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Abstract: The term “anesthetic depth” refers to the extent to which a general anesthetic agent sedates
the central nervous system with specific strength concentration at which it is delivered. The depth
level of anesthesia plays a crucial role in determining surgical complications, and it is imperative
to keep the depth levels of anesthesia under control to perform a successful surgery. This study
used electroencephalography (EEG) signals to predict the depth levels of anesthesia. Traditional
preprocessing methods such as signal decomposition and model building using deep learning were
used to classify anesthetic depth levels. This paper proposed a novel approach to classify the
anesthesia levels based on the concept of time series feature extraction, by finding out the relation
between EEG signals and the bi-spectral Index over a period of time. Time series feature extraction
on basis of scalable hypothesis tests were performed to extract features by analyzing the relation
between the EEG signals and Bi-Spectral Index, and machine learning models such as support vector
classifier, XG boost classifier, gradient boost classifier, decision trees and random forest classifier
are used to train the features and predict the depth level of anesthesia. The best-trained model was
random forest, which gives an accuracy of 83%. This provides a platform to further research and dig
into time series-based feature extraction in this area.

Keywords: anesthetic depth; electroencephalography; bi-spectral index; machine learning; time
series; feature extraction

1. Introduction

The medical practice called anesthesia shields patients from discomfort during pro-
cedures such as surgery. It is essentially one of the most important components used in
surgery. Anesthesiologists are medical professionals who focus on providing perioperative
care, creating anesthetic strategies, and administering anesthetics. Doctors and researchers
still struggle in measuring and tracking DoA. Predicting and analyzing a patient’s anesthetic
levels accurately during surgery makes it easier to administer medications, reducing the
risk of consciousness and anesthetic overdose while also enhancing patient outcomes. Since
anesthetic medications primarily affect the central nervous system, electroencephalogram
examination of brain activity is particularly helpful [1].

The natural course of preexisting diseases is mostly responsible for deaths that oc-
cur within the first year following surgery. Intraoperative hypotension and cumulative
deep hypnotic duration, however, were also substantial, independent predictors of higher
mortality. These correlations show that intraoperative anesthetic management may have
a longer-lasting impact on outcomes than previously thought [2]. An uncommon but
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well-documented occurrence, awareness with recall after general anesthesia, can lead to
posttraumatic stress disorder [3]. When sevoflurane, propofol, and remifentanil were
administered systematically, topographic quantitative EEG (QEEG) features underwent
significant alterations during the induction and emergence from anesthesia. Finding the
modifications that were responsive to shifts in consciousness but unaffected by anesthesia
procedure was the aim [4]. EEG monitoring is currently utilized to evaluate, in real-time,
either the higher central nervous system’s (CNS) state of “well-being” or the pharmacody-
namic effects of an anesthetic drug. Since the EEG is widely recognized as a very sensitive
and fairly specific indicator of CNS ischemia or hypoxia, carotid surgery frequently uses
EEG monitoring for this purpose [5]. A cocktail of medications is typically used to induce
general anesthesia. Due to their complementary hypnotic and analgesic effects, opioids
are frequently used in combination to hypnotic drugs such as propofol. However, the
complicated effects of opioids on the patient’s clinical condition and EEG changes during
anesthesia make it difficult to evaluate EEG-based depth of anesthesia indices [6]. This
study employs a novel index to assess DoA monitoring. The suggested method uses
an adaptive threshold technique to precondition raw EEG data and remove spikes and
low-frequency noise [7].

Since EEG is a nonlinear signal, nonlinear chaotic parameters can be used to determine
the anesthetic depth levels [8]. A processed EEG measure with substantial validation
and proven clinical value is the BIS index [9]. The ideal BIS value for general anesthesia
is between 40 and 60 [10]. Recent studies suggested the electroencephalogram’s (EEG)
entropy and complexity as indicators of drowsiness and anesthesia levels [11]. The best
fractal-scaling exponent on the raw EEG data can clearly distinguish between awake to
moderate and deep anesthesia levels, according to experimental results, and has a strong
relationship with the well-known depth of anesthesia index (BIS) [12]. The scaling behavior
of the electroencephalogram as a gauge of awareness is studied using detrended fluctuation
analysis. To describe the patient’s condition, three indexes are suggested. According to
statistical analysis, they provide meaningful distinction between the awake, drugged, and
anaesthetized states [13].

Several electroencephalogram (EEG)-based techniques, including the response entropy
(RE) as used in the Datex-Ohmeda M-Entropy module, were presented over the past few
years. The predictability of EEG series is quantified in this study using sample entropy,
which could serve as a measure to demonstrate the impact of sevoflurane anesthesia.
Sample entropy’s dose–response relationship is contrasted with RE’s [14]. This study
suggests a brand-new automated technique with two steps for determining anesthetic
depth. The EEG signal’s sample entropy and permutation entropy features were first
taken out. It would be fair to utilize numerous metrics to evaluate the anesthetic’s impact
because EEG-derived values represent various EEG properties [15]. In order to track
anesthetic depth and identify burst suppression, twelve entropy indicators were carefully
examined. Tracking EEG changes related to various anesthetic stages was most successfully
accomplished using Renyi permutation entropy. The two entropies that worked best at
spotting burst suppression were approximate and sample [16]. One of the key issues in
surgery is the distinction between awake and anaesthetized states. Vital signals contain
important data that can be used to predict various anesthesia levels [17].

Exploring strong and weakly relevant attributes is a known problem in feature se-
lection. For industrial applications such as predictive maintenance, where each label is
simultaneously associated with many time series meta-information, this problem is partic-
ularly challenging to address [18]. Time-series engineering, automated time-series feature
extraction, optimized feature extraction, fitting of a customized classifier, and deployment
of an improved machine learning pipeline are the five primary processes in the feature
engineering workflow [19]. ECG data analysis can also be improved using functional data
approach [20]. Time series feature extraction can establish the relationship between EEG
signal values and the BIS values.
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2. Materials and Methods

The National Taiwan University Hospital (NTUH) in Taiwan’s Research Ethics Com-
mittee gave its approval for this study. Furthermore, patients’ permission was obtained in
writing after receiving full disclosure. Data were gathered from 50 patients who underwent
various surgeries at NTUH and were in the age group range between 23 and 72. The
datasets were processed at 5 s interval period, yielding a little more than 15,000 samples
for experimentation. [21,22]. Figure 1 shows the proposed methodology carried out for
the study.
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Figure 1. Block diagram of the proposed framework.

The proposed methodology used a time series-based unique approach to classify BIS
values using EEG signals, thus monitoring the amount of anesthesia administered to the
patient during surgery. This enhanced the safety of the patient by keeping the anesthesia
levels in check.

2.1. Data Collection

The signals were acquired using a Phillips IntelliVue MP60 physiological monitor,
which also had a bi-spectral Index (BIS) quatro sensor, and a portable computer was utilized
for logging the data [23]. The MP60 monitor also recorded other vital indications such
as heart rate, blood pressure, and SPO2. Additionally, raw PPG, EEG, and ECG signals
were also logged. When the patient was undergoing surgery, the BIS monitor provided
a numeric variable with a range of 0–100 to determine the anesthetic level, as shown in
Figure 2. The EEG signal and the values of BIS were shown on the BIS monitor. Google
Colab software was used to analyze the data and build the proposed framework.

Anesthesia Deep, Anesthesia Light, and Anesthesia OK were three categories for the
BIS values obtained from the BIS quatro sensor module. The phrase “anesthesia deep”
suggested that the patient was too deeply unconscious. Surgery can be performed on the
patient if anesthesia is ok. Additionally, anesthetic light suggests that the patient is awake
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and the surgery cannot continue. The range of BIS values for each category is displayed
in Table 1.
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Table 1. Anesthesia level classification according to BIS values.

BIS Range Anesthesia Level

0–40 Anesthesia Deep (AD)

40–60 Anesthesia OK (AO)

60–100 Anesthesia Light (AL)

During the EEG signal processing, it was found that the data for each DoA level
were not uniform, which is why it is frequently claimed that the data sets obtained in the
medical field are unbalanced or biased. For purposes of comparison, it is crucial to have
datasets of equal sizes for each DoA. Using the same amount of data for each degree of
anesthesia is another technique to reduce the data imbalance, which was implemented in
this experiment.

2.2. Data Preprocessing

The data need to undergo pre-processing before any feature extraction or machine
learning algorithms can be performed. For the signal pre-processing, a 5 s interval was
considered because BIS value provided output from the monitor every 5 s. The sampling
frequency of the raw EEG signal data was found to be 128 Hz from the MP60 monitor.
Thus, we obtained 640 sample points for every 5 s interval corresponding to the BIS
value. Therefore, 5 s of 640 points of raw EEG signal sample points were used for further
preprocessing. The plot of the raw sampled EEG signal is shown in Figure 3.
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Since this was taken up as a time series problem, the sampled signal data were mapped
to the corresponding BIS value, according to the categories mentioned in Table 1 (AD, AO,
and AL). The mapped data will be used for further pre-processing, i.e., time series feature
extraction, which will be discussed in the upcoming sections. Tables A1 and A2 in the
Appendix A shows how the data can be assessed by providing a sample data format after
the signal acquisition. Table A1 shows intermittent data for every 5 s and Table A2 shows
continuous data set for 128 Hz of EEG signals. A subset of data is shown in the figures.
From there, the EEG signals were mapped to the BIS values with respect to the timestamp
of signal acquisition before proceeding to time series feature extraction.

2.3. Time Series Feature Extraction

The raw mapped data were not enough to train a prediction model. Therefore, a time
series feature extraction procedure was proposed. Time series feature engineering is a labor
-intensive procedure because, in order to recognize and extract valuable features from time
series, scientists and engineers must take into account the numerous techniques of signal
processing and time series analysis.

By combining 63 time series characterization methods, which by default compute
a total of 794 time series features, with feature selection based on automatically config-
ured hypothesis tests, the Python package Tsfresh (time series feature extraction on basis
of scalable hypothesis tests) streamlined this procedure. Tsfresh closes feedback loops
with domain experts and promotes the early development of domain-specific features by
detecting statistically important time series characteristics at an early stage of the data
science process. These features describe the time series’ fundamental properties, such as
the number of peaks, the average or greatest value, or more sophisticated properties such
as the time-reversal symmetry statistic. Figure 4 shows the pipeline of the feature extraction
process [24].
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The time series can be used with the set of features to build statistical or machine
learning models that can be used for the problem statement. Time series data frequently
include noise, duplication, or unnecessary data. Therefore, the majority of the retrieved
features will not be helpful for predicting the anesthetic depth. Tsfresh package has
methods to filter and prevent the extraction of pointless features. This filtering process
assesses each characteristic’s significance and explanatory power for the specific task
at hand. It uses a multiple-test approach and is based on the uses the concept of hy-
pothesis testing. Therefore, the filtering procedure mathematically regulates the propor-
tion of pointless retrieved features. The extract_relevant_feature function was used on
the mapped dataset, and by conducting statistical hypothesis tests, a total of 369 time
series features were extracted. Some of the features extracted after implementing the
above function include: ‘value__number_peaks__n_1’, ‘value__autocorrelation__lag_2’,
‘value__fourier_entropy__bins_100’, ‘value__fft_aggregated__aggtype_”variance”. The list
goes up to 369 features, as mentioned before. Furthermore, relevant features are extracted
using ExtraTreesClassifier algorithm, which is discussed in the next section.
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2.4. Extra-Trees-Classifier for Feature Extraction

This class implements a meta estimator that employs averaging to increase predictive
accuracy and reduce overfitting. The meta estimator fits a number of randomized decision
trees (also known as extra-trees) on different sub-samples of the dataset. This technique was
further applied to the extracted 369 features to visualize each feature with its importance.
The entropy criteria were used in the extratreesclassifier in order to compute the importance,
and the normalized feature importance were plotted in the y-axis, while the features were
on the x-axis. The term “feature importance” relates to methods for scoring each input
feature for a certain model; the scores indicate the “importance” of each feature. A higher
score indicates that the particular characteristic will have more of an impact on the model
being used to forecast the BIS values and the anesthetic depth.

The number of trees used by the classifier, denoted by estimators, was set as 700, and
the entropy criterion was used to extract the importance value of each feature, and since
there were two features involved, EEG data and the BIS value, the max_features parameter
was set to 2. The feature_importances function was used to compute the importance of each
extracted feature. Figure 5 shows a subset of extracted features along with their computed
feature importance.
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By setting a threshold for the feature importance value, it was possible to vary the
number of features that will be selected for the model training and prediction. This was
carried out to prevent overfitting of the model. There were 369 features described in
the time series package out of which few are extracted using the importance threshold.
Value_autocorrelation_lag revealed how the correlation between any two values of the
signal changes as their separation changes. Number_peaks feature calculates the number
of peaks of at least support n in the time series. Approximate_entropy implements a
vectorized approximate entropy algorithm. There are various such features involved in the
extraction process which can be referred from [24].

The threshold for the feature importance was set at 0.006 for this experiment, for which
21 of the most important features were extracted and used for training the machine learning
models. It is to be noted that this threshold value can be changed, and it was chosen as
0.006 by looking at the extracted feature graph as it was found to be optimal to the layman’s
eye. Varying the threshold will increase or decrease the number of features used for the
model accordingly.
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2.5. Machine Learning to Classify Anesthetic Depth

Following the time series feature extraction process, machine learning algorithms were
used to train the model using those features to categorize the anesthetic depth. For every
time series that corresponded to a BIS value, a set of features were used as the independent
columns, while the BIS value was the dependent column.

2.5.1. Support Vector Classifier

Support vector machine is primarily employed in machine learning classification
issues, which is in line with our current problem statement. The SVM algorithm’s objective
is to establish the best line or decision boundary that can divide n-dimensional space into
the required 3 classes of anesthetic depth (AL, AD and AO), allowing quick classification
of fresh data points. A hyperplane is the name given to this optimal decision boundary.
SVM selects the extreme vectors and points that aid in the creation of the hyperplane.
Radial basis function (RBF) kernel function was used for fitting the model, and the penalty
parameter C was given a high value to reduce the risk of misclassification.

2.5.2. XG Boost Classifier

Extreme gradient boosting (XG Boost) is a distributed, scalable gradient-boosted
decision tree (GBDT) machine learning framework. It is considered to be one of the top
machine learning libraries that are available to solve problems that involve classification and
regression. It offers parallel tree boosting; thus, it has the ability to provide efficient solution
while classifying the anesthesia level. The hyperparameter tuning was set to solve the
multiclass classification problem, in which each observation is given the distinct probability
of belonging to each class. The other parameters were assigned to their default values.

2.5.3. Gradient Boost Classifier

Gradient boosting classifiers combines the number of weak learning models to produce
a powerful predicting model. Gradient boosting frequently makes use of decision trees.
It has the ability to classify complicated datasets, and thus, gradient boosting models are
useful to classify anesthetic depth levels, because of the largeness and the complexity of
the dataset. With respect to the parameters, 100 boosting stages were performed using
friedman_mse criterion, which measures the quality of the split.

2.5.4. Decision Tree Classifier

Decision trees are ideally favored for solving classification problems, which augurs
well for this case. It is a tree-structured classifier, where internal nodes stand in for a
dataset’s features, branches for the decision-making process, and each leaf node for the
classification result of the anesthetic depth levels. The decision node and leaf node are the
two nodes of a decision tree. While leaf nodes are the results of decisions and do not have
any more branches, decision nodes are used to create decisions based on the features of the
dataset in the current problem statement, and have numerous branches, which finally ends
in a decision. Gini index criterion is used to perform the classification.

2.5.5. Random Forest Classifier

Random forest is a machine learning algorithm which uses supervised learning. It
involves the process of ensemble learning, which is a method of integrating various clas-
sifiers to address difficult issues and enhance model performance. Random forest uses
multiple decision trees on different subsets of the input dataset and averages the results
to increase the dataset’s predictive accuracy. Thus, it is likely that the classification will
give a better output than decision tree classifier and is more likely to suit the dataset for
classifying anesthesia depth levels. The number of trees in the forest were set to 100, and
the Gini index criterion was used to perform the classification. K-fold validation strategy
was performed with K = 5 and the repetition of states was set to 3. Cross validation was
carried out with accuracy as the performance metric to measure the efficiency.
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The described machine learning models were trained over the dataset containing the
time series extracted features, and a comparative analysis of all the algorithms were carried
out by analyzing their performance metrics.

3. Results

A balanced dataset with respect to the classes was used for training and testing the
model. It was split into 80–20 train-test ratio and fed into the machine learning algorithms
described in the previous section. The performance metrics such as accuracy, F1 score,
precision, and recall were used to evaluate the model. Since the classification was measured
in terms of the true positives and true negatives because of the dependent variable being
categorical, an ideal method of assessment would be using precision, F1 score and recall.
The root mean squared error (RMSE) or mean absolute percentage error (MAPE) would
have been a more ideal assessment if the dependent variable was numerical, which was
not the case in this problem statement.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(1)

Precision =
Tp

Tp + Fp
(2)

Recall =
Tp

Tp + Tn
(3)

F1 score = 2 × Precision × Recall
Precision + Recall

(4)

where Tp = True positives, Tn = True negatives, Fp = False positives and Fn = False negatives.
Table 2 shows the results of all the algorithms with their performance metrics describ-

ing the efficiency of the implemented machine learning models.

Table 2. Performance metrics of the implemented machine learning algorithms.

Support Vector Classifier

Class Precision Recall F1 score

Anesthesia Deep 73% 84% 78%

Anesthesia Ok 60% 42% 50%

Anesthesia Light 73% 81% 77%

XG Boost classifier

Class Precision Recall F1 score

Anesthesia Deep 75% 85% 80%

Anesthesia Ok 62% 47% 53%

Anesthesia Light 76% 80% 78%

Gradient Boost classifier

Class Precision Recall F1 score

Anesthesia Deep 77% 86% 81%

Anesthesia OK 62% 50% 55%

Anesthesia Light 76% 80% 78%
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Table 2. Cont.

Decision tree classifier

Class Precision Recall F1 score

Anesthesia Deep 88% 99% 93%

Anesthesia OK 65% 58% 61%

Anesthesia Light 74% 72% 73%

Random forest classifier

Class Precision Recall F1 score

Anesthesia Deep 92% 99% 95%

Anesthesia OK 76% 66% 71%

Anesthesia Light 79% 82% 81%

Support vector classifier classified all three classes with an average accuracy of 68.67%,
and it equally identified the AD and AL classes. XG Boost classifier classified the AL class
the best while having a better recall and F1 score for AD. It gave an average accuracy of
71%. Gradient boost classifier gave an average accuracy of 71.67%, classifying AD and AL
the best compared to AO class. Decision tree classifier gave a much better performance by
giving an average accuracy of 75.67%, with high precision for the AD class, followed by AL
and AO. Random forest classifier gave a high average accuracy of 82.3% and had a high
prediction rate for all the three classes.

The results in Table 3 and Figure 6 show a visual representation of the performance
metrics obtained for all the algorithms.

The proposed methodology was compared to the various state-of-the-art algorithms
with respect to the work carried out by Madanu et al. [21], since the data used in this paper
and the referenced work were similar, and thus, it would be more meaningful to compare
the results for similar kind of data. The results are described in Table 4 and Figure 7.
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Table 3. Results of all algorithms.

Algorithm Precision Recall F1 Score

Support Vector classifier 68.67% 69.0% 68.3%

XG Boost classifier 71.0% 70.67% 70.3%

Gradient Boost classifier 71.67% 72.0% 71.3%

Decision Tree classifier 75.67% 76.3% 75.67%

Random Forest classifier 82.3% 82.3% 82.3%

Table 4. Comparison of algorithms.

Algorithm Accuracy (%)

5 Layered Model 72

6 Layered Model 74

10 Layered Model 83

AlexNet Model 74

Pre-Trained VGG16 Model 80

Pre-trained VGG19 Model 77

Pre-trained InceptionRESV2 Model 70

Proposed algorithm (Tsfresh + Machine learning) 82.3
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4. Discussion

A substantial amount of study was carried out on estimating DoA, and there were
some significant advancements in this area. Deep learning models were used to train the
dataset by performing different types of pre-processing with the EEG signals. It was noted
that many methodical evaluations of DoA were based on traditional processing of the EEG,
and a small number of research works demonstrated the visual mapping of the EEG’s
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properties utilizing the time-frequency domain. This paper proposed a novel approach
by using time series feature extraction techniques, and the dataset was trained on various
machine learning models to produce good classification results.

It is possible to improve the results by applying deep learning methods such as LSTM
after the extraction of time series features. Further pre-processing of the EEG signals may
be carried out, such as converting it into the frequency domain, before applying the time
series feature extraction technique, which can further enhance the quality of the dataset
given for training. Therefore, this paper provided a unique approach in predicting the
anesthetic depth, which plays a vital role during a surgical procedure.

Author Contributions: R.V.A. analyzed the data, developed the algorithms and wrote the paper;
S.-Z.F., M.F.A. and J.-S.S. evaluated and supervised this study. All authors have read and agreed to
the published version of the manuscript.
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sponding author J.-S.S.
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Appendix A

Table A1. BIS value data format after signal acquisition.

Timestamp HR
(Beats/Min) SPO2 (%) NBP_Dia

(mmHg)
NBP_Sys
(mmHg)

NBP_Mean
(mmHg) BIS Value

15–10–2014 12:52:52 101 100 71 110 81 69

15–10–2014 12:52:57 102 100 71 110 81 65

15–10–2014 12:53:02 100 100 71 110 81 61

15–10–2014 12:53:07 100 100 71 110 81 62

15–10–2014 12:53:12 99 100 71 110 81 63

15–10–2014 12:53:17 99 100 71 110 81 69

15–10–2014 12:53:22 99 100 71 110 81 67

15–10–2014 12:53:27 96 100 71 110 81 63

15–10–2014 12:53:32 97 100 71 110 81 65

15–10–2014 12:53:37 98 100 71 110 81 67

15–10–2014 12:53:42 97 100 71 110 81 63

15–10–2014 12:53:47 95 100 71 110 81 60

15–10–2014 12:53:52 95 100 71 110 81 61

15–10–2014 12:53:57 97 100 71 110 81 61

. . . . . . . . . . . . . . . . . . . . .
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Table A2. EEG signal acquisition format.

Timestamp EEG (µV) Timestamp EEG (µV) Timestamp EEG (µV)

12:53:02 1654 12:53:03 2146 12:53:04 2277

12:53:02 1851 12:53:03 2408 12:53:04 2637

12:53:02 1687 12:53:03 1916 12:53:04 2113

12:53:02 1196 12:53:03 2277 12:53:04 1884

12:53:02 1916 12:53:03 2113 12:53:04 2441

12:53:02 2146 12:53:03 1392 12:53:04 1982

12:53:02 2080 12:53:03 1818 12:53:04 2015

12:53:02 2506 12:53:03 1589 12:53:04 2506

12:53:02 1949 12:53:03 1687 12:53:04 1654

12:53:02 1720 12:53:03 2310 12:53:04 2113

12:53:02 2048 12:53:03 2080 12:53:04 2310

12:53:02 1359 12:53:03 2506 12:53:04 2506

12:53:02 1589 12:53:03 2572 12:53:04 3162

12:53:02 1851 12:53:03 1753 12:53:04 2867

12:53:02 1785 12:53:03 1982 12:53:04 2703

12:53:02 2441 12:53:03 1556 12:53:04 2539

12:53:02 2179 12:53:03 1425 12:53:04 2113

12:53:02 1949 12:53:03 1654 12:53:04 1720

12:53:02 2211 12:53:03 1851 12:53:04 1818

12:53:02 1654 12:53:03 2080 12:53:04 1196

12:53:02 1949 12:53:03 2277 12:53:04 1425

12:53:02 2441 12:53:03 1654 12:53:04 2015

12:53:02 2146 12:53:03 1818 12:53:04 2015

. . . . . . . . . . . . . . . . . .
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