectional restrictions. To write expressions for degree morphemes
like more/-er, it is also necessary to have a type for all gradable adjectives, whether
positive or negative, which is defined as follows:

(487) Gradable := λx : Ind .


P : Type

P →


s : Scale

p : Pol

Degree(s, p)




Any element of Gradable(+) or Gradable(−) can be considered as an element
of Gradable in a canonical way.

I have argued that, just like other lexical items, gradable adjectives consist
of multiple senses organised into an implicational network. Given two gradable
adjectives G, H : Gradable, an arrow connecting them is a function f from the
presuppositions of G to the presuppositions of H, together with a proof that f
commutes with the two measure functions:

(488) G →Gradable H := ∏
x:Ind

f : G.1(x) → H.1(x)∏
p:G.1 G.2(p) = H.2(f(p))


Degree morphemes can act on both gradable adjective senses and gradable adjective
arrows, lifting them to the level of entire sentences. In Chapter 4, I showed that
the degree morphemes meas, more/-er, less, completely and half are monotone
in the usual way, lifting an arrow of type →Gradable to an arrow of type →Update.
The superlative morphemes most and least act monotonically on presuppositions
but anti-monotonically on assertions, lifting an arrow of type →Gradable to an
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arrow of type ⇄Update. Finally, the morphemes pos and very are non-monotone:
they have no action on arrows.

One respect in which my analysis of degree morphology differs from that of
other authors, besides the preservation of implication, is its close attention to
presuppositional information and the various ways in which degree morphemes can be
infelicitous. The vast majority of the information associated with degree morphemes
is presupposed rather than asserted. For example, a superlative statement like
John is the tallest man in the room presupposes that: (i) John is a man, (ii)
a man is the kind of thing which can be in a room, (iii) John is in the room,
(iv) John satisfies the presuppositions of tall, and (v) there is at least one other
man in the room besides John who satisfies the presuppositions of tall. Each
one of these presuppositions could potentially be false, in which case the sentence
is infelicitous. All of this information needs to be included in the superlative
morpheme alongside its assertive content.

5.2.5 Contributions to spatial language
Chapter 3 was a decompositional analysis of the English spatial adjectives, focusing
on the spatial configurations which they presuppose. Following Zwarts & Winter
(2000), I take the basic domain underlying spatial language to be spatial vectors. A
spatial vector is an arrow in 3D Euclidean space with a direction and a magnitude,
but no fixed location. They are introduced as fundamental geometric entities, not
based on numerical constructions such as tuples of real numbers. Spatial vectors
can be used to represent both the position of an object relative to some landmark
and the magnitude and direction of an object’s axes. Continuous functions from
[0, 1] → V ector can be thought of as paths in space, and continuous functions
from [0, 1] × [0, 1] → V ector can be thought of as surfaces. The concepts of
position, axis, path and surface are fundamental to all forms of spatial language,
including locative and directional prepositions, axial part terms, spatial adjectives,
shape-based numeral classifiers and shape-based classificatory verbs.

I have proposed a collection of basic relations between individuals and con-
figurations of vectors. These include concepts such as 1st(x, v) ‘v is a primary
axis of x’, intrnl(x, v) ‘v is an internal axis of x’, and posn(x, u, v) ‘v is the
position of x with respect to u’. These primitives are intended to be universal across
different languages, whereas the particular way in which they are combined into
lexical networks can vary from language to language. For example, English tall
always refers to a vertical axis, whereas Italian alto ‘high/tall’ can refer either to
a vertical axis or a vertical position. Many of these primitives are not my own
invention, but are drawn from other studies on spatial language, notably the work
of Bierwisch (1967) and Lang (1989, 2001) on spatial adjectives, and the work of
Herskovits (1987) and Zwarts (2000, 2005) on spatial prepositions. The role of these
basic predicates is similar to that of image schemas or spatial scenes in cognitive
approaches (e.g. Johnson 1987, Tyler & Evans 2003).

A novel suggestion from Chapter 3 is the analysis of the area and arc senses of
width in terms of bivectors. A bivector is an oriented area, just as a vector is an
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oriented length. Bivectors can be constructed from vectors through the introduction
of the exterior product, which also gives rise to oriented volume elements known as
trivectors. Examples of bivector quantities include the area swept out by a curve or
the spatial extent of a field, whereas examples of trivector quantities include the size
of a house or the volume of a cavity. I have argued that bivectors are involved in
area-based senses of wide such as wide bend, wide gesture, wide field, wide landscape,
and so on. Since it has units of area, the magnitude of a bivector cannot be described
by a distance-denoting measure phrase, e.g. ?10cm wide bend, ?1m wide gesture, ?5
mile wide landscape. I would suggest that bivectors and trivectors are also involved
in other aspects of spatial language. For instance, bivectors can be used to describe
rotations, and might therefore be involved in verbs of rotational motion, e.g. swing,
circle, spiral, turn, many of which can also combine adverbially with wide.

Chapter 3 proposed a lexical network model for each of the English spatial
adjectives, high, tall, long, wide, thick, deep, and their antonyms. Although many
of my ideas are based on the work of cognitive authors – particularly Vandeloise
(1988, 1993), Dirven & Taylor (1986) and Vogel (2004) – each of the networks in
Chapter 3 is original with this thesis and represents a novel contribution to the
study of spatial adjectives. Each network is a micro-theory which makes a range
of predictions about speaker intuitions, such as whether sense A is more typical
than sense B, or whether A and B are zeugmatic or non-zeugmatic. A network
is successful insofar as it correctly predicts speaker judgements. Given this, the
networks in Chapter 3 should be regarded not as definitive solutions, but as working
models which might need to be altered in light of additional data.
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5.3 Comparison with other approaches

5.3.1 Dot types and copredication
Dot types are a construction introduced by Pustejovsky (1995) which have since
been taken up by other authors, notably Asher (2011) and Luo (2012). Although
more restricted in their applications, dot types are similar in spirit to the framework
proposed in this thesis, since they yield a network of senses which is preserved under
composition. The principle motivation for dot types is to explain copredication,
a situation in which an individual appears to belong to more than one type
simultaneously, permitting the application of predicates with seemingly disjoint
selectional requirements. An example is given in (489):

(489) The book about the history of Philosophy is too heavy to carry.

The predicate about the history of Philosophy requires an informational subject, like
a website or a lecture, whereas the predicate too heavy to carry requires a physical
object, like a rock or a tree. A book, it seems, can be understood in two ways:
on the one hand as an informational object, and on the other hand as a physical
object, permitting the application of both predicates.

The approach to dot types which I shall describe is based on Luo (2012), who
also works within a DTT framework. (As explained in Section 2.5.2, the major
difference between Luo’s approach and my own is that he analyses common nouns as
denoting types rather than predicates.) Luo begins by introducing a binary relation
between types A <c B, meaning ‘A is a subtype of B, by virtue of the unique
coercion c : A → B’. To give an example, one might consider the type of dogs
to be a subtype of the type of animals, Dog <i Animal, by virtue of the unique
coercion i : Dog → Animal. The coercion allows any dog to be automatically
considered as an animal, and therefore passed to a function which accepts animals.
This is formalized by the following rule:

(490) Γ ⊢ f : B → C Γ ⊢ a : A Γ ⊢ A <c B

Γ ⊢ f(a) ≡ f(c(a)) : C

In other words, given a unique coercion A <c B, any element of A can be
automatically passed to a function B → C by using c to ‘fill in the gap’. Additional
rules are required to ensure that the subtype relation is transitive and antisymmetric:
see Luo (1999) for a complete formulation.

Dot types encode the intuitive idea that a multifaceted entity like a book should
belong to a complex semantic type which combines all of its aspects. One begins
with types for different classes of entities, like physical object, information,
event, institution, and so on. These are used to encode the selectional
restrictions of predicates: for instance, the predicate too heavy to carry has type
physical object → Prop, whereas the predicate about the History of philosophy
has type information → Prop. One then introduces the dot type constructor •,
to form types for compound entities. Given two types A and B, the type A • B
consists of entities with both an A aspect and a B aspect. For example, a book
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would belong to type physical object • information, having both a physical
aspect and an informational aspect. Luo’s rules for dot types are given below:

(491) Formation rule: Γ ⊢ A : Type Γ ⊢ B : Type C(A) ∩ C(B) = ∅
Γ ⊢ A • B : Type

Introduction rule: Γ ⊢ a : A Γ ⊢ b : B
Γ ⊢ ⟨a, b⟩ : A • B

Elimination rules: Γ ⊢ c : A • B
Γ ⊢ π1(c) : A

Γ ⊢ c : A • B
Γ ⊢ π2(c) : B

Computation rules: Γ ⊢ a : A Γ ⊢ b : B
Γ ⊢ π1(⟨a, b⟩) ≡ a : A

Γ ⊢ a : A Γ ⊢ b : B
Γ ⊢ π2(⟨a, b⟩) ≡ b : B

Projections as coercions: Γ ⊢ A • B : Type

Γ ⊢ A • B <π1 A

Γ ⊢ A • B : Type

Γ ⊢ A • B <π2 B

Notice that the dot type construction is almost the same as the product A × B,
the major difference being the extra condition C(A) ∩ C(B) = ∅ in the Formation
Rule. The extra condition forbids A and B from sharing any common components
in the case where they are themselves dot types. For example, the type:

(492) event • (information • event)

is not well-formed, because both sides share the common component event. It is
this condition which permits the two projections π1 and π2 to be unique coercions.
To see why this is the case, notice that the type in (492), if it was well-formed,
would not have a unique coercion to event.

Dot types in combination with coercive subtyping yield a straightforward analysis
of copredication. Suppose that the predicates about the history of Philosophy and
too heavy to carry are typed as follows:

(493) Jabout the history of PhilosophyK : information → Prop

Jtoo heavy to carryK : physical object → Prop

Moreover, suppose that the interpretation of book is a subtype of physical object•
information (recall that for Luo, common nouns are interpreted as types):

(494) JbookK < physical object • information

Since physical object • information can be coerced to physical object on
the one hand and information on the other, it follows that both predicates can
be applied to a term of type JbookK:

(495) Jabout the history of PhilosophyK

: information → Prop

< physical object • information → Prop

< JbookK → Prop
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Jtoo heavy to carryK

: physical object → Prop

< physical object • information → Prop

< JbookK → Prop

The sentence in (489) can therefore be successfully interpreted.
The dot type construction might be considered to give rise to a kind of

lexical network consisting of a prototype and a collection of peripheral senses.
A prototypical book consists of both a physical aspect and an informational aspect,
but it is also possible for a book to be purely physical, as in a physical volume
containing no writing, or purely informational, as in a book stored in a computer.
We can therefore introduce three senses of book:

(496) JbookKproto < physical object • information
JbookKphys < physical object
JbookKinfo < information

Where JbookKphys lacks the informational component and JbookKinfo lacks the physi-
cal component. The arrows JbookKproto → JbookKphys and JbookKproto → JbookKinfo
are given by lifting the projections π1 : physical object • information →
physical object and π2 : physical object • information → information,
as follows:

(497) JbookKproto

JbookKphys

JbookKinfo

physical object
• information

physical object

information

<

<

<

π1

π2

π′
1

π′
2

The result is a radial network of the familiar V-shaped kind. We can get radial
networks with a more complex structure by iterating the dot type construction.
For instance, the prototypical interpretation of conference is plausibly a subtype
of event • information • institution. Assuming that none of these features is
necessary, but any combination is sufficient, we could derive 3 senses containing two
components (event • information, information • institution and event •
institution) and 3 senses containing one component (event, information and
institution), with arrows given by lifting the appropriate projection functions.
Since dot types are product-like, they provide only outbound arrows. In order
to represent convergent networks, they would need to be combined with some
version of sum types.

Although they can be used to express networks for multifaceted nouns, dot
types are unsuited to representing larger networks, such as those which connect the
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interpretations of sentences. The reason has to do with the condition that the two
sides of a dot type do not share any components, which can cause problems for larger
networks in which senses inevitably contain multiple entries of the same type. For
example, every sense of the wine glass is deeper than the frying pan presupposes the
existence of two individuals – the wine glass and the frying pan, and so could not be
represented using a dot type. Even single words can contain entries with the same
type: for instance, the position sense of height we saw in Section 3.4.2 involves two
vectors – one describing a point on the ground and another describing the object’s
elevation. Because of the widespread need for multiple entries of the same type, it
follows that dot types are not well suited to representing arbitrary lexical networks.

Moreover, as discussed briefly in Section 2.5.4, there are good reasons to question
one of the fundamental assumptions behind the dot type construction, which is
that coercions should always be unique. In general, the way in which an argument
may satisfy the selectional restrictions of a predicate is not always unique. To give
an example, the expression silver tree might be taken to refer to the colour of the
tree’s leaves, or to the colour of its bark. In other words, there are at least two
different coercions from the type Tree to the domain type of the predicate silver.
The phenomenon of multiple coercion is also prevalent in spatial adjectives: for
instance thick spoon might refer to the thickness of the spoon’s handle, the thickness
of the bowl, or both. This is why I have not adopted coercive subtyping in this
thesis, but instead allow for the possibility of multiple coercion functions.

Given that dot types cannot serve as a replacement to dependent sum types
for representing lexical networks, the question remains whether they need to be
introduced at all. Provided one is willing to abandon unique implicit coercions,
the phenomenon dot types are intended to explain, namely copredication, can be
handled by the existing machinery of dependent sum types. Let us return to the
description of nouns as elements of Ind → Type, that is functions from individuals to
contexts. The most prototypical sense of the noun book might be written as follows:

(498) JbookKproto := λx : Ind .


p : Physical

i : Information

book(x, p, i)


where Information is a type containing informational properties, Physical is a
type containing physical properties, and the predicate book(x, i, p) means something
like ‘x is a book with physical structure p and informational structure i’.

Now suppose we have two predicates, about the history of philosophy and too
heavy to carry, which in my system are both elements of Ind → Update, that is
functions from individuals to sentence meanings. We might write them, somewhat
simplistically, as shown below:

(499) Jabout the history of PhilosophyK := λx : Ind .
P :=

i : Information

has-info(x, i)


λp : P .

about-history-of-philosophy(p.1)
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Jtoo heavy to carryK := λx : Ind .

P :=
w : Weight

has-weight(x, w)


λp : P . too-heavy-to-carry(p.1)


For the present discussion the important content is the selectional restrictions. As
shown, Jabout the history of PhilosophyK presupposes that its subject has some
information associated with it, whereas Jtoo heavy to carryK presupposes that its
subject has some associated weight. Recall that in adjective + noun composition,
the noun acts as a context which must supply the presuppositions of the adjective.
In order to combine book with the predicates about the history of philosophy and
too heavy to carry, the interpreter must discover two coercion functions:

(500) σ1 : ∏x:IndJbookKproto(x) → Jabout the history of PhilosophyK(x).1
σ2 : ∏x:IndJbookKproto(x) → Jtoo heavy to carryK(x).1

Without going into details, σ1 would use the proof of book(x, p, i) to derive a proof of
has-info(x, i), whereas σ2 would extract a weight w and use the proof of book(x, p, i)
to derive a proof of has-weight(x, w). Assuming that these coercions exist, the
sentence in (489) would then be interpreted as follows:

(501) JThe book about the history of Philosophy is too heavy to carryKproto

= JtheK(Jbook about the history of PhilosophyKproto)(Jtoo heavy to carryK)

=


P :=



x : Ind

c :


p : Physical

i : Information

book(x, p, i)


about-history-of-philosophy(c.2)


λp : P . too-heavy-to-carry(p.2.1)


Notice how about the history of philosophy and too heavy to carry select different
parts of the context provided by book: the former selects the physical component,
whereas the latter selects the informational component. The two major differences
with the dot type approach are (1) nouns are treated as predicates rather than
types, and (2) the interpreter must discover the coercion functions σ1 and σ2, rather
than these being automatically provided. Nevertheless, both accounts agree that
copredication is a result of multifaceted entities which combine components from
different domains, e.g. physical properties and information.

5.3.2 Default logic and enthymemes
Another approach which might be seen as implementing a kind of lexical network is
the use of non-monotonic rules of inference of the sort which are described by default
logic (Reiter 1980). Non-monotonic inference refers to the idea that conclusions
might be retracted in the light of new information. This kind of inference is not

253



possible in ordinary monotonic logic, where strengthening one’s assumptions can
only lead to stronger conclusions, but is common in real life situations. To give
an example, if told that x is a snake, one is likely to conclude that x lives on
land, suggesting a rule of the following kind:

(502) ∀x . snake(x) ⇒ land-animal(x)

However, given the additional information that x is a sea snake, this conclusion
must be revised, due to the presence of the following two rules:

(503) a. ∀x . sea-snake(x) ⇒ snake(x)
b. ∀x . sea-snake(x) ⇒ ¬land-animal(x)

In classical logic, the rules in (502) and (503) taken together would lead to a
contradiction. The only way to avoid this would be to reformulate (502) as follows:

(504) ∀x . (snake(x) ∧ ¬sea-snake(x)) ⇒ land-animal(x)

In other words, all snakes are land animals, except sea snakes. The idea behind
default logic is that, given that most generalizations have exceptions, and that we
may not know all of the exceptions to any given rule, there ought to be a way to
formalise general rules without having to ‘hard-code’ all their exceptions as in (504).
This is done by means of default rules, which are often written as follows:

(505) snake(x) : land-animal(x)
land-animal(x)

This should be read as “if x is a snake and there is nothing to contradict that x
is a land animal, then x is a land animal”. The rule is non-monotonic because if
we know only that x is a snake then we should conclude that x is a land animal;
but if we know that x is a snake and a sea snake, then we should not draw this
conclusion, because being a sea snake is incompatible with being a land animal. A
logic in which rules like (505) are permitted was first described by Reiter (1980).

Default rules might be seen as describing something like an implication network.
To illustrate, suppose that, in addition to the rule in (505), we also know some other
facts concerning snakes: that they typically have scales and lay eggs. For all we know,
there may be exceptions, so these generalizations are represented as default rules:

(506) snake(x) : has-scales(x)
has-scales(x)

snake(x) : lays-eggs(x)
lays-eggs(x)

Now consider the set of all things which can be called snakes. Some will satisfy all
three of our default properties, others will satisfy only some, and yet others may
satisfy none. We can use our default rules to construct a poset of types of snakes,
where the most specific type contains snakes which satisfy all the defaults, and
the most general type contains all snakes, regardless of how many of the defaults
they satisfy: this is illustrated in Figure 5.1.
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x : Ind

snake(x)




x : Ind

snake(x)
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snake(x)
has-scales(x)



x : Ind

snake(x)
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x : Ind

snake(x)
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x : Ind

snake(x)
has-scales(x)
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x : Ind

snake(x)
land-animal(x)
has-scales(x)
lays-eggs(x)


Figure 5.1: A poset of different types of snakes according to whether they satisfy certain
stereotypes.

It is important to emphasize that the status of this kind of network is different
from that of the other networks discussed in this thesis. Although it might justifiably
be called an implication network, since its arrows correspond to implications, it is not
really a lexical network in the sense that it describes the polysemy of an individual
lexical item. Whilst it may be useful for organising information about snakes, it tells
us little about what it means to be a snake. Contrast this to the networks given in
Chapter 3, which attempt to decompose concepts like high, tall, long, wide, and so
on, in terms of simpler predicates. Default rules are not decompositional, because in
order to state a rule like ‘most snakes have scales’ or ‘most snakes are land animals’,
one needs a pre-existing notion of ‘snake’. It is impossible to use default rules to
express features which are diagnostic of being a snake – such as being alive or having
a snake-like shape – without assuming the very concept one is trying to describe.

This is not to say that default rules have no role in a decompositional theory.
Rather, we should distinguish between prototypical features which confer mem-
bership in a category, and stereotypical features which are merely associated with
a category. To use an example from Coleman & Kay (1981), since surgery is a
male-dominated profession, maleness might be considered a stereotypical property
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of surgeons. Nevertheless, it should not be considered part of the category surgeon
since, “a female surgeon is in no way a marginal or defective member of the category”
(ibid.). Social changes which bring about a more balanced ratio of male to female
surgeons will not alter the meaning of the word surgeon; rather, they will alter
people’s attitudes regarding surgeons. Compare this to the property of having
medical knowledge, or habitually performing surgery, which are both inherent,
prototypical features of surgeons. The proper role of default rules is to describe
stereotypes such as ‘surgeons are male’, not to decompose a category like surgeon
into simpler features. Likewise, default rules involving snakes express properties
stereotypically associated with snakes, but cannot be used to define snake itself.

Whilst the stereotypical features of a category are not part of its inherent
decomposition, they do play an important role in how it is used and understood.
For instance, consider the following dialogue, based on an example by Reiter:

(507) A: Is John a pacifist?
B: He’s a Quaker.

A understands B’s utterance as affirming that John is a pacifist, because she
knows the generalization that most Quakers are pacifists. This is not a universal
generalization, since there are some Quakers who are not pacifists. Moreover,
being a pacifist is not an inherent feature of the meaning of Quaker – which
denotes membership in a particular religious group. Rather, the generalization that
Quakers are pacifists is a stereotype: part of culturally-specific world knowledge
about Quakers. It is precisely this kind of knowledge which is best represented
by a default rule.

How should default rules be expressed in DTT? Note that a stereotype like
‘Quakers are pacifists’ or ‘surgeons are male’ cannot be represented by a dependent
function, like an arrow in a lexical network, since it is not universally true. Ellen
Breitholz (2011, 2020) has developed a type-theoretic approach to dialogue semantics
in which default rules are implemented by what she calls enthymemes, a kind of
‘free’ context update. An enthymeme can be thought of as an element of the type:

(508) Enthymeme :=
P : Type

P → Type


that is, it takes a context satisfying a collection of presuppositions, and extends it
by the addition of further information. (Note that, in contrast to an element of type
Update – i.e. a sentence meaning – an enthymeme need not extend the context by
only a single proposition, but can add an arbitrarily large amount of information.) To
give an example, the stereotype ‘Quakers are pacifists’ would be written as follows:

(509)

P :=
x : Ind

Quaker(x)


λp : P . pacifist(p.1)


This simple enthymeme takes a context in which an individual x is known to be
a Quaker and adds the additional information that x is a pacifist. The procedure
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for updating a context using an enthymeme is very similar to the context update
procedure described in 4.7. Given a current context Ct : Type and an enthememe
E : Enthymeme, one begins by finding a function

(510) σ : Ct → E.1

from the context to the presuppositions of E. One then forms the extended context:

(511) C ′
t :=

c : Ct

E.2(σ(c))


which includes both the original context and the information added by the en-
thymeme. See Breitholtz (2020) for a detailed illustration of how enthymemes
can be used in conjunction with a dialogue gameboard semantics to explain
interactions like (507).

5.3.3 Optimality theoretic semantics
The next approach I shall compare with my own is an alternative conception of how
a language user ought to decide between senses when interpreting a sentence with
respect to a context. A number of authors (e.g. Blutner 2000, Hendriks & De Hoop
2001, Zeevat 2000, Zwarts 2004) have argued for a form of interpretation based on
Optimality Theory, whereby the interpretation which gets selected is the one which
best satisfies a system of ranked constraints. To illustrate this approach, I shall
focus on Zwarts’ (2004) analysis of the directional preposition around. The choice
of this example is motivated in part because it is based on Vector Space Semantics,
the same framework used in Chapter 3 for the description of spatial adjectives. It
will therefore serve both to illustrate the Optimality Theoretic approach, and to
show how Vector Space Semantics might be extended to other domains.

Zwarts begins by noting the diverse range of paths which may be described as
round or around, as shown by sentences like the following:

(512) Senses of round (Zwarts 2004):
a. The postman ran round the block.
b. The burglar drove round the barrier.
c. The steeplechaser ran round the corner.
d. The tourist drove round.
e. The driver took the long way round.
f. The woman came round again.

For each of the above sentences, Figure 5.2 gives an example of a path which
might fit the description. As discussed in Chapter 2, Zwarts understands a path
as a continuous function from the real interval [0, 1] to vectors, where each vector
provides the position of a point along the path. The origin from which the vectors
emanate is determined by the object of the preposition, or by some contextually
understood reference point if no object is present.
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Figure 5.2: Paths described as round, from Zwarts (2004). Cases range from a perfectly
closed circle, to a path which veers around an object, to a path which explores an area.

Zwarts takes the prototypical sense of round to refer to a circle, as shown in
Figure 5.2a. He proceeds to formalize various properties of circular paths which
are absent in less typical interpretations:

(513) • Completeness: for every direction in a 2D plane, some vector in the
path points in that direction

• Constancy: all the vectors in the path maintain a constant length
• Inversion: at least two vectors in the path point in opposite directions
• Orthogonality: at least two vectors in the path point in orthogonal

directions
• Detour: the distance between the start and end point of the path is

shorter than the length of the path itself
• Loop: the start and end point of the path are identical

For each of the above properties, Zwarts shows that an interpretation of round
can be found which does not include the property. He concludes that the weakest
possible meaning of round is “any path”. The various properties are partially
ordered by strength, as follows:

(514)

circle

constancy completeness loop

inversion detour orthogonality

path

To explain how a speaker decides on the correct interpretation of round in a
given context, Zwarts invokes Optimality Theory (OT). OT is a theory in which
different linguistic structures compete with each other with respect to a system of
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ranked constraints; the structure which gets selected is the one which optimally
satisfies the constraints by incurring fewer violations than the alternatives. In this
case, the alternatives which compete for selection are different interpretations of
the word round. Zwarts proposes the following constraints:

(515) • Strength: Prefer stronger intepretations to weaker interpretations
• Fit: Interpretations should not conflict with the context (including the

linguistic context)
• Vagueness: The strongest interpretation should be avoided

The constraints Strength and Fit are present in some form in all versions of OT
semantics: they work together to ensure that the interpreter chooses the strongest
possible interpretation compatible with the context. Fit must be ranked over
Strength to ensure that a weaker, consistent meaning is preferred over a stronger,
inconsistent meaning. The role of Vagueness is to block the strongest possible
interpretation, which according to Zwarts is usually too restricted.

The example which Zwarts uses to illustrate the theory is round the door. Fol-
lowing standard practice in OT, the competition between candidate interpretations
is illustrated by means of a tableau, where rows correspond to possible candidates,
columns correspond to constraints, and each cell registers a degree of violation:

(516)

round the door Fit Strength
a. completeness, loop ∗

☞ b. inversion ∗
c. orthogonality ∗∗
d. detour ∗ ∗ ∗

As shown, the candidate interpretations which Zwarts considers are: (a) a path
satisfying completeness and loop, (b) a path satisfying inversion, (c) a path
satisfying orthgonality, and (d) a path satisfying detour. Candidate (a)
violates Fit, since the door is connected to a wall, making it impossible to have
a complete path around it. The other three candidates are consistent, but differ
in relative strength. Candidate (b), being the strongest, violates Strength the
least, and gets selected as the optimal candidate.

There are a number of crucial differences between the OT semantics approach
and the approach which I have advocated in this thesis. OT semantics begins from
the assumption that all the possible interpretations are available all at once, together
with their entailment relations. From our perspective, however, the entailment
relations between senses cannot simply be taken for granted: rather, they must be
computed on the basis of the constituents of the expression and the way they are
combined. For instance, in a negative context like The burglar drove, not round the
barrier, but towards it, the relative strength of interpretations is reversed, and the
strongest sense of the entire sentence is derived from the weakest sense of round.
The OT account therefore needs to be connected to a theory of how the relative
strength of senses is derived, such as that given in this thesis.

Moreover, in my approach, the interpreter does not derive all the possible
interpretations of an expression at once, and then evaluate them, because this is
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prohibitively expensive. Rather, interpretations are constructed in a breadth-first
manner beginning with the most general, and building only as much structure
as necessary in order to identify the strongest possible assertion compatible with
the context. This procedure is not necessarily incompatible with OT semantics,
but it is incompatible with the naive assumption often adopted in OT that the
generator yields a list of all possible candidates prior to evaluation. An OT
semantics in which (a) the relative ordering of senses is derived rather than taken
for granted, and (b) candidates are constructed and evaluated in a breadth-first
manner from most to least general, would be very similar to the interpretation
strategy described in Section 4.7.2.

5.3.4 Neo-Gricean pragmatics
The final theoretical idea which I shall discuss in relation to my own approach is
neo-Gricean pragmatics, as represented by the work of Horn (1972), Gazdar (1980),
Levinson et al. (2000), Chierchia (2004), Sauerland (2004), and others. The primary
focus of this work is explaining scalar implicatures such as the following:

(517) John ate some of the apples.
⇒ John did not eat all of the apples.

That this is a case of implicature as opposed to entailment is easily demonstrated
using the standard cancellation test:

(518) John ate some of the apples. In fact, he ate all of them.

The starting point for all neo-Gricean approaches is the following kind of explanation.
Given a choice between two sentences ϕ′ and ϕ, where ϕ′ is strictly more informative
than ϕ (that is, ϕ′ entails ϕ but ϕ does not entail ϕ′), a cooperative speaker ought
to prefer the more informative option ϕ′. If the speaker instead utters ϕ, then one
can conclude that they have a good reason for not uttering the more informative
option ϕ′: that is, either the speaker believes that ϕ′ is false, or the speaker does
not know whether ϕ′ is true or false. To apply this to the implicature in (517),
the two alternatives in this case are:

(519) a. John ate some of the apples.
b. John ate all of the apples.

A cooperative speaker should prefer (b) to (a), because (b) is more informative than
(a). Given that the speaker has uttered (a), we can therefore conclude that they
had a good reason for not uttering (b). There is no reason to assume ignorance
on the part of the speaker, so we infer that (b) must be false.

The major challenge in neo-Gricean pragmatics is spelling out which stronger
alternatives dialogue participants should take into account in the above kind
of procedure. For any actual utterance, there are an infinite number of more
informative alternatives which entail it. For example, the following are all more
informative than (519a):
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(520) a. John ate some of the apples and some of the pears.
b. John ate some of the apples and so did Mary.
c. John and his friends ate some of the apples.
d. . . .

However, none of these stronger alternatives gives rise to a scalar implicature
outside of certain very specific contexts. That is, we do not usually get any
of the following implicatures:

(521) John ate some of the apples.
⇏ John did not eat any of the pears.
⇏ Mary did not eat any of the apples.
⇏ None of John’s friends ate any of the apples
⇏ . . .

Moreover, as Katzir (2007) has pointed out, negating all possible more informative
alternatives can lead to contradictions. Consider the following sentences:

(522) a. John ate some of the apples.
b. John ate all of the apples.
c. John ate some but not all of the apples.

Both (b) and (c) are more informative than (a), so an utterance of (a) ought to
generate the following implicatures:

(523) John ate some of the apples.
⇒ John didn’t eat all of the apples.
⇒ John didn’t eat some but not all of the apples.

The problem is that all three of these statements cannot be true at the same time.
In general, for any sentence ϕ with a more informative alternative ϕ′, the sentence
ϕ ∧ ¬ϕ′ is also a more informative alternative, giving rise to two contradictory
implicatures. At best, we would have to conclude that the speaker is unable to
assert either ϕ or ϕ ∧ ¬ϕ′ due to ignorance, but then every sentence would give
rise to an ignorance implicature.

Clearly, if the neo-Gricean account is to be preserved, the set of relevant
alternatives for any given sentence needs to be somehow restricted. One proposal
put forward by Horn (1972) and developed by Gazdar (1980) is based on lexically
specified scales, often known as Horn scales. All is a valid alternative to some
because they belong to a common Horn scale ⟨all, some⟩, whereas some but not
all does not. Generating alternative candidates for a given sentence is a matter of
substituting, for each word which belongs to a Horn scale, each of its stronger scale-
mates. Other examples of Horn scales include ⟨and, or⟩, ⟨always, often, sometimes⟩,
⟨necessary, possible⟩ and so on. Like degrees, the items on a Horn scale must
share the same polarity: the negative polarity scale ⟨no, few⟩ is distinct from its
positive polarity counterpart ⟨all, some⟩.

Besides the use of Horn scales, there is also a non-lexical approach to restricting
alternatives based on the notion of complexity. The idea is that the valid alternatives
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to a sentence are other sentences which are at most as complex. For this account
to work, one needs to provide an adequate definition of complexity. Phonological
definitions (e.g. number of syllables) yield incorrect results: what is needed is
a definition which takes into account the syntactic structure of the sentence.
Katzir proposes the following:

(524) structural complexity (Katzir 2007, p.11): Let ϕ, ϕ′ be parse trees.
If we can transform ϕ into ϕ′ by a finite series of deletions, contractions,
and replacements of constituents of ϕ with constituents of the substitution
source L(ϕ), then ϕ′ is less structurally complex than ϕ, written ϕ′ ≲ ϕ.

where the substitution source L(ϕ) is defined as “the union of the lexicon of the
language and the set of all subtrees of ϕ”. The set of viable alternatives to ϕ which
can feasibly license scalar implicatures is then given by all sentences which are (1)
at most as structurally complex as ϕ, and (2) logically entail ϕ. To give an example
of a complexity-based implicature, consider the following sentences:

(525) (ibid. p.9)
a. If we meet John but not Mary it will be strange.
b. If we meet John it will be strange.

Here, uttering (a) implicates that (b) is false. In other words, we get the implicature
that not all situations in which we meet John will give rise to strangeness (provided
he is accompanied by Mary). That ¬ (b) is an implicature can be shown using
explicit cancellation:

(526) If we meet John but not Mary it will be strange. In fact, if we meet John it
will be strange.

As required, the complexity approach admits (b) as a viable alternative to (a),
because it is less structurally complex than (a) and at the same time entails (a).
On the other hand, this example cannot be explained by invoking Horn scales, since
there is no Horn scale relating (a) and (b). Examples like these illustrate the need
to combine Horn scales with a complexity-based approach.

Katzir suggests that the complexity approach removes the need to appeal to
Horn scales altogether, claiming that “the effects of a seemingly stipulative definition
of scales are directly predicted from our complexity-sensitive alternatives”. The
idea is that replacing a word with one of its scale-mates, e.g. some 7→ all, yields
a structurally viable alternative, so the lexically specified scale ⟨some, all⟩ can
be replaced by the possibility of arbitrary substitution. However, allowing for
arbitrary substitutions in this way creates more problems than it solves. For
instance, consider the following sentences:

(527) a. John saw a dog.
b. John saw a Labrador.

According to Katzir’s definition of structural complexity, (a) and (b) are equal
in structural complexity since either can be derived from the other by lexical
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substitution. Moreover, (b) is a viable alternative to (a), because it semantically
entails it. Therefore, uttering (a) ought to implicate ¬ (b), which is not the case
outside of certain very specific contexts. In order to allow substitutions like some
7→ all but disallow substitutions like dog 7→ Labrador, we must appeal to the fact
that ⟨some, all⟩ form a Horn scale, whereas ⟨Labrador, dog⟩ do not.

Neo-Gricean pragmatics and my compositional theory of lexical networks have
quite different aims. My framework describes the possible semantic interpretations
which are licensed by a given sentence, the various connections between them,
and how the interpreter should go about choosing the interpretation which best
matches a given context. Neo-Gricean pragmatics, on the other hand, describes
the effect of what the speaker ‘might have said but didn’t’: it requires interpreting
sentences which are different from the sentence which the speaker actually uttered.
At the same time, the two approaches also have a number of similarities. Both
rely crucially on the concept of informativeness or entailment, and both assume
that the speaker is being as informative as possible. In my approach, the maximal-
informativeness assumption is behind the search for the strongest interpretation
compatible with the context; in neo-Gricean pragmatics, it is what licenses the
inference that stronger sentences are unassertable.

Not only are the two approaches compatible, but the resources provided by the
compositional theory of lexical networks are important for neo-Gricean inference.
To begin with, notice that a Horn scale is really just another example of an
implicational network. Horn scales are similar to the networks discussed in this
thesis, except that they express relationships between the meanings of different
words, and are usually total orders, meaning all the nodes are arranged in a single
long chain. To give an example, the Horn scale ⟨all, some⟩ would correspond to
the following simple network:

(528) JallK JsomeKα

where:

• JallK, JsomeK : (Ind → Type) → (Ind → Update) → Update

• α : ∏N :(Ind→T ype)
∏

P :(Ind→Update)JallK(N)(P ) →Update JsomeK(N)(P )

That is, JallK and JsomeK are quantificational determiners, and α maps the pre-
suppositions and assertions of JallK(N)(P ) to the presuppositions and assertions
of JsomeK(N)(P ), for any N and P .

How does one go from a scale relating a group of words to a scale relating a
group of sentences? In the compositional theory of lexical networks, the answer is
automatic: by knowing how arrows are preserved under composition. For instance,
consider the Horn scale ⟨always, often, sometimes⟩. The context John X swims lifts
the Horn scale and preserves its order, as follows:
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(529)

JalwaysK

JoftenK

JsometimesK

JJohn always swimsK

JJohn often swimsK

JJohn sometimes swimsK

It follows that JJohn often swimsK implicates ¬JJohn always swimsK. However, the
negative context John doesn’t X swim lifts the Horn scale in the opposite order:

(530)

JalwaysK

JoftenK

JsometimesK

JJohn doesn’t always swimK

JJohn doesn’t often swimK

JJohn doesn’t sometimes swimK

As a result, JJohn doesn’t often swimK implicates ¬JJohn doesn’t sometimes swimK.
There are also contexts which fail to preserve the Horn scale at all, such as the context
Jane said “John X swims” : these contexts do not license any scalar implicatures
whatsoever. The upshot is that the theory of Horn scales needs to be supplemented
by an account of how implication is preserved under composition. The compositional
theory of lexical networks developed in this thesis automatically provides such an
account, because every word which is capable of acting on an implication network
contains as part of its lexical entry both an action on senses and an action on arrows.

We might imagine a synthesis of the theory of lexical networks and the theory
of Horn scales along the following lines. Given multiple lexical networks of the
same type N1, N2, N3, . . . , a Horn scale ⟨N1, N2, N3, . . . ⟩ consists of a monotone
family of arrows from senses of Ni to senses of Nj, for every i < j. For example,
the following is a valid Horn scale:

(531)

S1

S2

N1

T1

T2 T3

N2

U1

U2

N3

V1

N4

Notice that the inter-network (dashed) arrows are monotone with respect to the
intra-network (bold) arrows. In general, the networks on a Horn scale need not have
the same number of senses: some may have many, others only one. Now suppose
that the speaker utters a sentence involving the word U – the third network in
the diagram. The hearer begins by searching through the U network for a sense
which is compatible with the context. Suppose that the hearer discovers that U1
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is compatible with the context. She should then construct an alternative version
of the sentence, replacing U1 with T1, since this lies directly above U1 on the Horn
scale. As in the usual neo-Gricean account, she then tries to explain why the
speaker did not utter T1: either (a) T1 is incompatible with the context, (b) T1 is
compatible and the speaker disbelieves its assertion, or (c) T1 is compatible and
the speaker is unsure whether its assertion is true or false. Options (b) and (c)
will then give rise to an implicature in the usual way.

265



5.4 Conclusion
In Chapter 1, I described two approaches to meaning in language: a ‘downwards’
approach which looks at the senses of individual words, how these are grounded
in cognition and perception, and how they are connected together into networks;
and an ‘upwards’ approach which is concerned with how words combine together
to yield the truth conditions of sentences, and how sentences contribute to an
ongoing discourse. The former is associated with lexical semantics and cognitive
linguistics (e.g. Fillmore 1976, Lakoff 1987, Tyler & Evans 2003), whereas the latter
is associated with formal semantics in the Montague tradition (e.g. Montague 1973,
Partee 1986, Heim & Kratzer 1998). This thesis has been an attempt to take a
small class of words – the English spatial adjectives – and look ‘in both directions
at once’, exploring both their lexical semantics and their compositional semantics.
To achieve this, it was necessary to develop a general framework within which
lexical and compositional semantics can interact.

A central idea in this thesis which I take to be important for the general
study of language and mind is that cognitive semantics and formal semantics are
fundamentally compatible. I have argued that the view that the two fields are
incompatible derives from a realist construal of formal semantics, according to which
the truth conditions of a sentence are given with respect to a mind-independent
model of the real world (e.g. Lewis 1972, Abbott 1997). The alternative, known as
conceptualism or internalism, holds that truth conditions are given with respect
to a model of the world as conceptualized by language users (Bach 1986, Verkuyl
1989, Jackendoff 1998). The various components of the formal model – individuals,
events, times, degrees, vectors, and so on – are not mind-independent entities, but
part of a shared conceptual world. On this view, the difference between formal
and cognitive approaches has more to do with one’s taste for formal language
than any fundamental disagreement.

My hope is that in the future, formalists and cognitivists will come to take
each other’s concerns more seriously. Formal semantics is concerned above all with
compositionality and inference. A word like wide can be treated as atomic because
the important thing is how it contributes to a larger expression such as wider than
10cm, as wide as a car, the widest object in the room, and so forth. Cognitivists,
on the other hand, are most concerned with the connection between language and
the rest of the mind. Far from being atomic, a word like wide becomes an entire
domain of enquiry because of the complex conceptualization which it invokes. There
is a tendency for both fields to neglect precisely what the other considers to be
important. It is by bearing in mind both kinds of complexity, and recognising
the connections between them, that we can hope to make progress. This thesis
represents a small step in the direction of such a unification.
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