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Abstract: Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-
acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological
properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is
a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are
produced by biotechnology processes, while in the human organism it is a major component of the
extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed,
HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based
on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer
treatment, central and peripheral nervous systems, discuss their relevance and identify the most
successful developed systems.
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1. Introduction

Hyaluronic acid (HA), also known as hyaluronan, is a linear polysaccharide composed
of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid [1–3]. Its
molecular mass varies between 0.2 and 10 MDa and its physiological properties are gov-
erned by its polyelectrolyte and polymeric features, as well as by its viscous nature [1–3].
HA is a ubiquitous compound present in almost all biological tissues and fluids [1–3]. In
the human organism, it is found in the extracellular matrix (ECM) of the skin, vitreous
humor, cartilage, umbilical cord, CNS and the PNS [1,4].

HA has various applications. For instance, in cosmetology, it is used as an anti-ageing
agent, in pharmaceutics and regenerative medicine as an excipient and constituent of
scaffolds for drug delivery and regeneration and in biology as a component of in vitro
models [5–7]. Research and medical grade HA samples are produced by biotechnological
processes, mainly from bacteria or isolated from rooster combs [1,4]. HA is FDA-approved
and generally recognized as safe (GRAS) for medical applications. Besides, HA can be
administered topically, orally or by injection [1–3].

HA is a natural polymer present in the central nervous system (CNS) and peripheral
nervous system (PNS) [7,8]. It is capable of forming a polymeric crosslinked network that
exhibits a high water-absorbing ability, called a hydrogel [9]. HA polymers are biodegrad-
able in vivo by free radicals and by vertebrates by specific enzymes from type I to type
VI hyaluronidases [2,4]. HA biomimetic properties have motivated the development of
HA-featuring devices for CNS and PNS disorders, displaying the following characteristics: in-
jectability, biocompatibility, bioadhesion, controlled drug release and biodegradability [1,3,10].
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HA-based systems are tunable. They are usually formulated with HA alone or in
association with other biopolymers with biological properties such as chitosan, alginate and
cellulose, or synthetic ones with thermosensitive and mechanical properties, for example
poloxamers, polyethylene glycol (PEG) and polycaprolactone (PCL) [7,10–14]. Due to their
versatility, research on HA-based polymers has increased over the past decade with poten-
tial applications for drug delivery and regenerative medicine [9]. The aim of this review is
to highlight HA properties, summarize emerging in vitro and in vivo evidence of HA-based
scaffolds developed for brain cancer treatment [15], the CNS [16] and PNS [17] and discuss
the relevant results for the locoregional administration of these scaffolds (Tables S1–S3).

2. Pathologies of the Central and Peripheral Nervous System and Current
Therapeutic Approaches

Pathologies of the nervous system are considered among the most difficult to treat,
due to the complexity of the system and its numerous protective barriers that play a critical
role in the brain’s metabolic activity as well as neuronal function [18,19]. At the same
time, the occurrence of brain diseases like cancer, traumatic injuries and neurodegenerative
diseases is currently increasing [20]. Notwithstanding the advances in research regarding
novel therapeutic approaches to treat pathologies of the CNS, the majority of these diseases
still lack an effective and permanent cure. Here, we introduce the main issues and current
therapeutic approaches for three classes of brain pathologies: (i) cancer, particularly focus-
ing on the most common and hard-to-treat brain cancer, i.e., glioblastoma [15]; (ii) traumatic
brain injuries [16]; and iii) peripheral nerve injuries [17].

2.1. Glioblastoma and Gliomas

Grade IV glioblastoma (GB) and malignant gliomas are the most common form of
brain tumors. They have an annual incidence of 5.26 per 100,000 people, accounting for
17,000 new cases each year [21,22]. Unfortunately, these kinds of tumors lead to a poor
quality of life and prognosis for patients, with a survival median of 15 months after
diagnosis [15,21]. In fact, GB is defined as a IV grade glioma, and it is the most lethal
and frequent malignant primary brain tumor [21]. On contrary to other solid tumors,
GB is highly invasive towards neighboring tissues in the brain, causing high rates of
recurrence and tumoral transformation in healthy cells, although rarely metastasize to
other organs [15,21,23].

Current FDA-approved therapy is based on a surgical resection of the majority of
the tumor, followed by systemic chemotherapy and radiotherapy together with adjuvant
therapy with temozolomide (TMZ), according to the Stupp protocol [24,25]. In spite
of the undoubted advantages linked to this therapeutic approach, in 90% of the cases
patients experience a recurrence after the first surgery [15,26]. This common issue is
mainly due to a specific population of cancer stem cells, called tumor-initiating stem cells,
which display a high tumorigenic potential and often remain intact even after surgery and
chemotherapy [23,27]. Thus, their ability to proliferate in an asymmetric way leads to the
relapse of GB, but few therapeutic options are available in this scenario [15,21,23,28].

To reduce the risk of a recurrence, several therapeutic approaches are now under
investigation (Table S1). Of particular interest is the possibility to develop peptide- and
cell-based vaccines that specifically target GB cells leading to their death by stimulation of
the immune system [26]. More recently, CAR-T cells have also gained increasing interest
from scientists thanks to their high potential for the treatment of GB [29]. Other approved
molecules for the treatment of GB include carmustine, lomustine and even monoclonal
antibodies such as bevacizumab [30]. Another innovative approach is represented by
nanomedicines; in fact, the particular tumor microenvironment and surface characteristics
of GB cells allow for the specific targeting of drug-loaded nanosystems that can release
cytotoxic drugs in tumor cells with low off-target effects [31,32]. Despite the several
advantages that these innovative therapies may involve, few of them have reached the
market. Besides, one approach is represented by Gliadel® [33–35]. Developed in early
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2000, Gliadel® consists of polymeric wafers loaded with carmustine. They are approved
to be implanted into the resected cavity after surgery and are able to release the drug for
up to 3 weeks, thus reducing the risk of GB setback and promoting a better prognosis for
patients [35]. However, this treatment only produces modest effects as the released drug can
only penetrate 1–2 mm into the surrounding brain tissues, preventing the complete killing
of residual GB cells, which may reside more than one centimetre away from the resection
margin. Moreover, the shape of the scaffold does not quite fit the resection cavity border
and induces some side effects in many patients according to various clinical trials [36–38].

2.2. Traumatic Brain Injuries

Traumatic brain injuries (TBIs) are on the rise, not only in the elder population, where
almost 500 out of 100,000 people over 80 years old are estimated to suffer from this pathol-
ogy each year, but also in children, with an annual incidence of almost 500,000 cases among
children aged 0–14 [16]. In particular, TBIs are one of the major causes of impairments in
young adults, and for this reason, they represent a huge healthcare burden [39]. After the
traumatic event, many phenomena can occur in the brain, both at physical and chemical
levels [16,40]. In particular, the first phase after the trauma is generally considered crucial
to determine the development of secondary damage, as it can include haemorrhages, dis-
ruption of the Blood Brain Barrier (BBB), high levels of inflammation, with consequences
such as seizures, hypoxia, ischemic areas, and edema [41]. All these events, if not timely
treated, may lead to metabolic failure, eventually leading to critical impairments or even
the death of the patient [16,40].

Therapeutic approaches approved in the case of TBIs are generally linked to the
specific case and history of the disease [16]. Considering physical and pharmacological
approaches, these may include surgery to reduce edema-induced intracranial pressure, the
administration of neuroprotective agents, antioxidants to reduce free radical production and
anti-inflammatory drugs; also, other therapies can involve hypothermia, the regulation of
blood flow dysregulation and ischemia, the regulation of ion homeostasis and cytoskeleton
stabilization [42]. All of these pharmacological strategies, though, present a common
limitation due to their fast clearance, thus resulting in a hampered prolonged release and
the need for several therapeutic systems [41]. At the same time, surgery often includes
craniotomy and cranioplasty, calling for the need to develop biocompatible materials that
can substitute physiological tissues and promote recovery [43,44]. Both of these issues
have been under investigation in recent years, leading to the design and formulation of
biocompatible scaffolds that allow the prolonged release of therapeutics, along with the
promotion of tissue curing [45,46]. In fact, many scaffolds have been developed, using
different materials and production techniques (Table S2). In particular, hyaluronic acid-
based scaffolds will be discussed in part 5.

2.3. Peripheral Nerve Injuries

Peripheral nerve accidents are not unusual situations, with a vast range of symptoms
depending on the severity of the trauma and the nerves involved [17]. Although a lot of
information exists on the mechanisms of damage and regeneration, reliable treatments that
allow for complete recovery are rare [17,47,48].

Peripheral nerve accidents can imply various challenges to patients, starting from
moderate pain to life-long impairment (Table S3). Seddon pioneered nerve accidents
classification, by identifying three primary classes based on the degree of demyelination
and the amount of damage to the axons and the connective tissues of the nerve [17]. The
mildest shape of harm is referred to as neurapraxia, described by focal demyelination in
the absence of harm to the axons or the connective tissues [17,49]. Neurapraxia generally
happens as a consequence of moderate compression or the traction of the nerve and results
in a lower conduction velocity [17,49,50]. Depending on the severity of the demyelination,
the consequences can change from asynchronous conduction to conduction block, resulting
in muscle weakness [17,51]. The subsequent stage is referred to as axonotmesis, which
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includes direct harm to the axons as well as focal demyelination, but the continuity of
the nerve’s connective tissues is preserved [17,50]. The most extreme form of damage
is referred to as neurotmesis, involving the complete transection of the axons and total
nerve discontinuity [17,50,51].

3. Routes of Administration of Active Pharmaceutical Ingredients (API) into the CNS
and Challenges
3.1. BBB and Limits of Drug Diffusion

The blood vessels that supply the central nervous system (CNS) have unique proper-
ties, known as the blood-brain barrier, that allow them to tightly regulate the movement of
ions, molecules, and cells between the blood and the brain. This precise control of CNS
homeostasis enables proper neuronal function and also protects neural tissue from toxins,
pathogens and changes in barrier properties. This is an important part of the pathology and
progression of various neurological diseases. The physiological barrier is coordinated by
a series of physical, transport and metabolic properties possessed by the endothelial cells
(ECs) that make up the vascular wall, and these properties are regulated by interactions
with various vascular, immune and nerve cells [52–54].

CNS vessels are continuous, non-windowed vessels, but they also contain many
additional properties that allow a tight control of the movement of molecules, ions and
cells between the blood and CNS [53,55]. This highly restrictive barrier capacity allows
the endothelial cells of the BBB to tightly regulate CNS homeostasis, which is essential for
proper neuronal function, as well as for the CNSs protection against toxins, pathogens,
inflammation, injury and disease. The limited nature of BBB is a barrier to drug delivery
to the CNS and therefore great efforts have been made to create methods to modulate or
disrupt the BBB for therapeutic drug delivery. The main route used to administer drugs
is the intravenous route, and the BBB is a limiting factor. Hence, to overcome this hurdle,
locoregional direct routes have been used [56,57].

Figure 1 shows the main drawbacks of the BBB. Among them, biological factors such
as cerebral blood flow, the physicochemical properties of the drug, like the chemical and
biochemical structure, the compound charge and molecular mass, the dosage form parame-
ters, like the formulation process used, the particle size and release kinetics. Other factors
affecting drug transportation through the BBB are pharmacokinetics (ADME and clearance
types), and biopharmaceutical factors like the membrane transport and affinity of the drug
for cell receptors. Several administration types have been developed in the following
parts, among them are the enhanced systemic administration, intranasal administration,
convection- enhanced delivery and the intracerebral route (Figure 2).
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Figure 1. Parameters affecting the ability of drugs to cross the blood brain barrier (BBB). This figure
illustrates the factors that condition the BBB crossing. Among them, we can find dosage forms factors
like the particle size, flexibility, the release profile, the excipients contained in the formulation. Other
parameters, such as physico-chemistry of the drug, like the molecular mass, the chemical structure or
the charge of the drug. Adding to these parameters, the biological and biopharmaceutical factors
such as the cerebral blood flow, the membrane transport type, and the physiological characteristics of
the target site. Finally, pharmacokinetics can also influence the drug from passing the BBB.

3.2. Enhanced Systemic Administration

One of the main challenges in the treatment of CNS-related diseases is the bioavail-
ability of the API in the damaged tissue. Systemic administration faces the constraint of
the BBB, overall biodistribution and clearance from the body [52,56]. To overcome such
limits, techniques such as aortic injection and the enhanced permeation of the BBB by
differential osmotic pressure [19] and cavitation generated by a high intensity ultrasound
combined with the intravenous administration of microbubbles [58–60], have been investi-
gated (Figure 2A). Although these techniques have the potential to increase the diffusion
of active compounds, the accumulation into the desired site could be compromised, while
at the same time the clearance from the CNS tissues and circulating blood is held. Thus,
the therapeutic agent needs to be continuously administered on a planned basis in order to
avoid considerable systemic toxicities [19].

3.3. Intranasal Administration

Intranasal administration consists in the penetration of APIs into the CNS through
the nasal barrier. The intranasal pathway can deliver therapeutics directly from the nasal
cavity to the brain via the olfactory and trigeminal neurons. The intranasal route is made
up of two routes, one intracellular and one extracellular [61]. The intracellular process
begins with olfactory sensory cell endocytosis, which is followed by axonal transport to the
synaptic clefts in the olfactory bulb, where the drug is exocytosed [61]. This transsynaptic
process is replicated by olfactory neurons, allowing the medication to be distributed to
different brain areas [61]. Drugs are carried directly into the cerebral spinal fluid via the
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extracellular method by first going via the paracellular space over the nasal epithelium,
then through the perineural space to the brain’s subarachnoid space [61].

One of the limitations of this route is the availability of the compound in contact
with the nasal mucous membrane. Hydrogels may function as a reservoir for a prolonged
release of APIs in the nasal route towards the CNS [62] (Figure 2B-4). In other works, the
development of nanobodies have been recently explored for the intranasal delivery of
vaccines encapsulated in a nanogel [63], temozolomide administration for glioblastoma
treatment [64], poorly soluble drugs such as simvastatin [65], and intranasal clozapine-
loaded Technetium-99m-labeled mixed micelles for the treatment of schizophrenia [66].
Overall, although under investigation, this route may offer a non-invasive approach to
the delivery of APIs in combination with an appropriate encapsulation in nanoparticles,
including nanogels.

3.4. Direct Administration into the CNS Compartment: The Intracerebro-Ventricular and
Parenchymal Routes

Since the majority of GB recurrences arise within the margins of the resection cavity,
intraoperative loco-regional therapies (e.g., ascribed to differentiation, chemoattraction-
trapping, immunostimulation strategies) become more and more relevant [67]. Invasive
techniques that include the physical disruption of the BBB have also been investigated with
the aim of reaching the damaged area more directly while reducing the total dose needed.
For example, intracerebroventricular and intrathecal injections have the advantage that the
drug is administered in the fluid compartment that is already in the CNS, hence the drug can
more quickly reach the area of interest [18,68] (Figure 2B-2,3). Moreover, administration via
this route can be continuous by depositing a catheter connected to a pumping system [69].
Both routes of administration have the advantage that the main BBB step is bypassed,
contrary to a systemic administration [68,70]. However, the diffusion into a distal site within
the CNS can still be reduced due to other biological barriers, and the active compound may
affect healthy tissues causing neurotoxicity or off-target effects [70–72].

A more direct approach consists of the injection of the drug directly into the damaged
site. This approach, referred to as an intracerebral parenchymal injection (Figure 2B-1), is
relevant in the case of macroscopic lesions such as visible brain tumors and brain ischemia.
The challenge of this strategy is the internal fluid pressure that can cause a reflux of the
administered substance if performed in a single shot. Therefore, an additional force is
needed to enhance the distribution of the administered substance. This is the principle of
the strategy called convection-enhanced delivery (CED) in which a differential pressure
is applied by means of a pumping system connected to a catheter that delivers the load
gradually as the molecule of interest is locally and regionally spread into the interstitial
space by convection and diffusion [73,74] (Figure 2B-1.2). CED has various benefits, such
as a bulk flow-controlled process, bypassing the BBB, targeted delivery, and achieving
reproducible diffusion [75].

These techniques have been used for the administration of soluble drugs or colloidal
dispersions of nanoparticles, sometimes delivering radiopharmaceuticals with promising
results [63,64]. Nevertheless, although they offer a more loco-regional delivery, the absence
of a reservoir that gradually releases the active compound represents a limitation. CED
may function as a reservoir strategy for gradual delivery, however the optimal regime
depending on drug formulations needs to be established in order to diminish potential
risks in the neurological status of the patient linked to an accumulation of the drug and/or
the increase of the intracerebral pressure [76].

3.5. Delivery of Scaffolds as Prolonged Releasing Platforms

A novel approach consists of the use of implantable devices which can ensure a sus-
tained release of the active compound without the need for repeated injections. These
releasing platforms are often formulated as hydrogels, fibers and porous scaffolds [77–79].
The success of these systems has already been demonstrated, as in the case of Gliadel®
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wafers: when implanted in the margins of the glioblastoma resection cavity, they allow
for a sustained release of carmustine [33–35,38]. However, the main disadvantage is that
the wafers do not fit perfectly into the space and contact with the brain margins could
be compromised [36].

Hydrogels, by contrast, offer the possibility of an adequate fitting into cavities and
are very attractive as delivery systems. Indeed, they are of special interest in zones where
the tissue has been resected, such as tumors, brain and spinal cord injuries that undergo
surgery (Figure 2B-1.1). The versatility of such systems relies on the feasibility of injection
as consolidated hydrogels or as soluble components that are sensitive to temperature or
radiation to become stable hydrogels in situ [77]. The selection of either strategy is depen-
dent on the application. For example, to fill a superficial cavity, thermosensitive soluble
components would be easier to deposit with a subsequent instantaneous reaction upon
a change in temperature, whereas the endoscopic delivery of thermosensitive compounds
may not be suited for long distances that could result in the gelation of the solution in the
tubing system [80–82]. On the contrary, the injection of a consolidated hydrogel may be
limited to the rheological behavior and nature of the components. For instance, changes in
structure or properties after injection and degradation due to hydrolysis are variables that
could constrain their application [81,83–85].

3.6. Delivery of Hydrogels by CED

The main advantage of the use of convection for delivery is the control of the time-
space distribution of the load. While CED has been investigated since the early ‘90s on the
liquid formulations for intracerebral injections, little research has been made with regard to
the delivery of hydrogels [77]. For instance, Mukerji R et al., 2015 [86] developed a system
of soluble elastin-like polypeptide (ELP) containing periodic cysteine residues which were
conjugated with chlorin-e6 (Ce6) as a photosensitizer. The soluble peptide was distributed
in vivo into a solid tumor by CED to allow an even distribution within the whole tumoral
mass (Figure 2B-1.2). Upon photon stimulation, the produced ROS allowed disulfide
crosslinking across the cysteine chains that eventually originated a reticulated network
forming a hydrogel embedded in the tumor [86]. This strategy allowed to overcome the
rheological constraints that can impose the injection of viscous materials. Additionally to
photoirradiation, a thermal, enzymatic [62] and sonication [87] activation of the gelling of
the injectable liquid mix might be explored in combination with CED.

3.7. Potential Hazards and Challenges

The fact that the direct administration of drugs into the CNS is an invasive approach,
can cause patient side effects such as edema, infection and neuron damage [68,88,89]. The
safety hazards, drawbacks and relatively high prices held up their applications as standard
therapeutic strategies for those CNS diseases with relatively long disease processes and
needing repeated administration [89]. Reducing the invasiveness of the procedure by
exploring minimally invasive surgery such as keyhole surgery [43,90], for the deposition
of catheters or the injection of scaffolds (Figure 2B-5), accompanied with image-guided
surgery, might result in a benefit to the patient.

Intracerebral drug delivery is a method of passing through the BBB and other mech-
anisms that limit drug distribution in the brain, allowing high concentrations of a drug
to enter the central compartment. Factors that affect the efficacy and safety of this route
of administration are osmotic pressure, pH, volume and the presence of preservatives
and drug vehicles being administered [89]. Physicians should be aware of the ongoing
pathology process and the patient’s neurological status, as well as the physicochemical
properties of the associated drug when prescribing for intracerebral administration. High
suspicion parameters should be maintained when monitoring patients for adverse drug
events after administration [89].
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Figure 2. Routes of administration into the CNS. (A) Enhanced administration of molecules and
nanobodies by osmotic or focused ultrasound (FU) disruption of the BBB. (B) Direct administration:
1.1. Intraparenchymal injection. A brain tumor case is schematized where hydrogel injection might
be performed intratumorally or after resection around the cavity edges. 1.2. Intraparenchymal
injection assisted by CED (convection-enhanced delivery). Depicted is the case where soluble
compounds are evenly distributed by CED within the tumor before a gelation reaction is induced by
photoirradiation. The resulting embedded gel can be used as a platform for the sustained release
of active compounds [86]. 2. Intracerebroventricular administration of drugs directly into the
cerebrospinal fluid (CSF). The Ommaya reservoir consists of a catheter connected to one lateral
ventricle and a reservoir implanted under the scalp [91]. 3. Intrathecal injection. Lumbar puncture
showing the direct administration of a drug directly into the CSF. 4. Intranasal delivery. 4.1 Intranasal
application of modified HA in the nasal endothelium. Upon in situ polymerization the generated
patch might be used as a reservoir for sustained release of compounds [62]. 4.2 After permeation of
the nasal barrier, HA nanogels may be used to enhance intracellular trafficking of drugs in CD44
expressing cells [87]. 5. Keyhole surgery [43,90] might be used as an alternative access route to
the implantation of hydrogels into the brain. Credits: Figure 2B-1.2: reprinted from Mukerji et al.,
2022 [86], with permission from Elsevier. Figure 2B-2: reprinted from the public domain access
at https://en.wikipedia.org/wiki/Ommaya_reservoir#/media/File:Ommaya_01.png (accessed on
5 October 2022) Lynch PJ. Figure 2B-4.1: reprinted from Kiparissides et al., 2022 [62], with permission
from ACS. Figure 2B-4.2: reprinted from Wei et al., 2022 [87], with permission from ACS. Figure 2B-5:
reprinted from Core Techniques in Operative Neurosurgery 2022 [91], with permission from Elsevier.
Central and additional figures were created with BioRender.com.

https://en.wikipedia.org/wiki/Ommaya_reservoir#/media/File:Ommaya_01.png
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4. Therapeutic Relevance of HA-Based Scaffolds in the CNS
4.1. Composition, Biological Properties and Mechanical Properties of CNS ECM

The extracellular matrix (ECM) plays a diverse role in several physiological and
pathological conditions [92]. In the brain, the ECM is unique in both composition and
function. In addition, almost every cell in the central nervous system contributes to various
aspects of this complex structure [93]. ECMs in the brain, rich in proteoglycans and other
small proteins, aggregate into distinct structures around neurons and oligodendrocytes [94].
These special structures play important roles in normal brain functions such as learning,
memory and synaptic regulation [92,93].

Chemical modification further diversifies the processing and manufacturing tech-
niques that can be used to create 3D HA scaffolds [95–97]. By easily changing the treatment
method, HA hydrogels, granular hydrogels (microgels), electrospinning fibers, and HA-
based composites can be formed [77,98–100]. Various types of HA scaffolds have their own
characteristics which offer several benefits to CNS regenerative medicine [79].

Murine and human brain ECM stiffness and the physico-chemical specification of
these composite scaffolds need to be associated. Indeed, the brain ECM is mainly composed
of HA and gives this tissue a softness property [93]. Moreover, the Young modulus, in the
region of the hippocampus, cerebellum and the cerebral cortex, varies from 0.5 to 10 kPa
according to the region studied in murine brain [101]. It can be around 2 kPa for a healthy
brain and go up to 20 kPa for a tumor affected brain, but in more rigid regions such as
the dura mater, it can reach a very high Young moduli of 32 MPa and 62 Mpa [101–104].
Thus, formulating scaffolds with the Young modulus in this range is possible, especially
for systems like hydrogels, sponges and fibers [77,78,105–108]. It also has been shown that
in a healthy brain vs. an injured brain, the stiffness of the tissue can either increase or
decrease according to the brain region and the type of injury (neurodegenerative disease or
cancer) [109–113]. Various scientific projects on brain tissue mechanics have concluded that
the brain is a very soft tissue, non-linearly viscoelastic solid material with a very low linear
viscoelastic strain interval, around 0.1 to 0.3% [105].

Brain tissue is made up of white and grey matter, and different areas of the brain
are composed of various proportions [62,114]. White matter mainly consists of myeli-
nated axons from nerve fibers; the grey matter is driven by unmyelinated axons and
perikaryons [105,106]. It is necessary to understand the mechanical properties of brain
tissue, as the brain is so well isolated from mechanical damage under normal circum-
stances [109]. Mechanical factors are thought to play a role in many diseases, including
brain development, but brain mechanics has been most often studied to understand stressed
conditions, in an indirect or direct way [105,111,112].

4.2. Physico-Chemistry of HA-Based Semi-Solid Dosage Forms

The brain has an Hyaluronic acid (HA)-enriched ECM, in a healthy one, and a high
molecular weight (>106 Da). As shown in Figure 3, HA is a negatively charged and
non-branched GAG (Figure 3).

Figure 3. Hyaluronic acid chemical structure. HA structure consists on an anionic glycosaminoglycan
non-sulfated repeating disaccharides of β4-glucuronic acid (GlcUA)-β3-N-acetylglucosamine (GlcNAc).
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HA chains function as the tissue center of the ECM (Figure 3) and interact with proteins
and PGs via a small linker protein called HABP to form a hydrogel-like network [92,93]. HA
is upregulated in GB tumors and contributes to many phenotypic changes associated with
cancer progression, including early tumor development, cancer cell proliferation, infiltra-
tion, drug resistance and post-treatment recurrence [104,115]. In addition, hyaluronidases,
HA synthases, HA receptors and some HABPs are overexpressed. Co-overexpression of
these factors may be implicated in GB invasion and treatment resistance [114,116,117].

For better mechanics, biomimetism, biocompatibility, sustained release and smart prop-
erties such as thermosensitivity, poloxamer and HA are well-studied and great candidates
for semi-solid dosage forms and, more precisely composite hydrogel formulations [77,84].

Hydrogels are 3D water-swelling polymer networks formed by chemical and/or
physical interactions. The main advantage of using hydrogels in tissue engineering con-
structs is that they are not only easy to process and mold, but also have the ability to
adjust mechanical and biochemical properties to mimic soft tissues [77,118]. HA is interest-
ing in CNS, brain cancer and peripheral nerve engineering because of its natural origin,
non-immunogenicity, high biodegradability by hyaluronidase and hydrolysis, porosity,
biocompatibility, neuronal differentiation and neurite outgrowth capacity [8,79] (Figure 4).
Hydrogels have received a great deal of attention due to their unique properties such as
an excellent biocompatibility, high water content and the ability to decompose into safe
products, and are widely used in various biomedical applications such as regenerative
medicine, aesthetic medicine and drug delivery [9,119].

Figure 4. Scaffold specifications depending on various parameters. The specifications that are
usually expected in scaffolds whether it is sponges, hydrogels, fibers or nanoparticles, that closely
mimic the brain’s ones like shape stability and close biomechanical features. Moreover, architectural
properties that are usually linked to porosity, connectivity and a transient stability upon degradation.
Finally, biopharmaceutical factors like cyto and tissue compatibility, binding sites, microstructure of
the scaffold.

Poloxamer is a family of synthetic nonionic triblock copolymers in which the central
hydrophobic block of polypropylene oxide is sandwiched between two hydrophilic blocks
of polyethylene oxide. Polyethylene oxide copolymers [67,94,95], which amongst them are
poloxamer 407 (P407) hydrogels, exhibit interesting thermal properties and are attractive
candidates for formulations, especially in combination with HA. P407 is a temperature-
responsive polymer that is cold and liquid [85]. Aqueous polymer solutions gel as the
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temperature rises. P407 is considered to be one of the safest polymeric materials for the
production of thermal hydrogels. It has an excellent biocompatibility and injectability and
is used in various fields of tissue engineering [120–122]. Hydrophobic domains in the chem-
ical structure of P407 are useful for retaining poorly water-soluble compounds. Various
active substance-containing hydrogels based on P407 were developed and characterized
as a function of active substance concentration. Since then, hydrogels have been used as
a controlled drug delivery system to promote the local, sustained and long-term release of
APIs, thereby reducing dosing frequency, avoiding side effects and complying with low
doses. The most widely studied environment-sensitive systems are temperature-sensitive
hydrogels, where physical entanglement, hydrogen bonds and hydrophobic interactions
are key functions that make up the crosslinks. There are two distinct types of thermal
hydrogels that gel by cooling below the upper critical gelation temperature (UCGT), such
as agarose, or by heating above the lower critical gelation temperature (LCGT), such
as poloxamer [123,124].

Hydrogels with LCGT behavior and sol-gel transition at 37 ◦C can be loaded under
mild conditions (temperature ≤ 37 ◦C), making them very popular in the biomedical field
as carriers for cells, drugs and biomolecules [119,125]. The solubility of hydrophobic parts
decreases when aggregated, to reduce the interaction of PPO blocks with the solvent used.
Poloxamer is well-known for its thermal responsiveness, biocompatibility and low toxicity;
P407 is widely used in smart drug delivery and in various formulations such as ophthalmic,
nasal and other parenteral galenic forms [120–122]. When P407 gel is used alone, it rapidly
loses its gelling ability after being diluted in a water-enriched environment. Blending P407
with other polymers such as hyaluronic acid or molecules is a solution to improve drug
loading; these composite hydrogels are widely developed in the literature [95,126–128]. For
example, P407-based hydrogels are widely used to encapsulate some small molecule drugs,
such as ketorolac, metoprolol and doxycycline, which have a molecular weight (MW) of
less than 500 Da. They are also suitable for achieving the optimal release of proteins to
facilitate the transfer of water molecules and release proteins or other compounds with
a Mw > 500 Da such as Urokinase and Rutin [126,129].

5. HA-Based Specific Device for Various Applications

Hydrogels are hydrophilic polymer networks that swell in water or body fluids. Re-
cently, in situ gelation systems based on various synthetic and natural polymers have been
extensively investigated for biomedical applications due to their ability to efficiently encap-
sulate cells and bioactive molecules, to be a minimally invasive injection and be easy to form
in any desired defect shape, in addition to some advantages of typical hydrogels, includ-
ing a high water content similar to the extracellular matrix (ECM) [77,92,93], controllable
physico-chemical properties (rheology and injectability) and biocompatibility [119,125].
When hydrogels are developed by covalent crosslinking, they form chemical or permanent
gels. On the other hand, when physical bonding between molecules produces hydrogels,
they form physical gels and they are usually reversible [81,85,130]. Hydrogels are poly-
meric mesh networks that have the ability to bind a high amount of water [77,118,131]. It is
a semi-solid dosage form that is usually used for transdermal, subcutaneous, intra-articular,
ophthalmic, nasal, vaginal and rectal administration routes [118,131]. The intracerebral
route is the route that will be discussed in the following part; it is of high interest for brain
cancer and central nervous system therapeutic strategies [68,88,89].

Unlike scaffolds that have a particular shape before being applied, injectable scaffolds
are injected into the defect area and then acquire their shape in situ [107,132,133] (graphical
abstract). This function allows solidifying precursor scaffolds and cell mixtures to be site-
specifically delivered into cavities and defects with an irregular aspect, in a less invasive
manner than transplantation [134–137].

Several studies deal with HA-based devices composed of other biopolymers such
as heparin, silk fibroin [107], chitosan [12,132,138–141], collagen [132,142,143] and algi-
nate [11,144], or synthetic ones like poly(methylvinylether-alt-maleic acid [133], polycapro-
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lactone [145,146], PDLLA [147], PEG [148] and poloxamer [95,126–128]. These composite
scaffolds made of natural polymers are biocompatible systems that exhibit interesting
properties for tissue engineering applications such as structure, porosity, stiffness and
correct controlled degradation rates [14,149]. Natural macromolecules exhibit abilities for
site-specific cell adhesion, and given that HA is the main component of the brain ECM,
neural cells can interact with a matrix which mimics their natural environment [3,10,14].
In the most recently presented studies, these systems have been developed for vari-
ous applications such as GB treatment, peripheral nerve regeneration and brain tissue
engineering (Tables S1–S3).

Since they exhibit shear-thinning properties in rheological studies as well as when
being injected, some hydrogels have been applied as fillers in nerve guide channels (NGCs)
in order to induce the regeneration of peripheral nerve tissue [48,141,150,151]

Other lyophilized or dried biopolymer scaffolds have been administered locally for
drug delivery, cell encapsulation or cell tissue colonization [107,133,137,140,146,152,153].
They have various applications such as cartilage, brain tissue, bone regeneration or treat-
ment. They provide structural support for cell attachment and subsequent tissue growth.
They consist of biological substitutes to restore, replace or regenerate defective tissues, and
mimic a tissue-specific ECM [113–116].

Biomaterial scaffolds are one of the most important factors in promoting cell differ-
entiation and proliferation to form new tissues of interest. Tissue-engineered scaffolds
must have multiple functions, including proper porosity, optimized mechanical properties,
well-controlled biodegradability, non-destructive sterilization and biocompatibility with
treated tissue [154–156].

Electrospun fibers have applications such as drug delivery, tissue engineering, wound
dressing and cosmetics [98,108,157]. Electrospinning is a type of electrospray process and
consists of strong electrical forces that overcome the weak surface tension of polymer
solutions at specific thresholds to emit a jet of liquid that can be rooted in the process of
electrospray, forming small solid polymer droplets and/or fibers [78,98,108,157,158].

A nanogel is a three-dimensional nano-sized hydrogel material composed of a cross-
linked swellable hydrophilic polymer network with a high water storage capacity, without
actually dissolving in an aqueous medium. Nanogels can be made from a variety of natural,
synthetic, or polymer combinations [159–162].

Nerve guidance conduits are tubular devices made of wide-range biomaterials that guide
axial regeneration from the injured proximal nerve to the distal stump. It is a type of bridging
that helps avoid nerve grafting and nerve healing, which are both limited [47,48,163].

5.1. Scaffolds Specifications

The scaffolds described in the Tables S1–S3 must show some features, firstly architec-
tural features, in other words, a suitable porosity in case of cell encapsulation or a system
requiring cell trapping and migration, short-term resistance to biodegradation and a void
volume for blood vessels ramification (Figure 4). Secondly, mechanical properties, like
a shape stability and biomechanical mimicking of the treated tissue, for instance by having
a close Young modulus, also called the elastic modulus (kPa). Lastly, the biopharmaceutical
features required are cyto and histocompatibility, surface topography, cell-anchoring sites
and microstructures for the drug to bind into the scaffold, which is helpful for controlled
drug release.

5.2. HA-Based Scaffolds for Glioma Application

Various studies have managed to develop systems for GB treatment that exhibit
properties close properties as the ones shown in Figure 4. The first authors to provide
anti-inflammatory and anti-cancer natural molecules using HA nanohydrogels were [164];
it is a combination of quercetin and temozolomide for the treatment of GB. In this study,
it was shown that quercetin nanohydrogel promotes the preferential uptake of CD44 and
significantly enhances the therapeutic effect of temozolomide in GB cells, possibly through
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an anti-inflammatory mechanism [164]. Moreover, other results suggest that doxorubicin-
loaded modified hyaluronic acid nanogels are an excellent candidate to effectively achieve
glioma targeting [162].

Another study showed that the efficacy of HA-coupled micelles was increased by
a stronger inhibition of glioma proliferation and the induction of apoptosis. Overall, these
findings demonstrated the benefit of GB-associated chemotherapy using HA-coupled
micelles [96]. Additionally, HA-CF/CB hydrogel has the potential to be a strong candidate
for drug delivery vehicles, especially for the treatment of GB. Injections of DOX -loaded HA-
CF/CB hydrogel into GB ex vivo human tissue samples showed an efficient attachment of
the gel within diffusion and the release of the compound into the surrounding tissue [165].
Another system for GB treatment consisted of a polymer-drug conjugate releasing DOX
which has shown a decrease in cell viability and the inhibition of the tumor growth [166].
Drug delivery systems composed of HA, intended for GB treatment, have also shown to be
promising in vitro on GB cell lines and in vivo on mice and rat models results, in terms of
bioperformance, biocompatibility, biomimetism and the controlled drug release of DOX,
PXL and/or TMZ [113,162,167–169] (Figure 4).

Three-dimensional hydrogel cultures of patient-derived GB cells showed good via-
bility and proliferation rates equivalent or superior to when they had been cultured as
standard neurospheres. The hydrogel system also allowed the incorporation of the ECM
mimetic peptides to reduce the effects of specific cell–ECM interactions [140,143,170,171].
In addition, the system described by other authors [148] provides a useful PEG-HA and
PCL+/−BC/GEL-HA 3D in vitro mechanomimetic with a stiffness tunability, a model
for elucidating the underlying mechanisms of GB progression in a more physiologically
appropriate and controlled manner and assessing the efficacy of potential drug candi-
dates [146,170,172]. In another similar study, the HA brain-mimicking hydrogel network
resulted in significant dose-dependent changes in markers of glioma malignancies com-
pared to unmodified 3D gelatin or PEG hydrogels [146,172,173]. The HA-modified hydrogel
system provided a clear and reproducible extracellular microenvironment for studying the
development of gliomas [173].

The scaffold Gliadel® underwent clinical trials and has been FDA approved. It is
a polyanhydride copolymer wafer loaded with carmustine or BCNU. This post-resection
treatment is the only GB implantable device on the market and shows an effective bio
performance with a few side effects [35,174]. Alternative systems have been developed with
biopolymers such as silk fibroin, hyaluronic acid and heparin [67,107], such as formulating
sponges loaded with SDF-1α chemoattractant cytokine that acts as tumor trap for CXCR4
receptor-positive cells. This strategy has also been explored in a recent study [175], using
chitosan-based electrospun fibers charged with SDF-1α loaded PLGA nanoparticles for GB
treatment. It was shown that a 7-day follow-up study of Fischer rats with implanted devices
had no side effects in vivo [175]. Moreover, the nanofiber structure of the scaffold provided
excellent fixation sites to aid the adhesion of human GB cells. Some improvement must be
achieved to better shape the resection cavity and optimize the drug quantity that can reach
sites of interest, in order to increase the bioperformance and efficacy of the system [175].

5.3. Systems for CNS Application
5.3.1. Discussion of Hydrogels

HA-PDL hydrogels have been explored to repair brain tissue defects and showed
a good bridging property, helping tissue ingrowth and vascularization in vitro and in vivo
in Sprague–Dawley rat models [176]. In other studies, amino acid-based hydrogels have
been prepared and improved tissue restructuration through angiogenesis and axonal
growth in Sprague–Dawley rats models [177,178]. These formulated HA hydrogels also
prevented glial scar formation by lowering glial cell proliferation also in Sprague–Dawley
rats models [132]. Tam et al. [179] developed an HA-MC hydrogel to deliver NSPCs
(neural stem/progenitor cells) that allow for OLG (oligodendrocyte) differentiation. In
addition, respectively formulated HA nanocomposite hydrogels loaded with BDNF [180]
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and VEGF [181] in vitro SP embryo cell lines show a stable release of biological factors,
allowing for cell survival and growth, and an HA-laminin hydrogel charged with SDF-1α
in an in vitro and in vivo C57BL/6 mouse model enhanced the retention and migration of
NPSC grafts post SDF-1α treatment in a signal-dependent manner through the SDF-1α-
CXCR4 axis.

HA-poly(N-isopropylacrylamide) has shown to support cell survival and differentia-
tion, have good biomimetic rheological properties, and stimulate the ECM network pro-
duction [182]. Iron oxide (Fe3O4)-HA nanogels, intended for the treatment of Alzheimer’s
disease via a theranostic tool containing a metal complex associated to HA nanogels,
have shown a good biocompatibility to astrocyte cells and as a contrast agent of quality
in MRI imaging in vitro [159]. This theranostic system could be a promising choice for
neurodegenerative disease theranostics in vitro and in vivo [159].

5.3.2. Discussion of Scaffolds

In other studies, developed scaffolds composed of biopolymers like collagen, alginate
and PCL have shown an interesting bioperformance and biocompatibility. These scaffolds
had mechanical properties, mostly with a Young modulus ranging from 0.1 to 10 kPa, which
is in concordance with the brain tissue Young modulus interval [142,183,184] (Figure 4).

Moreover, it has been shown through in vitro and in vivo assays that NSCs embedded
in HA collagen biomaterials can ameliorate the recovery of damaged facial nerves and the
artificial conduction of NSCs may bring potential for the treatment of peripheral nerve
damage. Aligned nanofibers allow for guiding the growth of neurites [142].

Diverse developed collagen-HA-based scaffolds were tested in vitro. It has been
shown that their system promoted the differentiation of neural stem cells (NSCs) into
neurons in vitro [183].

5.4. Systems for PNS Application

HA has been very successful in neural tissue engineering and supports the growth,
differentiation and proliferation of neurites on a variety of substrates [151,185] (Figure 4).
HA hydrogel amends the viability and proliferation of neural progenitor cells [151]. This
indicates the potential therapeutic approaches for peripheral nerve regeneration and CNS
therapies. HA hydrogels’ mechanical properties (Figure 4) have been adapted for the
differentiation of neural progenitors, an up-and-coming strategy for neurodegenerative
diseases treatment.

HA can be blended with different biopolymers, especially collagen, since they both
enter in the composition of the ECM and are biocompatible and biomimetic when formu-
lated in scaffolds. For example, some authors have used neural stem cells embedded in
the HA/collagen conduit to regenerate a 5 mm facial nerve gap in a rabbit model [142].
In addition, a blend of HA with biodegradable synthetic polymers such as PLGA and
poly-L-lysine has shown a great potential for the controlled delivery of drugs, targeting
axonal regeneration after a spinal cord injury in vitro and in vivo [186].

The high biocompatibility of HA is crucial in reducing the inflammatory response pro-
duced by conductive polymers in nervous tissue engineering. For instance, PEDOT-doped
HA nanoparticles are integrated into chitosan/gelatin scaffolds and exhibit excellent PC12
cell adhesion and growth, while pyrrole/HA conjugates mask conductive electrodes from
adverse reactions of glial cells during implantation [187]. Nanofiber-aligned PCL/Gel/HA
scaffolds have been shown to promote axon growth and elongation and help support
intracellular communication [145]. Based on these results, the PCL/gel/HA composite
scaffold is an excellent candidate for a biomimetic matrix for GB and tumor testing.

5.4.1. Discussion of Conduits Systems

Many studies have developed composite HA-based conduits for nerve regeneration.
Most of them performed experiments on preclinical models, such as SD rats, CD-1 mice
and NZ rabbits, that helped validate these systems [142,147,185,188]. Additionally, some
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of the systems have not shown a significant regeneration. HA/collagen conduits have
been developed but showed limited results with unmyelinated nerve fibers remaining;
according to the authors, the scaffold needed to be amended since myelin degeneration
and swelling can be observed [142]. For other authors, a similar system has shown a good
stability, cell growth and adhesion and neurosphere development on the conduit scaffold,
making possible the differentiation and nerve tissue regeneration [185].

5.4.2. Discussion of Hydrogels

Some hydrogels have shown good results in terms of their biocompatibility, archi-
tectural properties, mechanical features and their bioperformance in vitro and in vivo.
The sustained release of NGF from these chitosan and HA-based hydrogels was well-
controlled [141,151,189]. The porosity and viscoelastic properties of their systems are
interesting for cell attachment. Moreover, these hydrogels enhance neural regeneration and
tissue repair but also cell differentiation and migration [141,151,189].

PDLLA/βTCP nerve conduits containing CS-HA/NGF hydrogels have also been de-
scribed in the literature [147]. These devices enhanced nerve regeneration and myelination in
contrast to the void PDLLA/βTCP nerve channels and autologous transplant group [147].
This suggests that injectable CS-HA/NGF hydrogels can successfully enhance nerve regenera-
tion, and are therefore a good candidate in the field of neural tissue engineering [147].

6. Conclusions

HA is a promising material for GB, CNS and PNS injuries treatment due to its
biomimetic, biomechanical, biocompatible and biodegradable properties, and the fact
that it is tunable with chemical modifications and associable to other polymers makes it
possible to create a simple scaffold for cell encapsulation, allowing for glial, neural cells
and nerve fibers regeneration. It is also a promising material for more complex systems
such as thermosensitive, (nano)composite systems for targeted drug delivery and local
administration (Figure 5).

Figure 5. Characteristics of polymer-based devices for central nervous system delivery.

Indeed, treatments aimed to treat pathologies other than the CNS and PNS ones are
available on the market using other administration routes, such as Orthovisc®, which is
a topical preparation of highly modified HA that has shown a successful osteoarthritis
(OA) treatment [190–192]. Hyalone® treats osteoarthritis and targets lower back pain [192],
Cartistem® is used for ligament and cartilage degeneration including degenerative OA [193]
and Hyalofast® is utilized for chondral and osteochondral lesion treatment [194]. Hence,
these systems can be adapted for their biomimetic properties and for better targeting of GB,
CNS and PNS impairments.
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In conclusion, HA-based devices present qualities illustrated in the Figure 5, like high
biocompatibility, low invasiveness, controlled drug release, the reduction of tissue damage
and permit, in most cases, the local administration of APIs. The efficacy of such systems is
conditioned on the drug quantity initially put in the scaffold, and the size of the scaffold.
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BBB Blood brain barrier
BC Bacterial cellulose
BCNU Carmustin or β-chloro-nitrosourea
BDNF Brain-derived neurotrophic factor
CB Cucurbit[n]uril
CED Convection enhanced diffusion
CNS Central nervous system
CS Chitosan
CXCR4 C-X-C motif chemokine receptor 4
DOX Doxorubicin
ECM Extra cellular matrix
ELP Elastin-like polypeptide
FDA Food and Drug Administration
FU focused ultrasound
GAG Glycosaminoglycan
GB Glioblastoma
GEL Gelatin
GRAS Generally recognized as safe
HA Hyaluronic acid
LCGT lower critical gelation temperature
MC Methylcellulose
MRI Magnetic resonance imaging
NGCs Nerve guide channels
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NGF Nerve growth factor
NSCs Neural stem cells
OLG Oligodendrocyte
P407 Poloxamer 407
PCL Polycaprolactone
PDLLA Poly-d,l-lactic acid
PEG Polyethylene glycol
PEOx polyethylene oxide
PG Propylene glycol
PNNs Perineuronal nets
PNS Peripheral nervous system
PPO Poly propylene oxide
PXL Paclitaxel
ROS Reactive oxygen species
SDF-1α Stromal cell-derived factor 1
TMZ Temozolomide
UCGT Upper critical gelation temperature
VEGF Vascular endothelial growth factor
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