
On the Complexity of Determining Defeat
Relations Consistent with Abstract

Argumentation Semantics

Jack MUMFORD a,b, Isabel SASSOON c, Elizabeth BLACK b and Simon PARSONS d

a Department of Computer Science, University of Liverpool, UK
b Department of Informatics, King’s College London, UK

c Department of Computer Science, Brunel University London, UK
d School of Computer Science, University of Lincoln, UK

Abstract. Typically in abstract argumentation, one starts with arguments and a
defeat relation, and applies some semantics in order to determine the acceptabil-
ity status of the arguments. We consider the converse case where we have knowl-
edge of the acceptability status of arguments and want to identify a defeat rela-
tion that is consistent with the known acceptability data – the σ -consistency prob-
lem. Focusing on complete semantics as underpinning the majority of the major
semantic types, we show that the complexity of determining a defeat relation that
is consistent with some set of acceptability data is highly dependent on how the
data is labelled. The extension-based 2-valued σ -consistency problem for com-
plete semantics is revealed as NP-complete, whereas the labelling-based 3-valued
σ -consistency problem is solvable within polynomial time. We then present an in-
formal discussion on application to grounded, stable, and preferred semantics.

Keywords. Abstract argumentation, Complexity analysis, σ -consistency

1. Introduction

The typical argumentation problem takes arguments, a defeat relation, and a labelling
semantics as input and produces argument acceptability labellings as output. We instead
examine a converse argumentation problem, which takes arguments, labelling semantics,
and argument labellings as input and produces a defeat relation as output.

Argumentation is firmly established as a subject of importance for researchers in-
terested in symbolic representations of knowledge and defeasible reasoning [5]. Argu-
mentation frameworks (AFs) [10] offer a graph-based approach that determines logically
consistent positions through the interaction of arguments solely through a defeat relation.
Determining the presence, or absence, of defeats between arguments is fundamental to
the construction of any AF and is the problem that concerns this paper. Given a set of
arguments, and data on which arguments are acceptable, we examine the complexity of
establishing a set of defeats that is consistent with the data.

In certain contexts a defeat relation between arguments can be reliably and effi-
ciently inferred from the structure and content of the arguments themselves. However, if

Computational Models of Argument
F. Toni et al. (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220158

260

the structure and/or the content of the arguments cannot be relied upon, then we become
more dependent upon the remaining two components of an AF: the labelling semantics,
and the argument labellings. For example, enthymemes – arguments with missing struc-
ture – pose problems for inferring a defeat relation. Suppose if some argument a defeats
some argument b via an undermining attack on an unstated implicit premise of b, then
how is one to recognise the defeat exists? Perhaps knowledge of the contextual content
of the arguments fills in the gap of the missing premise, but perhaps not. However, if we
possess an argument labelling where a is accepted and b is rejected, then the defeat may
be inferred from this information alone.

In this paper we shall examine the σ -consistency problem, whereby we seek a so-
lution defeat relation that is wholly consistent with input acceptability data for a given
semantics. It is not assumed that the input data are exhaustive; other labellings that are
not present in the data set may also be consistent with the solution defeat relation. More-
over, the problem is general in that it accepts partial labellings where not every argument
in the overall argument set need be represented in a given labelling. That is, an arbitrary
labelling in the data set may pertain to a subgraph of arguments S where S ⊂ A, or it may
pertain to all of A.

Example 1. Legal domains are commonly modelled using stereotypical patterns of facts
known as factors, following the CATO approach for legal case-based reasoning [1]. A
case is decided by weighing up the balance of the factors from case precedents. This pro-
cess could be modelled by the creation of a representative AF model in accordance with
the σ -consistency problem. For example, in CATO’s domain, US Trade Secret’s Law, the
two factors related to the issue of confidentiality were F1 (DisclosureInNegotiations) and
F21 (KnewInfoConfidential). There is nothing explicit within the structure or content of
the factors that definitively reveals how the factors are appropriately balanced. However,
now suppose that we have a case history such that whenever F1 and F21 are argued (in-
deed F1 and/or F21 may not be argued in a case, but recall that the σ -consistency prob-
lem accepts partial labellings), we find F1 is rejected (labelled OUT) and F21 is accepted
(labelled IN), we have a way of establishing a defeat relation where (F21,F1) ∈ R, that
would be consistent with the precedents, thus presenting a method of balancing the fac-
tors. Conversely, if we then were presented with a new case in which both factors were
accepted (labelled IN) then no defeat relation exists that would be consistent with the
amended case history. But even a failure to produce a solution serves a purpose; indi-
cating that the existing factor-based model of the domain may be insufficient and require
broadening or narrowing. Note that in the actual CATO analysis such a converse case
never arose and (F21,F1) ∈ R was the appropriate conclusion.

Whilst many semantics are available for investigation, our primary attention is
placed on complete semantics due to the superset relation it forms with respect to the tra-
ditional major semantics as well as the intuition of it representing the range of reasonable
positions that are deterministic consequences of the defeat relation (which admissibil-
ity semantics does not guarantee). We will show that the complexity of a σ -consistency
problem with complete semantics (note from this point onward we shall refer to a ‘σ -
consistency with complete semantics’ simply as a ‘σ -consistency problem’) depends sig-
nificantly on the type of input acceptability data, where the extension-based 2-valued
problem (arguments labelled IN or NOTIN) is NP-complete and the 3-valued problem
(arguments labelled IN, UNDEC or OUT) can be solved within polynomial, specifically

J. Mumford et al. / On the Complexity of Determining Defeat Relations 261

multi-variate quadratic, time complexity (although both are solvable within quadratic
space complexity). We believe this paper offers the following contributions:

• Introduces and defines the σ -consistency problem, which asks if a solution defeat re-
lation exists that is consistent with a set of argument acceptability labellings.

• Proves that the 2-valued σ -consistency problem is NP-complete and show its space
complexity to be within O(n2), where n is the number of arguments.

• Proves the 3-valued σ -consistency problem is solvable by algorithms with a time com-
plexity within O(n2|T |), where |T | is the number of labellings in the input, and space
complexity within O(n2).

• Provides informal complexity results for stable, preferred, and grounded semantics.
• Provides insight into the scaleability of algorithms designed to determine a defeat re-

lation from argument acceptability data, suggesting a preference for sourcing 3-valued
data to reduce the risk of solving high complexity problems.

2. Background

We draw upon the concept of argumentation underpinned by Dung’s seminal paper [10]
and the reinstatement principles advocated by Caminada [6] in developing our complex-
ity proofs for the 2-valued and 3-valued σ -consistency problems.

An argumentation framework is a pair AF = 〈A,R〉 where A is a set of arguments,
and R is a binary relation on A, i.e. R ⊆ A×A. We apply the notation for defeat from
[6]: Let a,b ∈ A, we define a+ as {b|a defeats b} and a− as {b|b defeats a}. A set S of
arguments is said to be conflict-free if there are no arguments a and b in S such that
a ∈ b−. A set of arguments S defeats an argument a iff ∃b ∈ S : b ∈ a−. An argument
a ∈ A is acceptable with respect to a set S iff for each argument b ∈ A : if b ∈ a− then
∃c ∈ S : b ∈ c+. A conflict-free set of arguments S is admissible iff each argument in S is
acceptable with respect to S. An admissible set S of arguments is a complete extension iff
each argument that is acceptable with respect to S belongs to S. In a 2-valued complete
labelling, all arguments in S are labelled IN, and all arguments in A\S are labelled NOTIN.

Def. 1 prescribes the implementation of the reinstatement labelling process to pro-
duce a 3-valued complete labelling, which coincides with complete extension semantics
[7]. The formulation has been adopted from [24] with some notation changed in order to
maintain consistency throughout this paper.

Definition 1. (3-valued complete labelling) Let L : A→{IN,UNDEC,OUT} be a labelling
of argumentation framework (A,R). We say that L is a complete labelling iff for each
argument b ∈ A it holds that:

1. (L(b) = IN)≡ (∀a ∈ A : (a ∈ b−)⇒ (L(a) = OUT));
2. (L(b) = OUT)≡ (∃a ∈ A : (a ∈ b−)∧ (L(a) = IN)); and
3. (L(b) = UNDEC) ≡ ((∃a ∈ A : (a ∈ b−)∧ (L(a) = UNDEC))∧ (∀c ∈ A : (c ∈ b−)⇒

(L(c) = IN)).

A signature Σσ ((A,R)) of a semantics σ , is the collection of all possible sets of
labellings from all subgraphs of AF = 〈A,R〉 under semantics σ [11]. We use the con-
cept of a signature for both the 2-valued and 3-valued σ -consistency problems, since
any solution defeat relation R would require all input acceptability labellings to be in
Σσ ((A,R)).

J. Mumford et al. / On the Complexity of Determining Defeat Relations262

Definition 2. (Signatures of argumentation semantics, adapted – with notation changes –
from Dunne et al. [11]) Let σ((S,R)) be the set of possible labellings given arguments S,
defeat relation R, and argumentation semantics σ . We can express the set of all possible
labellings over a set of input AFs as Σσ ((A,R)) such that:

Σσ ((A,R)) = {σ((S,R))|(S,R) is an AF and S ⊆ A}

3. Complexity of 2-valued σ -consistency

In order to formalise the 2-valued σ -consistency problem we must adapt the properties
governing complete extension semantics, rendering explicit the 2-valued labelling form
that the semantics prescribes: for each extension, an argument is labelled IN iff it is
within the extension, and NOTIN iff it is outside the extension. Def. 3 concisely presents
complete extension semantics according to the 2-valued labelling form. We then further
adapt this form to produce our complexity results. We add the OFF label to represent
those arguments that are unlabelled in a particular reinstatement labelling. The OFF label
is essential for when we formalise the 2-valued σ -consistency problem, since it allows
us to include partial labellings representing subgraphs of the wider AF.

Definition 3. (2-valued complete labelling) Let A be a set of arguments; let
L : A→{IN,NOTIN,OFF} be a labelling; let R⊆A×A be a defeat relation. L∈σ((S,R)),
where S = A\X, and where X is the set of arguments labelled OFF, iff each of the follow-
ing conditions hold ∀b ∈ S:

1. L(b) = IN ⇐⇒ ∀a ∈ S : ((L(a) = IN =⇒ (a,b) /∈ R)∧ (L(a) = NOTIN =⇒ (a,b) /∈
R∨∃c ∈ S : (L(c) = IN∧ (c,a) ∈ R))); and

2. L(b) = NOTIN ⇐⇒ ∃a ∈ S : ((L(a) = IN ∧ (a,b) ∈ R)∨ (L(a) = NOTIN ∧ (a,b) ∈
R∧∀c ∈ S : (L(c) = IN =⇒ (c,a) /∈ R))).

Def. 4 formally presents the 2-valued σ -consistency problem of finding a solu-
tion defeat relation set consistent with 2-valued input argument acceptability data. From
this definition we produce the principle complexity result in Theorem 2, that the σ -
consistency problem is NP-complete.

Definition 4. (2-valued σ -consistency problem) Given a set of arguments A, a semantics
σ , and a set of labellings T such that for each L ∈ T , L : A→{IN,NOTIN,OFF}, is there a
defeat relation R ⊆ A×A consistent with T such that ∀L : (L ∈ σ((S,R)) ∈ Σσ ((A,R))),
where S = A\X, and where X is the set of arguments labelled OFF?

It should be obvious that in general one should not assume there exists just one
solution defeat relation for an arbitrary 2-valued σ -consistency problem (e.g. an input
labelling of two arguments where one argument is labelled IN, and the other NOTIN

has more than one defeat relation that could produce this labelling). Before we move
on to the full complexity proof, we make the intermediate observation in Theorem 1
of the symmetry of defeat inconsistency – that for complete semantics if some defeat
(a,b) ∈ R is inconsistent with some labelling then (b,a) would also be inconsistent with
the labelling.

J. Mumford et al. / On the Complexity of Determining Defeat Relations 263

Theorem 1. (Bidirectional defeat inconsistency for 2-valued labellings) Assuming
complete argumentation semantics, for any set of labellings T : ∀L ∈ T , L : A →
{IN,NOTIN,OFF}, we have ∃a,b∈A : ((a,b)∈R =⇒ L /∈σ((S,R)) ⇐⇒ (b,a)∈R =⇒
L /∈ σ((S,R))), where S = A\X, and X is the set of arguments labelled OFF.

Proof. Suppose we have σ as complete semantics, a and b are arbitrary arguments in A,
and S = A\X , and where X is the set of arguments labelled OFF.
(Forward implication) Suppose (a,b) ∈ R =⇒ L /∈ σ((S,R)). From Def. 3 we draw
expressions of the form L(a)∧L(b) =⇒ (a,b) /∈ R. We have three cases:
Case 1. ∀a,b ∈ S : (L(b) = IN∧L(a) = IN =⇒ (a,b) /∈ R). Suppose (b,a) ∈ R, then by
the first condition of Def. 3 L(a) = IN =⇒ (b,a) /∈ R. Contradiction!
Case 2. ∀a,b ∈ S : ((L(b) = IN∧L(a) = NOTIN =⇒ (a,b) /∈ R) =⇒ �c ∈ S : (L(c) =
IN∧(c,a)∈R)). Suppose (b,a)∈R, then ∃c∈ S : (L(c) = IN∧(c,a)∈R). Contradiction!
Case 3. ∀a,b ∈ S : ((L(b) = NOTIN∧L(a) = IN =⇒ (a,b) /∈ R) =⇒ ∃c ∈ S : (L(c) =
NOTIN ∧ (b,c))∧ ∀d ∈ (S \ b) : (∀e ∈ S : (L(e) = IN =⇒ (e,d) /∈ R)∧ (d,c) /∈ R)).
Suppose (b,a)∈ R, then by the first condition of Def. 3 ∃ f ∈ S : (L(f) = IN∧(f ,b)∈ R).
Contradiction!
Therefore if (a,b) ∈ R =⇒ L /∈ σ((S,R)) then (b,a) ∈ R =⇒ L /∈ σ((S,R)).
(Backward implication) Since a and b are arbitrary, the backward implication immedi-
ately follows from the permutation a ↔ b in the forward implication.
Therefore if (b,a) ∈ R =⇒ L /∈ σ((S,R)) then (a,b) ∈ R =⇒ L /∈ σ((S,R)).

We shall see later in the paper that the symmetry of inconsistency also holds for
the 3-valued σ -consistency problem. Hence the symmetry of defeat inconsistency with
acceptability data underpins any σ -consistency problem based on complete semantics.
It is essential to understand that Theorem 1 applies to asymmetric as well as symmetric
frameworks, but simply outlines that if an arbitrary defeat (a,b) is incompatible with a
labelling set, then (b,a) will also be incompatible.

Theorem 2. (2-valued σ -consistency problem as NP-complete) The 2-valued σ -
consistency problem as defined in Def. 4 is NP-complete.

Proof. Suppose there is a set of arguments A, labellings T , and complete semantics σ .
It is easy to show that the 2-valued σ -consistency problem is in NP. Given a solution
defeat relation R, from [8], the verification problem of confirming a given labelling L
is consistent with R and σ , is solvable in polynomial-time. Since T is a fixed set of
labellings, then the verification problem of confirming each labelling L ∈ T is consistent
with R and σ , is clearly also solvable within polynomial-time. Therefore the 2-valued
σ -consistency problem is within NP.
We must show that the NP-complete Monotone 3SAT problem [14] can be reduced by
function r to the 2-valued σ -consistency problem in polynomial-time. An arbitrary in-
stance of a Monotone 3SAT problem consists of a set of clauses C, where we require that
C is satisfied if and only if ∀L j ∈ r(C) : (L j ∈ σ((S,R))), where S = A\X , and where X
is the set of arguments labelled OFF.
Suppose an arbitrary Monotone 3SAT problem and some arguments ω,β ∈ A, where
ω = β . Suppose an arbitrary clause ci ∈ C, then a j ∈ ci ⇐⇒ (a j,ω) ∈ R and ¬a j ∈
ci ⇐⇒ (a j,ω) /∈ R, where a j is arbitrary. There exist two cases for an arbitrary clause
ci in an Monotone 3SAT problem; suppose we have r such that:

J. Mumford et al. / On the Complexity of Determining Defeat Relations264

Case 1. ci = (ai∨bi∨ci) and r(ci) = (S,L1i,L2i) where S = {ai,bi,ci,ω}, L1i = {L(ai) =
NOTIN,L(bi) = NOTIN,L(ci) = NOTIN,L(ω) = NOTIN}, and L2i = {L(ω) = IN}, and
ai,bi,ci are arbitrary.
Case 2. ci = (¬ai ∨¬bi ∨¬ci) and r(ci) = (S,L3i,L4i), where S = {ai,bi,ci,ω,β} L3i =
{L(ai) = NOTIN,L(bi) = NOTIN,L(ci) = NOTIN,L(ω) = IN,L(β) = NOTIN}, and L4i =
{L(ω) = IN,L(β) = IN}, and ai,bi,ci are arbitrary.
We show the forward and backward implications hold for the two possible cases for arbi-
trary ci via equivalence. In the reduction we use the shorthand (a,b) to indicate (a,b)∈R,
and ¬(a,b) to indicate (a,b) /∈ R.
(Case 1) Suppose arbitrary clause ck = (ai ∨ bi ∨ ci), from Def. 3 we have r(ck) =⇒
∧

y∈S
(
∨

x∈S
(x,y))∧¬(ω,ω). Since ai,bi and ci are always labelled NOTIN in every labelling

L j ∈ r(C), they are all free to defeat themselves and one another. Hence we are left to
satisfy r(ck) =⇒ (ai,ω)∨ (bi,ω)∨ (ci,ω)≡ ck.
(Case 2) Suppose arbitrary clause cm = (¬ai∨¬bi∨¬ci), from Def. 3 we have r(cm) =⇒∧

y∈S\ω
((ω ,y)∨ ∨

x∈S\ω
((x,y)∧¬(ω,x)))∧¬(ω,ω)∧ ∧

z∈S\ω
((z,ω) =⇒ (ω,z))∧¬(ω,ω)∧

¬(ω,β)∧¬(β ,ω)∧¬(β ,β). As outlined in the previous case, ai,bi and ci are free to
defeat themselves and one another, and this is also extended to β . Hence we are left to
satisfy r(cm) =⇒ ∨

x∈{ai,bi,ci}
(¬(ω,x))∧ ∧

y∈{ai,bi,ci}
((y,ω) =⇒ (ω,y)), which by modus

tollens further reduces to r(cm) =⇒ ¬(ai,ω)∨¬(bi,ω)∨¬(ci,ω)≡ cm.
It is clear that the reduction produces a permutation where ((ai,ω) ∈ R) ≡ (ai = �),
((ai,ω) /∈ R) ≡ (¬ai = �), ((bi,ω) ∈ R) ≡ (bi = �), ((bi,ω) /∈ R) ≡ (¬bi = �),
((ci,ω)∈ R)≡ (ci =�) and ((ci,ω) /∈ R)≡ (¬ci =�). Therefore for both cases of arbi-
trary clause ci ∈C, the reduction simply produces a permutation of the monotone 3SAT
problem and consequently C is satisfied if and only if ∀L j ∈ r(C) : (L j ∈ σ((S,R))).
It is clear that r : ci �→ {S,T}, where S ⊆ {ai,bi,ci,ω,β} and T ⊆ {L1i,L2i,L3i,L4i}, re-
quires constant number of operations to produce the elements in S and T for any arbitrary
clause ci ∈ C. Therefore for k clauses the reduction requires O(k) operations, which is
within polynomial-time.
Therefore the 2-valued σ -consistency problem is NP-complete.

Deriving the space complexity result is a much simpler affair. For an arbitrary 2-
valued σ -consistency problem a systematic search through a sorted argument power set
would only need to store the current node in order to know which node to examine next.
In which case, each node in the search would be of length n2. Hence O(n2) is an upper
bound for the space complexity for solving any 2-valued σ -consistency problem.

4. Complexity of 3-valued labellings

In order to formalise the 3-valued σ -consistency problem, we first directly translate the
argument-set-based form of Def. 1 to accommodate partial data sets, adding the OFF

label to represent those arguments in the wider data set that are unlabelled in a particular
reinstatement labelling. The OFF label is essential since it allows a defeat relation R to
be learned that is consistent with partial labellings. Def. 5 combines the reinstatement
approach adopted in [6] alongside the concept of a signature Σσ ((A,R)) from Def. 2.

J. Mumford et al. / On the Complexity of Determining Defeat Relations 265

Definition 5. (3-valued form) Let A be a set of arguments; let
L : A → {IN,UNDEC,OUT,OFF} be a labelling; let R ⊆ A×A be a defeat relation. L ∈
σ((S,R)), where S = A\X, and where X is the set of arguments labelled OFF, iff each of
the following conditions hold ∀b ∈ S:

1. L(b) = IN ⇐⇒ ∀a ∈ S : (L(a) = OUT =⇒ (a,b) /∈ R);
2. L(b) = UNDEC ⇐⇒ ∀a ∈ S : (L(a) = IN =⇒ (a,b) /∈ R)∧∃c ∈ A : (L(c) = UNDEC∧

(c,b) ∈ R); and
3. L(b) = OUT ⇐⇒ ∃a ∈ S : (L(a) = IN∧ (a,b) ∈ R).

Def. 6 formally presents the 3-valued σ -consistency problem of finding a solution
defeat relation set consistent with input 3-valued argument acceptability data.

Definition 6. (3-valued σ -consistency problem) Given a set of arguments A, a semantics
σ , and a set of labellings T such that for each L ∈ T , L : A → {IN,UNDEC,OUT,OFF},
is there a defeat relation R ⊆ A×A consistent with T such that ∀L : (L ∈ σ((S,R)) ∈
Σσ ((S,R))), where S = A\X, and where X is the set of arguments labelled OFF?

We again note that no assumption of a single solution defeat relation can be made
in general (e.g. a labelling with two arguments labelled IN and one argument labelled
OUT could be satisfied by multiple distinct defeat relations) and we gain insight into
the complexity of the 3-valued problem by first observing the symmetry of inconsistent
defeats in Theorem 3. It is important to note that, as was the case when we considered the
ramifications of Theorem 1, Theorem 3 is not limited to symmetric AFs but also applies
to asymmetric AFs. Theorem 3 outlines that for complete semantics if an arbitrary defeat
(a,b) ∈ R is incompatible with a labelling set, then (b,a) ∈ R will also be incompatible.

Theorem 3. (Bidirectional defeat inconsistency for 3-valued labellings) Assuming
complete argumentation semantics, for any set of labellings T : ∀L ∈ T , L : A →
{IN,OUT,UNDEC,OFF}, we have ∃a,b ∈ A : ((a,b)∈ R =⇒ L /∈ σ((S,R)) ⇐⇒ (b,a)∈
R =⇒ L /∈ σ((S,R))), where S = A\X, and X is the set of arguments labelled OFF.

Proof. Suppose we have σ as complete semantics, a and b are arbitrary arguments in A,
and S = A\X , and where X is the set of arguments labelled OFF.
(Forward implication) Suppose (a,b) ∈ R =⇒ L /∈ σ((S,R)). From Def. 5 we draw
expressions of the form L(a)∧L(b) =⇒ (a,b) /∈ R. We have three cases:
Case 1. L(b) = IN ∧ L(a) = IN =⇒ (a,b) /∈ R. Suppose (b,a) ∈ R, then by the first
condition of Def. 5 L(a) = IN =⇒ (b,a) /∈ R. Contradiction!
Case 2. L(b) = IN ∧ L(a) = UNDEC =⇒ (a,b) /∈ R. Suppose (b,a) ∈ R, then by the
second condition of Def. 5 L(a) = UNDEC =⇒ (b,a) /∈ R. Contradiction!
Case 3. L(b) = UNDEC∧L(a) = IN =⇒ (a,b) /∈ R. Suppose (b,a) ∈ R, then by the first
condition of Def. 5 L(a) = IN =⇒ (b,a) /∈ R. Contradiction!
Therefore if (a,b) ∈ R =⇒ L /∈ σ((S,R)) then (b,a) ∈ R =⇒ L /∈ σ((S,R)).
(Backward implication) Since a and b are arbitrary, the backward implication immedi-
ately follows from the permutation a ↔ b in the forward implication.
Therefore if (b,a) ∈ R =⇒ L /∈ σ((S,R)) then (a,b) ∈ R =⇒ L /∈ σ((S,R)).

We use Algorithm 1 to indicate an upper bound for complexity in solving the 3-
valued σ -consistency problem. The algorithm begins with a full initial defeat relation

J. Mumford et al. / On the Complexity of Determining Defeat Relations266

such that all arguments defeat all other arguments and then prunes the defeats that are
incompatible with the acceptability data. The algorithm involves two passes through the
data: one to remove defeats inconsistent with the labellings, and a second to check the
resulting defeat relation R is consistent with the labellings.

Algorithm 1 A pruning algorithm that returns a defeat relation R that is consistent with
a set of labellings T and argument set A or indicates that no such R is possible.

1: procedure DEFEAT PRUNING(A,T)
2: R ←{(a,b),∀a,b ∈ A}
3: for ∀L ∈ T do

4: for ∀a,b ∈ A do

5: if (L(b) = IN∧L(a) ∈ {IN,UNDEC}) ∨
(L(b) = UNDEC∧L(a) = IN) then

6: R ← R\ (a,b)
7: for ∀L ∈ T do

8: for ∀b ∈ A do

9: if L(b) = UNDEC then

10: if �a ∈ A : ((a,b) ∈ R)∧ (L(a) = UNDEC) then

11: return failure
12: if L(b) = OUT then

13: if �a ∈ A : ((a,b) ∈ R)∧ (L(a) = IN) then

14: return failure
15: return R

We stress that Algorithm 1 is not the only method, and we certainly do not suggest it
is optimal in terms of any performance metric, of addressing the 3-valued σ -consistency
problem but, as Theorem 4 indicates, it shows the problem is significantly less complex
to solve than its 2-valued peer. This result may appear unintuitive given the bijective
mapping of 2-valued and 3-valued labellings in forward argumentation. The simple rea-
son for the divergence in complexity between the two σ -consistency problems is due to
the ambiguity of the NOTIN label which can be either OUT or UNDEC in the 3-valued
approach. Theorem 3 shows that those defeats that are inconsistent with 3-valued data
are direct consequences of the labels themselves, whereas in Theorem 1 we see that the
labels of 2-valued data are insufficient to determine inconsistency and the existing de-
feat relation R must be examined also. This self-referential search process in finding a
solution defeat relation R for the 2-valued σ -consistency problem is the cause of the
additional complexity.

Theorem 4. (Defeat pruning for 3-valued σ -consistency problem) The 3-valued σ -
consistency problem can be solved by a defeat pruning algorithm with a time complexity
of O(n2|T |) and a space complexity of O(n2) where n is the number of arguments and
|T | is the number of labellings.

Proof. Let us define some R′ that is the defeat relation output by Algorithm 1 upon
receiving input T . There exist two cases for solving the 3-valued σ -consistency problem:
(Case 1 Forward implication) Suppose there ∃R that is consistent with T . Suppose R′ is
not consistent with T , then ∃L ∈ T : (L /∈ σ((S,R))). By the definition of R′ it cannot be

J. Mumford et al. / On the Complexity of Determining Defeat Relations 267

that some inconsistent defeat is in R′ and so there must be some essential defeat missing
from R′. From Def. 5 it must be that (∃b1 ∈ S : (L(b1) = UNDEC)∧∀c ∈ S : (L(c) =
UNDEC =⇒ (c,b1) /∈R′))∨(∃b2 ∈ S : (L(b2)= OUT)∧∀a∈ S : (L(a)= IN =⇒ (a,b2) /∈
R′)). But since R exists then for any such L(b1) = UNDEC there is some appropriate
(c,b1) ∈ R\R′, or for any L(b2) = OUT there is some appropriate (a,b2) ∈ R\R′. But by
the definition of R′ it must be that R′ ⊇ R, contradiction! Therefore if there exists some
R that is consistent with T then R′ is also consistent with T .
(Case 2 Backward implication) Suppose there �R consistent with T . Then clearly R′ is
not consistent with T . Hence if �R consistent with T then R′ is also not consistent with
T . Therefore there ∃R that is consistent with T iff R′ is consistent with T .
To find R′ it is necessary in the worst case to check all n2 possible defeats for each L ∈ T .
From Theorem 3 it is clear that for any defeat (a,b) to be evaluated for consistency with
some L ∈ T it is sufficient to simply check L(a) and L(b). Hence there are required at
most 2n2|T | operations required to produce R′. Similarly, once R′ has been derived, there
will be at most 2n2|T | operations required to check that R′ is consistent with T . Therefore
the defeat pruning algorithm will find a solution defeat relation R′ or prove that none
exist in time complexity of O(2n2|T |+2n2|T |) = O(n2|T |).
Finally, for each step in the process we need to store the current defeat set R, of size n2.
It follows that the space complexity is within O(n2).

5. σ -consistency For Other Semantics

Throughout this paper the focus has been on complete argumentation semantics. How-
ever, turning our attention to the alternative semantics as originally presented in [10]
allows us to informally outline some relevant results.

For σ -consistency under stable semantics, we can quickly identify that both the 2-
valued and 3-valued problems reduce to a special case of the 3-valued problem where no
labelling contains UNDEC labelled arguments. Explicitly for the 2-valued problem this
means that all NOTIN labelled arguments are interpreted as labelled OUT. Therefore the
problem is solvable in O(n2|T |) time and O(n2) space complexity.

For σ -consistency under preferred semantics, we conjecture that the problem is not
in NP unless coNP = P. The verification of any solution defeat relation is achieved by
verifying each labelling in the data set. As outlined in [9,12], the verification of any
labelling under preferred semantics is coNP-complete. We observe the coNP-complete
result is derived from the special instance of verifying the empty set is a preferred ex-
tension, hence the result pertains to both the 2-valued and 3-valued variants. Further, as
discussed in [13], verification results for all the major semantics hold for both 2-valued
and 3-valued data. This means that solving σ -consistency is likely to be a hard problem.

For σ -consistency under grounded semantics, it is easy to see that for both 2-valued
and 3-valued acceptability data, the problem is within NP, since the verification of each
labelling in |T | is within P [12]. However, we strongly conjecture that both 2-valued and
3-valued σ -consistency problems under grounded semantics are in fact NP-complete.
There is not room to demonstrate a full proof in the confines of this paper. However,
a proof similar to that used for Theorem 2 can be constructed by reducing from the
Monotone 3SAT problem such that the two types of clauses are reduced by r thus:
Case 1: ci = (ai ∨ bi ∨ ci) and r(ci) = (S,L1i,L2i), where S = {ai,bi,ci,ω}, L1i =
{L(ω) = IN}, and for 2-valued (resp. 3-valued) σ -consistency we have L2i = {L(ai) =

J. Mumford et al. / On the Complexity of Determining Defeat Relations268

NOTIN,L(bi) = NOTIN,L(ci) = NOTIN,L(ω) = NOTIN} (resp. L2i = {L(ai) = UNDEC,
L(bi) = UNDEC,L(ci) = UNDEC,L(ω) = UNDEC});
Case 2: ci = (¬ai ∨ ¬bi ∨ ¬ci) and r(ci) = (S,L1i), where S = {ai,bi,ci,ω}, and
for 2-valued (resp. 3-valued) σ -consistency we have L1i = {L(ai) = NOTIN,L(bi) =
NOTIN,L(ci) = NOTIN,L(ω) = IN} (resp. L2i = {L(ai) = OUT,L(bi) = OUT,L(ci) =
OUT,L(ω) = IN}).

6. Related Work

Research on the topic of extension enforcement [2,3], is concerned with determining
what additions could be made to a defeat relation in order to accommodate new exten-
sions. However, there are notable departures from the direction pursued in this paper,
such as requiring monotonic growth of the defeat relation, whereas we also allow reduc-
tion when solving for σ -consistency.

Argumentation realizability [4,11,17,20], extends beyond extension enforcement by
removing the requirement of monotonic enlargement of the defeat relation R. Realizabil-
ity requires that there exists a defeat relation that can express precisely the given set of in-
terpretations (labellings or extensions), with no other interpretations expressible from the
defeat relation. This assumption of completeness of the input extension/labelling set can
be understood as a special case of σ -consistency where partial labellings pertaining to ar-
gument subgraphs are not permitted and the input labellings are exactly σ((A,R)). Inter-
estingly, research into argumentation realizability has thus far encountered difficulty in
determining a complexity class for complete semantics, remaining apparently unsolved
despite its importance as a foundation for other semantics as previously discussed. Note
that the complexity for realizability under complete semantics is conjectured to be NP-
hard due to the association with MaxSat algorithms in deriving a solution.

Argumentation synthesis [18,19] develops the concept of realizability by relaxing
the requirement for one-to-one mapping; the solution defeat set must satisfy a maximal
number of argument labels. The approach further differentiates itself from realizability
by accepting positive labels that are to be satisfied, but also negative labels that should
not be satisfied. Argumentation synthesis is posed as an optimization problem that can
accommodate noisy data sets, which will be in accordance with a wide set of real prob-
lems. Thus far in the literature, argumentation synthesis has only been applied to 2-
valued problems (i.e. extension-based) and ignored partial labellings, unlike the general
σ -consistency problems considered in this paper. As an optimization problem it requires
its own complexity analysis appropriate for a Max-Sat search. Similar to realizability,
complexity results for complete semantics have thus far been elusive albeit conjectured
to belong to the NP-hard class of problems [19].

An alternative to argumentation synthesis for handling noisy data are the probability-
based approaches [15,16,22] that do not overtly seek out minimising the number of mis-
classified errors as the singular goal. Whilst [15,16] use Bayesian inference and [22]
uses the more elementary Kolmogorov’s axioms, both focus on 2-valued argument ac-
ceptability data. It is notable that [15,16] suffer the problem of exponential complexity
when determining their Bayesian calculations, since power sets of extension argument
acceptabilities must be considered with a resulting combinatorial explosion. In contrast,
[22] does not suffer from this same problem but has an altogether different dilemma in

J. Mumford et al. / On the Complexity of Determining Defeat Relations 269

identifying from where the prior probabilities that are assigned to the argument rules are
obtained, before these are mapped to the corresponding graph.

The most closely related research [21,23] examines the σ -consistency problem from
the 2-valued and 3-valued perspectives but under grounded semantics. The complexity
results from [21,23] claim that processing the 2-valued (resp. 3-valued) σ -consistency
problem under grounded semantics is solvable in O(n2|T |) (resp. O(n3|T |)) time (by
our notation). These findings clearly disagree with our conjecture from Section 5 that
both problems are NP-complete. We believe that the complexity results from [21,23]
are incorrect and the error stems from neglecting the subset minimality of grounded
semantics and the potential for the empty set to be the grounded labelling. A formal proof
is forthcoming.

7. Concluding Remarks

We examined the computational complexity of the σ -consistency problem (where ‘σ -
consistency’ refers to ‘σ -consistency under complete semantics’ throughout the paper)
that determines whether a solution defeat relation exists that is wholly consistent with a
set of argument acceptability labellings under the given semantics. The paper offers the
following contributions.

• Introduced and defined the σ -consistency problem, which asks if a solution defeat
relation exists that is consistent with a set of argument acceptability labellings.

• The 2-valued σ -consistency problem is proved to be NP-complete, and shown to have
a space complexity within O(n2).

• The 3-valued σ -consistency problem is proved to be solvable by algorithms with a time
complexity within O(n2|T |) and space complexity within O(n2).

• Provided informal complexity results for stable, preferred, and grounded semantics.

• The complexity results provide insight into the scaleability of algorithms designed to
determine a defeat relation from argument acceptability data, suggesting a preference
for sourcing 3-valued data to reduce the risk of solving high complexity problems.

Future work expanding the formal attention to other semantics, such as preferred
or semi-stable, as well as to more advanced forms of argumentation, such as weighted
or bipolar semantics, would also require rigorous complexity analysis of these forms in
order to locate the expectations for relevant algorithms. We would also identify, as a
fertile ground for exploration, the pursuit of theory underpinning the enumeration and/or
counting of solution defeat relations under σ -consistency, as well as related research into
the “quality” of solution defeat relations compared with the notion of a ground truth.

Acknowledgements

This work was partially supported by a PhD studentship from King’s College London.

J. Mumford et al. / On the Complexity of Determining Defeat Relations270

References

[1] V. Aleven. Teaching case-based argumentation through a model and examples. PhD thesis, University
of Pittsburgh, 1997.

[2] Ringo Baumann. What does it take to enforce an argument? minimal change in abstract argumentation.
In ECAI, volume 12, pages 127–132, 2012.

[3] Ringo Baumann and Gerhard Brewka. Expanding argumentation frameworks: Enforcing and mono-
tonicity results. COMMA, 10:75–86, 2010.

[4] Ringo Baumann, Wolfgang Dvorák, Thomas Linsbichler, Hannes Strass, and Stefan Woltran. Compact
argumentation frameworks. In ECAI, pages 69–74, 2014.

[5] Trevor JM Bench-Capon and Paul E Dunne. Argumentation in artificial intelligence. Artificial Intelli-
gence, 171(10-15):619–641, 2007.

[6] Martin Caminada. On the issue of reinstatement in argumentation. In European Workshop on Logics in
Artificial Intelligence, pages 111–123, 2006.

[7] Martin WA Caminada and Dov M Gabbay. A logical account of formal argumentation. Studia Logica,
93(2-3):109, 2009.

[8] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumentation frameworks. In
European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pages
317–328. Springer, 2005.

[9] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and default
theories. Theoretical Computer Science, 170(1-2):209–244, 1996.

[10] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reason-
ing, logic programming and n-person games. Artificial Intelligence, 77(2):321–357, 1995.

[11] Paul E Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan Woltran. Characteristics of multiple
viewpoints in abstract argumentation. Artificial Intelligence, 228:153–178, 2015.

[12] Paul E Dunne and Michael Wooldridge. Complexity of abstract argumentation. In Argumentation in
artificial intelligence, pages 85–104. Springer, 2009.

[13] Wolfgang Dvorák and Paul E Dunne. Computational problems in formal argumentation and their com-
plexity. Handbook of formal argumentation, 4, 2018.

[14] Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[15] Hiroyuki Kido and Beishui Liao. A Bayesian approach to direct and inverse abstract argumentation
problems. arXiv preprint arXiv:1909.04319, 2019.

[16] Hiroyuki Kido and Frank Zenker. Argument-based Bayesian estimation of attack graphs: A preliminary
empirical analysis. In International Conference on Principles and Practice of Multi-Agent Systems,
pages 523–532. Springer, 2017.

[17] T Linsbichler, J Puehrer, and H Strass. Characterizing realizability in abstract argumentation. In Pro-
ceedings of the 16th International Workshop on Non-monotonic reasoning, 2016.

[18] Andreas Niskanen, Daniel Neugebauer, Matti Järvisalo, and Jörg Rothe. Deciding acceptance in in-
complete argumentation frameworks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 2942–2949, 2020.

[19] Andreas Niskanen, Johannes Wallner, and Matti Järvisalo. Synthesizing argumentation frameworks
from examples. Journal of Artificial Intelligence Research, 66:503–554, 2019.

[20] Jörg Pührer. Realizability of three-valued semantics for abstract dialectical frameworks. Artificial Intel-
ligence, 278:103198, 2020.

[21] Régis Riveret. On learning abstract argumentation graphs from bivalent statement labellings. In 28th
International Conference on Tools with Artificial Intelligence, pages 190–195. IEEE, 2016.

[22] Régis Riveret, Pietro Baroni, Yang Gao, Guido Governatori, Antonino Rotolo, and Giovanni Sartor. A
labelling framework for probabilistic argumentation. Annals of Mathematics and Artificial Intelligence,
pages 1–51, 2018.

[23] Régis Riveret and Guido Governatori. On learning attacks in probabilistic abstract argumentation. In
AAMAS, pages 653–661, 2016.

[24] Yining Wu, Martin Caminada, and Mikotaj Podlaszewski. A labelling-based justification status of argu-
ments. Studies in Logic, 3(4):12–29, 2010.

J. Mumford et al. / On the Complexity of Determining Defeat Relations 271

