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This mini-review offers a critical appraisal of the currently employed imaging

or histopathological tools to diagnose and monitor giant cell arteritis (GCA). An

overview of the most updated evidence and current application of color duplex

ultrasonography (US), temporal artery biopsy (TAB), 18-fluorodeoxyglucose

[18F] FDG-PET/CT, magnetic resonance imaging, and computed tomography

angiography is provided. The main limitations of each tool, and the most relevant

research developments are discussed. The review highlights the complementary

value of the available modalities to ensure a correct diagnosis of GCA, and

to provide valuable prognostic information. Novel evidence is accumulating

to support the role of imaging, and particularly US, as a monitoring tool for

the disease, opening new perspectives for the future management of large

vessel vasculitis.
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1. Introduction

In recent years, the management of giant cell arteritis (GCA) has been going through
some paradigmatic changes. Even though the first report of the potential applicability of
color duplex ultrasonography (US) for the diagnosis of GCA dates back to 1997 with the
first description of the “halo sign” as an indication of inflammatory vessel wall edema (1),
it was only in 2018 that formal international consensus was achieved (2) and dedicated
recommendations for the use of imaging in large vessel vasculitis (LVV) became available
(3). Temporal artery biopsy (TAB) remains the gold standard for the diagnosis of GCA
with optimal specificity, however, recent studies have proven a higher diagnostic yield,
cost-effectiveness, and prognostic impact of imaging (4, 5). Indeed, the introduction of fast-
track clinics for the urgent referral of patients with suspected GCA to be assessed clinically
and with US has significantly reduced the rate of permanent visual loss for these patients
compared to standard clinical practice (5–7). Moreover, increasing knowledge of the clinical
characteristics and outcomes of large-vessel GCA (LV-GCA) have shed new light on the
importance of assessing extra-cranial involvement in patients with GCA (8, 9). Moreover, the
use of imaging as a monitoring tool for LVV has long been affected by uncertainties regarding
the exact meaning of residual subclinical inflammatory findings in patients in remission.
Nevertheless, new evidence is accumulating to support a potential role for imaging, and
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especially US, as a monitoring tool to assess response to treatment
and detect relapses in patients with GCA (10). Finally, the
assessment of biologic drugs in randomized controlled trials of
GCA has significantly improved the therapeutic options for these
patients and has provided new flourishing research in the field (11).

2. Updates on the use of temporal
artery biopsy for giant cell arteritis

A definite diagnosis of GCA often requires a TAB (12). TAB is a
mini-invasive procedure with low risk of complications, generally
performed under local anesthesia on an outpatient basis. Both
EULAR and ACR recommend unilateral TAB or temporal arteries
imaging in all patients presenting with symptoms compatible with
GCA, in particular in those with cranial manifestations (13, 14). US
of the temporal arteries has shown good sensitivity and specificity
for the diagnosis of GCA when performed by operators with
expertise in the technique, and, in these circumstances, it can be
considered a diagnostic surrogate for TAB. However, in the centers
without long-standing expertise in temporal artery US, and in
all cases in which temporal artery US is negative in a clinically
suggestive case, TAB remains the recommended diagnostic test for
the diagnosis of GCA(13, 14).

The classic histologic picture of GCA is a transmural
inflammatory infiltrate consisting of lymphocytes, macrophages,
and, in approximately 75% of cases, giant cells. The lesion
frequently has a “concentric rings” appearance, with a thicker
inflammatory band surrounding the external elastic lamina and
a thinner inflammatory band along the internal elastic lamina.
A peculiar laminar necrosis, consisting of a band of acellular
eosinophilic material sometimes bordered by palisading histiocytes
along the internal elastic lamina, is present in approximately 25% of
cases. Fibrinoid necrosis is extremely rare, and its presence should
prompt consideration for the possibility of an alternative diagnosis
(i.e., one of the systemic necrotizing vasculitides). In around 20% of
positive TABs, the inflammatory infiltrate (typically lymphocytic)
is restricted to the adventitial vasa vasorum or periadventitial small
vessels (15). Most of these patients have a final diagnosis of GCA
(16), even if the presence of restricted inflammation at TAB has
low sensitivity and specificity for GCA diagnosis. To date, the
diagnostic and prognostic significance of these restricted forms of
inflammation remains unknown and in these cases, GCA diagnosis
and treatment should be based on clinical ground (17).

In the absence of a definitive diagnostic test for GCA, it is hard
to estimate the diagnostic performance of TAB for the diagnosis
of the disease. The specificity of TAB is excellent, approaching
100%, but the most important limitation of TAB remains the
lower sensitivity, that ranges from 50 to 95% in most studies (18).
A recent systematic literature review and meta-analysis provided
a pooled sensitivity of 77.3% (95% CI: 71.8, 81.9%) of TAB for
the diagnosis of GCA, showing indirect evidence that TAB is not
less sensitive than temporal artery imaging for the diagnosis of
GCA (18). Expertise is important also in the pathologist’s ability to
evaluate TAB and discern which features are compatible with GCA.
In a multicenter study in which pathologists were not trained in the
evaluation of TABs, the sensitivity of TAB for the diagnosis of GCA
was 39%, significantly lower than that reported in previous studies

in which a single pathologist expert in GCA reviewed all TABs (4,
18, 19).

The sensitivity of TAB for the diagnosis of GCA may also be
affected by:

- Biopsy length, number of sections evaluated and bilaterality of
the procedure: False-negative biopsies are usually attributed
to the patchy involvement of the temporal artery, where
areas of inflamed artery may alternate with areas of normal
artery (skip lesions). In order to minimize the risk of skip
lesions, and thus of a false negative result, it is generally
recommended to remove longer segments of temporal artery.
However, a post-fixation TAB specimen longer than 5 mm
may suffice to reduce the risk of a false negative result
according to two recent studies that retrospectively evaluated
1,520 and 694 TABs, respectively. Nevertheless, international
recommendations still suggest that a long-segment temporal
artery biopsy (>1 cm) should be preferred (14). Since the
arterial specimen shrinks after excision, surgeons should
remove a temporal artery segment longer than 10 mm to
improve the diagnostic yield of TAB (20, 21). Furthermore,
inflamed sections are found at deeper levels in 6–12% of TABs
in which the first section was uninflamed (21, 22). In all TABs
showing a negative first section, at least three additional deeper
biopsy sections should be cut and evaluated by the pathologist
to reduce the risk of a false negative result. The increased yield
of contralateral biopsy for the diagnosis of GCA is in the range
of 5% (23). Unilateral biopsy, possibly from the symptomatic
side, is recommended. Contralateral biopsy is suggested only
in cases of a first negative or inappropriate result and high
clinical suspicion of cranial GCA (14).

- Glucocorticoid treatment: The inflammatory infiltrate
involving the wall of the temporal arteries resolves slowly
after starting glucocorticoid treatment, persisting for at least
2–4 weeks (24–26). Recommendations suggest to ideally
obtain TAB within 2 weeks as the sensitivity decreases from
78% (within 2 weeks) to 65% (within 2–4 weeks) (14).
However, inflammatory changes indicating GCA may still be
present after 4 or more weeks of glucocorticoid treatment.
A longitudinal histopathologic study reported that GCA may
still be demonstrated on repeated TABs in 75% at 6 months,
and 44% at 12 months (14). In order to maximize the
diagnostic yield of the procedures, TAB should be obtained
within 2–4 weeks after starting glucocorticoid therapy. Beyond
this time limit, TAB may be considered in selected cases at
the discretion of the physician and the patient (27). The role
of TAB as a monitoring tool for treatment response has been
previously reported in a limited number of patients by gene
expression analysis, showing decreased pro-inflammatory
activity and increased vascular remodeling (28).

- Disease phenotype: Extra-cranial or large vessel GCA indicates
the inflammatory involvement of the aorta and its major
branches. These patients typically lack cranial manifestations
and are often asymptomatic or can present with systemic
manifestations and refractory polymyalgic symptoms. When
performed in patients with suspected GCA, TABs are positive
in 25–35% of cases, mainly in patients with the cranial
phenotype of the disease, and inadequate in around 4% (14).
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TABLE 1 Diagnostic performance and monitoring utility of the different imaging tools available for the assessment of giant cell arteritis.

Sensitivity Specificity Role in monitoring the disease

TAB (4, 17) Ranges 39–77.3% (95% CI: 33, 81.9) 100% (95% CI: 97, 100) Invasive procedure limits repeatability in clinical practice. Vasculitis
still demonstrated on repeated biopsies up to 12 months from
diagnosis; tissue pro-inflammatory markers change in response to
treatment.

Ultrasound
(30, 31)

Ranges 54–81% (95% CI: 48, 88) compared
with a clinical diagnosis of GCA
Ranges 70 (95% CI: 56, 81) compared to
TAB

Ranges 95–96% (95% CI: 85, 99) compared
with a clinical diagnosis of GCA
Ranges 84 (95% CI: 73, 91) compared to TAB

Significant sensitivity to change of halo count and intima-media
thickness in response to treatment. US findings of temporal artery
correlate with signs of disease activity. Emerging role in detecting
relapses.

MRI (30, 57,
64)

Ranges 73–75% (95% CI: 57, 85) compared
with a clinical diagnosis of GCA
Ranges 91–93% (95% CI: 89, 96) compared
to TAB
78.4% for cranial MRI

Ranges 88–89% (95% CI: 81, 92) compared
with a clinical diagnosis of GCA
Ranges 78–81% (95% CI: 73, 87) compared to
TAB
90.4% for cranial MRI

Monitoring role of cranial MRI is being currently investigated.
Reduced findings after 5 days of high-dose glucocorticoids.
Persistent vessel wall enhancement described in extra-cranial
arteries in one third of patients in remission treated with
tocilizumab.

PET (30, 43,
65)

Ranges 61–80%; 73.3% for cranial arteries
77% compared with a clinical diagnosis of
GCA
67% compared to TAB

Ranges 66–100%; 97.2% for cranial arteries
100% compared with a clinical diagnosis of
GCA
66% compared to TAB

Controversy on the significance of a persistent uptake in patients in
clinical remission (vascular remodeling? Subclinical activity?).
PET vascular activity score (PETVAS) has been used to assess
response to treatment.

CTA (30) 73% (95% CI: 45, 92) for a diagnosis of
LV-GCA

78% (95% CI: 40, 97) Useful for the long-term monitoring of structural damage
(aneurysms/stenosis).

US-guided TAB does not improve the sensitivity of TAB for
diagnosing GCA, but US may be useful for locating the artery
before or during the biopsy procedure, reducing the risk of
inadequate specimens (9).

In clinical practice, TABs performed for evaluation of patients
with suspected GCA are positive in 25–35% of cases, and
inadequate in around 4% (21). US-guided TAB does not increase
the positive yield of TAB but is useful for locating the artery in
preparation for the biopsy procedure, reducing the proportion of
inadequate specimens (29).

3. Updates on the use of ultrasound
for giant cell arteritis

The current international EULAR recommendations indicate
US as the preferred early imaging test in patients with a suspected
clinical diagnosis of GCA. Moreover, in patients with a high clinical
probability for the diagnosis, and a supportive imaging test, the
diagnosis can be confirmed without the need for further testing.
US of the temporal and/or axillary arteries should be the primary
imaging test in patients with predominantly cranial features
provided that adequate expertise and equipment are available
(3). The halo sign has been recently defined by an Outcome
Measures in Rheumatology (OMERACT) working group as a
“homogenous, hypoechoic wall thickening that is well delineated
towards the luminal side and is visible both in longitudinal and
transverse planes, most commonly concentric in transverse scans”
and represents the main US finding in active GCA (2). The
compression sign is used to confirm the presence of a halo and
is less dependent on the operator’s experience (2). Nonetheless,
high expertise and adequate equipment, including a high frequency
probe (>15 MHz) are essential to ensure reliable temporal artery
exploration with good sensitivity. Previous evidence informing
EULAR recommendations had provided a pooled sensitivity for

the halo sign of 77% (95% CI: 62–87%) and pooled specificity
of 96% (95% CI: 85–99%) compared with a clinical diagnosis
of GCA (30). The most recent systematic literature review and
meta-analysis has confirmed the good sensitivity [67% (95% CI:
51, 80)] and specificity [95% (95% CI: 89, 98%)] of the halo
sign in the diagnosis of GCA (Table 1) (31). Overall, US has a
significantly better sensitivity than TAB while retaining very high
specificity, reaching 100% in case of bilateral halo. Moreover, US
can easily be implemented as a point-of-care test in dedicated
fast-track clinics for the early diagnosis of GCA. Fast-track clinics
are currently available in a growing number of specialist referral
centers for the care of patients with LVV, leading to a substantial
reduction in the rate of permanent blindness (6, 7). Nevertheless,
the relapse rate during follow-up did not seem to be reduced since
the introduction of fast-track clinics (5), highlighting the unmet
need of appropriate risk stratification and tailored treatment based
on the clinical characteristics of GCA at diagnosis. The core US
assessment of GCA provides the best diagnostic yield balanced
with the time needed to perform the procedure and includes
scanning of the temporal arteries along the whole length of their
common, parietal, and frontal branches bilaterally, and the axillary
arteries (32). Several studies, including some recent evidence, have
assessed the adjunctive role of extended US protocols including
the assessment of other cranial or extra-cranial arteries confirming
the generally optimal sensitivity and specificity of the core set
(temporal and axillary arteries). In a recent study including 83
patients with GCA, the inclusion of the subclavian artery increased
the sensitivity by 1%, and the inclusion of the brachiocephalic
and common carotid arteries increased the sensitivity by 3% (33).
Nevertheless, the deep anatomical distribution and difficulties in
examination make the assessment of the brachiocephalic artery
trunk subject to variation and lack of reproducibility. Generally,
besides research purposes, the extension to other explorable vessels
can be suggested in patients with a high clinical probability of GCA
in whom the temporal and axillary arteries do not display signs of
active GCA.
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While the accepted definition for a diagnostic US in GCA
is based on qualitative ultrasonographic findings and halo
compressibility, and a definite consensus has not been reached,
studies have identified cut-off values for the intima media thickness
(IMT) that can distinguish vasculitic from normal arteries (34, 35).
A normal temporal artery in a 70 years old patient has an IMT
of ∼ 0.2 mm, while an inflamed artery has an IMT of ∼ 0.5–
0.6 mm; a normal axillary artery has an IMT of ∼ 0.6 mm, while
an inflamed artery in a patient with GCA has an average IMT of
∼ 1.7 mm. The proposed cut-off values range between 0.29 and
0.42 mm for the different branches of the temporal artery, and
1.0 mm for the axillary arteries (35). Similar cut-off values with
high levels of diagnostic accuracy (≥0.4 mm for temporal, facial
and occipital arteries, ≥0.7 mm for vertebral arteries, and ≥1 mm
for carotid, subclavian and axillary arteries have been proposed by
other research groups (34).

Ultrasonography has traditionally been considered in a binary
fashion (positive/negative according to the presence of a halo
in at least one of the assessed vascular territories), however,
recent research trends have focused on the role of a quantitative
assessment of US findings combining information on the number
of sites with halos and the degree of the IMT measurable by US (36).
The disease extent and severity as measured by US quantitative
scores has been demonstrated to have important diagnostic value,
and has been correlated with the probability of having a diagnostic
TAB (36). Moreover, quantitative US scores have been associated
with the probability of ocular ischemia at diagnosis (37). On the
other hand, the prognostic role of a baseline quantitative score over
follow-up is still to be defined (36).

The increasing interest in the quantitative US findings in GCA
has led to a better understanding of the halo characteristics in
response to treatment and has provided important evidence on the
monitoring potential of this tool (Table 1). IMT size in the temporal
arteries (but not in the axillary arteries) has been demonstrated
to reduce following the first 7 days of glucocorticoid treatment
supporting its role as an early marker of disease activity (38).
Moreover, sensitivity to change in response to treatment has been
demonstrated for the halo sign (in terms of number of halos and
IMT thickness) starting from week 1 throughout week 24 for
the temporal artery, and only after week 6 for the axillary halo
features. Moreover, the number of temporal artery segments with
halo and maximum halo IMT show significant correlation with
signs of disease activity (erythrocyte sedimentation rate, c-reactive
protein, Birmingham Vasculitis Activity Score) and cumulative
glucocorticoid doses. On the other hand, halo at the level of
the axillary arteries seems to display a different behavior without
significant correlation with other aspects of disease activity (10).

Quantitative US has been employed in a randomized
controlled trial to monitor the response to treatment to high-dose
glucocorticoids and Tocilizumab, demonstrating the remission-
induction effect of Tocilizumab and supporting the important
monitoring role of US (39).

The monitoring utility of US has also been demonstrated by the
ability to effectively detect relapses. Halo sign has been identified in
94% of first disease relapses in an international cohort of patients
with GCA followed with a standardized protocol, but with a
lower mean number of segments with halo and sum of halo IMT
compared to disease onset (10, 32).

The monitoring assessment of GCA with US has provided
valuable information not only on the quantitative changes of the
halo over time, but also on the qualitative modification of halo,
particularly for chronic changes at the level of the axillary arteries.
The OMERACT definition and reliability assessment of chronic US
lesions of the axillary artery has been provided for patients with
long-standing GCA. The definition is based on measurement and
appearance of the intima media complex. The inter- and intra-
reader reliability of the new definition among experts was good to
excellent (40). Moreover, the IMT of the axillary arteries is known
to decline more slowly than the temporal artery, with a reduction
persisting in the first 18 months of treatment. An IMT of 0.87 mm
has been proposed to be highly specific (specificity 96%, sensitivity
61%) for the diagnosis of chronic axillary involvement in GCA (41).

4. Current use and new aspects
regarding other imaging modalities
(other than US)

4.1. 18-fluorodeoxyglucose FDG-PET/CT

FDG-PET/CT has proven to be highly accurate in identifying
large vessel GCA. Several studies have looked at its diagnostic
performance and determined that it has a sensitivity of 61–80%
and a specificity of 79–100% (Table 1) (42–45). Recently published
studies have also shown that 18-fluorodeoxyglucose [18F] FDG-
PET/CT may efficiently identify even cranial GCA of the temporal
arteries (43, 46–48).

A likely positive 18-FDG uptake is grade III, whereas a probable
LVV is grade II.

It is critical to consider pre-analytical conditions that can affect
18-FDG uptake, such as hyperglycemia, tracer dose, and acquisition
time between injections. Further, it is difficult to distinguish
arteriosclerosis from LVV using 18-FDG uptake, but grade III
uptake and involvement of the supra-aortic trunk or homogenous
involvement of the entire aorta make it more likely to be due to
vasculitis (3, 49–51).

By using the same interpretation modalities, the PETVAS
score can help to homogenize interpretations and improve patient
follow-up (52, 53).

The main limitations of FDG-PET/CT are linked to its inferior
performance in cases of diabetes and its decreased sensitivity
after commencing therapy with high doses of glucocorticoids.
Three days of high-dose GC therapy can already attenuate FDG
uptake of inflamed large vessels; such timeframe is still not
defined for the assessment of temporal arteries with PET (54).
In a prospective study, Imfeld et al. (55) evaluated the diagnostic
performance of US and conventional [18F] FDG-PET/CT and
concluded that both tests were complimentary. Indeed, typical
[18F] FDG-PET/CT provides for greater exploration of the aorta,
whereas ultrasonography allows for a better evaluation of cranial
arteries (47, 48). When using PET/CT, one must consider the
substantial irradiation of up to 25 mSv, making it not a standard
imaging approach for diagnosing and monitoring of patients with
GCA. Novel PET radiotracers that target cells (macrophages, T
cells, and endothelial cells) implicated in the pathophysiology of
GCA are being researched currently (56).

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2023.1125141
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1125141 February 17, 2023 Time: 15:37 # 5

Monti et al. 10.3389/fmed.2023.1125141

4.2. Magnetic resonance imaging and
computed tomography angiography

Contrast MRI angiography (MRA) is used to examine
cranial arteries, displaying arterial wall thickness and artery wall
gadolinium enhancement. When compared to clinical diagnosis, a
recent meta-analysis of ten studies of MRI in cranial-GCA revealed
a pooled sensitivity and specificity of 75 and 89%, respectively.
Sensitivity and specificity rose to 91 and 78%, respectively, when
compared to TAB (Table 1) (57). Improved diagnostic performance
for assessing wall thickness and mural enhancement in GCA
patients was also established using fat-suppressed 3D High-
resolution T1-weighted black-blood MRI (CUBE T1) versus 2D
contrast-enhanced vessel-wall MRI (58). The benefit of adopting
3D MRI is its multiplanar reconstructions, which are beneficial
when analyzing extracranial and intracranial arteries (59). Few
studies have compared the accuracy of MRI to US in GCA patients.
Yip et al. revealed that US was more sensitive than MRI in
identifying changes in supra-aortic large arteries, particularly in
individuals with chronic GCA (defined as active disease diagnosed
at least 6 months before inclusion in the study). There were no
variations in cranial artery evaluation between MRI and US (60).
However, in a diagnostic emergency, MRI availability remains
the fundamental barrier, while keeping in mind that this should
not delay the delivery of glucocorticoids. A common method for
diagnosing LVV is computed tomography angiography (CTA),
which requires the intravenous administration of iodine-based
contrast agents. After intravenous injection of a iodine-based
contrast agent, arteritis on CTA manifests as mural thickening and
double ring enhancement (61). In a prospective study of 24 patients
with suspected GCA, 15 of whom were eventually diagnosed as
GCA on an individual basis by experienced clinicians, mural
thickening on CTA had a slightly lower specificity (84.6 versus
100%) and a positive predictive value (84.6 versus 100%) than
increased FDG uptake on PET scanning, while sensitivity reached
73.3% for CTA and 66.7% for FDG-PET (42). In a study of 28
patients with GCA, de Boysson et al. (62) compared CTA to FDG-
PET/CT. In a per-patient analysis, CTA demonstrated excellent
sensitivity (95%) and specificity (100%) when compared to FDG-
PET/CT. Sensitivity and specificity were 61 and 97.9%, respectively,
in a per-segment analysis.

Few studies have found that CTA has high diagnostic accuracy.
The authors of one study (42) observed a sensitivity of 73%
and a specificity of 78% for the diagnosis of LV-GCA. Berthod
et al. published a 2.2 mm aortic wall thickening threshold in
favor of GCA (63). The primary limitation of CTA is the use of
iodinated contrast material and irradiation, as well as the absence
of evaluation of the temporal arteries.

5. Discussion

This mini-review focuses on the most updated evidence
supporting the main tools available to diagnose and monitor
LVV. The advantages, limitations, and innovative applications
for each tool are discussed. The review highlights how the
different diagnostic modalities should be used in a complementary
way according to local availability and expertise, predominant
clinical phenotype (cranial versus LV-GCA), timing from
glucocorticoid treatment initiation (with the longest diagnostic
yield demonstrated for TAB), patient’s preference, and cost
considerations. Often, the different diagnostic or monitoring
options can be applied in a step-wise fashion guided by pre-test
clinical probability and initial findings (i.e., TAB requested in case
of negative temporal artery US in a patient with predominantly
cranial features, or PET/CT performed in a patient with negative
axillary artery US and ongoing high suspicion for LV-GCA). One
of the most relevant achievements emerging from the review is the
increasing body of evidence supporting the role of imaging for the
monitoring of the disease and to assess response to treatment which
will considerably improve the management of GCA in the future.
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