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A comprehensive expectation identification
framework for multirate time-delayed systems

Jing Chen, Jie Gao, Yanjun Liu, Cheng Wang, Quanmin Zhu

Abstract—The expectation maximization (EM) algorithm has
been extensively used to solve system identification problems with
hidden variables. It needs to calculate a derivative equation and
perform a matrix inversion in the EM-M step. The equations
related to the EM algorithm may be unsolvable for some
complex nonlinear systems, and the matrix inversion has heavy
computational costs for large-scale systems. This paper provides
two expectation based algorithms with the aim of constructing a
comprehensive expectation framework concerning different kinds
of time-delayed systems: (1) for a small-scale linear system, the
classical EM algorithm can quickly obtain the parameter and
time-delay estimates; (2) for a complex nonlinear system with
low order, the proposed expectation gradient descent (EGD)
algorithm can avoid derivative function calculation; (3) for
a large-scale system, the proposed expectation multi-direction
(EMD) algorithm does not require eigenvalue calculation and
has less computational costs. These two algorithms are developed
based on the gradient descent and multi-direction methods.
Under such an expectation framework, different kinds of models
are identified on a case-by-case basis. The convergence analysis
and simulation examples show effectiveness of the algorithms.

Index Terms—Time-delayed system, comprehensive expecta-
tion framework, maximization method, gradient descent method,
multi-direction method

I. INTRODUCTION

Parameter estimation is an important element in control engineer-
ing since it is the foundation for designing a controller particularly a
robust controller [1], [2]. If a considered system does not have latent
or unknown variables, e.g., unknown time-delay, missing outputs and
unknown model identity, a number of well-known methods can be
used for parameter estimation. These methods can be roughly divided
into two classes: on-line algorithms and off-line algorithms [3], [4].
The on-line algorithms, such as the recursive least squares algorithm
and the stochastic gradient algorithm, update the parameters in real
time based on the latest collected data; thus, they are more sensitive
to the new arrived data and may have slow convergence rates [5].
However, the off-line algorithms, e.g., the least squares algorithm
and the gradient descent iterative algorithm, estimate the parameters
through all the collected data. They are often more robust to the
collected data and have fast convergence rates [6].

The last a few decades have witnessed the developments of
communication networks and sensors. These developments have been
utilized for many engineering applications. For example, in process
control, sensors collect data and then transmit them to a control
center through a network channel. When the network experiences
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congestion or a transmission problem, time-delay will occur [7], [8].
A special class of problems in time-delayed system identification is
the fact that time-delay at each sampling instant is unknown and time
varying. To estimate the parameters, the unknown time-varying time-
delay at each sampling instant should be identified first, which makes
identification of time-delayed systems significantly more demanding
than standard system identification [9]. One of the most powerful
off-line identification methods for systems with time-delay is the EM
algorithm [10]. This algorithm is often used to identify systems with
latent variables, such as missing outputs [11], unknown time-delays
[12], hidden variables [13] and so on.

The basic procedure of the EM algorithm is to obtain the posterior
distribution of the latent variables in the Expectation (E) step, and
then to update the parameters using the maximization (MAX) method
in M step [14], [15]. For example, Xie et al developed an EM
algorithm for FIR models with varying time-delays, and the time-
delays and parameters are iteratively estimated through the EM
algorithm [12]. Zhao et al proposed a robust EM algorithm for ARX
models with varying time-delays [16], [17]. Ma et al developed
a modified Kalman filter based EM algorithm for ARX models
with time-varying time-delays and missing outputs [18]. However,
the MAX method should perform matrix inversion and solve a
derivative equation, which brings two challenges: the computational
costs increase significantly with increase of matrix dimension; the
derived derivative equations often do not have analytical solutions
[19]. Thus, the EM algorithm can be inefficient when the considered
systems have one or more of the above problems.

Unlike the MAX method, the gradient descent (GD) method
does not require matrix inversion and does not need to solve a
derivative equation, and thus is commonly used for nonlinear system
identification [20]. However, the GD method is relatively slow when
the solution is close to the optimum. Technically, its asymptotic
convergence rate is inferior to many other methods [21]. In addition,
the GD algorithm requires computing the eigenvalue of a matrix in
order to choose a suitable step-size [22]. A natural question arises:
can we develop a method which can avoid calculating the eigenvalue
and solving the derivative equation, but with less computational cost?
To address this problem, the Arnoldis method which is often applied
to solve the linear equation Ax = b can be extended to solving the
problems in EM and expectation GD (EGD) algorithms. Its basic
idea is to generate several orthonormal directions in each iteration,
by which a high-dimensional matrix can be transformed into a low-
dimensional matrix [23]. In addition, it avoids solving a derivative
equation.

To efficiently utilize the expectation based algorithms to solve
complex identification problems, such as large-scale systems or
nonlinear systems, there is a need to integrate new methods available
in both machine learning and numerical mathematics to construct a
more efficient expectation framework for handling different kinds of
system identification problems. The focus of this paper is on applying
the GD method and the multi-direction (MD) method to replace
the MAX method in the EM algorithm to improve the estimation
efficiency. The contributions are summarized as follows:

(1) The EGD algorithm does not require inverting a matrix and
solving a derivative equation, thus can be applied to systems with
more complex nonlinear characteristics.

(2) The expectation MD (EMD) algorithm avoids computing the
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eigenvalue and solving a derivative equation. Furthermore, it has
less computational cost, therefore suitable for large-scale system
identification.

(3) The EMD algorithm establishes a link between the EGD algo-
rithm and the EM algorithm, thus constructs a more comprehensive
expectation framework for different kinds of system identification
problems.

The organization of this paper is as follows: Section II defines
the time-delayed system of interest. Section III introduces the EM
algorithm. Section IV proposes the EGD and EMD algorithms. The
properties of all the considered algorithms are given in Section V.
Three simulation examples are provided in Section VI. Section VII
concludes this paper and points out possible future directions.

II. THE TIME-VARYING TIME-DELAYED SYSTEM

The time-delayed multirate (slow-rate output and fast-rate input)
system to be considered in this paper is described as follows,

x(s) =B(g)u(s),

y(Si) = x(Si − τi) + v(Si),

where s is the integer fast-rate sampling time index, Si is the integer
slow-rate sampling index (to be elaborately shortly), u(s) is the
measurable input and is taken as a persistent excitation signal, x(s)
is the true output, y(Si) is the output which is contaminated by the
noise v(Si), v(Si) is a Gaussian white noise with variance σ2, and τi
is the unknown time-delay at the sampling instant Si. The polynomial
B(g) is given as

B(g) := b1g
−1 + b2g

−2 + · · ·+ bmg−m,

in which g−1y(s) = y(s− 1).
Some special considerations have to be made for the information

vectors that will be defined shortly. We sample the output at the
slow-rate sampling instant Si, i = 1, · · · , N , while the input data
u(s), s = 1, · · · , L (L > m) are sampled with smaller sampling
period ∆s. Thus, the slow-rate outputs are only measurable at
s = Si∆s. The time-delay tdi = τi∆s is time varying, and the
integer τi is uniformly distributed between [0, q], e.g., p(τi = j) =
1

q+1
, j = 0, · · · , q. It follows that the above time-delayed system can

be rewritten as

y(Si) =B(g)u(Si − τi) + v(Si). (1)

Define the information vector φ(Si − τi) and parameter vector θ
as

φ(Si − τi) = [u(Si − τi − 1), · · · , u(Si − τi −m)]T ∈ Rm,

θ = [b1, · · · , bm]T ∈ Rm.

Then, the following regression model is used to express the time-
delayed system

y(Si) = φT(Si − τi)θ + v(Si). (2)

Let Y = {y(S1), y(S2), · · · , y(SN )}, U = {u(1), u(2), · · · , u(L)}
and the time-delays at each sampling instant Si be Γ =
{τ1, τ2, · · · , τN}. Define the measurable data set Cobs = {Y,U} and
the hidden data set as Cmis = {Γ}. The purpose of the expectation
based identification algorithms is to use the observed data Cobs to
iteratively estimate the latent variables Cmis and the parameter vector
θ.

III. THE EM ALGORITHM

The EM algorithm consists of E step and M step [12]. In the
E-step, we compute the F-function based on the previous estimated
parameter vector θk, where θk is the parameter vector estimated in
iteration k:

E-step

F (θ|θk) = E
Cmis|Cobs,θk

{log p(Cobs, Cmis|θ)},

and then in the M-step, update the estimated parameter vector θ by
maximizing F (θ|θk):

M-step
θk+1 = argmax

θ
F (θ|θk).

Define

p(τi = j|Y (Si), U(Si − τi),θk) = w(τi = j),

where Y (Si) = {y(Si), y(Si−1), · · · , y(S1)} and U(Si − τi) =
{u(Si − τi − 1), u(Si − τi − 2), · · · , u(1)}.

We can obtain the time-delay estimates in the E step, where
the posterior distribution p(τi = j|y(Si),φ(Si − τi),θk) can be
approximated by the following equation

ŵk+1(τi = j) = p(τi = j|y(Si),φ(Si − τi),θk)

=
p(y(Si)|φ(Si − τi), τi = j,θk)w(τi = j)
q∑

j=0

p(y(Si)|φ(Si − τi), τi = j,θk)w(τi = j)

, (3)

in which w(τi = j) is the initial distribution of the time-delay τi and
is equal to

w(τi = j) =
1

q + 1
.

It follows that Equation (3) can be simplified as

ŵk+1(τi = j) =
p(y(Si)|φ(Si − τi), τi = j,θk)
q∑

j=0

p(y(Si)|φ(Si − τi), τi = j,θk)

. (4)

Once the time-delays are estimated, the F function can be written as

F (θ|θk) =

N∑
i=1

q∑
j=0

ŵk+1(τi = j) log p(y(Si)|φ(Si − τi), τi = j,θ)×

p(u(Si)|τi = j,θ)p(τi = j|θ),

where p(y(Si)|φ(Si − τi), τi = j,θ) is computed by

p(y(Si)|φ(Si − τi), τi = j,θ) =

1√
2πσ

exp

[
−(y(Si)−φT(Si − j)θ)2

2σ2

]
, (5)

and p(τi = j|θ) = 1
q+1

and p(u(Si)|τi = j,θ) are both unrelated
with the parameters. Therefore, we have

F (θ|θk)∝−1

2

N∑
i=1

q∑
j=0

ŵk+1(τi = j)[y(Si)−φT(Si − j)θ]2.

(6)

The M step of the EM algorithm is to obtain an improved parameter
vector estimate θk, in the sense:

F (θk+1|θk) > F (θk|θk).

In the EM algorithm, maximizing the F function

θk+1 = argmax
θ

F (θ|θk)

is equivalent to minimizing the following cost function

f(θ) =
1

2

N∑
i=1

q∑
j=0

ŵk+1(τi = j)[y(Si)−φT(Si − j)θ]2, (7)

and then the parameter estimates are computed by

θk+1 =

[
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)φT(Si − j)

]−1

[
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)y(Si)

]
. (8)
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Equations (4) and (8) run iteratively until the parameter estimates
converge.

Remark 1. In the EM algorithm, the parameter estimates are
obtained using the maximization method, and in which φ(Si −
j)φT(Si − j) ∈ Rm×m [12], [15], [18]. When the order m is large,
the computational costs of the matrix inversion in (8) are significantly
large [24]. For example, when m = 1000, the flops of the matrix
inversion are 109 (only counting the number of multiplication and
division). Therefore, the EM algorithm is inefficient for large-scale
system identification.

Remark 2. The majority of nonlinear equations are not solvable
analytically, e.g., the generalized exponential autoregressive model in
[4]. Thus, using the EM algorithm for developing nonlinear models
whose parameters cannot be analytically extracted from the derivative
function can be problematic; see Example 3 in Section VI.

IV. THE EGD AND EMD ALGORITHMS

The EM algorithm has two shortcomings: (1) when φ(Si −
j)φT(Si−j) ∈ Rm×m, the flops of the matrix inversion are O(m3),
that is, the computational costs increase sharply when m becomes
larger; (2) the derivative equation of the cost function must have
analytical solutions. To these ends, two approaches are employed in
this section: one can avoid the derivative equation calculation and
matrix inversion, and the other can transform a high-dimensional
matrix inversion into a low-dimensional matrix inversion.

A. EGD algorithm
Rewrite the cost function

f(θ) =
1

2

N∑
i=1

q∑
j=0

ŵk+1(τi = j)[y(Si)−φT(Si − j)θ]2.

Assume that the iterative parameter estimates are

θk+1 = θk + λkdk, (9)

where dk is a direction and is computed by

−∇f(θ)

∇θ
|θ=θk

=

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk]. (10)

Substituting Equation (10) into Equation (9) yields

θk+1 = θk + λk

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)×

[y(Si)−φT(Si − j)θk]. (11)

Let the iteration function be

θk+1 = F (θk) =

[I − λk

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)φT(Si − j)]θk +

λk

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)y(Si). (12)

For the sequence {θk} to be convergent, one should ensure

ρ[I − λk

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)φT(Si − j)] < 1,

where ρ[G] means the spectral radius of matrix G [25]. Therefore,
the step-size satisfies

0 < λk <
2

λmax[
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)φT(Si − j)]

,

(13)

where λmax[
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)φT(Si − j)] means the

largest eigenvalue of matrix
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si− j)φT(Si−

j).
Remark 3. The EGD algorithm can ensure f(θk+1) 6 f(θk).

However, it cannot achieve the optimal parameter estimation in each
iteration using current measured data and estimated latent variables
(since it does not solve the derivative equation to get the optimal
solution). Therefore, its convergence rate is slower than that of the
EM algorithm.

Remark 4. The EGD algorithm can avoid calculating matrix
inversion and solving a derivative equation (see Equation (10)),
but needs to find the largest eigenvalue of a matrix (see Equation
(13)). It brings another issue: computing the eigenvalues of a high-
dimensional matrix is challenging or even infeasible.

Remark 5. The EGD algorithm is a first-order iterative optimiza-
tion algorithm for finding the minimum of the cost function f(θ),
which means that it is easy to fall into a local optimum.

B. EMD algorithm
The key to the EGD algorithm is to update the parameters using

only one direction in each iteration, which performs the matrix
eigenvalue calculation instead of the matrix inversion but with cost
of slow convergence rates. In this subsection, an EMD algorithm
is developed, which updates the parameters based on l (l < m)
directions in each iteration. Therefore, it has faster convergence rates
than the EGD algorithm, and has less computational loads than the
EM algorithm.

Arnoldi’s method [23]: Assuming that the Krylov subspace is
ξ̄(l) = span{ξ̄(1), Qξ̄(1), · · · , Ql−1ξ̄(1)}, where Q ∈ Rm×m

is nonsingular, ξ̄(1) ∈ Rm and satisfies ∥ξ̄(1)∥ = 1, then, an
orthonormal basis {ξ̄(1), ξ̄(2), · · · , ξ̄(l)} can be computed by the
following steps.

1) INITIALIZATION. Given a vector ξ̄(1) with ∥ξ̄(1)∥ = 1.
2) Let i = 1.
3) Compute (Qξ̄(i), ξ̄(j)), j = 1, 2, · · · , i.

4) Compute ξ(i+ 1) = Qξ̄(i)−
i∑

j=1

(Qξ̄(i), ξ̄(j))ξ̄(j).

5) Normalize ξ̄(i+ 1) = ξ(i+1)
∥ξ(i+1)∥ .

6) Let i = i+ 1 and go to step 3),
where (a, b) means the inner product of vectors a and b.

Assuming that the parameter vector estimate in iteration k is θk

and the time-delay estimates are {τk+1
1 , τk+1

2 , · · · , τk+1
N } (which

have been estimated in the E step based on the parameter vector
estimate θk).

The residual error can be written by

ξk+1(1) =
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk].

(14)

Let

ξ̄k+1(1) =
ξk+1(1)

∥ξk+1(1)∥ =
ξk+1(1)

βk+1
,

Qk+1 =

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)φT(Si − j).

Based on Arnoldi’s method, we construct the following l orthonormal
directions as

ξ̄
k+1

(l) = [ξ̄k+1(1), ξ̄k+1(2), · · · , ξ̄k+1(l)], (15)
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where l < m, and [ξ̄k+1(i)]Tξ̄k+1(j) = 0, i ̸= j.
It follows that the parameter estimates in iteration k + 1 are

computed by

θk+1 = θk + ξ̄
k+1

(l)γk, (16)

where ξ̄
k+1

(l) contains l orthonormal directions/vectors. Next, we
aim to find a suitable γk which can ensure

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk+1] 6

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk].

Substituting Equation (16) into the left side of the above equation
yields

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk+1]

= βk+1ξ̄k+1(1)−
[Qk+1ξ̄

k+1(1), Qk+1ξ̄
k+1(2), · · · , Qk+1ξ̄

k+1(l)]γk. (17)

According to Arnoldi’s method, we have

Qk+1ξ̄
k+1

(l) = ξ̄
k+1

(l + 1)Pk, (18)

Pk =

[
P̄k

pkl+1,le
T(l)

]
∈ R(l+1)×l, (19)

P̄ =


pk1,1 pk1,2 · · · pk1,l−1 pk1,l
pk2,1 pk2,2 · · · pk2,l−1 pk2,l
0 pk3,2 · · · pk3,l−1 pk3,l
...

...
. . .

...
...

0 0 · · · pkl,l−1 pkl,l

 ∈ Rl×l, (20)

el(l) = [0, 0, · · · , 0, 1]T ∈ Rl, (21)

where pkj,i = (Qk+1ξ̄
k+1(i), ξ̄k+1(j)), j 6 i and pki+1,i = ∥ξk+1

i+1 ∥,
the subscript l in el(l) means that the order of the vector is l, and l
in the brackets means that the lth element in the vector is 1.

Equation (17) is transformed into

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk+1]

= βk+1ξ̄k+1(1)− ξ̄
k+1

(l + 1)Pkγk

= ξ̄
k+1

(l + 1)[βk+1el+1(1)− Pkγk].

Since ξ̄
k+1

(l + 1) ∈ Rm×(l+1) and m > (l + 1), the following
equality holds

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk+1]∥ =

∥βk+1el+1(1)− Pkγk∥. (22)

According to matrix theory, there exists an orthogonal matrix J ∈
R(l+1)×(l+1), which can make Equation (22) satisfy

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk+1]∥ =

∥JT∥∥Jβk+1el+1(1)− JPkγk∥ =∥∥∥∥[[ ηT

ηk+1

]
−

[
P̃k
0

]
γk

]∥∥∥∥ , (23)

where

Jβk+1el+1(1) =
[

ηT

ηk+1

]
,

JPk =

[
P̃k
0

]
,

ηT ∈ Rl, P̃k ∈ Rl×l, 0 ∈ R1×l.

Then, the following theorem is obtained.
Theorem 1: Assume that the parameter vector estimate θk+1

using the EMD algorithm is expressed by (16), the l directions
ξ̄
k+1

(l) are written by (15). When γk = [P̃k]
−1ηT, the following

inequality holds

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk+1]∥ 6

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk]∥.

(Proof is given in Appendix A.)

Remark 6. Theorem 1 shows that the EMD method can keep the
cost function f(θ) monotonically decreasing, and a larger l leads to
a smaller cost function. When l < m, the EMD algorithm performs
an l − order matrix inversion calculation instead of an m − order
inversion calculation. Thus, its computational efforts are less than
those of the EM algorithm.

Remark 7. The EMD algorithm updates the parameters using
l directions rather than 1 direction in each iteration. Thus, its
convergence rates are faster than those of the EGD algorithm. In
addition, it does not require the eigenvalue calculating.

C. Comprehensive expectation framework
When the parameter estimates are obtained by using the above two

methods, the time-delay and the parameter vector estimates will be
iteratively updated until they both converge.

The comprehensive expectation framework then is summarized as
follows.

1) Update the unknown variables
Expectation step:

ŵk+1(τi = j) =
p(y(Si)|φ(S − τi), τi = j,θk)

q∑
j=0

p(y(Si)|φ(Si − τi), τi = j,θk)

. (24)

2) Estimate the parameters
2-A: Maximization method

θk+1 = [
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)φT(Si − j)]−1

[

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)y(Si)]. (25)

2-B: Gradient descent method

θk+1 = θk + λk

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)×

[y(Si)−φT(Si − j)θk]. (26)

2-C: Multi-direction method

θk+1 = θk + ξ̄
k+1

(l)[P̃k]
−1ηT. (27)

Remark 8. The differences among these three algorithms are
resulted from different methods for estimating the parameters. The
EM algorithm performs MAX method, the EGD algorithm utilizes
GD method, and the EMD algorithm uses MD method.
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V. PROPERTIES OF THE EGD AND EMD ALGORITHMS

In this section, some properties of the EGD and EMD algorithms
are given.

A. Convergence analysis
For a random sampling instant Si, we introduce a proposal

distribution q(τi) and define

F (θ) =

N∑
i=1

log p(y(Si)|θ) =
N∑
i=1

log
p(y(Si), τi|θ)
p(τi|y(Si),θ)

= F1(θ)− F2(θ) + F3(θ), (28)

where

F1(θ) =

N∑
i=1

q∑
j=0

q(τi = j) log p(y(Si), τi = j|θ),

F2(θ) =

N∑
i=1

q∑
j=0

q(τi = j) log q(τi = j),

F3(θ) =

N∑
i=1

q∑
j=0

q(τi = j) log
q(τi = j)

p(τi = j|y(Si),θ)
.

The following theorem can be obtained.

Theorem 2: Assume that the time-delay and parameter vector
estimates using the EGD algorithm are updated by Equations (24) and
(26), while the estimates using the EMD algorithm are determined
by Equations (24) and (27). Then, the function F (θ) expressed by
(28) is monotonically increasing.
(The detailed proof is given in Appendix B.)

Remark 9. Since the function F (θ) is monotonically increasing,
both the EGD and EMD algorithms are convergent.

B. The relationships of the three algorithms
Case 1: When the order of the direction is l = m, namely

ξ̄
k+1

(m) = [ξ̄k+1(1), ξ̄k+1(2), · · · , ξ̄k+1(m)],

then, ξ̄k+1
(m) is equivalent to ξ̄

k+1
(m+ 1).

According to Equation (17), the step-size [P̃k]
−1ηT of the EMD

algorithm can be computed by

[P̃k]
−1ηT = [Qk+1ξ̄

k+1
(m)]−1βk+1ξ̄k+1(1).

Substituting the above equation into Equation (27) yields

θk+1 = θk + ξ̄
k+1

(m)[Qk+1ξ̄
k+1

(m)]−1βk+1ξ̄k+1(1)

= [

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)φT(Si − j)]−1

[

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)y(Si)],

which is the same as Equation (25). In this case, the EMD algorithm
is equivalent to the EM algorithm. There is no need to use the
EMD algorithm to replace the EM algorithm, because the direction
calculation in each iteration of the EMD algorithm would lead to
heavier computational efforts than those of the EM algorithm.

Case 2: When the order of the direction is l = 1, according to
Equations (31) and (32) in Appendix, we get

θk+1 = θk +
pk1,1√

(pk1,1)
2 + (pk2,1)

2

N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)

×[y(Si)−φT(Si − j)].

If the step-size of the EGD algorithm is λk =
pk1,1√

(pk1,1)
2+(pk2,1)

2
,

the EMD algorithm can be regarded as an EGD algorithm.
Remark 10. The EMD algorithm can be regarded as an EGD

algorithm when l = 1, but it does not require the eigenvalue
calculation in each iteration. For this reason, the EMD algorithm
can be applied to large-scale system identification.

Remark 11. The EMD algorithm acts as a bridge between the EM
algorithm and the EGD algorithm: (1) if l = 1, the EMD algorithm
is equivalent to the EGD algorithm; (2) if l = m, the EMD algorithm
is the same as the EM algorithm.

VI. EXAMPLES

A. Example 1
Consider the following time-delayed system,

x(s) = b1u(s− 1) + b2u(s− 2) + b3u(s− 3) +

b4u(s− 4) + b5u(s− 5) + b6u(s− 6),

y(Si) = x(Si − τi) + v(Si),

θ = [b1, b2, b3, b4, b5, b6]
T = [0.2, 0.4,−0.3, 0.2, 0.7, 0.6]T,

u ∼ N(0, 1), v ∼ N(0, 0.01), τi ∈ {0, 1, 2, 3}.

In the simulation, we sample L = 800 data points for fast-rate
inputs, and sample slow-rate outputs at every four fast-rate sampling
intervals, e.g., y(S1 = 4), y(S2 = 8),· · · , y(S200 = 800)
are sampled, while the other outputs are missing, and the initial
probabilities p(τi = j) = 0.25, i = 1, 2, · · · , 200, j = 0, 1, 2, 3.

First, apply the EM, EGD and EMD (l = 4) algorithms to estimate
the parameters of the time-delayed system, the parameter estimates
and their estimation errors δ := ∥θk − θ∥/∥θ∥ versus k are shown
in Fig. 1. The rates of correct identification of time-delays are shown
in Table I.
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Fig. 1. The parameter estimation errors δ versus k

TABLE I
THE CORRECT IDENTIFICATION RATES OF THE UNKNOWN TIME-DELAYS

Algorithm EM EGD EMD
Rate 88.5% 85% 87%

From this simulation example, we have the following observations:
(1) The parameter and time-delay estimates asymptotically con-

verge to their true values by using these three algorithms, which can
be shown in Fig. 1 and Table I.

(2) Fig. 1 shows that the EM algorithm has the fastest convergence
rate, the second is the EMD algorithm, and the slowest is the EGD
algorithm.

Second, we use the EMD algorithm with different directions (l =
1, 2, 3, 5) to estimate the parameters of the time-delayed system. The
estimation errors δ := ∥θk − θ∥/∥θ∥ versus k are shown in Fig. 2.
From Fig. 2, we can see that a larger number of directions lead to
a faster convergence rate.
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Fig. 2. The parameter estimation errors δ versus k

B. Example 2

Consider the following 15th-order time-delayed system,

x(s) = b1u(s− 1) + b2u(s− 2) + · · ·+ b15u(s− 15),

y(Si) = x(Si − τi) + v(Si),

θ = [b1, b2, · · · , b15]T = [0.2, 0.4,−0.3, 0.2, 0.7, 0.6,−0.3,

0.2, 0.3, 0.1, 0.3, 0.2,−0.4, 0.5,−0.6]T,

u ∼ N(0, 1), v ∼ N(0, 0.12), τi ∈ {0, 1, 2}.

We sample L = 900 data points for fast-rate inputs, and sample
slow-rate outputs at every three fast-rate sampling intervals, that is,
L/3 = 3. Assign the initial probabilities as p(τi = j) = 1

3
, j =

0, 1, 2, i = 1, 2, · · · , 300.
Apply the EM, EGD and EMD (l = 4) algorithms to the time-

delayed systems. The parameter estimation errors are shown in Fig.
3, and the time-delay estimates are shown in Fig. 4. In Fig. 4, the
true time-delays are described by the blue asterisks, while the time-
delay estimates are expressed by the red circles. It shows that the
time-delay estimates by using these three algorithms can catch the
true values.

Finally, the Monte Carlo simulations (with 300 different noise
seeds) are also performed. The elapsed time of these three algorithms
by using the Monte Carlo method is displayed in Table II (by Intel(R)
Core(TM) i5-7220U: 2.50GHz, 2.71GHz; RAM: 8.0 GB; Windows
10), which indicates that the EMD algorithm has the shortest elapsed
time.
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Fig. 3. The parameter estimation errors δ versus k

TABLE II
THE ELAPSED TIMES

Algorithm EM EGD EMD (l = 4)
Time (second) 138.32 156.74 102.53

0 50 100 150 200 250 300

0

1

2

E
M

D

t

0 50 100 150 200 250 300

0

1

2

E
M

t

0 50 100 150 200 250 300

0

1

2

t

E
G

D

true delay

estimated delay

Fig. 4. The time-delay estimates

C. Example 3
Consider an exponential nonlinear (EN) model as follows,

x(s) = eb1u(s−1)u(s− 1) + b2u(s− 2),

y(Si) = x(Si − τi) + v(Si),

θ = [b1, b2]
T = [0.2, 0.4]T,

u ∼ N(0, 1), v ∼ N(0, 0.12), τi ∈ {0, 1, 2}.

Define the cost function as

f(θ) = f(b1, b2) =
1

2

N∑
i=1

q∑
j=0

ŵk+1(τi = j)×

[y(Si)− eb1u(Si−j−1)u(Si − j − 1)− b2u(Si − j − 2)]2.

Using the EM algorithm yields
N∑
i=1

q∑
j=0

ŵk+1(τi = j)eb1u(Si−j−1)e(Si)

N∑
i=1

q∑
j=0

ŵk+1(τi = j)u(Si − j − 2)e(Si)

 =
[

0
0

]
,

where e(Si) = [y(Si)− eb1u(Si−j−1)u(Si − j − 1)− b2u(Si − j −
2)]. Clearly, the above equation does not have an analytical solution,
which means that the EM algorithm is inefficient for this EN model.

Assume that the parameter estimates in iteration k−1 are θk−1 =
[bk−1

1 , bk−1
2 ]T, the residual error in iteration k is written by

ξk(1) =


N∑
i=1

q∑
j=0

ŵk+1(τi = j)eb
k−1
1 u(Si−j−1)ek−1(Si)

N∑
i=1

q∑
j=0

ŵk+1(τi = j)u(Si − j − 2)ek−1(Si)

,
where ek−1(Si) = [y(Si) − eb

k−1
1 u(Si−j−1)u(Si − j − 1) −

bk−1
2 u(Si − j − 2)]. Then, the EGD and EMD algorithms can be

applied to this EN model.
We sample L = 300 data points for fast-rate inputs, and sample

slow-rate outputs at every three fast-rate sampling intervals. Assign
the initial probabilities as p(τi = j) = 1

3
, j = 0, 1, 2, i =

1, 2, · · · , 100. Use the EMD algorithm for the time-delayed EN
model (l = 1). The parameter estimates and their estimation errors
are shown in Fig. 5. The time-delay estimates are shown in Fig. 6.
Figs. 5 and 6 show that the EMD algorithm is efficient for nonlinear
systems with complex structures.

The Monte Carlo simulations (with 100 different noise seeds) are
also performed based on the EGD and EMD algorithms. The boxplot
of parameter estimates of different noise seeds are shown in Fig. 7.
Fig. 7 shows that the EMD algorithm has more accurate parameter
estimates (the red lines in the blue box of the EMD algorithm are
much closer to the true values than those of the EGD algorithm) and
smaller estimation variances (the EMD algorithm has less estimates
beyond the blue box than those of the EGD algorithm). The elapsed
times of these two kinds of algorithms are shown in Table III.
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Fig. 7. The parameter estimates using EMD and EGD algorithms for 100
different noise seeds

TABLE III
THE ELAPSED TIMES

Algorithm EMD (l = 1) EGD
Time (second) 18.576 27.030

This example shows that both the EMD and EGD algorithms
can identify systems with complex nonlinear structures, but the EM
algorithm cannot. In addition, the EMD algorithm is robust to noise,
and the EMD algorithm has less elapsed times than those of the EGD
algorithm.

VII. CONCLUSIONS

Two expectation based identification algorithms are proposed for
time-varying time-delayed systems in this paper. The EGD algorithm
obtains the parameter estimates using the gradient descent method,
which can avoid the matrix inversion and solving derivative equations.
Therefore, it can be applied to solving complex nonlinear system
identification problems. The EMD algorithm updates the parameter
estimates through the multi-direction method. It does not require
matrix eigenvalue calculation and can transform a high-dimensional

matrix inversion into a lower-dimensional matrix inversion; thus, it
can be applied to solving large-scale system identification problems.
Convergence analysis and simulation examples demonstrate efficien-
cy of these two algorithms. These two algorithms combining the
EM algorithm construct a comprehensive expectation identification
framework for systems with hidden variables, and we can choose the
optimal algorithm for a considered model on a case by case basis.

In addition, the EMD algorithm builds a link between the EM
algorithm and EGD algorithm: when l = 1, the EMD algorithm can
be regraded as an EGD algorithm; when l = m, the EMD algorithm
is equivalent to the EM algorithm. Therefore, these three algorithms
should be applicable to a broad class of systems, including systems
with other kind of latent variables (such as hidden state variables),
large-scale systems and nonlinear systems, and thus they offer various
options for different systems.

Appendix A
Proof of Theorem 1. Assuming that l = 1, we have

ξ̄
k+1

(1) = [ξ̄k+1(1)],
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk] = ξk+1(1),

Qk+1ξ̄
k+1

(1) = [ξ̄k+1(1), ξ̄k+1(2)]

[
pk1,1
pk2,1

]
.

The orthogonal matrix J ∈ R2×2 is written by

J =


pk1,1√

(pk1,1)
2+(pk2,1)

2

pk2,1√
(pk1,1)

2+(pk2,1)
2

−pk2,1√
(pk1,1)

2+(pk2,1)
2

pk1,1√
(pk1,1)

2+(pk2,1)
2

. (29)

It follows that

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θ1
k+1]∥ =∥∥∥∥J [

βk+1

0

]
− J

[
pk1,1
pk2,1

]
γk

∥∥∥∥ , (30)

where

θ1
k+1 = θk + ξ̄

k+1
(1)γk = θk + ξ̄k+1(1)γk, (31)

and the superscript 1 in the parameter vector estimate θ1
k+1 means

that the number of direction is 1. Substituting Equation (29) into
Equation (30) yields

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θ1
k+1]∥ =∥∥∥∥∥∥∥∥


pk1,1β

k+1√
(pk1,1)

2+(pk2,1)
2

−pk2,1β
k+1√

(pk1,1)
2+(pk2,1)

2

−

[ √
(pk1,1)

2 + (pk2,1)
2γk

0

]∥∥∥∥∥∥∥∥ .
Then, the step-size can be computed by

γk =
pk1,1β

k+1

(pk1,1)
2 + (pk2,1)

2
, (32)

which means

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θ1
k+1]∥ =∥∥∥∥∥∥ −pk2,1β

k+1√
(pk1,1)

2 + (pk2,1)
2

∥∥∥∥∥∥ .
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Then, we have

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θ1
k+1]∥ 6

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk]∥.

Following the same way, the following inequality holds

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk+1]∥ 6

∥
N∑
i=1

q∑
j=0

ŵk+1(τi = j)φ(Si − j)[y(Si)−φT(Si − j)θk]∥,

in which θk+1 is estimated using l directions.

Appendix B
Proof of Theorem 2. According to Equation (4), the posterior
distribution of τi in iteration k can be transformed into

q(τi = j) = p(y(Si)|φ(Si − τi), τi = j,θk). (33)

Then, one can get

F (θ|θk) = F1(θ|θk)− F2(θ|θk) + F3(θ|θk). (34)

Clearly, the first function

F1(θ|θk) =

N∑
i=1

q∑
j=0

p(y(Si)|φ(Si − τi), τi = j,θk)×

log p(y(Si), τi = j|θ)

is equivalent to the cost function in Equation (7). Based on Remark
4 and Theorem 1, both the EGD and EMD algorithms can guarantee
that

F1(θk|θk) 6 F1(θk+1|θk), (35)

when the parameter estimates are computed by Equations (26) and
(27), respectively.

On the other hand, the second function of Equation (34) is

F2(θ|θk) =

N∑
i=1

q∑
j=0

p(y(Si)|φ(Si − τi), τi = j,θk)×

log p(y(Si)|φ(Si − τi), τi = j,θk),

which is a constant. Thus, it leads to

F2(θk+1|θk) = F2(θk|θk).

Finally, F3(θk+1|θk) is

F3(θk+1|θk) =

N∑
i=1

q∑
j=0

p(y(Si)|φ(Si − τi), τi = j,θk)×

log
p(y(Si)|φ(Si − τi), τi = j,θk)

p(τi = j|θk+1)
,

while F3(θk|θk) is

F3(θk|θk) =

N∑
i=1

q∑
j=0

p(y(Si)|φ(Si − τi), τi = j,θk)×

log
p(y(Si)|φ(Si − τi), τi = j,θk)

p(y(Si)|φ(Si − τi), τi = j,θk)
.

According to the Kullback-Leibler divergence [26], we have

F3(θk+1|θk) > F3(θk|θk).

Therefore, the following inequality holds,

F (θk+1|θk) > F (θk|θk).

It demonstrates that the function F (θ) is monotonically increasing.
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