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We present the Fluid Transport Accelerated Solver, FluTAS, a scalable GPU code for multiphase flows 
with thermal effects. The code solves the incompressible Navier-Stokes equation for two-fluid systems, 
with a direct FFT-based Poisson solver for the pressure equation. The interface between the two fluids 
is represented with the Volume of Fluid (VoF) method, which is mass conserving and well suited for 
complex flows thanks to its capacity of handling topological changes. The energy equation is explicitly 
solved and coupled with the momentum equation through the Boussinesq approximation. The code is 
conceived in a modular fashion so that different numerical methods can be used independently, the 
existing routines can be modified, and new ones can be included in a straightforward and sustainable 
manner. FluTAS is written in modern Fortran and parallelized using hybrid MPI/OpenMP in the CPU-
only version and accelerated with OpenACC directives in the GPU implementation. We present different 
benchmarks to validate the code, and two large-scale simulations of fundamental interest in turbulent 
multiphase flows: isothermal emulsions in HIT and two-layer Rayleigh-Bénard convection. FluTAS is 
distributed through a MIT license and arises from a collaborative effort of several scientists, aiming to 
become a flexible tool to study complex multiphase flows.
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Solution method: the code employs a second-order-finite difference discretization and solves the two-
fluid Navier-Stokes equation using a projection method. It can be run both on CPU-architectures and 
GPU-architectures.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Multiphase flows are ubiquitous in many contexts, ranging from 
environmental flows to industrial applications. The interaction be-
tween phases has a prominent role in the formation and evolution 
of clouds [2], in sediment transport [3,4], oceanic sprays and bub-
bles generation [5] and more in general it represents one of the 
grand challenges of environmental fluid mechanics [6]. These flows 
are also crucial in several industrial applications, such as pharma-
ceutical, transportation, food processing and power generation [7]. 
From a theoretical point of view, the main difficulty when analyz-
ing multiphase flows relies on their multiscale nature, since the 
length-scale of the interface is of the order of the mean-free path 
while in most applications the typical length-scale is several orders 
of magnitude larger (∼ 105 − 106). This huge separation of scales 
is magnified when dealing with turbulent multiphase flows, which 
further broadens the spectrum of length-scales, thus making un-
feasible any attempt to bridge all of them in a single and unique 
framework. For this reason, all the tools developed so far, both of 
experimental and numerical nature, have focused on only a por-
tion of the scale spectrum while the remaining part is modelled or 
neglected.

As regards multiphase turbulence, where most of our interests 
and applications are, both experimental investigations and numer-
ical simulations have been extensively used in the last thirty years 
and have led to important contributions in a variety of problems 
and configurations: to name a few, particle laden flows and sed-
iment transport discussed in [8,4], bubbly and droplet flows re-
viewed in [9–11], oceanic sprays and bubbles as highlighted in [5]. 
Nevertheless, as already discussed in [10] and despite the re-
cent progress in the instantaneous measurement of bubble/droplet 
shape [12–14], there is still a lack of experimental data for the 
measurement of the instantaneous velocity fields of both carried 
and dispersed phase as well as for the turbulent kinetic energy 
and dissipation near the interface locations. These limitations dis-
appear when dealing with numerical simulations and, therefore, in 
the last decades interface resolved simulations of multiphase flows 
have become a central investigation tool. Despite the advantages, 
numerical simulations are still limited to simple configurations and 
moderate scale separation, and pose the challenge of the choice of 
the proper method to fully resolve the two-phase interface. As dis-
cussed in [15], there is now consensus that numerical methods 
suitable to perform interface-resolved simulations of multiphase 
flow should have the following properties: i) be able to enforce 
mass, momentum and kinetic energy conservation at discrete level, 
ii) allow mismatches in the material properties, whose magnitude 
depends on the application, and iii) handle complex and possibly 
arbitrary topological changes. Among the four groups of numerical 
methods for multiphase flows, Front-Tracking (FT) [16], Volume-of-
Fluid (VoF) [17], Phase Field (PFM) [18], Level-set (LS) [19], it exists 
at least a variant of each which possesses the aforementioned nu-
merical properties, giving some freedom to researchers and scien-
tists on the choice of their preferred numerical tool (see [17,20,21]
for a review).

Nevertheless, it is becoming ever more clear that another de-
sirable property of any numerical method is its straightforward 
adaptation to be able to run massively parallel simulations, es-
pecially on accelerated architectures. With the increase in the 
computing power driven by Graphics Processing Units (GPUs) [22], 
2

several HPC centers are now shifting towards GPU-only and 
GPU-accelerated architectures. This trend is making the GPU-
parallelization of numerical codes for fluid mechanics a manda-
tory requirement rather than a simple advantage. This effort has 
been already taken for single-phase codes, where at least three 
open-source codes for incompressible and fully compressible sim-
ulations are able to run on accelerated architectures: AFiD [23], 
STREAmS [24] and the accelerated version of CaNS [25]. Con-
versely, on the multiphase counterpart, despite the large avail-
ability of CPU-based open source codes, PARIS Simulator [26], 
TBFsolver [27], FS3D [28], NGA2 [29], Basilisk [30] and MFC [31] to 
name few, limited effort has so far been devoted to their adapta-
tion to hybrid architectures.

In this work, we aim to fill this gap and present FluTAS (Fluid 
Transport Accelerated Solver), a code for massive Direct Numeri-
cal Simulations on multi-GPU and multi-CPU architectures target-
ing incompressible multiphase flows, optionally with heat transfer. 
The numerical solution of these flows is typically performed us-
ing finite-difference methods in a staggered variable arrangement, 
and it involves the solution of a Poisson equation to enforce the 
constraints on the velocity divergence. In this context, FluTAS uses 
as basis the Navier-Stokes solver CaNS [32] and its GPU exten-
sion [25], whose key feature is a general implementation incorpo-
rating all the possible homogeneous pressure boundary conditions 
that can benefit of the FFT-based elliptic solvers [33]. The single-
phase Navier-Stokes solver is extended to a two-fluid code using 
the one-domain formulation [17,20] and coupled with the alge-
braic VoF MTHINC [1] to capture the two-phase interface. This 
method combines the exact mass conservation properties of cer-
tain geometric VoF methods with the reduced number of local 
operations for the interface reconstruction of the algebraic VoFs, 
making it a good candidate for properly exploiting hybrid and ac-
celerated architectures. The version available in our group has been 
validated in [34] and extensively employed in a different variety 
of multiphase configurations, both for laminar [35–37] and tur-
bulent [38–41] flows. Note that it has been extended to phase 
changing flows [42] and also to handle weakly compressible mul-
tiphase flows (low-Mach approximation) [43,44].

This paper is organized as follows. In §2, we introduce the gov-
erning equations for the incompressible two-fluid system. The dis-
cretization details of the VoF method, energy equation and Navier-
Stokes solver are provided in §3, whereas the standard benchmarks 
for code validation are discussed in §4. Next, the parallelization 
for the GPU acceleration is presented together with the scaling 
tests in §5 and in §6. The code potentialities are shown in two 
demanding simulations of multiphase turbulence: emulsions in ho-
mogeneous isotropic turbulence (HIT) and two-phase thermal con-
vection (see §7). Finally, main conclusions and future perspectives 
are summarized in §8.

2. Governing equations

We consider a two-phase system of immiscible incompressible 
Newtonian fluids (e.g., a gas-liquid system). The two phases are 
bounded by an infinitesimally small interface, through which mo-
mentum and energy can be transferred. To describe the system, we 
define a phase indicator function H distinguishing the two phases 
at position x and time t:

http://creativecommons.org/licenses/by/4.0/
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H(x, t) =
{

1 if x ∈ �1,

0 if x ∈ �2,
(1)

where �1 and �2 are the domains pertaining to phases 1 and 
2. We can use H to define the thermophysical properties in the 
whole domain � = �1 ∪ �2 as follows:

ξ(x, t) = ξ1 H(x, t) + ξ2(1 − H(x, t)), (2)

where ξi (i = 1, 2) can be the mass density ρi , the dynamic viscos-
ity μi , the thermal conductivity ki or the specific heat capacity at 
constant pressure cp,i . Hereafter, unless otherwise stated, thermo-
physical quantities not specifically referring to one of the phases 
are defined from eq. (2). The evolution of the indicator function is 
governed from the following topological equation:

∂ H

∂t
+ ∇ · (u�H) = H∇ · u�, (3)

where u� is the interface velocity. In absence of phase change, the 
one-fluid velocity u is continuous across the interface and there-
fore, it can be employed as interface velocity in equation (3).

The equations governing the momentum and energy transport 
for the liquid and gas phase are coupled through appropriate inter-
facial conditions [45], reported below in the so-called one-fluid or 
whole-domain formulation, where each transport equation is de-
fined in � [20].

∇ · u = 0, (4)

ρ

[
∂u

∂t
+ ∇ · (uu)

]
= −∇p+∇ ·

[
μ
(
∇u + ∇uT

)]
+σκδ�n+ρ̂g,

(5)

ρcp

[
∂T

∂t
+ ∇ · (uT )

]
= ∇ · (k∇T ) . (6)

Here, u is the fluid velocity assumed to be continuous in �, p is 
the hydrodynamic pressure, T the temperature. In equation (5), σ
is the surface tension, κ is the local interfacial curvature, δ� is a 
delta Dirac function, n is the normal vector, g is the gravity accel-
eration and ρ̂ is the volumetric density field modified to account 
for the thermal effects in the gravity forces. Using the Oberbeck–
Boussinesq approximation, ρ̂ reads as:

ρ̂ = ρ1,r [1 − βl (T − Tr)] H + ρ2,r
[
1 − βg (T − Tr)

]
(1 − H), (7)

where ρi=1,2,r are the reference phase densities and βi=1,2 are the 
liquid and gas thermal expansion coefficients.

3. Numerical methodology

The numerical solution of the governing equations (3), (4), (5)
and (6) presented in section 2 is addressed on a fixed regular 
Cartesian grid with uniform spacing �x, �y and �z along each 
direction. A marker-and-cell arrangement is employed for velocity 
and pressure points [46], whereas all scalar fields are defined at 
the cell centers. Each time-step, the governing equations are ad-
vanced in time by �tn+1 = tn+1 − tn , with the previous time-step 
indicated with �tn = tn − tn−1. Hereafter, we present the numer-
ical discretization of the governing equations, following the same 
order in which they are solved.

3.1. Volume of fluid: the MTHINC method

The first step of the time-marching algorithm consists in the 
interface reconstruction and its subsequent advection. As previ-
ously mentioned, these tasks are addressed within a fully Eulerian 
3

framework using a volume-of-fluid (VoF) method. From a numeri-
cal point of view, this consists first in defining the volume fraction 
φ in each cell of the computational domain as:

φ = 1

V c

∫
Vc

H(x, t)dV c, (8)

with V c = �x�y�z. Next, equation (3) is written in terms of vol-
ume fraction as:
∂φ

∂t
+ ∇ · (Hu) = φ∇ · u. (9)

The distinct feature of each class of VoF method lies in the way H
is approximated. In this work we employ the algebraic volume-of-
fluid method based on the Multi-dimensional Tangent Hyperbola 
reconstruction, MTHINC [1], whose central idea is to approximate 
H with a hyperbolic tangent:

H(x̃, ỹ, z̃) = 1

2

[
1 + tanh(βth

(
T (x̃) + dth

)]
, (10)

where βth , dth are the sharpness and the normalization param-
eter, respectively, and (x̃, ỹ, ̃z) a local coordinate system x̃ =
[(x − 0.5) /�x, (y − 0.5) /�y, (z − 0.5) /�z]. Employing equation 
(10) has two distinct advantages with respect to a piecewise ap-
proximation, commonly employed in the geometric VoF methods. 
First, the phase indicator H can be approximated with a recon-
structing polynomial T of arbitrary order in a straightforward 
manner. Next, once T is known, the resulting interface at the two-
phase boundary has smooth but controlled thickness (with the 
parameter βth), which also allows computing accurately the nor-
mal vector n and curvature tensor K directly from φ. More details 
about the choice of T and the calculations of dth , n and K are 
found in the original paper by Ii et al. [1], but for completeness 
we include them in the appendix A with the numerical implemen-
tation details.
After the reconstruction step, the interface is advected using a di-
rectional splitting approach [47,48], which consists in evaluating 
the numerical fluxes sequentially in each direction using, for each 
split, the latest estimation of VoF field. Accordingly, three provi-
sional fields φp

i, j,k (with p = [x, y, z]) are first computed:

φ
p
i, j,k =

φs
i, j,k − 1

�lp

[
f p
+(φs

i, j,k) − f p
−(φs

i, j,k)
]

1 − �tn+1

�lp

(
up

+ − up
−
)n , (11)

where s = [n, x, y], [�lx, �l y, �lz] = [�x, �y, �z], [ux, u y, uz] =
[u, v, w] with up

± the p-th velocity component. The calculation of 
the numerical fluxes f± in equation (11) are evaluated using the 
hyperbolic tangent approximation of H as detailed in appendix A. 
Next, the divergence correction step is applied in order to impose 
the volume conservation of both phases at a discrete level:

φn+1
i, j,k = φz

i, j,k −
∑

p=x,y,z

�tn+1

�lp
φ

p
i, j,k(up

+ − up
−)n. (12)

With the above approach, mass conservation is ensured up to the 
accuracy with which the divergence free condition (4) is satisfied. 
Accordingly, if direct methods are employed to solve the Poisson 
equation, the mass of each phase results to be conserved up to 
machine precision. Another approach with a similar property has 
been introduced in [49]. However, in that case the dilatation terms 
at the denominator of equation (11) are treated in an explicit man-
ner, while here in an implicit strategy is employed. This comes at 
a cost of the final correction step, given by equation (12), but with 
the advantage of not introducing additional time-step restrictions 
(apart the convective one) in the advection of the colour function.



M. Crialesi-Esposito, N. Scapin, A.D. Demou et al. Computer Physics Communications 284 (2023) 108602
3.2. Thermal effects

The next step of the time-marching algorithm consists in 
advancing the temperature field using an explicit second-order 
Adams-Bashforth method:

T n+1 = T n + �tn+1
(

ft,1Mn
T − ft,2Mn−1

T

)
, (13)

where ft,1 = (1 + 0.5�tn+1/�tn) and ft,2 = 0.5�tn+1/�tn are the 
coefficients of the Adams-Bashforth scheme. In equation (13), the 
operator MT accounts for the advection and diffusion contribution 
and it is provided below in a semi-discrete form:

Mn
T = −∇ · (un T n) + 1

ρn+1cn+1
p

∇ · (kn+1∇T n). (14)

All the spatial terms in equation (14) are discretized with second-
order central schemes, except for the temperature convection term. 
The discretization of the latter is based on the 5th-order WENO5 
scheme, as in reference [50].

3.3. Pressure correction algorithm

Once the energy equation has been advanced, the momentum 
equation is solved with a second-order pressure correction [51], 
reported below in a semi-discrete form:(

u − un

�tn+1

)
= ft,1Mn

u − ft,2Mn−1
u +

(
σκδ� + ρ̂g

)n+1

ρn+1 , (15)

u = u − �tn+1

ρ0

[(
1 − ρ0

ρn+1 ∇ p̂

)
+ ∇pn

]
, (16)

∇2ψn+1 = ρ0

�tn+1 ∇ · u, (17)

un+1 = u − �tn+1

ρ0
∇ψn+1, (18)

pn+1 = pn + ψn+1, (19)

where the operator Mn
u and Mn−1

u in equation (15) includes the 
convective and diffusive terms computed at the current and pre-
vious time level, neglecting the surface tension and gravity forces 
which are then included as source terms. The spatial gradients in 
Mu are discretized with central schemes. The intermediate veloc-
ity u is then updated with the contribution from the terms due 
to the time-pressure splitting, as in (16). Note that ρ0 is the mini-
mum value of the density field in the computational domain and p̂
represents the time-extrapolated pressure between the current and 
the old time step, i.e. p̂ = (1 + �tn+1/�tn)pn − (�tn+1/�tn)pn−1. 
Following [52] and contrary to [53,54], the terms arising from the 
pressure splittings are included in the prediction of the velocity 
field (see eq. (16) before the imposition of the boundary condi-
tions. This approach has two distinct advantages. First, it represents 
an incremental pressure projection which allows achieving an al-
most second-order accurate in time pressure field [52]. Next, it 
ensures the consistency of the pressure field near a solid boundary 
(i.e., un+1 = u = 0), where the pressure gradient component nor-
mal to the boundary (i.e., ∇⊥ψn+1 = 0) vanishes independently of 
the local density (see eq. (18)).

Next, the constant coefficients Poisson equation (17) is solved 
with the method of eigenexpansion technique that can be em-
ployed for different combination of homogeneous pressure bound-
ary conditions [33]. Finally, the velocity field is corrected as in 
equation (18) in order to impose the divergence constrain (i.e., 
solenoidal velocity field) and the pressure updated as in equa-
tion (19).
4

3.3.1. Poisson solver
The code uses the FFT-based finite-difference direct solver de-

veloped and implemented in the DNS code CaNS; see [32,25]. 
The underlying numerical approach dates back to the late 1970s 
[55,33], and has regained popularity in recent years, thanks to 
the improvements of hardware, and of and software frameworks 
for collective data communications, provided by the MPI standard 
and higher-level libraries like 2DECOMP&FFT. In a nutshell, the 
approach uses Fourier-based expansions along two domain direc-
tions, which reduce the system of equations resulting from the 
three-dimensional second-order finite-difference Laplace operator 
(seven non-zero diagonals) to a simple, tridiagonal system. These 
Fourier-based expansions depend on the boundary conditions of 
the system, and can be computed using FFTs, some of them with 
pre-/post-processing of the FFT input/output (see, e.g., [56]).
The FFT-based expansions are employed along directions x and y, 
and the resulting tridiagonal system along z is then solved using 
Gauss elimination. For calculations on CPUs, the method leverages 
the guru interface of the FFTW library [57], which allows for per-
forming all possible combinations of discrete transforms using the 
same syntax. On GPUs, the fast discrete cosine and sine trans-
forms have been implemented using real-to-complex/complex-to-
real FFTs from the cuFFT library, with pre- and post-processing of 
the input and output signals to calculate the desired series ex-
pansion [56,25]. We refer to Refs. [32,25] for more details on this 
method and its implementation.
Concerning the parallelization of the method in a distributed-
memory setting, the FFT-based transforms and Gauss elimination 
steps require the data along each direction to be local to each MPI 
task. The domain is decomposed using a 2D pencil decomposition, 
where collective all-to-all communications are required to trans-
pose the orientation of the 2D data decomposition. These trans-
poses are performed using the 2DECOMP&FFT library [58], which 
was modified to allow for GPU-GPU communication in [23,25].
It is worth noting that, in line with the recent developments of 
CaNS, the present method uses a default decomposition (i.e., “out-
side” the Poisson solver) based on a partitioning along y and z, 
resulting in x-aligned pencils. This reduces the total number of 
data transposes to be performed during the solution of the Pois-
son equation from 6 to 4. The approach has been adopted for both 
CPUs and GPUs, and the required operations to solve the Poisson 
equation are summarized as follows:

1. perform forward FFT-based transforms along x;
2. transpose x-to-y;
3. perform forward FFT-based transforms along y;
4. transpose y-to-z;
5. solve tridiagonal system using Gauss elimination along z;
6. transpose z-to-y;
7. perform backward FFT-based transforms along y;
8. transpose y-to-x;
9. perform backward FFT-based transforms along x.

Moreover, for the GPU implementation, the solver explicitly re-
duces the number of all-to-all operations when the domain is not 
decomposed along z (i.e., when a x − y slab decomposition is 
prescribed). This effectively decreases the number of collective op-
erations from 4 to 2 (steps 2 and 8 above are skipped). This is the 
approach adopted in the GPU runs presented here – due to the 
higher memory bandwidth in GPUs, a slab decomposition suffices 
for distributed-memory calculations with sufficiently small wall-
clock time per step. Explicitly skipping these two no-op resulted 
in a substantial reduction in wall-clock time per step, and in an 
overall improvement in the parallel scalability of the solver.
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Fig. 1. Deformation of the Zalesak’s slotted disk after t = 2π for βth = 2 (left) and βth = 3 (right).
3.4. Complete solution algorithm

For clarity, a step by step description of the overall solution 
procedure is presented in Algorithm 1.

Algorithm 1 Overall solution procedure.
1: φ0, T 0, u0, p0 are initialized;
2: ρ0, μ0, k0 and c0

p are calculated using equation (2) from φ0;
3: n = 0 is set,
4: while (t < ttot ‖ n < Ntot ) do
5: Set n = n + 1 and �tn+1;
6: φn+1 is calculated from equation (11) and (12);
7: nn+1 and κn+1 are evaluated using the procedure described in Appendix A;
8: ρn+1, μn+1, kn+1 and cn+1

p is calculated from equation (2);

9: T n+1 is calculated from Eq. (13);
10: u∗ is calculated from Eq. (15) and Eq. (16);
11: ψn+1 is calculated from Eq. (17);
12: un+1 is calculated from Eq. (18);
13: pn+1 is computed from Eq. (19).
14: end while
15: End of simulation.

4. Validation

4.1. Two-dimensional Zalesak’s disk

The Zalesak problem represents a classical benchmark to assess 
the accuracy of the interface capturing/tracking algorithm. It con-
sists in the solid-body rotation of a slotted disk immersed in an 
imposed two-dimensional velocity field u = (0.5 − y, x − 0.5). The 
disk can be easily defined in a Cartesian two-dimensional domain 
by setting the indicator function H0

i, j,k equal to 1 inside the fol-
lowing domain �H

�H :
[
(x − 0.5)2 + (y − 0.75)2

]
≤ 0.152 ∩ (|x − 0.5| ≥ 0.025 ∪ y ≥ 0.85) .

(20)

The benchmark consists in comparing the deformation of the solid 
disk with respect to the initial shape after one entire revolution. 
The VoF equation is solved in a two-dimensional square domain 
� = [0, 1] × [0, 1], discretized with four different grid spacing 
[�x, �y] = [1/Nx, 1/N y] with Nx × N y = [32 × 32, 64 × 64, 128 ×
128, 256 × 256]. Periodic boundary conditions are prescribed in 
both directions. Simulations are conducted up to t = 2π (i.e., one 
complete revolution of the slotted disk) using a constant time-step 
�t = t/3200. Note that this value has been chosen to ensure a 
stable time integration for the highest grid resolutions cases (i.e., 
256 × 256) and is employed for the coarser cases. Fig. 1 shows the 
final disk shape for different grid solutions and for two sharpness 
parameters βth = 2 and βth = 3. Note that the highest deviation 
5

Fig. 2. L1 error of the Zalesak disk problem for βth = 2 − 3.

from the initial shape is in the corner regions, where the high-
curvature regions are located. Moreover, the solution is weakly 
dependent on the value of βth and deviations between the differ-
ent employed βth are visible only for the coarser simulations.
Finally, to assess the accuracy of the solution, we compute the L1

norm and the order of convergence as:

L1 = 1

NxN y

Nx∑
i=1

N y∑
y=1

|φ(i, j) − φ0(i, j)|, (21)

nL1 =
log

(
L2,N

L1,N

)
log(2)

, (22)

where L1,N is the L1-error using Nx × N y grid points and L1,2N
is the L1-error evaluated with 2Nx × 2N y grid points. Results are 
reported in Fig. 2, where an order of convergence between the first 
and the second-order is achieved for φ, almost independent of the 
employed value of βth .

4.2. Three-dimensional rising bubble

The rising bubble test case is a well-established numerical 
benchmark for multiphase flows [59]. This test is presented here 
to showcase the ability of the numerical tool to accurately cap-
ture the topological changes of a moving interface. The flow is 
driven by the density difference between the two phases, and is 
influenced by the viscosity difference and the surface tension. The 
relevant dimensionless groups for this flow are the Reynolds num-
ber Re= ρg urlr/μg , the Weber number We= ρg u2

r lr/σ , the Froude 
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Fig. 3. Isosurfaces of φ = 0.5 at dimensionless times t
√|g|/d0 (a) 0, (b) 1.4, (c) 2.8 and (d) 4.2.
Fig. 4. Bubble rise velocity as a function of time. Black solid line, present results; 
red dashed line, reference results from [59]. (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

number Fr= ur/
√|g|d0, the density ratio λρ = ρl/ρg and the vis-

cosity ratio λμ = μl/μg . In these definitions, lr is a reference 
length and ur the reference velocity. Moreover, σ is the surface 
tension coefficient, ρg and ρl the reference gas and liquid densi-
ties, and μg and μl the reference gas and liquid dynamic viscosity. 
Finally, g is the acceleration of gravity and d0 is the initial diame-
ter of the spherical bubble.
Following the benchmark study [59], the values adopted for the 
dimensionless groups are Re= 35, We= 1, Fr= 1, λρ = 10 and 
λμ = 10, setting lr = d0, ur = √|g|d0 and the reference time 
tr = √

d0/|g|. The dimensions of the computational domain are 
lx = l y = 2d0 and lz = 4d0. The acceleration of gravity acts along 
the z-direction. No-slip and no-penetration boundary conditions 
are prescribed at the horizontal top and bottom boundaries of the 
domain (z-normal) and periodic conditions are prescribed at the 
vertical boundaries (x- or y-normal). A uniform Cartesian grid of 
128×128×256 cells is used. Initially, stagnant flow conditions are 
applied and the position of the center of mass of the spherical 
bubble, denoted as (xc(t), yc(t), zc(t)), is located at (d0, d0, d0). A 
constant time-step �t/tr = 2.8 × 10−4 is used to advance the so-
lution in time. Fig. 3 shows the isosurfaces of φ = 0.5 at various 
time instances. It is evident that as the initially spherical bubble 
rises, its surface topology changes. To compare against the refer-
ence results from [59], Fig. 4 shows the evolution of the bubble 
rising velocity Uc in time. The bubble velocity is defined as,
6

Table 1
Comparison of the dimensionless rise velocity Uc/ur and bubble sphericity A0/A
between reference and present results.

t/tr Uc/ur A0/A

ref. [59] 0.51013 0.97418
present 1.4 0.51144 0.97892
dev. % 0.26 0.49

ref. [59] 0.49823 0.95925
present 4.2 0.49512 0.96057
dev. % 0.62 0.14

Uc =

∫
�

φ w d�

∫
�

φ d�

, (23)

where w is the vertical velocity component and � the volume 
of the entire domain. After an initial period where the bubble 
accelerates, the rise velocity reaches a maximum and then stabi-
lizes. Fig. 4 demonstrates an excellent agreement between present 
and reference results. To further quantify this agreement, Table 1
presents benchmark quantities for comparison at specific time in-
stances. Besides the bubble velocity, the table shows the bubble 
sphericity A0/A, defined as the initial value of the bubble surface 
area over the value at a later time. The deviation between refer-
ence and present values is less than 1%.

4.3. Differentially heated cavity

To demonstrate the accuracy of the code in the presence of 
thermal effects, this section considers the flow of air in a closed 
two-dimensional square heated cavity. The cavity is heated and 
cooled by the vertical side walls (y-normal), while the horizontal 
walls are adiabatic (z-normal). Within this configuration, a circula-
tion is formed and maintained by the ascending hot fluid next to 
the heated wall and the descending cold fluid next to the cooled 
wall.

The flow is therefore purely thermally-driven and is character-
ized by the Rayleigh number Ra= |g|β�T l3r / (να) and the Prandtl 
number Pr= ν/α. In these definitions, β is the fluid thermal ex-
pansion coefficient, ν is the fluid viscosity, α is the fluid thermal 
diffusivity and �T = (Th − Tc) is the temperature difference be-
tween the heated (Th) and cooled (Tc ) walls. Typically, the height 
of the cavity is taken as the reference length (lr = Lz), while the 
reference velocity and time are defined as ur = α/lr and tr = l2r /α. 
The case simulated here follows the setup presented in several 
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Fig. 5. (a) Contour plot of the temperature field at t/tr = 0.5 (steady state) for the differentially heated cavity test case, (b) Temporal evolution of the wall-averaged Nusselt 
number on the heated wall. Black solid line, present results; red dashed line, reference results from [60].
Table 2
Comparison of key benchmark quantities at steady state for the differentially heated 
cavity test case. Vmax is the maximum horizontal velocity along the vertical mid-
plane (y = 0.5lr ), Wmax is the maximum vertical velocity along the horizontal 
mid-plane (z = 0.5lr ), Numax and Numin are the maximum and minimum values 
of the Nusselt number on the heated wall, and 〈Nu〉z is the averaged Nusselt num-
ber value on the heated wall.

Vmax/ur Wmax/ur Numax Numin 〈Nu〉z

Ref. [60] 64.85 220.6 17.58 0.9794 8.830
Present 64.86 220.3 17.67 0.9773 8.843
% dev. 0.02 0.14 0.51 0.21 0.14

studies [61,62,60] with Ra= 106 and Pr= 0.71. The domain bound-
aries are solid walls, and no-slip boundary conditions are ap-
plied. With respect to the temperature field, constant temperature 
boundary conditions are applied on the vertical walls and a zero 
temperature gradient along the normal direction is applied on the 
horizontal walls. The domain is discretized in space using a uni-
form Cartesian grid with 256 × 256 cells. Initially, the air in the 
cavity is stagnant and isothermal at a temperature T0 = Tc . A con-
stant time-step �t is used to advance the solution in time, given 
by �t/tr = 5.0 × 10−7. Fig. 5a) shows the contour of the temper-
ature field at t/tr = 0.5, at which point a steady state has been 
reached. The temperature field is characterized by thin and spa-
tially developing thermal boundary layers next to the thermally 
active vertical walls, and a stratified region at the central area of 
the cavity. The heat transfer rate inside the cavity is expressed 
through the Nusselt number, defined as,

Nu = hlr
k

= lr
�T

∇T
∣∣

w · nw , (24)

where h is the heat transfer coefficient, k is the fluid thermal 
conductivity, ∇T

∣∣
w is the temperature gradient on any of the ther-

mally active vertical walls and nw is the corresponding unit nor-
mal vector on the wall. Fig. 5b) shows the comparison of the tem-
poral evolution of the wall-averaged Nusselt number 〈Nu〉z on the 
heated wall between the present and reference results from [60]. 
It is evident that the present results are in excellent agreement 
with the reference solution for the entire duration of the simula-
tion. Furthermore, Table 2 presents the comparison of key bench-
mark quantities at steady state, confirming the agreement between 
present and reference results.

5. Code parallelization and GPU acceleration

5.1. Domain decomposition

The code is designed to run both in multi-CPU and multi-GPU 
architectures. For domain decomposition, both slab (1D) and pencil 
7

(2D) are allowed [32] through the library 2DECOMP [58]. The type 
of decomposition can be implicitly set via the 2-component array
dims (e.g. [1, n] for slabs and [n, m] for pencils) in one input file
dns.in. The pencil/slab orientation can be arbitrarily chosen as in 
CaNS, via the preprocessor flags -D_DECOMP_X, -D_DECOMP_Y
and -D_DECOMP_Z which set the direction over which the do-
main is not decomposed. This flexibility allows improving the ef-
ficiency of both the CPU and the GPU implementations. For CPU, 
using pencils allows increasing the number of processes used per 
execution (i.e. up to N2 for nx = ny = nz = N), hence reducing 
the time to solution. In the GPU implementation, only the z-pencil
and x-slabs decompositions are allowed. It is recommendable to 
use x-slabs on GPU (i.e. compiling with -D_DECOMP_X and us-
ing dims= [1, n]) as this implementation reduces the number of 
all-to-all calls to the minimum, hence reducing GPU-GPU commu-
nication and improving performances on multi-nodes runs.

5.2. Code parallelization

The parallelization is performed using MPI. When GPU acceler-
ation is enabled, MPI allocates one rank for each GPU. The code 
assumes the chosen MPI library is “CUDA-aware”, meaning GPU 
data is directly passed to MPI function call and the MPI implemen-
tation takes care of moving the data in the most efficient way. If 
available, GPU-to-GPU communication can leverage NVIDIA NVLink 
which is a physical GPU-to-GPU interconnection known to have 
higher bandwidth (at least one order of magnitude) than Infini-
band. Throughout the code, all nested for-loops, i.e. iterations over 
all the domain points, are accelerated on GPUs using OpenACC 
[63], a portable standard directive-based programming model that 
can execute code on multi-core CPUs as well as accelerators like 
NVIDIA GPU. Such offload is not used for CPU-only compilation 
and execution. To execute FluTAS, the platform needs to support 
NVIDIA Unified Memory, which has two main advantages:

• the ability of allocating and managing more GPU allocated 
memory than what is physically present on the device;

• the ability to avoid explicitly to handle data movements Host-
to-Device and Device-to-Host, leaving the runtime do the work 
for the developers.

Both features are used in the code and proved crucial for an effi-
cient GPU acceleration.

6. Code performance

We now present an analysis of the code performances on stan-
dard CPU-based and accelerated GPU-based architectures. Tests on 
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Fig. 6. For the two-layer Rayleigh-Bénard convection problem discussed in §7.2: a) code performance on MeluXina and Berzelius, b) slowdown due to transpose operation. 
For each set of data, we compute tw,min as the time per-timestep at the minimum number of GPUs tested over tw , i.e. the time-per-timestep at the specific number of GPUs.
GPUs were performed on MeluXina at LuxProvide (LXP, Luxem-
bourg) [64] and Berzelius at National Supercomputer Centre (NSC, 
Sweden) [65], while tests on CPUs were performed on Tetralith 
also managed by NSC.

6.1. Weak and strong scaling

We first discuss the weak-scaling tests for a Rayleigh-Bénard 
problem with the same set-up as it will be discussed in §7.2. 
For this test, we start with a “base” computational grid of Nx ×
N y × Nz = 1024 × 512 × 256 grid points on 2 GPUs. Then, while 
keeping fixed Nx and N y , we increase Nz proportionally to the 
number of GPUs, resembling a procedure of spatial ensemble-
average (i.e. more structures simulated to improve the conver-
gence of the large-scale statistics). As discussed in §5, we adopt a 
slab parallelization along the z direction using the -D_DECOMP_X
compilation option, which reduces to 2 the number of all-to-
all operations. It is worth noticing that, although both HPC ma-
chines are equipped with A100-40GB NVIDIA cards, Berzelius has 
8 GPUs/node while MeluXina has 4 GPUs/node. Moreover, the in-
terconnection between GPUs is handled through NVLink, whereas 
node-to-node connection is performed through Infiniband (IB), 
known for having lower bandwidth and for operating on a differ-
ent protocol. Hence, IB is less straightforward to handle as it re-
quires a more careful configuration from a hardware and software 
perspective. This implies choosing the right MPI configurations and 
selecting compatible communication libraries, resulting in an effi-
ciency that may vary significantly among different HPC centers. For 
these reasons, to prove the non IB-dependent scaling and max-
imize the GPU-to-GPU communication throughput, Berzelius was 
used to perform weak-scaling tests within a node. On the other 
hand, MeluXina was used for multiple-node tests to assess the 
IB-dependent scaling.2 Fig. 6a) shows that weak-scaling is linear 
when bounded by NVLink communications (i.e. no IB communica-
tions), as clearly supported by tests on Berzelius. When IB com-
munications are required (i.e. node-to-node data transfer) the code 
performances decrease. It is worth noticing that, while an increas-
ing communication overhead is provided by node-to-node com-
munication on IB network, additional slowdown is caused by the 
slab parallelization. By increasing the number of elements along z, 
more data need to be transferred during the x-to-z transposes, fur-

2 Berzelius uses a HGX 8-way platform, 8 A100 GPU connected all together, de-
signed primarily for heavy AI workloads. MeluXina uses a HGX 4-way platform, 4 
A100 GPU connected all together, which is better suited for scale-out HPC work-
loads. The majority of GPU-accelerated HPC clusters used primarily for simulation 
workloads in various scientific fields adopt the HGX 4-way configuration (including 
many European HPC systems funded by EuroHPC).
8

Fig. 7. Strong scaling test performed on Berzelius (black-dashed lines) and MeluXina 
(red-dashed lines) clusters for two different grids: 1024 × 512 × 1024 (grid-1) and 
1024 ×1024 ×1024 (grid-2). The black continuous line indicates the ideal behaviour
desired for the strong-scaling test.

ther increasing the communication load. This is clearly shown in 
Fig. 6b), where the slowdown is found to increase proportionally 
to the number of GPUs.
Results of the strong scaling tests are reported in Fig. 7. Here 
we use two different grids, i.e. 1024 × 512 × 1024 (grid-1) and 
1024 × 1024 × 1024 (grid-2) for the Rayleigh-Bénard problem dis-
cussed in §7.2. Tests are performed on Meluxina and Berzelius 
as for the weak scaling. While keeping the problem sizes fixed, 
the number of GPUs is progressively increased up to a maximum 
of 128, starting from NG P U = 16 which represents the minimum 
amount required to fit the two computational domains in the avail-
able GPU memory. Despite a speed-up is always achieved, the code 
shows a progressive loss in performance, i.e. a reduction of the 
benefits derived by increasing the number of GPUs. Note, however, 
that a larger number of grid point (e.g. grid-2) leads to lesser per-
formance loss, as a higher GPU occupancy can be obtained.
The decrease in performance observed in Fig. 7 is caused by two 
factors: the increase in communication among GPUs, and the re-
duction in local problem size, which does not leverage the full 
compute capacity of each GPU. While these effects are present in 
a strong scaling test, weak scaling allows us to isolate the effects 
of multi-GPU communication while keeping a higher GPU satura-
tion. Thus, we argue that weak scaling represents a better tool to 
identify communication bottlenecks on multiple GPUs. Conversely, 
the strong scaling is more useful to estimate how much a fixed 
domain can be partitioned while keeping an efficient use of the 
computational resources.
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Fig. 8. Comparison of code-section load percentage on the total simulation time for GPUs (panel a) and CPUs (panel b). The different “slices” represent different code 
sections: 1) VoF (i.e. interface reconstruction and advection, update of the thermophysical properties), 2) RHS (i.e. discretization of the governing equations), 3) Transposes 
(i.e. transpose operation in the solver), 4) Solver (i.e. only Gaussian elimination) and others (i.e. correction step, divergence/time-step checks, output and post-processing 
routines).
Overall, the previous analysis suggests an important guideline 
for the user: in presence of unbalanced compute-vs-network ar-
chitectures (e.g., node-to-node networking connection less efficient 
than the connection among GPUs within the same node), the opti-
mal number of GPUs to be employed should be chosen as close as 
possible to the minimum amount required to fit the computational 
domain in the available GPU memory. Indeed, this is not always 
the case with older HPC architectures using previous generations 
of GPU hardware, where NVLink connections across GPUs inside 
a node were typically missing. For a fixed problem size, mod-
ern cards with high compute throughput will exhaust the required 
computation faster, leaving the remaining part of the computation 
as communication bound. In older GPU hardware, the acceleration 
is lower and communication becomes the dominant component af-
fecting scalability for a larger number of GPUs. Hence, best practice 
dictates to use the least possible number of GPUs; on modern units 
with 80 GByte of HBM memory, if possible, it is therefore conve-
nient to use one single 8-way GPU node (like a DGX A100) where 
all GPU are also connected via NVLink reducing communication 
overhead dramatically.

6.2. CPU-GPU comparison

In conclusion, we perform a comparison between the code per-
formances on a CPU and a GPU architecture. It is worth men-
tioning that such comparison is notoriously not trivial. First, no 
exact and standard procedures to compare the two systems are 
established. Next, code performances may exhibit large variations 
among different architectures and using the same hybrid CPU-
GPU node to perform tests on both may be misleading. CPU-only 
nodes and CPU-GPU nodes are intrinsically different in terms of 
network configuration and GPU/CPU interconnection, hence an un-
biased test may not be performed directly on hybrid architectures 
(as CPU-GPU cluster would hardly be used to perform CPU-only 
jobs). Therefore, the following analysis has to be taken as a first-
approximation estimate.
Here, we repeat the weak-scaling simulation with nG P U = 8 GPUs 
on Berzelius on nC P U = 512 CPUs on Tetralith, in both cases em-
ploying a slab parallelization along z. The test shows that for GPUs 
the average wall-clock time per-timestep is t8,G P U = 0.191 s, while 
for CPUs t512,C P U = 1.075 s. This results in an equivalent number 
of GPUs neq = (t512,C P U nC P U )/(t8,G P U nG P U ) ≈ 359.
Finally, a comparison in terms of computing-load percentage for 
each code section is displayed in Fig. 8. As previously anticipated, 
transposes during GPU simulations (panel a) represents more than 
half of the computing load. The remaining parts, mainly composed 
of stencil operations enclosed in for loops, largely benefit from 
9

Fig. 9. Performance of the functions composing the VoF code section, expressed 
through normalized time tn as a function of the normalized area An , where each 
variable increment is normalised by its minimum value. Each point represents a 
simulation performed on a problem at 5123 grid points for 100 time steps. In order 
to increase the area, different spheres have been initialized with increasing vol-
ume, going from 5% to 50% of the total domain volume. The GPU simulations were 
performed on MeluXina on 1 node (4 GPUs), while the CPU simulations were per-
formed on Berzelius (SNIC) on 1 node (128 CPUs).

GPU-offload, while in CPUs (panel b) these account for more than 
70% of the total wall-clock time per time-step.

6.3. VoF performances

So far, we have presented results assuming that the total 
amount of operations is exactly the same for all points and only 
depends on the total number of grid points. This is valid for most 
code sections (such as solver and advection/diffusion terms), but 
not for the VoF calculations, when the amount of operations is in-
deed constant for each point at the interface, but the number of 
interfacial points changes with the physical problem under study. 
Increasing the surface area generally implies higher computational 
costs, as each interface point is computed sequentially through for-
loops. Finally, the total time associated with the VoF computation is 
equal to the total time used for the parallel process with a higher 
concentration of interface points.

On GPUs, the computation of the VoF is significantly different 
and the total amount of points at the interface has only a weak ef-
fect on the overall code performance. To illustrate this, we show 
in Fig. 9 the normalized execution time tn = (t − tmin)/tmin (with t
being the wall-time for the VoF code section) as a function of the 
normalized total area An = (A − Amin)/Amin , where the normaliza-
tion factor is the minimum variable value. Each point corresponds 



M. Crialesi-Esposito, N. Scapin, A.D. Demou et al. Computer Physics Communications 284 (2023) 108602
to a 100 time steps simulation performed for a spherical droplet of 
volume ranging from 5% to 50% of the computational domain. The 
data in the figure clearly show that an increase of the total num-
ber of points at the interface does not imply higher computational 
costs on GPUs (roughly an overall 2.7% time increment), while on 
CPU the same simulations would require a significant increment of 
wall time.

The limited increment in computational cost on GPUs (com-
pared to CPUs) can be explained by considering some basic princi-
ples in the way GPUs hardware and software work together. Let us 
present as example a simulation with a total of Nd grid points and 
Ns points at the interface, performed on a GPU which can simulta-
neously accommodate Nt,G threads on a Nc,G number of physical 
GPU cores. By definition Nd >> Ns � Nc,G . To efficiently exploit 
parallelism on GPU, the machine schedules (or launches) many 
more GPU threads than physical GPU cores (meaning, Nt,G >>

Nc,G ). Each of the Ns surface points requires a long series of oper-
ations, while the treatment of the remaining Nd − Ns points needs 
an almost negligible number of operations. When the VoF func-
tions are launched on the GPU, all the domain points Nd will be 
mapped to GPU threads and rapidly fill all the available GPU cores 
Nc,G . During execution, the GPU will switch thread from active to 
inactive (and viceversa) in the attempt to keep GPU resources busy 
while memory operations are completed. Because Nd >> Nt,G , all 
the points that cannot be immediately dealt with are dynami-
cally queued and executed as soon as one of the computing GPU 
core becomes available. The threads related to non-surface points 
will be rapidly executed and the available empty GPU cores filled 
with one of the queued threads, mapped either to surface or non-
surface points. In other words, all the non-interface points will 
have an almost negligible computational overhead, while all the in-
terface points will rapidly fill the available threads. As threads are 
efficiently queued, and assuming the amount of interface points 
is of a similar magnitude compared to the GPU cores, the overall 
computation time on the GPU varies very little with Ns . Finally, it 
is worth noticing that in the limit of extreme interface deformabil-
ity (i.e. infinite Weber number), larger variations of computational 
costs may be observed when increasing the total area. However, 
these cases require higher resolution to correctly resolve the inter-
face and all the relevant length and temporal scales, so that more 
GPUs should be used to avoid memory saturation. This will reduce 
the amount of interface points per GPU and thus reduce the risks 
associated to large interface deformability.

7. Applications

7.1. Emulsions in HIT

In many multiphase flows, the dispersed phase interacts with 
the surrounding turbulence induced through large-scale stirring 
mechanisms. While turbulence introduces a vast range of scales, 
usually spanning over several order of magnitudes, the presence 
of an interface introduces further complexity, offering alternative 
paths for energy transmission through scales and generating poly-
dispersed droplet/bubble distributions. Resolving the interplay be-
tween all these mechanisms leads to an extremely complex sce-
nario to simulate numerically. Even in simplified conditions, repre-
sented by Homogeneous and Isotropic Turbulence (HIT), the num-
ber of grid points could rapidly exceed N ≥ 10243, quite challeng-
ing for multiphase flows. Furthermore, variations of density and 
viscosity, and variations of the surface tension coefficient may in-
troduce smaller scales as lower viscosity in the dispersed phase 
may accelerate vortices. Fully developed turbulence is usually 
reached for Taylor-Reynolds number Reλ = urmsλ/ν � 200, where 
λ is the Taylor scale and urms is the root-mean-square fluctua-
tion velocity. In multiphase flow simulations, these intensities are 
10
Table 3
Physical dimensionless parameters of the present configuration: Reλ = urmsλ/ν2

and W eL = ρ1u2
rmsL/σ are the corresponding Taylor microscale Reynolds num-

ber and the large scale Weber number, L is the large-scale at which turbulence 
is forced, V is the volume fraction (ratio between the volume occupied by the dis-
perse phase and the total volume). The simulation is performed at matching density 
and viscosity (i.e., ρ1/ρ2 = μ1/μ2 = 1).

Reλ W eL V L ρ1/ρ2 μ1/μ2

137 42.6 0.06 π 1 1

Fig. 10. Render for the iso-contour of the volume fraction value φ = 0.5. Lateral 
planes show the modulus of the vorticity field.

rarely reached as typical values are Reλ � 100. In this example, we 
present a simulation of a turbulent emulsion at Reλ ≈ 137 per-
formed on a grid of 5123 on a cube of side length 2π and with 
the main physical parameters reported in Table 3. Turbulence is 
sustained at large scale using the Arnold-Beltrami-Childress forc-
ing (see [66,67]) throughout the whole simulation.
Fig. 10 shows a render at statistically-stationary state. Turbulence 
is first simulated in single phase; when statistically-stationary con-
ditions are reached, the dispersed phase is introduced through 
a random distribution of droplets and let to develop until con-
vergence is reached. This is monitored in terms of droplet-size-
distribution and one-dimensional spectra, see Fig. 11. Despite the 
simplicity of this configuration, HIT offers a relevant framework to 
study multiphase turbulence in complex configurations. To reach 
properly convergent statistics, several large-eddies turnovers are 
required, corresponding to ∼ 107 time-steps. Hence, GPU acceler-
ation will be invaluable to reach fully-developed turbulent condi-
tions in future studies.

7.2. Two-layer Rayleigh-Bénard convection

Rayleigh–Bénard convection is the flow developed inside a fluid 
layer that is heated from below and cooled from above. It is driven 
by the density differences that arise due to the temperature varia-
tion inside the fluid. Even though it is a seemingly simple configu-
ration, it encapsulates rich physics that are encountered in a range 
of engineering applications and physical phenomena. Beyond the 
classical setting, the study of the two-layer Rayleigh–Bénard vari-
ant is crucial from both a fundamental and an applied standpoint. 
First, regardless of the application, there is always some dissolved 
gas in every liquid. Therefore, it is inevitable that a gaseous phase 
will be formed in any realistic natural convection flow. Second, 
physical phenomena such as the convection in the earth’s man-
tle [70] or engineering applications such as the heat transfer inside 
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Fig. 11. Results at statistical-stationary state for turbulent emulsions simulation. Panel (a) shows the droplet size distribution, where the droplet diameter d is normalized 
by the single-phase Kolmogorov scale ηsp . Also in black, the −10/3 and −3/2 power-laws are shown (see [68,69]). Panel (b) shows the one-dimensional turbulent kinetic 
energy spectra, comparing the single-phase and multiphase (i.e. emulsion) cases. Here, the −5/3 law for the inertial range is shown, which applies for almost a decade.
Fig. 12. Schematic representation of the geometry used for the two-layer Rayleigh–
Bénard convection. The bottom heated surface is depicted in red and the top cooled 
surface in blue.

Table 4
Dimensionless parameters adopted for the study of two-layer Rayleigh–Bénard con-
vection. All other property ratios are equal to 1.

λρ = ρ2
ρ1

Pr= ν1
α1

Ra= |g|β1�T L3

ν1α1
We= ρ1 |g|β1�T L2

σ Fr=
√

β1�T

0.1 1 106,107,108 100 1

magnetic confinement systems in fusion reactors [71] are more ac-
curately modelled as two-layer convection, where the two fluid 
layers are dynamically coupled.

Fig. 12 shows a schematic representation of the domain used 
for the numerical simulations, as used previously in [72], in two 
dimensions. The bottom and top walls are modelled as solid 
isothermal surfaces at constant temperatures of 328 K and 318 K 
respectively. The x- and y-directions are considered periodic, and 
the aspect ratio between the horizontal and vertical dimensions of 
the cavity is � = Lx/Lz = L y/Lz = 2. The dimensionless parameters 
adopted are shown in Table 4. The property ratios between the two 
fluids are considered equal to 1 (kinematic viscosity ν , thermal 
diffusivity α, specific heat cp and thermal expansion coefficient 
β), except the density ratio λρ = ρ2/ρ1 = 0.1. This mismatch in 
densities is the reason behind the arrangement of the fluids in 
a two-layer configuration. Preliminary simulations revealed that a 
grid of 1024 × 1024 × 512 cells and a CFL number of 0.50 were 
adequate for obtaining grid- and time step-independent solutions.

Fig. 13 shows instantaneous temperature fields in the x–y 
plane for the three Rayleigh numbers considered. With increas-
ing Rayleigh number, the thermal structures in the cavity become 
finer, indicating increased turbulent activity. This increased ther-
mal agitation is not enough to induce any significant interface 
movement, even at the highest Rayleigh number considered. Fur-
thermore, in all three cases, the temperature drop at the bottom 
11
Fig. 13. Instantaneous temperature fields in the x–y plane for the two-layer 
Rayleigh–Bénard convection. (a) Ra = 106, (b) Ra = 107, (c) Ra = 108.

fluid layer is much smaller than the top layer. This is explained by 
the fact that the two layers have the same thermal diffusivity and 
specific heat but different densities, leading to a top layer with a 
smaller thermal conductivity (k = αρcp) compared to the bottom 
layer. Therefore, the top wall conducts heat less effectively than 
the bottom wall, which explains the larger temperature gradients 
at the top layer. Focusing on the highest Rayleigh number case, 
Fig. 14 shows instantaneous temperature contours for Ra = 108. 
As in classical Rayleigh–Bénard convection, hot and cold plumes 
are ejected from the bottom and top walls. In the presence of a 
single fluid layer, these plumes would typically get organized in 
large scale circulation structures, extending from the bottom to the 
top wall. Here, the existence of two fluid layers changes the clas-
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Fig. 14. Instantaneous temperature contours for the two-layer Rayleigh–Bénard convection at Ra = 108. (a) Bottom half of the cavity with red plumes at 327 K and orange 
plumes at 326.5 K. (b) Top half of the cavity with cyan plumes at 323 K and blue plumes at 321 K.
sical picture; the interface acts as a barrier, confining the thermal 
plumes in each fluid layer. The interface also acts as a thermal con-
ductor, promoting the exchange of heat between the two layers. 
More specifically, the hot plumes ascending from the bottom wall 
are cooled off when reaching the interface, forming colder plumes 
that travel downwards. The opposite is true at the top layer, where 
the descending cold plumes are heated by the interface and hot-
ter plumes emerge from the interface travelling upwards. Fig. 14
clearly illustrates this behaviour, revealing the existence of regions 
dominated by ascending plumes and regions dominated by de-
scending plumes, hinting towards the organization of the flow in 
three-dimensional large scale circulation structures in each layer.

8. Conclusions and further developments

We present the code FluTAS, a numerical framework tailored 
for direct numerical simulations of multiphase flows, with the op-
tion of heat transfer, able to run efficiently on CPU-based standard 
architectures and on GPU-based accelerated machines. The open 
source version, released under MIT license, includes a pressure-
correction algorithm for two-phase flows extended with an alge-
braic Volume-of-Fluid method (MTHINC) for capturing the inter-
face dynamics.
We provide here a description of the employed numerical algo-
rithm, with details on the solution of the governing equations and 
of the advection of the interface. After presenting different valida-
tion benchmarks both in single and multiphase configurations, we 
discuss the code performance focusing on three aspects: i) its cur-
rent limitation when the communications among GPUs in differ-
ent nodes are considerable less efficient than the communication 
among GPUs within the same node, ii) its advantages compared to 
CPUs in terms of “time-to-solution”, iii) the performance stability 
of the VoF code section on GPUs for increasing amount of interface. 
Finally, we report results from two configurations of fundamen-
tal interests in multiphase turbulence: emulsions in homogeneous 
isotropic turbulence and the two-layer Rayleigh-Bénard convection.
In the future, we aim to improve the code maintainability and 
portability (both on CPU and GPU) and to release additional 
modules under development, e.g. weak compressibility and phase 
change [43,44]. Further efforts will be devoted to enhance the code 
performance on multiple GPUs nodes, reducing the current com-
munication bottlenecks. To this end, a promising strategy is the 
one proposed in [73], i.e., implement the solution of the tridi-
agonal system for the third direction on a distributed memory. 
The main advantage of this approach is the elimination of all-to-
all operations in the Poisson solver. This improvement combined 
with future enhancements in the software frameworks for collec-
tive data communications will allow tackling several multiphase 
problems while keeping an efficient use of the computational re-
sources.
12
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Appendix A. Implementation details of MTHINC method

A.1. Calculation of the reconstructing polynomial

In the current work, we consider a polynomial up to second or-
der and, therefore, T can be expressed using the following general 
quadratic form:

T (x̃) = c ·
[
QT ,1 ·

(
x̃ · x̃T

)T
]

+ c · cR ·QT ,2 ·
(

x̃ · x̃R
)T +LT · x̃T .

(A.1)
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where x̃R = ( ỹ, ̃z, ̃x) while the components of the flag vectors 
(equal to 0 or 1) c and cR will be discussed later in Appendix A.1.2. 
Accordingly, to determine T , one needs just to compute the com-
ponents of the vectors QT ,i=1,2 and LT . This can be done by 
first imposing that the first-order and second-order gradient of T , 
evaluated for x̃ = x̃c , are equal to the normal vector n and the cur-
vature tensor K:{

∇T |x̃=x̃c
= n,

∇ (∇T )|x̃=x̃c
= K.

(A.2)

Expanding equation (A.1) and the equations (A.2) lead after some 
manipulation to a unique expression for the components of the 
vectors QT ,i=1,2 and LT :

QT ,1 =
[
ax

Q ,1,ay
Q ,1,az

Q ,1

]
= 1

2

[
K xx, K yy, K zz] , (A.3)

QT ,2 =
[
ax

Q ,2,ay
Q ,2,az

Q ,2

]
= [K xy, K yz, K xz] , (A.4)

LT = [ax
L,ay

L ,az
L

]=
[

nx − cx

2

(
K xx + c y K xy + cz K xz) ,

ny − c y

2

(
K yy + cx K xy + cz K xz) ,

nz − cz

2

(
K zz + cx K xz + c y K yz)] . (A.5)

Note that to recover a linear reconstruction, the curvature ten-
sor is set identically zero and thus also the components of the 
vector QT ,i=1,2 in equations (A.3) and (A.4). Accordingly, from 
equation (A.5), LT = [nx, ny, nz] and equation (A.1) reduces to 
T (x̃) = LT · x̃T which represents the equation of a plane in the 
three-dimensional Cartesian space.

A.1.1. Normal vector and curvature calculation
Given the smooth nature of the colour function, the normal vec-

tor n and the curvature tensor K can be computed directly from 
the corresponding geometrical definitions:

n = ∇φ

|∇φ| , (A.6)

K = −∇n, (A.7)

where m = ∇φ = (mx, my, mz). Following the Youngs’ method [74,
75], the three components mx , my and mz (the partial derivative of 
φ in each direction) are computed by first evaluating the deriva-
tives at the cell corners and then each corner-value is averaged to 
find ∂φ/∂x, ∂φ/∂ y and ∂φ/∂z. Once n is known, the curvature 
tensor components are computed using (A.7) whereas the geo-
metrical curvature is derived from the sum of the three diagonal 
components of K, i.e., κ = − 

(
K xx + K yy + K zz

)
.

A.1.2. Calculation of normalization parameter dth

Once T is known, the last step to obtain H(x̃) is to compute 
the normalization parameter dth . To this purpose, we impose the 
volume conservation at discrete level by setting that the volume 
integral of Ĥ over local grid cell is equal to the VoF field in that 
cell. Using the normalized Cartesian coordinate, this results in:

I :
1∫

0

1∫
0

1∫
0

Ĥdx̃d ỹdz̃ = φ. (A.8)

As remarked in [1], an exact integration of (A.8) is not possible 
while it exists for the one dimensional integration. Taking for ex-
ample the x̃ direction for an exact integration, we get:
13
1∫
0

Ĥ(x̃)dx̃ = 1

2
log

[
x̃ + log

(
cosh

(
βth
(
T
(
x̃, ỹ, z̃

))))
βth
(
∂Tx̃/∂ x̃

)
]1

0

. (A.9)

Note that in the integration of (A.9), we assume that the derivative 
of T with respect to x̃ just depends on ỹ and z̃. This is achieved by 
setting c = [0, 1, 1] and cR = [1, 1, 0]. In the other two directions, 
numerical integration should be performed and in this work we 
employ a two-point Gaussian quadrature method. Therefore, the 
integral I in equation (A.8) results in:

8φ =
4∑

p=1

[(
x̃ + log

(
cosh

(
βth
(
T
(
x̃, rp(p), rm(p)

)+ dth
)))

ax
L

)]1

0

,

(A.10)

where rp = 1 +√
3/2[−1, +1, −1, +1] and rm = 1 +√

3/2[−1, −1,

+1, +1]. In general, the direction along which the exact integra-
tion is performed cannot be decided a-priori. On the other hand, a 
criterion for this choice is based on the magnitude of the normal 
vector components and, therefore, three cases are possible.

Case 1
If, |nx| ≥ (|ny |, |nz|), the exact integration is performed only 

along x and we set c = [0, 1, 1] and cR = [1, 1, 0] in equation (A.1). 
Therefore I becomes:

8φ =
4∑

p=1

[(
x̃ + log

(
cosh

(
βth
(
T
(
x̃, rp(p), rm(p)

)+ dth
)))

ax
L

)]1

0

.

(A.11)

Case 2
On the other hand, if |ny | ≥ (|nx|, |nz|), the exact integration is 

performed only along y and we set c = [1, 0, 1] and cR = [0, 1, 1]
in equation (A.1). Therefore, I becomes:

8φ =
4∑

p=1

[(
ỹ + log

(
cosh

(
βth
(
T
(
rp(p), ỹ, rm(p)

)+ dth
)))

ay
L

)]1

0

.

(A.12)

Case 3
Finally, if |nz| ≥ (|nx|, |ny|), the exact integration is performed 

only along z and we set c = [0, 0, 1] and cR = [1, 0, 1] in equa-
tion (A.1). Therefore, I results:

8φ =
4∑

p=1

[(
z̃ + log

(
cosh

(
βth
(
T
(
rp(p), rm(p), z̃

)+ dth
)))

az
L

)]1

0

.

(A.13)

Depending on the three different cases, equations (A.11) or 
(A.12) and or (A.13) can be solved for the only unknown dth . To 
this purposed, they can be re-written first as:

4 + 1

βthap
L

× log

(
(AB−D + 1)(AB+D + 1)(AC−D + 1)(AC+D + 1)

A2(B−D + 1)(B+D + 1)(C−D + 1)(C+D + 1)

)
= 8φ, (A.14)

where ap
L is ax

L , ay
L or az

L according to the three cases above. Finally, 
equation (A.14) can be further recast in a more convenient quartic 
equation:
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Table A.5
Coefficients ap

L and av (as given by equations (A.3), (A.4) and (A.5)) needed to com-
pute A, B± , C± and D depending on the three cases.

Case ap
L av

1 ax
L [az

Q ,2,az
Q ,2,ayz

Q ,1,ay
L ,az

L ]T

2 ay
L [ax

Q ,2,az
Q ,2,axz

Q ,1,ax
L ,az

L ]T

3 az
L [ax

Q ,2,ay
Q ,2,axy

Q ,1,ax
L ,ay

L ]T

Table A.6
Coefficients rp,B and rp,C needed to compute B± and C± depending on the three 
cases. Note that r+

p = 1 + √
3/2 and r−

p = 1 − √
3/2.

Case rp,B rp,C

1 [(r±
p )2, (r−

p )2, (r±
p r−

p ), r±
p , r−

p ]T [(r−
p )2, (r±

p )2, (r−
p r±

p ), r−
p , r±

p ]T

2 [(r±
p )2, (r−

p )2, (r±
p r−

p ), r±
p , r−

p ]T [(r−
p )2, (r±

p )2, (r−
p r±

p ), r−
p , r±

p ]T

3 [(r±
p )2, (r−

p )2, (r±
p r−

p ), r±
p , r−

p ]T [(r−
p )2, (r±

p )2, (r−
p r±

p ), r−
p , r±

p ]T

0 = A2 B−B+C−C+(A2 − Q )︸ ︷︷ ︸
α4

D4,

+ A2(B−B+(C− + C+) + (B− + B+)C−C+)(A − Q )︸ ︷︷ ︸
α3

D3,

+ A2((B−B+)(C− + C+) + B−B+ + C−C+)(1 − Q )︸ ︷︷ ︸
α2

D2,

+ A(B− + B+ + C− + C+)(1 − A Q )︸ ︷︷ ︸
α1

D,

+ (1 − A2 Q )︸ ︷︷ ︸
α0

. (A.15)

where D = exp(2βthdth) while the constants A, B± , C± and Q are 
given by:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A = exp
(
2βthap

L

)
,

B± = exp(2βthav · rp,B),

C± = exp(2βthav · rp,C ),

Q = exp(4βthap
L (2φ − 1)).

(A.16)

The coefficients ap
L and the expressions for av , rp,B and rp,C are re-

ported in Tables A.5 and A.6, differentiated among the three cases 
previously described. Once the coefficients αi=1,4 of the quartic 
equation (A.15) are computed, a solution for D can be found. In 
the current work, we adopt the approach proposed in [1]. Instead 
of computing all the four complex roots, we look for the real and 
positive solution, fulfilling the constraint given by equation (A.8). 
To this purpose, we first write equation (A.15) as:

D4 + γ3 D3 + γ2 D + γ1 D + γ0 = 0, (A.17)

with γ3 = a3/a4, γ2 = a2/a4, γ1 = a1/a4 and γ0 = a0/a4. Next, 
equation (A.17) is recast in a quadratic form as:

(D2 + ε1x + ε2)
2 − (ε3 D + ε4)

2 = 0, (A.18)

where 2γ3 = 2ε1, γ2 = ε2
1 + 2ε2 − ε2

3 , γ1 = 2ε1ε2 − 2ε3ε4 and γ0 =
ε2 − ε2

4 = γ0. Finally, by introducing the variable z = 2ε2 and by 
comparing equation (A.17) with equation (A.18), a cubic equation 
can be derived:

z3 + η2z2 + η1z + η0 = 0, (A.19)

with η2 = −γ2, η1 = γ1γ3 − 4γ0 and η0 = γ0(4η2 − η2
3) − η2

1. 
Equation (A.19) can be easily solved with the Cardano’s formula. 
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Excluding the complex solutions, setting λ = −η2
2/9 + η1/3, μ =

2η3
2/27 − η1η2/3 + η0 and � = λ2 + 4μ3, the real one zr is given 

by:

zr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
−λ + √

�

2

)1/3

−
(

+λ + √
�

2

)1/3

− η2

3
if � ≥ 0,

2
√−μ cos

[
1

3
tan−1

(−�

−λ

)]
− η2

3
if � < 0.

(A.20)

Once zr is known, the coefficients εi=1,4 of equation (A.18) can 

be found: ε1 = γ1/2, ε2 = zr/2, ε4 =
√

ε2
2 − γ0 and ε3 = (−γ3/2 +

ε1ε2)/ε4.
The last step requires the solution of equation (A.18). Once more, 
four solutions are possible, but since D > 0 by numerical con-
strains, only one positive and real solution is acceptable. This can 
be easily computed as:

D = −(ε1 − ε2) +√(ε1 − ε2)2 − 4(ε2 − ε4)

2
, (A.21)

from which, the normalization parameter dth can be evaluated 
simply as:

dth = 1

2βth
log(D). (A.22)

A.2. Computation of the numerical flux

The approximate expression of H is also used for the calcula-
tion of the numerical fluxes in the interface advection step. These 
are evaluated as:

f x
i±1/2, j,k = 1

�y�z

tn+1∫
tn

⎡
⎢⎣∫
�y

∫
�z

uH(x, t)|ni±1/2, j,k dy dz

⎤
⎥⎦dt,

(A.23)

f y
i, j±1/2,k = 1

�x�z

tn+1∫
tn

⎡
⎣∫

�x

∫
�z

v H(x, t)|ni, j±1/2,k dx dz

⎤
⎦dt,

(A.24)

f z
i, j,k±1/2 = 1

�x�y

tn+1∫
tn

⎡
⎢⎣∫

�x

∫
�y

w H(x, t)|ni, j,k±1/2 dx dy

⎤
⎥⎦dt.

(A.25)

Note that the use of equations (A.23), (A.24) and (A.25) is imprac-
tical since they contain both temporal and spatial integrations. For 
a more simple evaluation, the time integral is replaced by a space 
integral performing a change of variable. Taking as an example the 
integral along x and using the cell-centered coordinate system, we 
define

�x̃i±1/2, j,k =

⎧⎪⎪⎨
⎪⎪⎩
[

1 − �tn+1

�x
ui+1/2, j,k;1

]
ui+1/2, j,k ≥ 0,[

0;−�tn+1

�x
ui+1/2, j,k

]
ui+1/2, j,k < 0.

(A.26)

and we set � ỹ = �z̃ = [0, 1]. Moreover, the indicator function in 
equation (A.23) is approximated with the VOF function at the cur-
rent time step, φn . Accordingly, f x can be computed as:
i, j±1/2,k
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f x
i±1/2, j,k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+�x̃

∫
�x̃i+1/2

∫
� ỹ

∫
�z̃

Ĥ x,n
i, j,k(φ

n)dṼ ui+1/2, j,k ≥ 0,

−�x̃

∫
�x̃i−1/2

∫
� ỹ

∫
�z̃

Ĥ x,n
i, j,k(φ

n)dṼ ui−1/2, j,k < 0.

(A.27)

where dṼ = dx̃d ỹdz̃. Likewise, f y,n
i, j±1/2,k and f z,n

i, j,k±1/2 can be com-
puted as:

f y
i, j±1/2,k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+� ỹ

∫
� ỹi+1/2

∫
� ỹ

∫
�z̃

Ĥ y,n
i, j,k(φ

x)dṼ vi, j+1/2,k ≥ 0,

−� ỹ

∫
� ỹi−1/2

∫
� ỹ

∫
�z̃

Ĥ y,n
i, j,k(φ

x)dṼ vi, j−1/2,k < 0.

(A.28)

f z
i, j,k±1/2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+�z̃

∫
�z̃i+1/2

∫
�x̃

∫
�z̃

Ĥ z,n
i, j,k(φ

y)dṼ wi, j,k+1/2 ≥ 0,

−�z̃

∫
�z̃i−1/2

∫
� ỹ

∫
�z̃

Ĥ z,n
i, j,k(φ

y)dṼ wi, j,k−1/2 < 0.

(A.29)

with:

� ỹi, j±1/2,k =

⎧⎪⎪⎨
⎪⎪⎩
[

1 − �tn+1

�y
vi, j+1/2,k;1

]
vi, j+1/2,k ≥ 0,[

0;−�tn+1

�y
vi, j+1/2,k

]
vi, j+1/2,k < 0.

(A.30)

�z̃i, j,k±1/2 =

⎧⎪⎪⎨
⎪⎪⎩
[

1 − �tn+1

�z
wi, j,k+1/2;1

]
wi, j,k+1/2 ≥ 0,[

0;−�tn+1

�z
wi, j,k+1/2

]
wi, j,k+1/2 < 0.

(A.31)

A.2.1. Overall VoF algorithm
Below, we report the overall VoF algorithm in the pseu-

docode 2. As a final remark, note that the entire algorithm has 
been described assuming that the first directional split is always 
oriented along x (i.e., x → y → z. Nevertheless, this solution proves 
to be only first-order accurate in time. To improve the time accu-
racy of the solution, one possibility is to alternate the splitting 
direction as suggested in [76].

Algorithm 2 Overall VoF algorithm.
1: Set (ux, u y , uz) = (u, v, w);
2: for p = x, y, z do
3: Compute the numerical fluxes f p ;
4: Compute φp ;
5: Set the boundary conditions on φp ;
6: if p! = z then
7: Using φp , update n and κ with the procedure described in A.1.1 and dth

with the procedure in A.1.2;
8: end if
9: end for

10: Compute φn+1 using φx , φ y and φz .
11: Using φn+1, update n and κ with the procedure described in A.1.1 and dth with 

the procedure in A.1.2;
15
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