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Abstract
In this paper we propose a new algorithm for solving a class of nonsmooth non-
convex problems, which is obtained by combining the iteratively reweighted
scheme with a finite number of forward–backward iterations based on
a linesearch procedure. The new method overcomes some limitations of
linesearch forward–backward methods, since it can be applied also to min-
imize functions containing terms that are both nonsmooth and nonconvex.
Moreover, the combined scheme can take advantage of acceleration techniques
consisting in suitable selection rules for the algorithm parameters. We develop
the convergence analysis of the new method within the framework of the
Kurdyka–Łojasiewicz property. Finally, we present the results of a numerical
experience on microscopy image super resolution, showing that the perform-
ances of our method are comparable or superior to those of other algorithms
designed for this specific application.
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1. Introduction

Variational models offer a great tool for solving a variety of inverse problems in many fields
of application, such as imaging and machine learning, where an explicit direct solution is
seldom available. Through a Bayesian argument, they lead to compute the solution of the
inverse problem by solving a problem with the following form:

min
x∈Rn

f(x)≡ f0(x)+ f1(x). (1)

Problem (1) is often referred to as a composite optimization problem. On the one hand, f 0
represents a fidelity term, which serves the purpose of evaluating the quality of the solution
with respect to the data at hand. On the other hand, f 1 is the regularization function, which is
related to the prior probability of the unknown, and is used to impose additional information
that is believed to be valid in advance.More in general, here and in the followingwewill simply
assume that f 0 contains only smooth terms, coming from the Bayesian paradigm, while all the
nonsmooth ones are included in f 1.

Problem (1) becomes especially difficult to handle, from the theoretical and numerical point
of view, when either f 0 and /or f 1 are nonconvex. In these cases, the best we can expect from a
descent algorithm is the convergence to a stationary point, i.e. a point satisfying the necessary
optimality condition, instead of a global or even a local minimizer. The most difficult case in
the analysis and implementation of optimization algorithms is when f 1 is nonconvex, i.e. when
the objective function contains some terms that are both nonconvex and nonsmooth. When f 1
is convex, that is all the nonsmooth terms are convex, problem (1) can be easily tackled by
forward–backward optimization methods [1–5]. The forward step performs a gradient descent
on the smooth part of the objective function, and then feeds the result to the backward one,
which takes advantage of the convexity of the nonsmooth term to compute the proximal oper-
ator, also known as the resolvent. More specifically, the proximal operator associated to f 1 is
defined as,

proxDαf1(z) = argmin
x∈Rn

f1(x)+
1
2α

∥x− z∥2D, (2)

where α> 0 is the steplength parameter, D is a symmetric and positive definite matrix, and
∥ · ∥D denotes the norm with respect to the metric induced by the matrix D. A quite general
forward–backward scheme can be summed in the following two steps:

y(k) = proxDk
αkf1

(x(k) −αkD
−1
k ∇f0(x(k))) (3)

x(k+1) = x(k) +λk(y
(k) − x(k)). (4)

Many algorithms can be cast in this framework, with each one exploiting the three paramet-
ers αk, Dk and λk in different ways to achieve convergence and effectiveness. Besides the
standard choices for αk and λk as fixed values related to the Lipschitz constant of ∇f0 [1, 2],
adaptive procedures for computing these steplength parameters can be included. Regarding
the steplength selection, we may adopt backtracking (adaptive computation of αk with λk = 1
[6, 7]), or linesearch approaches (adaptive computation of λk for a given αk > 0 [3–5]). As
concerns the choice of the matrix Dk, we mention the approach in [3], where the matrix Dk

must be selected in order to define a quadratic majorant of the objective function, and the
linesearch based approach in [4], where both the matrix Dk and the steplength αk can be con-
sidered as almost entirely free parameters, which can be exploited to improve its practical per-
formances. The convergence analysis of forward–backward methods has also received much
attention in the last years. Besides the classical results obtained under convexity assumptions
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on both f 0 and f 1 [1, 2], more general results have been obtained by assuming that the object-
ive function f satisfies the Kurdyka–Łojasiewicz property, for several different choices of the
algorithms parameters [3, 7–11].

On the other side, the case when f 1 is nonsmooth and nonconvex is more difficult to handle
in a forward–backward scheme, from both the theoretical and practical point of view. An easy
example of these difficulties is the fact that, when f 1 is nonconvex, the minimization prob-
lem underlying the resolvent operator may not have a unique solution. However, variational
models including nonsmooth nonconvex terms are receiving an increasing interest, since they
allow the modelling of more accurate noise statistics [12, 13] and the recovery of sparse solu-
tions, which are typically promoted by including an ℓ0 penalization (or a continuous, non-
convex approximation of it) in the objective function [14–16]. The second kind of problem is
especially relevant in the field of single-molecule localization microscopy (SMLM) [17–19],
where the object represented in the acquired images is typically very sparse. From the theor-
etical viewpoint, iteration (3) and (4) can be still safely applied also when f 1 is nonconvex
and nonsmooth [8, 20, 21]; however, to the best of our knowledge, all the related convergence
analyses require that λk = 1 for all k, thus limiting the possibility to adaptively compute the
algorithm parameters.

The iteratively reweighted methods, whose idea dates back to [22], have been developed in
the last years as a tool to solve (1) when the (possibly) nonsmooth term f 1 can be written as
the composition of a nonconvex smooth function with a convex one. The main idea underly-
ing these methods consists in replacing problem (1) with a sequence of convex subproblems,
whose objective function is a majorant (or surrogate) of the original one [23]. In this sense, the
iteratively reweighted methods are strictly related to majorization–minimization methods [3,
12] and they require the minimization of the surrogate function at each iterate. In the recent
literature, this kind of method has been applied to the minimization of the ℓp norm with p < 1
[24] and, in particular, for the case p = 0 [14, 25, 26]. In the last few years, the analysis
has been extended also to more general problems, within the framework of the Kurdyka–
Łojasiewicz property [23, 27].

1.1. Contribution

In this paper we propose a new algorithm that combines the basic iteratively reweighted scheme
with a forward–backward linesearch based procedure. In particular, we focus on problem (1)
where:

f1(x) =
n∑
j=1

(ϕj ◦ψj)(x)+χ(x), (5)

with ψj : Rn → R convex and lower semicontinuous, ϕj : R→ R concave, nondecreasing and
continuously differentiable, j = 1, . . . ,J, and χ : Rn → R convex and lower semicontinuous.
The algorithm iteration is derived by a two-step procedure: first, a majorizer for f 1 is obtained
by exploiting the concavity of ϕj; then, the surrogate problem is approximately solved by a
finite, bounded number of steps of a linesearch forward–backward method. We develop the
convergence analysis of the new method within the framework of the Kurdyka–Łoyasiewicz
property. Even if the assumptions needed for the theoretical analysis, which will be detailed
later, prevents to directly handle the ℓp norms with p< 1, our approach can be still applied
to several interesting cases. In particular, we will apply our algorithm to the regularization
proposed in [16], named CEL0, as an approximation of the ℓ0 norm for image super resolution
in microscopy. We will show that this functional can be set in the form (5), and we will present
the results of a numerical experience in this framework, comparing our proposed algorithm
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to other iteratively reweighted methods presented in the literature for this specific application
[16, 17, 28].

1.2. Related work

The idea of plugging forward–backward iterations in an outer iteratively reweighted /
majorization-minimization scheme is proposed also in [27]. Although the theoretical settings
are very similar, in our approach we exploit a quite different forward–backward iteration based
on a descent direction and a linesearch procedure along it [4, 9]. This results in a larger free-
dom of choosing the parameters αk and Dk, which, in turn, can lead to improved practical per-
formances. In this way we can introduce acceleration techniques through suitable steplength
and scaling selection strategies, such as the Barzilai–Borwein rules for αk [29] and the Split
Gradient technique for Dk [30]. Moreover, we generalize the analysis in such a way that the
proximity operator of the convex part of the surrogate problem can be computed inexactly
according to an implementable inexactness condition, in the same spirit as in [9].

1.3. Paper organization

The outline of the paper is as follows. In section 2 we recall preliminary results regarding
subdifferential calculus and the inexact proximal operator computation that are needed later.
Section 3 is dedicated to our proposed algorithm: in 3.1 we state the problem of interest
under some appropriate assumptions on the involved functions; in 3.2 the proposed iterat-
ively reweighted variable metric inexact linesearch algorithm (IR-VMILA) is reported and
explained in detail; in 3.3 we provide an insightful analysis of its convergence properties.
Finally, in section 4 we report the results of our numerical testing, with 4.1 being focused on
an image deconvolution toy problem, while 4.3 illustrates a more interesting application to
super-resolution in microscopy where a nonconvex regularizer is employed. Some concluding
remarks are offered in section 5.

2. Preliminaries

2.1. Notations

In this paper we will adopt a discrete setting and the reference space is Rn. The symbol ⟨·, ·⟩
denotes the standard inner product on Rn, i.e. ⟨x,y⟩= xTy for all x,y ∈ Rn. We denote with
∥ · ∥ the Euclidean norm of a vector, i.e. ∥x∥=

√
⟨x,x⟩ for all x ∈ Rn, whereas the sym-

bol ∥ · ∥D indicates the norm induced by the symmetric positive definite matrix D, that is
∥x∥D =

√
⟨x,Dx⟩. The symbol S(Rn) denotes the set of all n× n symmetric matrices, whereas

S++(Rn) is the set of all n× n symmetric positive definite matrices. Furthermore, we employ
the notation In ∈ Rn×n to denote the identity matrix of order n. On the set S(Rn), we consider
the Loewner partial ordering relation, which is defined as follows:

∀ D1,D2 ∈ S(Rn), D1 ⪯ D2 ⇔ ⟨D1x,x⟩⩽ ⟨D2x,x⟩, ∀ x ∈ Rn.

We denote by R̄ the extended real line, i.e. R̄= R∪{+∞,−∞}. Given a function f : Rn →
R̄, the domain of f is denoted as dom( f) = {x ∈ Rn : f(x)<+∞}, and f is called proper if
dom( f) ̸= ∅ and f(x)>−∞ for all x ∈ Rn. If F is a set valued mapping defined on Rn, its
domain is defined as dom(F) = {x ∈ Rn : F(x) ̸= ∅}. Given f : Rn → R̄ and l,u ∈ R, with l⩽ u,
we adopt also the following notations:

[l< f < u] = {x ∈ Rn : l< f(x)< u}, [f ⩽ u] = {x ∈ Rn : f(x)⩽ u}.
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The distance of a point x ∈ Rn from a setΩ⊆ Rn is defined as dist(x,Ω) = infy∈Ω ∥x− y∥. The
relative interior of a convex set Ω is the interior of Ω relative to the smallest affine set aff(Ω)
containing Ω, i.e. relint(Ω) = {x ∈ Ω : ∃ ϵ > 0 s.t. B(x, ϵ)∩ aff(Ω)⊆ Ω}. Finally, given a set
A⊆ Rn, the characteristic function1A is such that1A(x) = 1 if x ∈ A, and1A(x) = 0 otherwise.

2.2. Subdifferential calculus

In this section we summarize some basic results concerning the subdifferential calculus of
(possibly nonconvex) functions. Most of the definitions and results reported here are from
[31, 32].

We start by reporting the definitions of regular vector and regular function. The latter
concept is of paramount importance for deriving the subdifferential calculus rules required
for our convergence analysis.

Definition 1. [31, definition 6.3] Let Ω⊆ Rn and x ∈ Ω. A vector v ∈ Rn is regular normal to
Ω at x, i.e. v ∈ N̂Ω(x), if:

limsup
y→
Ω
x, y ̸=x

⟨v,y− x⟩
∥y− x∥

⩽ 0,

where y→
Ω
x means ‘for all sequences {y(k)}k∈N ⊆ Ω converging to x’.

A vector v ∈ Rn is normal to Ω at x, i.e. v ∈ NΩ(x), if there exist sequences {y(k)}k∈N ⊆ Ω,
{v(k)} ⊆ Rn with v(k) ∈ N̂Ω(y(k)) such that y(k) → x and v(k) → v.

Definition 2. [31, definition 7.25] A function f : Rn → R̄ is called (Clarke) regular at x if f (x)
is finite and the epigraph epi( f) := {(x, t) : x ∈ dom( f), t⩾ f(x)} is Clarke regular at (x, f(x))
as a subset of Rn×R, namely, if epi( f) is locally closed and it holds Nepi( f )(x) = N̂epi( f )(x).

Next, we recall the definitions of Fréchet subdifferential, limiting-subdifferential, and
horizon-subdifferential.

Definition 3. [31, definition 8.3] Let f : Rn → R̄ and x ∈ dom( f). The Fréchet subdifferential
of f at x is the set:

∂̂f(x) =

{
v ∈ Rn : liminf

y→x,y̸=x

1
∥x− y∥

(f(y)− f(x)− (y− x)Tv)⩾ 0

}
.

The limiting-subdifferential (or simply subdifferential) of f at x is defined as:

∂f(x) = {v ∈ Rn : ∃ {y(k)}k∈N ⊆ Rn, v(k) ∈ ∂̂f(y(k)) ∀k ∈ N such that

y(k) → x, f(y(k))→ f(x) and v(k) → v}.

Finally, the horizon-subdifferential of f at x is given by:

∂∞f(x) = {v ∈ Rn : ∃ {y(k)}k∈N ⊆ Rn, v(k) ∈ ∂̂f(y(k)), λ(k) > 0 ∀k ∈ N such that

y(k) → x, f(y(k))→ f(x), λ(k) → 0 and λ(k)v(k) → v}.

Definition 4. Let f : Rn → R̄. A point x ∈ Rn is stationary for f if x ∈ dom( f) and 0 ∈ ∂f(x).

Remark 1. Given f : Rn → R̄, we have that any (local) minimum point x ∈ Rn of f is a station-
ary point, while the converse may not be true in general. If f is also convex, then x is a (local)
minimum point if and only if x is a stationary point.
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In the following lemma, we state a useful closedness property satisfied by the limiting sub-
differential. Such a property will be employed to show that the limit points of our proposed
algorithm are stationary, as similarly done in other works in the literature [3, 27].

Lemma 1. [31, theorem 8.6] Let f : Rn → R̄ and x ∈ dom( f). Suppose {(x(k),v(k))}k∈N is
a sequence such that v(k) ∈ ∂f(x(k)) for all k⩾ 0. If limk→∞ x(k) = x, limk→∞ v(k) = v, and
limk→∞ f(x(k)) = f(x), then v ∈ ∂f(x).

We now report some basic subdifferential calculus rules under appropriate convexity or
regularity assumptions on the involved functions.

Lemma 2. (i) [31, exercise 8.8c] If f = f0 + f1 with f1 finite at x and f0 continuously differ-
entiable on a neighbourhood of x, then:

∂f(x) =∇f0(x)+ ∂f1(x).

(ii) [32, p 222] Let ψ : Rn → R̄ be proper, convex, lower semicontinuous, and λ⩾ 0. If x ∈
dom(∂ψ), then:

∂(λψ)(x) = λ∂ψ(x).

(iii) [32, theorem 23.8] Let ψj : Rn → R̄ be proper, convex, and lower semicontinuous for all
j = 1, . . . ,J, and define ψ = ψ1 + · · ·+ψJ. If relint(dom(ψi))∩ relint(dom(ψj)) ̸= ∅ for
all i, j = 1, . . . ,J, then for all x ∈

⋂J
j=1 dom(∂ψj) there holds:

∂ψ(x) =
J∑
j=1

∂ψj(x).

(iv) [31, corollary 10.9] Let fj : Rn → R̄ be proper, lower semicontinuous, for all j = 1, . . . ,J,
define f = f1 + · · ·+ fJ, and let x ∈ dom( f). Suppose that the only combinations of sub-
gradients vj ∈ ∂∞fj(x) with v1 + · · ·+ vJ = 0 is v1 = · · ·= vJ = 0, and that each fj is reg-
ular at x. Then, also f is regular at x, and

∂f(x) =
J∑
j=1

∂fj(x).

The next lemma provides the chain rule for functions of the form (5) and will be employed
in the subsequent analysis. The rule can be derived by collecting and putting together some
known results of variational analysis contained in [31]. Similar results have been obtained also
in [23, 27] under slightly different conditions on the functions of interest.

Lemma 3. Let Ψ : Rn → RJ, Ψ(x) = (ψ1(x), . . . ,ψJ(x)) for all x ∈ Rn, where the functions
ψj : Rn → R, j = 1, . . . ,J, are convex and lower semicontinuous. Furthermore, let ϕ : RJ →
R̄, ϕ(z) =

∑J
j=1ϕj(zj) for all z= (z1, . . . ,zJ) ∈ RJ, where the functions ϕj, j = 1, . . . ,J, are

monotone nondecreasing, and continuously differentiable on an open set Ωj with ψj(Rn)⊆
Ωj ⊆ R. Finally, let χ : Rn → R̄ be proper, convex, lower semicontinuous, and locally Lipschitz
continuous on its domain. Then, for all x ∈ dom(∂χ), there holds:

∂(ϕ ◦Ψ+χ)(x) =
J∑
j=1

ϕ ′
j (ψj(x))∂ψj(x)+ ∂χ(x). (6)
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Proof. First, we focus on the computation of ∂(ϕ ◦Ψ)(x). To this aim, we show that the
assumptions of the chain rule provided in [31, theorem 10.49] are satisfied. In particular,
we observe that: (i) ϕ is Clarke regular at Ψ(x), as it is given by the sum of J separable
and Clarke regular functions [31, proposition 10.5]: indeed, each function ϕj, j = 1, . . . ,J
is Clarke regular at ψj(x), being continuously differentiable on an open set Ωj containing
ψj(x) [31, example 7.28]; (ii) ∂∞ϕ(Ψ(x)) = {0}: indeed, since Ψ is the sum of J separ-
able and Clarke regular functions, it follows from [31, proposition 10.5] that ∂∞ϕ(Ψ(x)) =∏ J

j=1∂
∞ϕj(ψj(x)); now, we have ∂∞ϕj(ψj(x)) = {0} for all j = 1, . . . ,J, again because ϕj

is continuously differentiable on an open set containing ψj(x) [31, exercise 8.8(b)]; (iii) the
function s(z) = ⟨∇ϕ(Ψ(x)),Ψ(z)⟩=

∑J
j=1ϕ

′
j (ψj(x))ψj(z) is Clarke regular at x; indeed, since

each ψj is convex and lower semicontinuous, and ϕ ′
j (ψj(x))⩾ 0 due to the monotonicity of

ϕj, it turns out that also s is convex and lower semicontinuous, which implies that s is regular
[31, example 7.27].

Hence, since properties (i)–(iii) are satisfied, we can apply the chain rule provided in [31,
theorem 10.49], and thus conclude that ϕ ◦Ψ is regular at x and the following equations hold,

∂(Φ ◦Ψ)(x) = ∂ (⟨∇ϕ(Ψ(x)),Ψ⟩)(x) =
J∑
j=1

ϕ ′
j (ψj(x))∂ψj(x), (7)

where the first equation is due to the application of [31, theorem 10.49], whereas the second
one follows from lemma 2(ii) and (iii), which is applicable due to the fact that eachψj is convex
and lower semicontinuous, and ϕ ′

j (ψj(x))⩾ 0.
Now, we turn to the computation of ∂(ϕ ◦Ψ+χ)(x). First, observe that ϕ ◦Ψ is locally

Lipschitz continuous at x, since it is the composition of two locally Lipschitz functions at x,
as ϕ is continuously differentiable andΨ is convex and finite [31, example 9.14]. Second, χ is
locally Lipschitz continuous on its domain by assumption. Then, we can apply [31, theorem
9.13] and deduce that ∂∞(ϕ ◦Ψ) = ∂∞χ(x) = {0}. Furthermore, both ϕ ◦Ψ and χ are regu-
lar functions at x. Then, we can employ lemma 2(iv) with J= 2, f1 = ϕ ◦Ψ, f2 = χ, together
with (7), to get the thesis.

As the objective function in (1) may be nonconvex, we need to replace convexity with a
different analytical property that still allows us to ensure convergence of the proposed method.
Several works in the past literature have compensated for the lack of convexity by assuming
that the objective function satisfies the so-called Kurdyka–Łojasiewicz inequality [8, 20, 33].

Definition 5. [20, definition 3] Let f : Rn → R̄ be proper, lower semicontinuous. The function
f satisfies the Kurdyka–Łojasiewicz (KL) inequality at the point x∗ ∈ dom(∂f) if there exist
ν > 0, a neighbourhood U of x∗, and a continuous concave function ξ : [0,ν)→ [0,+∞) such
that ξ(0) = 0, ξ is C1 on (0,ν), ξ ′(s)> 0 for all s ∈ (0,ν), and the following inequality holds,

ξ ′( f(x)− f(x∗))dist(0,∂f(x))⩾ 1, ∀x ∈ U∩ [f(x∗)< f< f(x∗)+ ν]. (8)

If f satisfies the KL inequality for all x∗ ∈ dom(∂f), then f is called a KL function.

The KL inequality is satisfied on the entire domain by indicator functions of semi-algebraic
sets, real polynomials, p−norms and, in general, semi-algebraic functions or real analytic func-
tions (see [20] and references therein for more details). In practice, most objective functions
arising in imaging inverse problems do comply with the KL assumption.

7
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In the upcoming convergence analysis, it will be convenient to employ the following uni-
formized version of the KL inequality, which holds whenever the function satisfies (8) over a
compact set upon which it is constant.

Lemma 4. [20, lemma 6] Let f : Rn → R̄ be a proper, lower semicontinuous function and
Ω∗ ⊆ Rn a compact set. Suppose that f satisfies the KL inequality for each point ofΩ∗, and that
f is constant over Ω∗, i.e. f(x∗) = f∗ for all x∗ ∈ Ω∗. Then, there exist ρ,ν > 0 and a function
ξ : [0,ν)→ [0,+∞) satisfying the same properties as in definition 5 such that:

ξ ′( f(x)− f∗)dist(0,∂f(x))⩾ 1, ∀ x ∈ B∗, (9)

where the set B∗ ⊆ Rn is given by:

B∗ = {x ∈ Rn : dist(x,X)⩽ ρ and f∗ < f(x)< f∗ + ν}. (10)

2.3. Inexact computation of a proximal–gradient point

The aim of this section is to provide the settings for the forward–backward iterations employed
in our iteratively reweighted scheme. In particular, we will include the possibility of inexactly
computing the proximal operator in the backward step, according to an implementable inex-
actness criterion. To this end, we follow the discussion in [9, section 3], reporting some useful
results that will be needed in the next section.

Let f0 : Ω0 → R and ℓ : Rn → R̄, where f 0 is continuously differentiable with L−Lipschitz
continuous gradient on the open setΩ0 ⊆ Rn with dom(ℓ)⊆ Ω0, while ℓ is proper, convex, and
lower semicontinuous. Given x ∈ dom(ℓ), we introduce the function:

hγ(z;x) = ⟨∇f0(x),z− x⟩+ γ

2α
∥z− x∥2D+ ℓ(z)− ℓ(x), ∀ z ∈ Rn, (11)

where γ ∈ [0,1], α ∈ [αmin,αmax] being 0< αmin ⩽ αmax, and D ∈ Rn×n such that 1
µIn ⪯ D⪯

µIn. Denoting h(·; ·) := h1(·; ·), we observe that:

hγ(z;x)⩽ h(z;x), ∀ z ∈ Rn, x ∈ dom(ℓ). (12)

Thanks to the assumptions on α and D, we also have that h(·;x) is a strongly convex function
with modulus 1/(αmaxµ), that is:

h(z;x)⩾ h(y;x)+ ⟨w,z− y⟩+ 1
2αmaxµ

∥z− y∥2, ∀ y,z ∈ dom(ℓ),∀ w ∈ ∂h(y;x).

Therefore, h(·;x) admits a unique minimum point ŷ ∈ Rn, which we call the proximal–
gradient point. Indeed, using the definition of proximal operator in (2), remark 1, and lemma
2(i), we easily deduce that ŷ is the point obtained by applying a proximal–gradient step to the
function f0 + ℓ at the point x, namely:

ŷ= argmin
z∈Rn

h(z;x) = proxDαℓ(x−αD−1∇f0(x)). (13)

We are now interested in the following notion of inexact proximal–gradient point.

Definition 6. [9, definition 3] Given x ∈ dom(ℓ), τ ⩾ 0, we call inexact proximal–gradient
point any approximation ỹ ∈ dom(ℓ) of the proximal–gradient point ŷ such that,

h(ỹ;x)− h(ŷ;x)⩽−τ
2
h(ỹ;x). (14)

Furthermore, we denote any such approximation of the proximal–gradient point with the
notation ỹ≈ ŷ.

8



Inverse Problems 39 (2023) 064001 S Bonettini et al

Remark 2. If τ = 0, then the inexactness criterion (14) becomes h(ỹ;x) = h(ŷ;x), and thus ỹ
reduces to the exact proximal–gradient point, i.e. ỹ= ŷ.

Remark 3. Note that the following inequalities hold true:

hγ(ỹ;x)⩽ h(ỹ;x)⩽
(

2
2+ τ

)
h(ŷ;x)⩽

(
2

2+ τ

)
h(x;x) = 0,

where the first inequality comes from the definition of hγ(·;x) in (11) and γ ∈ [0,1], the second
one from the inexactness condition (14), the third one from the fact that ŷ is the minimum point
of h(·;x), whereas the last equality is due to the definition of h(·;x).Therefore, we can conclude
that:

hγ(ỹ;x)⩽ 0.

The inexactness criterion (14) has been investigated and employed in several works (see e.g.
[4, 5, 9, 34]). Unlike other conditions available in the literature [3, 8, 27], it has the advantage
to be practically implementable in certain cases of interest. In particular, if ℓ is the composition
of a linear operator with a convex function, then we can compute a point ỹ satisfying (14) by
first applying an iterative method to the dual problem of (13), and then stopping the iterates
when the primal–dual gap satisfies an appropriate stopping condition (see [9, section 3.1] for
further details on this practical procedure).

To conclude this section, we recall some inequalities that involve the points ỹ, ŷ, and x.

Lemma 5. Let x ∈ dom(ℓ), and ỹ defined as in (14). Then, the following inequalities hold:

1
2
∥ŷ− x∥2 ⩽ αmaxµ

(
1+

τ

2

)
(−h(ỹ;x)) (15)

1
2
∥ỹ− ŷ∥2 ⩽ αmaxµτ

2
(−h(ỹ;x)) (16)

1
4
∥ỹ− x∥2 ⩽ αmaxµ(1+ τ)(−h(ỹ;x)). (17)

Proof. Inequalities (15) and (16) follow by putting together the strong convexity of h(·;x)with
the inexactness condition (14) and the assumptions on α and D. Inequality (17) is obtained by
combining the first two inequalities through the triangular inequality and the basic relation
2
√
uv⩽ u+ v (see [9, lemma 2] for the full proof).

Lemma 6. Let x ∈ dom(ℓ), and ŷ, ỹ defined as in (13) and (14), respectively. Then, there exists
c⩾ 0 such that the following inequalities hold:

( f0 + ℓ)(ŷ)⩾ ( f0 + ℓ)(ỹ)− c(−h(ỹ;x)), c> 0 (18)

( f0 + ℓ)(ỹ)⩽ ( f0 + ℓ)(x)− 2Lαmaxµ(1+ τ)h(ỹ;x) (19)

( f0 + ℓ)(ŷ)⩽ ( f0 + ℓ)(x)−Lαmaxµ
(
1+

τ

2

)
h(ỹ;x). (20)

Proof. The inequalities (18)–(20) can be obtained by applying [9, lemmas 4 and 5] with f1 = ℓ
and f = f0 + f1.

9
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3. Proposed algorithm and convergence analysis

3.1. Problem formulation

From now on, we address the following minimization problem:

argmin
x∈Rn

f(x)≡ f0(x)+ f1(x), (21)

and make the following assumptions on the functions f 0, f 1.

Assumption 1.

(i) f0 : Ω0 → R is continuously differentiable with L-Lipschitz continuous gradient on the
open set Ω0 ⊆ Rn, and dom( f1)⊆ Ω0.

(ii) f1 : Rn → R̄ has the form:

f1(x) =
J∑
j=1

(ϕj ◦ψj)(x)+χ(x), ∀ x ∈ Rn, (22)

where
. ψj : Rn → R is convex and lower semicontinuous, and ϕj : R→ R̄ is concave, mono-
tone nondecreasing, continuously differentiable on an open setΩj with ψj(Rn)⊆ Ωj ⊆
R, and with ϕ ′

j locally Lipschitz continuous on Ωj, for all j = 1, . . . ,J;
. χ : Rn → R̄ is proper, convex, lower semicontinuous, and locally Lipschitz continuous
on its domain;

(iii) The function f is coercive, that is lim∥x∥→+∞ f(x) = +∞.

Remark 4. Let us comment on the properties of f 1 required in assumption 1.

(i) The general model (22) is especially suited for nonconvex nonsmooth regularization
arising in imaging problems. On the one hand, the term

∑J
j=1(ϕj ◦ψj)(x) encompasses

several nonconvex regularizers employed in the literature, such as the log-sum penalty
term, the Cauchy penalty term, and smoothed versions of the ℓp−norm with p< 1 (see
[23, 27] and our section 4 for other examples). On the other hand, the function χmay rep-
resent an easy constraint on x. For instance, we may enforce nonnegativity in the solution
by setting χ = ι⩾0, where ι⩾0 denotes the indicator function of the nonnegative orthant

ι⩾0(x) =

{
0 if x⩾ 0
+∞ otherwise .

This constraint is especially relevant in imaging applications.
(ii) Since the functions ψj, j = 1, . . . ,J, are convex and finite on Rn, it follows that they are

locally Lipschitz continuous [31, example 9.14]. Hence, each subdifferential ∂ψj is locally
bounded [31, theorem 9.16]. Therefore, for any compact set K⊆ Rn there must exist ξK >
0 such that, for all x ∈ K, j = 1, . . . ,J, and uj(x) ∈ ∂ψj(x), there holds ∥uj(x)∥⩽ ξK.

(iii) Being ϕ ′
j and ψj both locally Lipschitz continuous, we have that ϕ

′
j ◦ψj is Lipschitz con-

tinuous on every compact subset of Rn. This means that, for any compact set K⊆ Rn,
there must exist ρK > 0 such that ∥ϕ ′

j ◦ψj(x)−ϕ ′
j ◦ψj(y)∥⩽ ρK∥x− y∥ for all x,y ∈ K

and j = 1, . . . ,J.

For our convergence analysis, we will require an additional assumption on the objective
function, namely that it satisfies the KL inequality on its domain. Such an assumption will be
needed only for the final convergence result, hence we state it later in the next section.

10
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3.2. The algorithm

In this section, we introduce our proposed method to solve problem (21), which is denoted as
IR-VMILA.

At each outer iteration k⩾ 0, IR-VMILA defines a convex majorant q(k) for the (possibly
nonconvex) function f 1, which is obtained by linearizing the functions ϕj, j = 1, . . . ,J around
the current iterate x(k). Then, the next iterate x(k+1) is computed through the inner iterates
x̃(k,0), x̃(k,1), . . . , x̃(k,Ik), which are generated by applying a (uniformly bounded) number of inner
iterations Ik of a variable metric linesearch based algorithm to the minimization of the function
f0(x)+ q(k)(x).

In order to better describe the steps of IR-VMILA, we introduce some further notations.
For all k⩾ 0 and j = 1, . . . ,J, we define the following function:

q(k)j (x) := (ϕj ◦ψj)(x(k))+ (ϕ ′
j ◦ψj)(x(k))(ψj(x)−ψj(x

(k))). (23)

Since each ϕj is concave, it follows that q
(k)
j is a majorant of ϕj ◦ψj at x(k), namely

ϕj ◦ψj(x)⩽ q(k)j (x), ∀ x ∈ Rn

ϕj ◦ψj(x(k)) = q(k)j (x(k)).

As a result, for all k⩾ 0, the following function:

q(k)(x) :=
J∑
j=1

q(k)j (x)+χ(x), (24)

is a majorant of f 1 at point x(k). For the sake of simplicity, it will be convenient to consider
also the function:

ℓ(k)(x) =
J∑
j=1

ω
(k)
j ψj(x)+χ(x), where ω(k)

j = (ϕ ′
j ◦ψj)(x(k)). (25)

Note that ℓ(k) differs from q(k) by an additive constant, i.e. ℓ(k)(x) = q(k)(x)+ c(k) with c(k) ∈
R. In the context of iteratively reweighted algorithms, the parametersω(k)

j , j = 1, . . . ,J, are usu-
ally called weights. For all k⩾ 0 and i = 0,1, . . . , Ik− 1, given αk,i > 0 and Dk,i ∈ S++(Rn),
we define the following functions:

h(k,i)γ (z) := ⟨∇f0(x̃(k,i)),z− x̃(k,i)⟩+ γ

2αk,i
∥z− x̃(k,i)∥2Dk,i

+ ℓ(k)(z)− ℓ(k)(x̃(k,i))

h(k,i)(z) := h(k,i)1 (z). (26)

Finally, the unique minimum point of h(k,i)(·) will be denoted as:

ŷ(k,i) = proxDk,i

αk,iℓ(k)
(x̃(k,i) −αk,iD

−1
k,i ∇f0(x̃

(k,i))) = argmin
z∈Rn

h(k,i)(z). (27)

We are now ready to detail the proposed method IR-VMILA in algorithm 1. At each outer
iteration k⩾ 0, we first define the majorant function q(k) of f 1 around the current iterate x(k),
by updating the weights ω(k)

j according to (25) (Step 1). Then, we initialize the inner routine

for inexactly solving the kth subproblem minx∈Rn f0(x)+ q(k)(x) by setting x̃(k,0) = x(k) (Step
2). Next, the inner routine starts. At each inner iteration i = 0,1 . . . , Ik− 1, we select a ste-
plength parameter αk,i > 0 and a scaling matrix Dk,i ∈ S++(Rn) (Step 3.1), and we compute

11
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a (possibly inexact) proximal–gradient point ỹ(k,i) ∈ Rn (Step 3.2) according to the following
condition

h(k,i)(ỹ(k,i))− h(k,i)(ŷ(k,i))⩽−τ
2
h(k,i)(ỹ(k,i)), (28)

where τ ⩾ 0. If τ = 0, the proximal–gradient point is computed exactly, i.e. we have ỹ(k,i) =
ŷ(k,i); otherwise, if τ > 0, we look for an approximation ỹ(k,i) of the exact point ŷ(k,i). Based on
remark 3, we observe that the point ỹ(k,i) makes the function h(k,i)γ negative or null, namely:

h(k,i)γ (ỹ(k,i))⩽ 0, ∀ k⩾ 0, i= 0,1, . . . , Ik− 1. (29)

This property is crucial for the well-posedness of the next inner steps. Indeed, once ỹ(k,i)

is computed, we set d(k,i) = ỹ(k,i) − x̃(k,i) as the search direction (Step 3.3) and perform a
linesearch procedure for the function f0 + ℓ(k) along d(k,i) (Step 3.4). More precisely, we com-
pute the linesearch parameter λk,i = δmk,i , where δ ∈ (0,1) andmk,i is the smallest nonnegative
integer such that the following Armijo–like condition holds:

( f0 + ℓ(k))(x̃(k,i) + δmk,id(k,i))⩽ ( f0 + ℓ(k))(x̃(k,i))+βδmk,ih(k,i)γ (ỹ(k,i)). (30)

Such a condition has been already considered in the nonsmooth framework for other algorithms
[4, 5, 35]. Note that, if h(k,i)γ (ỹ(k,i)) = 0, i.e. ỹ(k,i) is the exact proximal gradient point, then

condition (30) trivially holds with mk,i = 0; otherwise, if h(k,i)γ (ỹ(k,i))< 0, it can be shown
that d(k,i) is a descent direction for f0 + ℓ(k) at point x̃(k,i), and the linesearch procedure based
on (30) terminates in a finite number of steps [35, proposition 3.1]. Finally, the next inner
iterate is computed as the convex combination x̃(k,i+1) = x̃(k,i) +λk,id(k,i) (Step 3.5). Once the
inner routine has ended, we compute the next outer iterate x(k+1) as the point that retains the
smallest objective function value between x̃(k,Ik) and ỹ(k,0) (Step 4).

Note that, if we set J = 1, ϕ1(x) = x, ψ1 ≡ 0 in (22), and Ik = 1 for all k⩾ 0 in algorithm 1,
then our proposed IR-VMILA reduces to the so-called VMILAn algorithm [4, 9, 36] applied
to the minimization of the function f = f0 + f1, where f1 = χ is convex. In other words, we
can see IR-VMILA as a generalization of the VMILAn algorithm to completely nonconvex
optimization problems, where both f 0 and f 1 are possibly nonconvex.

We also remark that the proposed IR-VMILA has a similar structure to the C2FB algorithm
considered in [27], which is also an iteratively reweighted algorithm with an inner forward–
backward routine. However, in [27], the steplength parameters are forced to be smaller than
one, and the scaling matrices are required to satisfy an appropriate majorization–minimization
condition. On the contrary, our proposed algorithm allows for a greater flexibility, as the para-
meters αk,i and Dk,i can be freely chosen according to any rule of preference, provided that
they both belong to compact sets (see the forthcoming assumption 2). Furthermore, IR-VMILA
adopts a different inexactness criterion for the computation of the proximal point ỹ(k,i), which
has the advantage of being practically implementable (see section 2.3).

12
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Algorithm 1. IR-VMILA

x(0) ∈ dom( f1), β,δ ∈ (0,1), γ ∈ [0,1], τ ⩾ 0.

For k= 0,1, . . .
Step 1 Set ω(k)

j = (ϕ ′
j ◦ψj)(x(k)), j = 1, . . . ,J, and ℓ(k) =

∑J
j=1ω

(k)
j ψj+χ.

Step 2 Set x̃(k,0) = x(k) and choose Ik ∈ N.
Step 3 For i = 0,1, . . . , Ik− 1

Step 3.1 Choose αk,i > 0 and Dk,i ∈ S++(Rn).
Step 3.2 Compute ỹ(k,i) ≈ ŷ(k,i) = prox

Dk,i

αk,iℓ(k)
(x̃(k,i) −αk,iD

−1
k,i ∇f0(x̃

(k,i)))

such that
h(k,i)(ỹ(k,i))− h(k,i)(ŷ(k,i))⩽− τ

2 h
(k,i)(ỹ(k,i)).

Step 3.3 Set d(k,i) = ỹ(k,i) − x̃(k,i).
Step 3.4 Compute λk,i = δmk,i , where mk,i is the smallest nonnegative integer such that

( f0 + ℓ(k))(x̃(k,i) + δmk,id(k,i))⩽ ( f0 + ℓ(k))(x̃(k,i))+βδmk,ih(k,i)γ (ỹ(k,i)).
Step 3.5 Compute x̃(k,i+1) = x̃(k,i) +λk,id

(k,i).
End

Step 4 Set

x(k+1) =

{
x̃(k,Ik) if f(x̃(k,Ik))⩽ f(ỹ(k,0))

ỹ(k,0) otherwise
. (31)

End

3.3. Convergence analysis

We now develop the convergence analysis for algorithm 1. The main result, stated in theorem 1
to follow, establishes the convergence of the sequence {x(k)}k∈N to a stationary point of prob-
lem (21). Our convergence analysis can be considered as a generalization of the one devised for
the VMILAn algorithm in [9], even though some major modifications are needed to establish a
connection between the (possibly nonconvex) objective function and its iteratively reweighted
convex majorizers.

In order to proceed with the analysis, we need some additional hypotheses. First, we state
the assumptions needed on the algorithmic parameters αk,i, Dk,i, Ik, which are all required to
belong to compact sets.

Assumption 2. (i) There exists Imax ∈ Z+ such that 0< Ik ⩽ Imax for all k⩾ 0.
(ii) There exist 0< αmin ⩽ αmax such that αk,i ∈ [αmin,αmax], for all k⩾ 0, j = 1, . . . ,J.
(iii) There exist µ> 0 such that 1

µIn ⪯ Dk,i ⪯ µIn, for all k⩾ 0, j = 1, . . . ,J.

Under the above assumptions, we can prove that the linesearch parametersλk,i are uniformly
bounded from below by a positive constant.

Lemma 7. Suppose assumptions 1 and 2 hold. Then, there exists λmin > 0 such that

λk,i ⩾ λmin, ∀ k⩾ 0, j= 1, . . . ,J. (32)

Proof. The thesis follows by employing the same arguments as in [35, proposition 3.2].

Next, we show that a sufficient decrease condition holds for the sequence of function val-
ues {f(x(k))}k∈N evaluated at the iterates of IR-VMILA. Furthermore, we show that the gap

13
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between two consecutive function values f(x(k)) and f(x(k+1)) is a quantity converging to zero,
and related to the distance between the two consecutive iterates x(k) and x(k+1).

Lemma 8. Suppose assumptions 1 and 2 hold. Then the following statements hold.

(i) For all k⩾ 0, there holds:

f(x(k+1))+ a
Ik−1∑
i=0

(−h(k,i)(ỹ(k,i)))⩽ f(x(k)), (33)

where a= βλmin > 0. Thus, the sequence {f(x(k))}k∈N is monotone nonincreasing.
(ii) We have:

lim
k→∞

Ik−1∑
i=0

(−h(k,i)(ỹ(k,i))) = 0. (34)

(iii) For all k⩾ 0, we have:

∥x(k+1) − x(k)∥⩽ d

√√√√Ik−1∑
i=0

(−h(k,i)(ỹ(k,i))), (35)

where d= 2
√
Imaxαmaxµ(1+ τ)> 0.

Proof. (i) From Steps 3.4 and 3.5 of algorithm 1, we have:

( f0 + ℓ(k))(x̃(k,i+1))⩽ ( f0 + ℓ(k))(x̃(k,i))+βλk,ih
(k,i)
γ (ỹ(k,i)). (36)

Summing (36) over i = 0,1, . . . , Ik− 1, simplifying terms, and recalling that q(k) =
ℓ(k) + c(k) (compare (24) with (25)) leads to:

( f0 + q(k))(x̃(k,Ik))⩽ ( f0 + q(k))(x̃(k,0))+β

Ik−1∑
i=0

λk,ih
(k,i)
γ (ỹ(k,i)). (37)

Since q(k) is a majorant of f 1 at point x(k), and due to Steps 2 and 4 of algorithm 1, we
can write the following inequalities:

( f0 + q(k))(x̃(k,Ik))⩾ f(x̃(k,Ik))⩾ f(x(k+1)) (38)

( f0 + q(k))(x̃(k,0)) = f(x̃(k,0)) = f(x(k)). (39)

By applying (38) and (39) to (37), we come to:

f(x(k+1))⩽ f(x(k))+β

Ik−1∑
i=0

λk,ih
(k,i)
γ (ỹ(k,i)). (40)

From inequality (40), (29), λk,i ⩾ λmin (see lemma 7), and (12), we get (33). Furthermore,
it follows from (40) and (29) that the sequence {f(x(k))}k∈N is monotone nondecreasing.
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(ii) Due to assumption 1, f is continuous and coercive, hence it is bounded from below. This
implies that the monotone nondecreasing sequence {f(x(k))}k∈N is bounded from below.
Then, there must exist f ∈ R such that f(x(k))→ f, and taking the limit of (33) over k→∞
we obtain (34).

(iii) If Step 4 yields x(k+1) = x̃(k,Ik), then an easy application of Jensen’s inequality shows that:

∥x(k+1) − x(k)∥2 =

∥∥∥∥∥
Ik−1∑
i=0

(x̃(k,i+1) − x̃(k,i))

∥∥∥∥∥
2

⩽ Ik

Ik−1∑
i=0

∥x̃(k,i+1) − x̃(k,i)∥2

⩽ Imax

Ik−1∑
i=0

∥x̃(k,i) − ỹ(k,i)∥2,

where the last inequality is due to Step 3.5 of algorithm 1, λk,i ⩽ 1, and assumption 2(i).
Otherwise, if x(k+1) = ỹ(k,0), then it trivially follows that:

∥x(k+1) − x(k)∥2 = ∥ỹ(k,0) − x̃(k,0)∥2 ⩽ Imax

Ik−1∑
i=0

∥x̃(k,i) − ỹ(k,i)∥2. (41)

Thus, in both cases, inequality (41) holds. Finally, applying inequality (17) in lemma 5
with h= h(k,i), ỹ= ỹ(k,i), x= x̃(k,i) yields the thesis.

In the following lemma, we prove that the norm of the subdifferential of f at the exact
proximal–gradient point ŷ(k,0) can be suitably upper bounded by a quantity converging to zero.
In the KL framework, this is usually referred to as the relative error condition [8]. Unlike other
standard results available in the literature, our result holds at the exact proximal–gradient point
ŷ(k,0), of which we have no knowledge if τ > 0, rather than at the point ỹ(k,0) that is actually
computed in the algorithm. This is because such an upper bound is unlikely to hold at an inexact
point computed according to (28), as discussed in [36, section 3.2]. Indeed, even if it is possible
to obtain an upper bound for the distance between the exact point ŷ(k,0) and its approximation
ỹ(k,0) (see inequality (16) in lemma 5), a similar relation between the subgradients at ŷ(k,0) and
those at ỹ(k,0) can not be proved.

Lemma 9. Suppose assumptions 1 and 2 hold. For all k⩾ 0, there exists v(k) ∈ ∂f(ŷ(k,0)) such
that:

∥v(k)∥⩽ b̃

√√√√Ik−1∑
i=0

(−h(k,i)(ỹ(k,i))), (42)

where b̃=
(
L+ µ

αmin
+ ρKξKJ

)√
2αmaxµ

(
1+ τ

2

)
> 0.

Proof. By the definition (27) of exact proximal–gradient point, the proximal point ŷ(k,0) is
defined as:

ŷ(k,0) = argmin
z∈Rn

h(k,i)(z) ⇔ 0 ∈ ∂h(k,i)(ŷ(k,0)).
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By applying lemma 2(i) to the differential inclusion 0 ∈ ∂h(k,i)(ŷ(k,0)), we obtain that the fol-
lowing vector u(k) ∈ Rn is a subgradient of ℓ(k) at point ŷ(k,0):

u(k) :=
1
αk,0

Dk,0(x̃
(k,0) −αk,0D

−1
k,0∇f0(x̃

(k,0))− ŷ(k,0)) ∈ ∂ℓ(k)(ŷ(k,0)). (43)

Recalling the definition of ℓ(k) in (25) and using lemma 2(ii) and (iii), it follows that:

∂ℓ(k)(ŷ(k,0)) = ∂

 J∑
j=1

(ϕ′j ◦ψj)(x(k))ψj+χ

(ŷ(k,0))

=
J∑
j=1

(ϕ′j ◦ψj)(x(k))∂ψj(ŷ(k,0))+ ∂χ(ŷ(k,0)),

which implies the existence of J vectors uj(ŷ(k,0)) ∈ ∂ψj(ŷ(k,0)), j = 1, . . . ,J, and uχ(ŷ(k,0)) ∈
∂χ(ŷ(k,0)) such that:

u(k) :=
J∑
j=1

(ϕ ′
j ◦ψj)(x(k)) · uj(ŷ(k,0))+ uχ(ŷ

(k,0)). (44)

Using lemma 2(i), we can write ∂f(ŷ(k,0)) =∇f0(ŷ(k,0))+ ∂f1(ŷ(k,0)). Note that f 1 can be
written as f1 = ϕ ◦Ψ+χ, whereΨ(x) = (ψ1(x), . . . ,ψJ(x)) and ϕ(z) =

∑J
j=1ϕ(zj) satisfy the

hypotheses of lemma 3 thanks to assumption 1(ii). Therefore, we can apply lemma 3 to
obtain,

∂f1(ŷ
(k,0)) =

J∑
j=1

(ϕj ◦ψj)(ŷ(k,0))∂ψj(ŷ(k,0))+ ∂χ(ŷ(k,0)).

Hence, the following vector w(k) ∈ Rn is a subgradient of f 1 at point ŷ(k,0):

w(k) =
J∑
j=1

(ϕ ′
j ◦ψj)(ŷ(k,0)) · uj(ŷ(k,0))+ uχ(ŷ

(k,0)) ∈ ∂f1(ŷ(k,0)), (45)

and v(k) :=∇f0(ŷ(k,0))+w(k) is a subgradient of f at point ŷ(k,0), i.e. v(k) ∈ ∂f(ŷ(k,0)).
By lemma 8, it follows that the sequence {x(k)}k∈N is contained in the setK1 = [f ⩽ f(x(0))],

which is compact due to assumption 1(iii). Analogously, denoting ωmax =maxk∈N |ϕ ′ ◦
ψj(x(k))|, which is a finite real value due to the continuity of ϕ ′ ◦ψj on K1, we note that
{ŷ(k,0)}k∈N is a subset of the set:

K2 = {proxD∑J
j=1αωjψj+χ

(x−αD−1∇f0(x)) : x ∈ K1,α ∈ [αmin,αmax],

1
µ
I⪯ D⪯ µI, |ωj|⩽ ωmax}, (46)

which is compact due to the continuity of the proximal operator with respect to its arguments,
and the compactness of K1. Thus, letting K := K1 ∪K2, we have that the inclusion {x(k)}k∈N ∪
{ŷ(k,0)}k∈N ⊆ K holds.
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Now, we can write the following inequalities:

∥v(k)∥= ∥∇f0(ŷ(k,0))+w(k)∥
⩽ ∥∇f0(ŷ(k,0))+ u(k)∥+ ∥w(k) − u(k)∥

= ∥∇f0(ŷ(k,0))+ u(k)∥+

∥∥∥∥∥∥
J∑
j=1

((ϕ ′
j ◦ψj)(ŷ(k,0))− (ϕ ′

j ◦ψj)(x(k)))uj(ŷ(k,0))

∥∥∥∥∥∥
⩽ ∥∇f0(ŷ(k,0))+ u(k)∥+

J∑
j=1

|(ϕ ′
j ◦ψj)(ŷ(k,0))− (ϕ ′

j ◦ψj)(x(k))|∥uj(ŷ(k,0))∥

⩽ ∥∇f0(ŷ(k,0))+ u(k)∥+ ρKξKJ∥ŷ(k,0) − x(k)∥

⩽ ∥∇f0(ŷ(k,0))+ u(k)∥+ ρKξKJ

√
2αmaxµ

(
1+

τ

2

)√
−h(k,0)(ỹ(k,0)), (47)

where the first equality is due to the definition of v(k), the first inequality follows from the
triangular inequality, the second equality comes from (44) and (45), the second inequality is
again due to the triangular inequality, whereas the third one follows from remark 4(ii) and
(iii), and finally the fourth one is a consequence of inequality (15) in lemma 5 applied with
h= h(k,0), ŷ= ŷ(k,0), ỹ= ỹ(k,0) x= x(k).

Finally, we focus on the quantity ∥∇f0(ŷ(k,0))+ u(k)∥, which can be upper bounded in the
following way:

∥∇f0(ŷ(k,0))+ u(k)∥=
∥∥∥∥∇f0(ŷ(k,0))+ 1

αk,0
Dk,0(x̃

(k,0) −αk,0D
−1
k,0∇f0(x̃

(k,0))− ŷ(k,0))

∥∥∥∥
=

∥∥∥∥∇f0(ŷ(k,0))−∇f0(x̃(k,0))+
1
αk,0

Dk,0(x̃
(k,0) − ŷ(k,0))

∥∥∥∥
⩽
(
L+

µ

αmin

)
∥ŷ(k,0) − x̃(k,0)∥

⩽
(
L+

µ

αmin

)√
2αmaxµ

(
1+

τ

2

)√
−h(k,0)(ỹ(k,0)), (48)

where the first equality follows from (43), the first inequality from the triangular inequality,
the Lipschitz continuity of∇f0 (see assumption 1(i)), and assumptions 2(ii) and (iii), whereas
the last inequality is due again to inequality (15) in lemma 5 applied with h= h(k,0), ŷ= ŷ(k,0),
ỹ= ỹ(k,0) x= x(k). Combining (47) and (48) easily yields the thesis.

The next lemma contains the first convergence result for IR-VMILA, i.e. that each limit
point of the sequence {x(k)}k∈N is stationary for problem (21). Even though the arguments
employed are analogous to those followed in several other algorithms framed within the KL
framework [3, 4, 8, 27], we report its proof for the sake of completeness.

Lemma 10. Suppose assumptions 1 and 2 hold true. Let X∗(x(0)) denote the set of all limit
points of the sequence {x(k)}k∈N generated by algorithm 1 starting from the initial iterate x(0).
Then, the following statements hold true.

(i) X∗(x(0)) is nonempty and compact.
(ii) There holds limk→∞ dist(x(k),X∗(x(0))) = 0.
(iii) We have limk→∞ f(x(k)) = f(x∗).
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(iv) There exists f∗ ∈ R such that f(x∗) = f∗ for all x∗ ∈ X∗(x(0)).
(v) If x∗ ∈ X∗(x(0)), then x∗ is a stationary point for problem (21).

Proof. (i) From lemma 8(i), we know that {x(k)}k∈N ⊆ [f ⩽ f(x(0))]. Then, assumption 1(iii)
implies that {x(k)}k∈N is bounded, which in turn guarantees the existence of at least one
limit point, hence X∗(x(0)) ̸= ∅. The compactness of X∗(x(0)) holds by observing that
X∗(x(0)) is a countable intersection of compact sets, exactly as in [20, lemma 5].

(ii) This is a consequence of the definition of limit point of {x(k)}k∈N.
(iii) Let x∗ ∈ X∗(x(0)). Since x(k) ∈ dom(χ) for all k⩾ 0, and f is continuous on dom(χ)

by assumption 1, it follows that there exists a subset of indices K⊆ N such that
limk∈K f(x(k)) = f(x∗). As { f(x(k))}k∈N is a monotone nonincreasing and bounded
sequence, it converges to a finite value, hence we have limk→∞ f(x(k)) = f(x∗).

(iv) This is a straightforward consequence of point (iii).
(v) Let x∗ ∈ X∗(x(0)) and K⊆ N any subset of indices such that limk∈K x(k) = x∗. From

point (iii), we also know that limk∈K f(x(k)) = f(x∗). In addition, by plugging lemma 8(ii)
inside (42), we obtain that limk∈K v(k) = 0. Hence, we can employ the closedness property
of the limiting subdifferential (see lemma 1) to conclude that 0 ∈ ∂f(x∗).

As in [9], we now introduce the following surrogate function:

F : Rn×R→ R̄

F(z,σ) = f(z)+
1
2
σ2, (49)

which will be needed to incorporate the inexact computation of point ỹ(k,0) inside the proof of
theorem 1.

In what follows, we prove that a relative error condition holds for the subdifferential of F
evaluated at the point (ŷ(k,0), σ̃(k,0)), where {σ̃(k,0)}k∈N is a suitable auxiliary sequence con-
verging to zero. Furthermore, we show that the sequence {F(ŷ(k,0), σ̃(k,0))}k∈N is controlled
from below and above by the function values {f(x(k))}k∈N.

Lemma 11. Suppose assumptions 1 and 2 hold. Let c⩾ 0 and b̃> 0 be the constants defined
in lemmas 6 and 9, respectively. For all k⩾ 0, define:

σ̃(k,0) =
√
2(c(−h(k,0)(ỹ(k,0)))+ q(k)(ŷ(k,0))− f1(ŷ(k,0))). (50)

Furthermore, let b= b̃+
√
2c+

√
4ρKξKαmaxµ

(
1+ τ

2

)
, where b̃> 0 is the constant defined

in lemma 9.

(i) We have limk→∞ σ̃(k,0) = 0.
(ii) For all k⩾ 0, there holds:

dist(0,∂F(ŷ(k,0), σ̃(k,0)))⩽ b

√√√√Ik−1∑
i=0

(−h(k,i)(ỹ(k,i))). (51)

(iii) There exists a sequence {r(k)}k∈N ⊆ R such that limk→∞ r(k) = 0 and, for all k⩾ 0, there
holds:

f(x(k+1))⩽ F(ŷ(k,0), σ̃(k,0)))⩽ f(x(k))+ r(k). (52)

Proof. (i) Let K1 = [f ⩽ f(x(0))], K2 ⊆ Rn defined as in (46), and K= K1 ∪K2. Let ξK >
0 and ρK be the local Lipschitz constants common to all functions ψj and ϕ ′

j ◦ψj,
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j = 1, . . . ,J, respectively, on the compact set K (see remark 4). Then, by the definition
of q(k) in (24), the concavity of functions ϕj, the local Lipschitz continuity of functions ϕj
and ϕ ′

j ◦ψj, and inequality (15) with ŷ= ŷ(k,0), ỹ= ỹ(k,0), and x= x(k), we can deduce the
following chain of inequalities:

0⩽ q(k)(ŷ(k,0))− f1(ŷ
(k,0)) =

J∑
j=1

((ϕj ◦ψj)(x(k))− (ϕj ◦ψj)(ŷ(k,0)))

+ (ϕ ′
j ◦ψj)(x(k))(ψj(ŷ(k,0))−ψj(x

(k)))

⩽
J∑
j=1

(ϕ ′
j ◦ψj)(ŷ(k,0))(ψj(x(k))−ψj(ŷ

(k,0)))

+ (ϕ ′
j ◦ψj)(x(k))(ψj(ŷ(k,0))−ψj(x

(k)))

=
J∑
j=1

(ϕ ′
j ◦ψj(ŷ(k,0))−ϕ ′

j ◦ψj(x(k)))(ψj(x(k))−ψj(ŷ
(k,0)))

⩽ ρKξK∥ŷ(k,0) − x(k)∥2

⩽ 2ρKξKαmaxµ
(
1+

τ

2

)
(−h(k,0)(ỹ(k,0))). (53)

By employing lemma 8(ii) in the previous inequality, we obtain that limk→∞ q(k)(ŷ(k,0))−
f1(ŷ(k,0)) = 0, and using the definition of σ̃(k,0) in (50), the thesis follows.

(ii) Let v(k) ∈ ∂f(ŷ(k,0)) be the subgradient in lemma 9. Then, it is easily follows that:(
v(k)

σ̃(k,0)

)
∈ ∂F(ŷ(k,0), σ̃(k,0)).

Using the triangular inequality, lemma 9, and the definition of σ̃(k,0) in (50), we obtain:

∥∥∥∥∥
(

v(k)

σ̃(k,0)

)∥∥∥∥∥ ⩽ ∥v(k)∥+ |σ̃(k,0)|

⩽ b̃

√√√√Ik−1∑
i=0

(−h(k,i)(ỹ(k,i)))+
√
2(c(−h(k,0)(ỹ(k,0)))+ q(k)(ŷ(k,0))− f1(ŷ(k,0)))

⩽ b̃

√√√√Ik−1∑
i=0

(−h(k,i)(ỹ(k,i)))+
√
2c(−h(k,0)(ỹ(k,0)))

+

√
2(q(k)(ŷ(k,0))− f1(ŷ(k,0))).

The thesis now follows by applying (53) to the previous inequality.
(iii) We start by observing that:

F(ŷ(k,0), σ̃(k,0)) = f(ŷ(k,0))+ c(−h(k,0)(ỹ(k,0)))+ q(k)(ŷ(k,0))− f1(ŷ
(k,0))

= f0(ŷ
(k,0))+ q(k)(ŷ(k,0))+ c(−h(k,0)(ỹ(k,0))). (54)
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First, we prove the left inequality in (52). From (18) in lemma 6 with ℓ= ℓ(k),
h(·;x) = h(k,0)(·), ŷ= ŷ(k,0), ỹ= ỹ(k,0), x= x(k), we can write:

(f0 + ℓ(k))(ŷ(k,0))⩾ (f0 + ℓ(k))(ỹ(k,0))− c(−h(k,0)(ỹ(k,0))),

or equivalently (see the definition of q(k) in (24)):

( f0 + q(k))(ŷ(k,0))⩾ ( f0 + q(k))(ỹ(k,0))− c(−h(k,0)(ỹ(k,0))). (55)

Then we have:

F(ŷ(k,0), σ̃(k,0))⩾ (f0 + q(k))(ỹ(k,0))⩾ f(ỹ(k,0))⩾ f(x(k+1)),

where the first inequality follows by plugging (55) inside (54), the second one follows from
the fact that q(k) is a majorant for f 1 at x(k), whereas the third inequality is due to Step 4 of
algorithm 1.

As for the right inequality in (52), we apply (20) with ℓ= ℓ(k), h(·;x) = h(k,0)(·), ŷ= ŷ(k,0),
ỹ= ỹ(k,0), x= x(k), to obtain:

(f0 + ℓ(k))(ŷ(k,0))⩽ (f0 + ℓ(k))(x(k))−Lαmaxµ
(
1+

τ

2

)
h(k,0)(ỹ(k,0)),

or equivalently

( f0 + q(k))(ŷ(k,0))⩽ ( f0 + q(k))(x(k))−Lαmaxµ
(
1+

τ

2

)
h(k,0)(ỹ(k,0))). (56)

Plugging (56) inside (54) and recalling that q(k) is a majorant for f 1 at x(k), we get:

F(ŷ(k,0), σ̃(k,0))⩽ (f0 + q(k))(x(k))+
(
c+Lαmaxµ

(
1+

τ

2

))
(−h(k,0)(ỹ(k,0)))

= f(x(k))+
(
c+Lαmaxµ

(
1+

τ

2

))
(−h(k,0)(ỹ(k,0))).

Setting r(k) =
(
c+Lαmaxµ

(
1+ τ

2

))
(−h(k,0)(ỹ(k,0))) and recalling lemma 8(ii), we come to

the second inequality in (52).

We are now ready to state the main result, namely that the sequence {x(k)}k∈N satisfies the
finite length property (which implies convergence to a stationary point). To this aim, we need
the following additional requirement on F.

Assumption 3. The surrogate function F defined in (49) is a KL function.

The previous assumption is satisfied if f is the sum of semialgebraic, subanalytic and real
analytic functions, see [9, remark 5].

Theorem 1. Suppose that assumptions 1–3 hold. The sequence {x(k)}k∈N generated by
algorithm 1 has finite length, i.e.

∞∑
k=0

∥x(k+1) − x(k)∥<∞,

hence it converges to a stationary point x∗ of problem (21).

Proof. Suppose that there exists k̄⩾ 0 for which
∑Īk−1

i=0 (−h(k̄,i)(ỹ(k̄,i))) = 0. Then, inequal-
ity (42) implies that 0 ∈ ∂f(ŷ(k̄,0)), i.e. ŷ(k̄,0) is a stationary point for problem (21). In addition,
from inequalities (15)–(17) with h= h(k̄,0), ỹ= ỹ(k̄,0), x= x(k̄), it must be ŷ(k̄,0) = ỹ(k̄,0) = x(k̄),
which in turn implies d(k̄,0) = 0 and thus x(k̄,1) = x(k̄). By induction, it follows that x(k̄+k) = x(k̄)

for all k⩾ 0, hence the sequence converges to the stationary point x(k̄).
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Otherwise, let us assume that:

Ik−1∑
i=0

(−h(k,i)(ỹ(k,i)))> 0, ∀ k⩾ 0, (57)

and define the set:

Ω∗(x(0)) = X∗(x(0))×{0},

where X∗(x(0)) is the set of all limit points of the sequence {x(k)}k∈N. Then, for all v∗ ∈
Ω∗(x(0)), where v∗ = (x∗,0) with x∗ ∈ X∗(x(0)), we have:

F(v∗) = f(x∗) = f∗, ∀ v∗ ∈ Ω∗(x(0)),

thanks to the definition of the surrogate function F in (49) and lemma 10(iv).
Therefore, since F is a KL function (assumption 3), and F is constant and equal to f∗ over

the set of limit points Ω∗(x(0)), which is compact (lemma 10(i)), there exist ρ,ν > 0 and ξ :
[0,ν)→ [0,+∞) as in lemma 4 such that (9) holds for all x ∈ B∗, where B∗ is defined in (10)
with X=Ω∗(x(0)).

Now, it is easy to show that the pair (ŷ(k,0), σ̃(k,0)) belongs to B∗ for sufficiently large k.
Indeed, we have:

dist(ŷ(k,0),X∗(x(0)))⩽ ∥ŷ(k,0) − x(k)∥+ dist(x(k),X∗(x(0)))

⩽
√
2αmaxµ

(
1+

τ

2

)
(−h(k,0)(ỹ(k,0)))+ dist(x(k),X∗(x(0))),

where the second inequality is a consequence of (15) in lemma 5 applied with h= h(k,0),
ŷ= ŷ(k,0), ỹ= ỹ(k,0) x= x(k). By definition of the set X∗(x(0)) and lemma 8(ii), the previous
inequality implies the existence of an index k1 ⩾ 0 such that:

dist(ŷ(k,0),X∗(x(0)))<
ρ

2
, ∀ k⩾ k1. (58)

By lemma 11(i), there exists also k2 ⩾ 0 such that:

σ̃(k,0) <
ρ

2
, ∀ k⩾ k2. (59)

Furthermore, combining lemmas 10(iii) and 11(iii) yields an index k3 ⩾ 0 such that:

f∗ < f(x(k+1))⩽ F(ŷ(k,0), σ̃(k,0))< f∗ + ν, ∀ k⩾ k3, (60)

where the strict inequality on the left is motivated by the fact that (33) and (57)
imply f(x(k+1))⩾ f(x(k+2))⩾ f∗. Thus, combining inequalities (58)–(60) and setting k0 =
max{k1,k2,k3}, we conclude that:

dist((ŷ(k,0), σ̃(k,0)),Ω∗(x(0)))⩽ dist(ŷ(k,0),X∗(x(0)))+ |σ̃(k,0)|< ρ

f∗ < F(ŷ(k,0), σ̃(k,0))< f∗ + ν,

for all k⩾ k0. If we denote by {x(k)}k∈N the sequence {x(k+k0)}k∈N, then the previous inequal-
ities are equivalent to the following inclusion:

(ŷ(k,0), σ̃(k,0)) ∈ B∗, ∀ k⩾ 0.

From the previous inclusion and lemma 4, we can apply the uniformized KL inequality (9)
with x= (ŷ(k−1,0), σ̃(k−1,0)) for all k⩾ 1, i.e.

ξ′(F(ŷ(k−1,0), σ̃(k−1,0))− f∗)dist(0,∂F(ŷ(k−1,0), σ̃(k−1,0)))⩾ 1, ∀ k⩾ 1.
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Since ξ is concave and differentiable, ξ ′ is nonincreasing. Then, inequality (60) implies:

ξ′(f(x(k))− f∗)⩾ ξ′(F(ŷ(k−1,0), σ̃(k−1,0))− f∗),

and hence:

ξ ′( f(x(k))− f∗)dist(0,∂F(ŷ(k−1,0), σ̃(k−1,0)))⩾ 1, ∀ k⩾ 1. (61)

Combining (61) and lemma 11(ii) leads to:

ξ ′( f(x(k))− f∗)⩾ 1
∥v(k−1)∥

⩾ 1

b
√∑Ik−1−1

i=0 (−h(k−1,i)(ỹ(k−1,i)))
. (62)

Next, we can write the following chain of inequalities:

ξ( f(x(k))− f∗)− ξ( f(x(k+1))− f∗)⩾ ξ ′( f(x(k))− f∗)( f(x(k))− f(x(k+1)))

⩾ f(x(k))− f(x(k+1))

b
√∑Ik−1−1

i=0 (−h(k−1,i)(ỹ(k−1,i)))

⩾ a
∑Ik−1

i=0 (−h(k,i)(ỹ(k,i)))

b
√∑Ik−1−1

i=0 (−h(k−1,i)(ỹ(k−1,i)))
, (63)

where the first inequality is due to the concavity of ξ, the second one follows from (62), and
the third one from (33). Setting:

s(k) =
b
a
(ξ(f(x(k))− f∗)− ξ(f(x(k+1))− f∗)),

the previous inequality can be reformulated as:

Ik−1∑
i=0

(−h(k,i)(ỹ(k,i)))⩽ s(k)

√√√√Ik−1−1∑
i=0

(−h(k−1,i)(ỹ(k−1,i))).

By applying the square root on both sides and using the basic inequality 2
√
uv⩽ u+ v with

u= s(k) and v=
√∑Ik−1−1

i=0 (−h(k−1,i)(ỹ(k−1,i))), we obtain:

2

√√√√Ik−1∑
i=0

(−h(k,i)(ỹ(k,i)))⩽

√√√√Ik−1−1∑
i=0

(−h(k−1,i)(ỹ(k−1,i)))+ s(k).

Summing the previous inequality over p= 1, . . . ,k yields:

2
k∑

p=1

√√√√Ip−1∑
i=0

(−h(p,i)(ỹ(p,i)))⩽
k∑

p=1

√√√√Ip−1−1∑
i=0

(−h(p−1,i)(ỹ(p−1,i)))+
k∑

p=1

s(p),

which by simplifying terms reduces to:

k∑
p=1

√√√√Ip−1∑
i=0

(−h(p,i)(ỹ(p,i)))+

√√√√Ik−1∑
i=0

(−h(k,i)(ỹ(k,i)))⩽

√√√√I0−1∑
i=0

(−h(0,i)(ỹ(0,i)))+
k∑

p=1

s(p). (64)
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Note that:

k∑
p=1

s(p) =
b
a
(ξ( f(x(1))− f∗)− ξ( f(x(k+1))− f∗))⩽ b

a
ξ( f(x(1))− f∗), (65)

where the second inequality follows from the fact that ξ has positive sign. Thus, combining (64)
and (65) yields:

k∑
p=1

√√√√Ip−1∑
i=0

(−h(p,i)(ỹ(p,i)))⩽

√√√√I0−1∑
i=0

(−h(0,i)(ỹ(0,i)))+ b
a
ξ( f(x(1))− f∗).

Taking the limit for k→∞ allows to conclude that:

∞∑
k=0

√√√√Ik−1∑
i=0

(−h(k,i)(ỹ(k,i)))<∞.

Finally, recalling lemma 8(iii), we can conclude that:

∞∑
k=0

∥x(k+1) − x(k)∥⩽ d
∞∑
k=0

√√√√Ik−1∑
i=0

(−h(k,i)(ỹ(k,i)))<∞. (66)

By (66) and lemma 10(v), the thesis follows.

The following result is concerned with the convergence rate of the sequence {f(x(k))}k∈N,
under the hypothesis that the desingularizing function ξ is defined as ξ(t) = 1

c t
1−θ, with c> 0

and θ ∈ (0,1). In particular, it is stated that the iterates {x(k)}k∈N converge either polynomially,
linearly, or in a finite number of iterations, depending on the value that the KL exponent θ
assumes.

Theorem 2. Suppose that assumptions 1–3 hold. Let x∗ be the unique limit point of the
sequence {x(k)}k∈N generated by algorithm 1, and suppose that assumption 3 is satisfied with
ξ(t) = 1

c t
1−θ, being c> 0 and θ ∈ (0,1).

(i) If θ ∈ ( 12 ,1), then there exists c1 > 0 such that:

f(x(k))− f(x∗)⩽ c1

(
1
k

) 1
2θ−1

,

for all sufficiently large k.
(ii) If θ ∈ (0, 12 ], then there exists c2 > 0 such that:

f(x(k))− f(x∗)⩽ c2

(
1
e

)k

,

for all sufficiently large k.
(iii) If θ= 0, then {x(k)}k∈N converges in a finite number of iterations.

Proof. The proof is omitted, as it runs analogously to the one available for the VMILAn
algorithm in [9, theorem 2] by combining lemmas 8 and 11, the KL property, and the mono-
tonicity of the derivative ξ ′.
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4. Numerical experiments

In order to evaluate the performance of IR-VMILA, we turn to the realm of imaging inverse
problems, as many of them can be expressed as optimization problems. In this context, the
use of composite energy functionals with one or more nonconvex terms, that better capture
the properties of the images of interest, has become extremely popular in the last few years
[13, 16, 23, 27].

The following experiments are implemented with Matlab 2022a on a Macbook Pro
equipped with a 2,4 GHz Intel Core i5 quad-core CPU.

4.1. Image deblurring and denoising using smoothed TV and bimodal regularization

In image deconvolution the goal is to compute a suitable approximation x̄ of the true unob-
tainable ground truth xtrue ∈ Rn, which gets corrupted with blur and noise in the acquisition
process. The observed data can then be modelled as y= Hxtrue+ n, where H ∈ Rn×n is the
matrix representing the convolution with the filter h causing the blurring effect, i.e. the point
spread function (PSF), and n ∈ Rn is the noise vector. Here we simulate this process by filter-
ing the true image xtrue with a disk PSF of radius 15, causing the out-of-focus blurring, and
then adding white Gaussian noise with standard deviation 0.01. We deal with 20 black/white
images of a string of text, in the spirit of the Helsinki Deblur Challenge 20213.

Taking into account that the operator H is ill-conditioned and motivated by the features of
the target image, one possible way of obtaining a valid estimate x̄ is to minimize the following
energy functional:

f(x) =
1
2
∥Hx− y∥2 + θTVδ(x)+ ηB(x)+ ιx∈[0,1]n(x), (67)

where:

• TVδ(x) =
∑n

j=1

∑2
s=1

√
[∇jx]

2
s + δ2 is a smoothed version of the Total Variation func-

tional for δ > 0, being ∇j the discrete gradient of x at pixel j;
• B(x) =

∑n
j=1 xj(1− xj) is a bimodal nonconvex function used to force the pixels to be

either 1 or 0.

The term TVδ(x) serves the purpose of inducing sparsity in the image gradient, in order to
better preserve the edges of the letters, whereas the regularizer B(x) induces sparsity in the
image itself. The model parameters θ,η,δ were manually tuned for each of the algorithms
tested, in order to provide a satisfactory quality of the restored image. The triplet (δ,θ,η)
was set as (0.38,2.4× 10−4,2.9× 10−4) for IRVMILA, as (0.61,2.2× 10−4,9.6× 10−4)
for iterative soft-thresholding algorithm (ISTA) and as (0.35,1.9× 10−4,4.7× 10−4) for
VMILA. These values were chosen with a precision of two significant figures, through a
two-step grid search: first we looked for the triplet (δ,θ,η) ∈ {0.1;0.2; . . . ;1}×{10−4;2×
10−4; . . . ;10−3}2 that led to the best peak signal-to-noise ratio (PSNR), then we turned to a
finer grid that had these as the middle points in each of the three dimensions.

3 https://fips.fi/HDC2021.php.
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The function in (67) can be cast in the form (21) by setting f0(x) = 1
2∥Hx− y∥2 + θTVδ(x),

and f1(x) = ηB(x)+ ιx∈[0,1]n(x) =
∑n+1

j=1 ϕj(ψj(x))+χ(x), where:
ϕj(t) = ηt(1− t), j = 1, . . . ,n

ψj(x) = xj, j = 1, . . . ,n

χ(x) = ιx∈[0,1]n(x).

Furthermore, it is easy to see that f is coercive (see the appendix) and assumption 1 is satisfied.
The weights of the convex majorant in (25) are defined by,

ω
(k)
j = η(1− 2x(k)j ), j = 1, . . . ,n.

If we denote with ω(k) = (ω
(k)
1 , . . . ,ω

(k)
j , . . . ,ω

(k)
n )T, then the proximal operator required in

algorithm 1 has the following explicit formulation:

proxDk,i

αk,iℓ(k)
(z) = argmin

x∈Rn
ℓ(k)(x)+

1
2αk,i

∥x− z∥2Dk,i

= argmin
x∈[0,1]n

n∑
j=1

ω
(k)
j ψj(x)+

1
2αk,i

∥x− z∥2Dk,i

= argmin
x∈[0,1]n

(ω(k))Tx+
1

2αk,i
(x− z)TDk,i(x− z)

=min
{
1,max

{
0,D−1

k,i

(
Dk,iz−αk,iω

(k)
)}}

. (68)

We tested the proposed IR-VMILA algorithm using two different strategies for the selection
of the inner steplengths: (i) computingαk,i by alternating the Barzilai–Borwein (BB) rules [29]
according to the adaptive criterion employed in [37, section 3.2]; (ii) computing αk,i as a pre-
fixed, constant steplength. Moreover, we investigated the effect of the scaling matrixDk,i when
chosen according to the split-gradient strategy, see e.g. [30, 37]. The variants of IR-VMILA
equipped with the BB rules will be denoted as IR-VMILA BB (no scaling) and IR-VMILA
BBS (with scaling). We compared IR-VMILA with the standard ISTA [6] and the VMILAn
scheme presented in [4, 9]. For these algorithms, we chose a different splitting for the func-
tion f, gathering all the smooth term together in f0(x) = 1

2∥Hx− y∥2 + θTVδ(x)+ ηB(x), so
that the resolvent operator needed in the backward step simply consists in the orthogonal pro-
jection onto the cartesian product [0,1]n. For all algorithms, the outer iterations were stopped
when either a maximum number of iterations kmax = 1000 was achieved, or when the relative
difference e(k)r = |f(x(k))− f(x(k−1))|/|f(x(k))| was lower than ϵ= 10−7. Likewise, the inner
iterations were halted when either a maximum number Imax = 25 was reached, or when the
relative difference of the convex majorant f0 + ℓ(k) value between two consecutive inner itera-
tions was smaller than the tolerance ε. All of the algorithms were initialized at the blurred
and noisy data y. The plots that are shown in the following are obtained by considering
only the image in figure 1, whereas the results in table 1 are averaged across the 20 images
considered.

In figure 2 we compare the performances of IR-VMILA BB and IR-VMILA BBS. For this
problem, the use of the scaling matrix in combination with the BB rules does not seem to
provide any considerable acceleration. On the other hand, in figure 3 we illustrate how the BB
rules are crucial in speeding up the algorithm, as choosing constant steplengths leads to a run
timemore than 10 times greater, while still obtaning a similar quality in the reconstruction. The
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Figure 1. (a) Ground truth; (b) blurred sum of the observations; (c) and (d) reconstruc-
tion obtained by the proposed approach, using the BB rules for the steplength selection
and the constant step αk ≡ 1 respectively.

Table 1. Performance evaluation for all the algorithms tested for the image deblurring
problem. In the last column, an asterisk denotes that the maximum number of iterations
was reached, while the number in parentheses indicates the average number of inner
iterations (only for IR-VMILA).

Avg. Time (s) Avg. PSNR Avg. Iters

IR-VMILA BB 10.9564 24.8211 9.05 (22.3)
IR-VMILA BBS 18.208 25.0229 13.25 (22.76)
IR-VMILA αk,i ≡ 1 281.333 25.1481 231.3 (24.42)
IR-VMILA αk,i ≡ 1/L 288.429 25.147 233.35 (24.43)
ISTA 63.0875 23.8714 1000∗

ISTA w/ Backtracking 51.0974 20.8482 1000∗

VMILAn 12.1967 21.4687 126.8

same, but with a different magnitude, can be said when IR-VMILA BB is compared against
ISTA and VMILAn. In order to evaluate the quality of the local minimum found, we also report
in table 1 the PSNR for each estimate x̄. From this table, we observe that IR-VMILA yields a
better image quality than the other competitors.
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Figure 2. Decrease of the objective function with respect to the outer iterations (left)
and computational time (right). Comparison between IR-VMILA equipped with the BB
rules, with scaling (BBS) and without scaling (BB).

Figure 3. (a), (b) Comparison of several variants of our proposed algorithm: IR-VMILA
BB (BB rules, no scaling), IR-VMILA (BB rules, scaling), IR-VMILA αk,i = 1 (con-
stant steplength, no scaling), and IR-VMILA αk,i = 1/L (constant steplength, no scal-
ing); L denotes an estimate of the Lipschitz constant of∇f0; (c), (d) comparison between
IR-VMILABB, ISTA, ISTAwith backtracking, andVMILAn (F(x∗) is obtained by run-
ning each algorithm for 5000 iterations).
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4.2. Image deblurring and denoising using nonconvex edge preserving regularization

In this section we illustrate the applicability of our approach to problems where the proximity
operator of the function ℓ(k) is not available in closed form. To this end, we consider a deblur-
ring problem where the data y ∈ Rn is blurred and corrupted by Gaussian noise. Then, we seek
for an approximation of the true image by minimizing the following functional [23]:

f(x) =
1
2
∥Hx− y∥2 + η

n∑
j=1

log

(
1+

√
[∇jx]21 + [∇jx]22

)
+ ιx⩾0(x), (69)

where H ∈ Rn×n is the blurring operator and η > 0. As explained in [23], the second term in
the above expression is motivated by the analysis of natural image statistics and, in general, it
promotes solutions that are mainly smooth with some sharp discontinuities corresponding to
edges. The objective function (69) is a special instance of (21), where f0(x) = 1

2∥Hx− y∥2 and
f1(x) = η

∑n
j=1 log

(
1+

√
[∇jx]21 + [∇jx]22

)
+ ι⩾0(x), with:

ϕj(t) = η log(1+ t), j = 1, . . . ,n

ψj(x) =
√
[∇jx]21 + [∇jx]22, j = 1, . . . ,n

χ(x) = ιx⩾0(x).

It is easy to check that assumption 1 is satisfied. The weights of the convex majorant in (25)
are defined by:

ω
(k)
j =

η

1+ψj(x(k))
, j = 1, . . . ,n. (70)

The proximal operator involved at the inner iterations of algorithm 1 is then defined as follows:

proxDk,i

αk,iℓ(k)
(z) = argmin

x⩾0

n∑
j=1

ω
(k)
j

√
[∇jx]21 + [∇jx]22 +

1
2αk,i

(x− z)TDk,i(x− z). (71)

The solution of the above minimization problem can not be expressed in explicit
form. Therefore, within our convergence framework, the proximal gradient point ŷ(k,i) =
proxDk,i

αk,iℓ(k)
(x̃(k,i) −αk,iD

−1
k,i ∇f0(x̃(k,i))) must be approximated by a point ỹ(k,i) satisfying

inequality (28). Such a point can be computed by applying an iterative optimization method to
the dual of problem (71), until the primal-dual gap satisfies a suitable, easy to check condition
[9, section 3.1]. Overall, when applied to the minimization of (69), algorithm 1 consists of
three nested loops.

We define a test problem by selecting a natural image xtrue whose pixels range is [0,1],
convolving it with a Gaussian kernel (standard deviation 1.5), and then adding Gaussian noise
of zeromean and standard deviation 0.01. The target image and its noisy version are depicted in
figures 4(a) and (b). As for the model parameters, we empirically select η = 5× 10−4, which
produced a good visual quality for the reconstructions. The scaling matrices in algorithm 1
are set as Dk,i = In, for all k and i, whereas the steplengths αk,i are selected with the same
alternation of the BB rules described in the previous section. The inner stopping condition is
defined as described in the previous section with ϵ= 10−7 and Imax = 10. The dual problem
for approximating the proximal gradient point at each inner iteration is solved with FISTA,
until condition (28) is satisfied with τ = 2× 10−6.

For comparison, we consider the method IRL1 [23, algorithm 3], implemented as described
in the paper. More specifically, the inner convex problem is approximately solved by using
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Figure 4. (a) ground truth; (b) noisy image (PSNR = 24.85); (c) restoration (PSNR =
26.73).

Figure 5. Numerical comparison: decrease of the objective function in logarithmic scale
on the horizontal axis with respect to the iteration number (a) and the computational
time (b).

the Chambolle-Pock method, which is stopped after 10 inner iterations. Both methods are
initialized with the noisy blurred image y and run for 100 outer iterations.

The restored image obtained at the final iteration of IR-VMILA is reported in figure 4(c),
while in figure 5 we report the objective function decrease for IR-VMILA and IRL1 with
respect to the iteration number (a) and the computational time (b). From the plot we can con-
clude that IR-VMILA provides an accelerated convergence rate towards its limit point, which
is mainly due to the variable steplength selection. The acceleration is more evident with respect
to the iteration number, but it is still significant also in terms of the computational time. In this
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regard, it should be noted that the implementation of IRL1 was tailored for this specific prob-
lem, whereas the IR-VMILA code was not optimized likewise.

4.3. Image super-resolution with CEL0

We now turn our attention to an interesting image super-resolution problem arising in the field
of microscopy. The aim is to obtain an high resolution image x̄ ∈ RK2n from a blurred, noisy
and low resolution observation y ∈ Rn, where K> 0 is the super-resolution factor. This is a
common task in microscopy, where the physical limitations of the acquisition tools often lead
to under-sampled images, causing close and small objects to remain undetected.

Recent super-resolution techniques in SMLM, like [38–40], propose to acquire an elevated
number of under-sampled images, where each time only a limited randomnumber ofmolecules
is activated. After these acquisitions are cleaned of the noise and blur, they can be stacked to
form the super-resolved image. The effectiveness of this process is influenced by the number
of such acquisitions, which in turn is related to the density of the activated molecules. In order
not to damage the object of interest, the volume of acquisitions should be restricted, leading
to a high density of the molecules, risking again to have smaller objects to go unnoticed. With
everything considered, using a sparsity inducing model when restoring the samples is a valid
strategy to overcome this issue.

Here, specifically, we focus on the microscopy problem from the ISBI13 challenge4. The
ground-truth image xtrue ∈ RK2n, withK= 4 and n= 642, shows 8 slim tubular structures which
were localized, using the scheme previously described, through 361 acquisitions yi ∈ Rn, i =
1, . . . ,361, that are 4 times smaller than the true image.

If y represents one low resolution image corrupted by additive Gaussian noise and blur, then
the corresponding super-resolution image x̄ can be obtained as the minimum of the following
energy functional:

f(x) =
1
2
∥Ax− y∥2 +RCEL0(x)+ ιx⩾0(x),

where A= SH is the composition of two operators: H ∈ RK2n×K2n is the blurring operator that
represents the convolution with the PSF h, while S ∈ Rn×K2n is the downsampling operator,
which reduces each dimension of the image by a factor K. The CEL0 regularization term
RCEL0(x) is meant to induce sparsity on the reconstruction by being an (exact) continuous
approximation of the ℓ0 pseudonorm [16]. Denoting with Aj the jth column of the operator A,
the regularization term presents itself as:

RCEL0(x) =
n∑

j=1

φ(|xj|;∥Aj∥2,η),

where

φ(t;Aj,η) = η−
∥Aj∥2

2

(
t−

√
2η

∥Aj∥

)2

1{
t⩽

√
2η

∥Aj∥

}.
In this case we set f0(x) = 1

2∥Ax− y∥2 and f1(x) = RCEL0(x)+ ιx⩾0(x). Taking into account
the non-negativity constraint that is enforced in the problem through the indicator function,

4 https://srm.epfl.ch/Datasets.
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we can actually ignore the absolute values in the first argument of the function φ. Thus, the
objective function can be framed in problem (21) by setting:

ϕj(t) = φ(t;Aj,η), j = 1, . . . ,n

ψj(x) = xj, j = 1, . . . ,n

χ(x) = ιx⩾0(x).

Note that assumption 1 is satisfied; particularly, the coercivity of f holds, since the operator
A has nonnegative entries and no identically null rows and columns (see the appendix). Con-
sequently, the weights are given by:

ω
(k)
j =−∥Aj∥2

(
x(k)j −

√
2η

∥Aj∥

)
1{

x(k)j ⩽
√

2η
∥Aj∥

}, j = 1, . . . ,n,

and the proximal operator of ℓ(k), whose formulation only depends on the expression of the
ψj, has the same form of equation (68).

We employed IR-VMILA to solve the resulting minimization problem and we compared
the results with the ones obtained by running ISTA, the C2FB algorithm from [27] as well as
the IRL1 algorithm [23] with FISTA as the inner solver, following the footsteps of the authors
of [16]. As in the previous experiment, we equipped IR-VMILA with different choices for the
steplength: the alternated Barzilai-Borwein rules employed in [37], the constant steplength
αk,i = 1, or αk,i = 1/L, where L is an approximation of the Lipschitz constant of∇f0. Regard-
ing the scaling matrix, we computed Dk,i using again the split-gradient strategy [30]. On the
other hand, the scaling matrix for C2FB has been obtained with the procedure described in [3].
All the algorithms were stopped when either the maximum number of kmax = 1000 iterations
was reached, or when the relative error of the objective function in two consecutive iterates
was less than ϵ= 6× 10−6. However, we adopted different settings for the inner routines of
the two iteratively reweighted schemes. In particular, the maximum number of inner iterations
for IR-VMILAwas set to Imax = 3, whereas the corresponding parameter in C2FBwas fixed as
Imax = 50 and as Imax = 25 for IRL1-FISTA. All three algorithms stopped the inner iterations
when the relative difference in the function f0 + lk was smaller than 10−7. The reason why we
adopted such different parameters Imax for the algorithm IR-VMILA, with respect to IRL1-
FISTA and C2FB, is that the quality of the solutions provided by these two for a smaller upper
bound on the inner iterations was much worse than the ones provided by the other method.
Regarding the regularization parameter η, we used the value η= 0.1 that is optimal for the
performance of ISTA. For all schemes the initial point was chosen as x(0) = ATy. The plots
presented in figure 6 are obtained by applying the algorithms to only one of the 361 frames.

In figure 7 we illustrate how, this time, the scalingmatrix does indeed provide a boost for the
proposed algorithm in terms of a faster decrease of the objective function. It reduces the total
number of iterations by a big enough margin to justify the computational cost for constructing
the matrix, resulting in an overall reduced computational time. Figure 8 shows the effects of
the BB rules on the performance of IR-VMILA. As expected, an adaptive strategy for the
steplength selection improves the computational time, especially when compared to the small
steplength provided by the inverse of the Lipschitz constant of ∇f0. In conclusion, a clever
choice of the steplength parameter, possibly in the presence of a scaling matrix, seems to
accelerate the proposed approach towards a good approximation of the optimal value.

When compared against the other algorithms tested for the ISBI13 challenge, IR-VMILA
is the best performing of the three in terms of decrease of the objective function. Indeed, in
figure 9 we see that IR-VMILA reaches the stopping criterion for the outer loop in fewer iter-
ations compared to the other schemes. Furthermore, even though the iterations of IR-VMILA

31



Inverse Problems 39 (2023) 064001 S Bonettini et al

Figure 6. (a) Ground truth; (b) blurred sum of the observations; (c) reconstruction
obtained by IR-VMILA equipped with the BB rules for the steplength selection;
(d) reconstruction obtainedwith C2FB; (e) reconstruction obtainedwith ISTA; (f) recon-
struction obtained with IRL1-FISTA.

Figure 7. Decrease of the objective function with respect to computational time (left)
and the outer iterations (right). Comparison between IR-VMILA equipped with the BB
rules, with scaling (BBS) and without scaling (BB).
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Figure 8. Decrease of the objective function with respect to computational time (left)
and outer iterations (right). Comparison between IR-VMILA equipped with the BB
rules (no scaling), IR-VMILA with αk,i = 1, and IR-VMILA with αk,i = 1/L, where
L denotes an estimate of the Lipschitz constant of∇f0.

Table 2. Performance evaluation for the three tested schemes.

IR-VMILA BB ISTA w/ Backtracking C2FB IRL1-FISTA

J0 0.0542 0.0545 0.0537 0.0545
J2 0.4868 0.4891 0.4846 0.4918
J4 0.5579 0.5633 0.5531 0.5861

are more costly than those of ISTA and IRL1-FISTA, the final computational time is still def-
initely in favor of the former.

In super-resolution microscopy, the goal is not to recover the correct intensity of the pixels,
but rather the true position of the molecules. Thus, a sensible measure of the quality of the
reconstruction is the Jaccard index, which is computed as

Jδ =
#of correct detections

(#of correct detections)+ (#of false negatives)+ (#of false positives)
,

where δ ∈ N is the number of pixels of tolerance. In table 2 we report the average Jaccard index
measured for all the 361 reconstructions, for three different tolerances. Each column shows
the Jaccard index relative to the reconstructions provided by one of the three algorithms IR-
VMILA BB, ISTA with backtracking, C2FB, and IRL1-FISTA. We did not report the results
for the IR-VMILA BBS variant, as we observed that the solution obtained with a nontrivial
scaling matrix was worse than the nonscaled one, even if the objective function value was
smaller. This could be due to the fact that the problem may have multiple local minima.

From table 2, we can observe that the three algorithms achieve comparable results in terms
of accuracy, although IR-VMILA BB reconstructs the image with a significantly reduced
amount of time, as figure 9 shows.
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Figure 9. (a), (b) Decrease of the objective function with respect to computational time
(left) and outer iterations (right). Comparison between IR-VMILABB, ISTAwith back-
tracking, C2FB and IRL1-FISTA. (c), (d) Plot of the quantity ∥x(k+1) − x(k)∥ over time
(left) and over the iterations (right).

5. Conclusions

In this paper we have proposed a novel iteratively reweighted algorithm, where the solution of
the inner subproblem is obtained by a finite number of linesearch based forward–backward iter-
ations. In our approach, acceleration strategies related to the selection of the forward–backward
parameters can be included. We provided the convergence analysis of the proposed algorithm
and the results of a numerical experience on a couple of relevant problems. In particular, the
novel algorithm seems to be promising as a tool for solving image super-resolution problems
in microscopy. Future work will address the design of effective rules for the selection of the
algorithmic parameters and for the specific microscopy application, as well as the definition of
a suitable strategy to achieve maximum accuracy in the molecule localization while preserving
the acceleration effect of the algorithm.

34



Inverse Problems 39 (2023) 064001 S Bonettini et al

Data availability statement
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Appendix

In this appendix, we show that the function:

f(x) =
1
2
∥Ax− y∥2 +R(x)+ ιΩ(x)

is coercive, where Ω= {x ∈ Rn : x⩾ 0} is the nonnegative orthant, R : Rn → R is a nonneg-
ative function, and A is assumed to have nonnegative entries and no identically null rows and
columns. Indeed, for all x ∈ Ω, it is easy to write down the following inequalities:

f(x) =
1
2
∥Ax− y∥2 +RCEL0(x)+ ι⩾0(x)⩾

1
2
∥Ax− y∥2

=
1
2
∥Ax∥2 + 1

2
∥y∥2 −⟨y,Ax⟩

⩾ 1
2
∥Ax∥2 + 1

2
∥y∥2 −∥y∥∥Ax∥

= ∥Ax∥
(
1
2
∥Ax∥−∥b∥

)
+

1
2
∥y∥2,

where the first inequality follows from the definition of ι⩾0(x) and the nonnegativity of RCEL0,
whereas the third one from theCauchy-Schwarz inequality. Let {x(ℓ)}ℓ∈N ⊆ Ω be any sequence
in the nonnegative orthant such that ∥x(ℓ)∥ −→

ℓ→+∞
+∞. Define j(ℓ) = argmax

j=1,...,n
x(ℓ)j for all ℓ ∈ N,

then it follows that |x(ℓ)j(ℓ)| −→
ℓ→+∞

+∞. Finally, let i(ℓ) be the first row such that the element

Ai(ℓ)j(ℓ) of the j(ℓ)th column is positive. Then, focusing on ∥Ax(ℓ)∥, we note that:

∥Ax(ℓ)∥=

√√√√√ n∑
i=1

 n∑
j=1

Aijx
(ℓ)
j

2

⩾

√√√√ n∑
i=1

(Aij(ℓ)x
(ℓ)
j(ℓ))

2 ⩾ Ai(ℓ)j(ℓ)|x
(ℓ)
j(ℓ)|

⩾
(
min
m∈N

Ai(m)j(m)

)
· |x(ℓ)j(ℓ)| −→

ℓ→+∞
+∞,

where we used also the fact that the iterates x(ℓ) and the matrix A have all nonnegative entries.
Then f(x(ℓ)) −→

ℓ→+∞
+∞ and hence f is coercive.
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