
Computer Methods and Programs in Biomedicine 234 (2023) 107504 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

Predicting gene and protein expression levels from DNA and protein 

sequences with Perceiver 

Matteo Stefanini, Marta Lovino 

∗, Rita Cucchiara, Elisa Ficarra 

DIEF, University of Modena and Reggio Emilia, Via Vivarelli 10/1, Modena, 41125, Italy 

a r t i c l e i n f o 

Article history: 

Received 25 October 2022 

Revised 6 March 2023 

Accepted 21 March 2023 

Keywords: 

Deep learning 

DNA 

mRNA expression 

Perceiver 

Protein expression 

Sequence 

a b s t r a c t 

Background and Objective: The functions of an organism and its biological processes result from the ex- 

pression of genes and proteins. Therefore quantifying and predicting mRNA and protein levels is a crucial 

aspect of scientific research. Concerning the prediction of mRNA levels, the available approaches use the 

sequence upstream and downstream of the Transcription Start Site (TSS) as input to neural networks. The 

State-of-the-art models (e.g., Xpresso and Basenjii) predict mRNA levels exploiting Convolutional (CNN) 

or Long Short Term Memory (LSTM) Networks. However, CNN prediction depends on convolutional kernel 

size, and LSTM suffers from capturing long-range dependencies in the sequence. Concerning the predic- 

tion of protein levels, as far as we know, there is no model for predicting protein levels by exploit- 

ing the gene or protein sequences. Methods: Here, we exploit a new model type (called Perceiver) for 

mRNA and protein level prediction, exploiting a Transformer-based architecture with an attention mod- 

ule to attend to long-range interactions in the sequences. In addition, the Perceiver model overcomes the 

quadratic complexity of the standard Transformer architectures. This work’s contributions are 1. DNAPer- 

ceiver model to predict mRNA levels from the sequence upstream and downstream of the TSS; 2. Pro- 

teinPerceiver model to predict protein levels from the protein sequence; 3. Protein&DNAPerceiver model 

to predict protein levels from TSS and protein sequences. Results: The models are evaluated on cell lines, 

mice, glioblastoma, and lung cancer tissues. The results show the effectiveness of the Perceiver-type mod- 

els in predicting mRNA and protein levels. Conclusions: This paper presents a Perceiver architecture for 

mRNA and protein level prediction. In the future, inserting regulatory and epigenetic information into 

the model could improve mRNA and protein level predictions. The source code is freely available at 

https://github.com/MatteoStefanini/DNAPerceiver 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Most of the biological processes that regulate the functions of 

n organism are due to the activity of proteins [1–3] . In recent 

ecades, the incredible development of sequencing techniques and 

roteomics quantifications have enabled a systematic analysis of 

he activity level of thousands of genes and proteins [4,5] . In ad- 

ition, it is known that many regulatory and epigenetic processes 

egulate the expression of mRNAs and proteins [6–8] , and the se- 

uence upstream and downstream the transcription start site (TSS) 

as long been investigated to predict the mRNA levels in vari- 

us tissues. In this paper, the periphrasis TSS sequence will be im- 

roperly used from now on to define the sequence upstream and 

ownstream of the TSS to make the method clear. 
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Vice versa to the mRNA level prediction problem, the protein 

evel prediction from sequences has yet to be addressed to the best 

f our knowledge. This work focuses on the necessary network 

evelopments to predict population mRNA and protein expression 

evels in specific species and tissues (e.g., mouse and human cell 

ines, human cancer tissues) as a prerequisite and baseline for fu- 

ure works on sample-specific mRNA and protein expression pre- 

iction. 

In recent years, deep learning techniques spread in health ap- 

lications [9–14] and previous works focused on mRNA level pre- 

iction from TSS sequences [15–18] . In particular, Convolutional 

eural Networks have been adopted to deal with the sequential 

ature of the DNA [15–17,19] . 

Specifically, Basenjii [15] applies convolutional layers followed 

y dilated convolutions to share information across large distances 

n the gene sequences. Dilated convolutions have a wider filter cre- 

ted by inserting spaces in the filter elements. Those gaps expo- 
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entially increase the receptive field width, thus taking into ac- 

ount longer dependencies in the sequences. 

Similarly, Expecto [16] applies convolutional layers to extract 

eatures from the sequences using a predefined window’s size. 

ach window yields a set of features stacked together in a high- 

imensionality feature vector. Spatial transformations are then ap- 

lied to reduce feature vector dimensionality to output mRNA lev- 

ls. 

On the same line, Xpresso [17] introduced a deep convolutional 

odel composed of two sequential convolutional and max-pooling 

ayers followed by two fully connected layers, demonstrating that 

 localized region around the transcription start site captures the 

ost relevant information for mRNA level prediction. 

Although convolutions represent an effective way to deal with 

ene sequences, they have some significant limitations that hin- 

er their representational power. Above all, the locality nature 

f convolutions limits the information propagation in the net- 

ork among distal elements, requiring many successive layers 

o expand the receptive field and thus not allowing to cap- 

ure of long-range relationships and dependencies in sequence 

lements [20] . 

In 2017 the attention mechanism revolutionized sequence pro- 

essing, achieving outstanding performance in capturing long- 

ange dependencies due to each token’s global interaction in 

he input sequence (so-called self-attention), extracting global in- 

ormation directly from the first layer [20] . However, the self- 

ttention operator has a quadratic complexity O (n 2 ) , making the 

rediction unfeasible for long sequences. 

The Enformer model [19] firstly applies self-attention to ge- 

omic data, capturing wide-ranging relationships and improving 

RNA level prediction. However, to keep the computation feasible, 

he model is composed of a first convolutional step that extracts 

ocal features that are then applied to self-attention layers to cap- 

ure long-range interactions. 

Our method, instead, is based on the Perceiver architecture [21] , 

hich allows for asymmetric attention between inputs and learn- 

ble query vectors, therefore expanding its capabilities to attend 

onger sequences directly on the raw data without an initial con- 

olutional step. The advantage of the Perceiver architecture is not 

imited to the computational aspects. The regulatory parts of a 

ene (e.g., enhancer and silencer) can be at a considerable distance 

rom the gene region on which they act. Unlike CNN and LSTM, 

hese long-range interactions are modeled in the Perceiver archi- 

ecture, allowing a better mRNA level prediction. 

In this work, we present three models, all based on 

he Perceiver architecture: DNAPerceiver, ProteinPerceiver, and 

NA&ProteinPerceiver. DNAPerceiver predicts the mRNA and pro- 

ein levels from the DNA sequence, and its performances are 

irectly compared with competitor models on various datasets. 

roteinPerceiver and DNA&ProteinPerceiver instead predict protein 

evels from the protein sequence and the combination of the DNA 

nd protein sequences, respectively. The latter two models were 

valuated under different experimental conditions. However, due 

o the task’s novelty, it is impossible to report comparisons with 

odels in the literature. 

. Materials and methods 

In order to predict mRNA and protein levels, human protein- 

oding genes were selected, and their TSS and protein sequences 

ere obtained (see details in the Dataset section). Then, we de- 

eloped three models that slightly differ in input and output con- 

gurations based on the prediction task they tackle, leaving the 

eneral structure very similar. Each model receives the TSS or the 

rotein sequence as input and a number representing the sam- 

les’ average amount of mRNA or protein levels is outputted for 
2 
ach sequence. The greater the number, the greater the amount of 

olecule (mRNA or protein) circulating. To summarize, the main 

ifferences between the three Perceiver architectures consist of 

he output desired and the input data: TSS sequences for DNAper- 

eiver, protein sequences for ProteinPerceiver, and TSS and protein 

equences for DNA&ProteinPerceiver. 

.1. Datasets 

We evaluate our models adopting different settings based on 

he task. Overall, there are two input types: inputDNA and input- 

rot. InputDNA consists of the sequence of human protein-coding 

enes upstream and downstream of the transcription start site 

TSS). The sequence upstream of the TSS contains the gene’s pro- 

oter, while the sequence downstream of the TSS contains the ex- 

ns and introns of the gene. InputDNA sequences are taken from 

he Xpresso publication [17] due to its particular data curation. In- 

eed, in this dataset, the TSS positions were accurately revised by 

presso’s authors exploiting Cap Analysis Gene Expression (CAGE) 

xperiments, a method to measure the actual TSS location. Specif- 

cally, it comprises 18377 genes split into 16377 genes for training, 

0 0 0 for validation, and 10 0 0 for the test. The maximum length

f the TSS sequence of a gene is set to 20,0 0 0 base pairs. Xpresso

NA input also comes with half-life features, which contain gen- 

ral information about the gene (e.g., gene length and number of 

ntrons). Therefore, whenever we use InputDNA sequences, we also 

nclude half-life features as input to our models at different net- 

ork points, as explained in the architecture section. 

InputProt, on the other hand, consists of protein sequences. 

herefore, the promoter region and all non-coding parts of a gene 

re not included in the inputProt sequence. All protein sequences 

ere obtained from Uniprot database [22] , processed with Biopy- 

hon library [23] , and intersected with Xpresso’s list of protein- 

oding genes. 

As for the labels, we used four typologies for predicting mRNA 

evels (labelGeneMouse, labelGeneHuman, labelGeneGlio, label- 

eneLung) and two typologies for predicting protein levels (label- 

rotGlio and labelProtLung). labelGeneMouse and labelGeneHuman 

ome from the Xpresso publication, containing the mean mRNA 

evels of mouse and human samples, respectively. These labels 

ere obtained in the biologically controlled context of cell lines, 

nd therefore the prediction task is limited. To evaluate the pre- 

ictive capabilities of the models on high throughput multi-omics 

uman data from clinical studies, we selected mRNA and protein 

evels on patients with glioblastoma [24] and lung cancer [25] . La- 

elGeneGlio and labelGeneLung contain the labels of the mediated 

RNA values for glioblastoma and lung cancer tissues, respectively. 

he same procedure has been applied to obtain the mediated pro- 

ein levels for the same patients, named labelProtGlio and label- 

rotLung [24,25] . 

Given the scarcity of data, except for Xpresso comparisons, we 

dopt the K-Fold validation setting and average the results across 

he folds. We set the number of folds K to 10. 

.2. Metric 

To measure the effectiveness of our methods, we compute the 

ariance explained r 2 , also known as the coefficient of determi- 

ation: r 2 = 1 − SSR 
SST , where SSR stands for Sum Squared Regres- 

ion (the sum of the residuals-actual values minus predicted value- 

quared) and SST for Total Sum of Squares (the sum of the distance 

he data is away from the mean all squared). This coefficient is 

he most widely adopted metric for mRNA level prediction, rang- 

ng from 0 to 1. When it is 0, the model makes a prediction no

etter than random, while when it is 1 the model perfectly pre- 

icts the actual labels. 
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Fig. 1. DNAPerceiver architecture. It is based on the Perceiver IO model [26] . The upper flow represents the asymmetric attention that distills the sequence in a smaller 

latent space, where learnable arrays attend to all the input sequences and refine their representations with self-attention and feed-forward networks. The lower flow depicts 

the decoding stage of the Perceiver IO, where instead of using learnable vectors like in the original model, we use, as the final query, the same sequence processed by a 

convolutional pipeline inspired by the Enformer model [19] . In this figure, Q,K,V stands for Query, Keys and Values as in typical Transformer architecture, PE is the Positional 

Encoding, Conv1D is a 1-dimensional Convolution and RConvBlock is a 1D Convolution with a residual connection. The first Convolutional layer is applied to the one-hot 

encoded version of the sequence, as all previous model of literature, while the upper part of the model embeds the one-hot vectors into learnable embedding vectors 

through linear projections, as typical Transformer architecture requires. 

Table 1 

Summary of the sources of data and labels used in our work. 

Data Sources Data type Length x Samples 

InputDNA human Xpresso [17] Sequence 20,000 × 18,377 

InputDNA mouse Xpresso [17] Sequence 20,000 × 21,856 

Half-life feats human Xpresso [17] Sequence 8 × 18,377 

Half-life feats mouse Xpresso [17] Sequence 8 × 21,856 

InputProt UniProt DB [22] Sequence 6000 × N.A. 

labelGeneHuman Xpresso [17] Value 1 × 18,377 

labelGeneMouse Xpresso [17] Value 1 × 21,856 

LabelGeneGlio Glioblastoma DB [24] Value 1 × 10,430 

LabelProtGlio Glioblastoma DB [24] Value 1 × 10,430 

LabelGeneLung Lung cancer DB [25] Value 1 × 10,699 

LabelProtLung Lung cancer DB [25] Value 1 × 10,699 
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.3. DNAPerceiver architecture 

As stated above, various models in the literature focused on 

redicting mRNA levels from the TSS sequence. This work aims 

o reveal if mRNA levels can be explained by the TSS sequence 

lone. All predictive models do not use the whole gene sequence 

s input but only the TSS portion, which involves numerous regu- 

atory and transcriptional processes. In particular, the region pre- 

eding the TSS contains the promoter, a region targeted explicitly 

y transcription factors, elements responsible for the final quantity 

f mRNA produced. The data used in this model configuration are 

nputDNA as input and labelGeneMouse, labelGeneHuman, label- 

eneGlio, and labelGeneLung as output. 

Figure 1 shows the architecture of the DNAPerceiver. The model 

s composed of two distinct flows: one with asymmetric attention 

s in the original Perceiver model [21] , and another with a convo- 

utional step inspired by the Enformer model [19] . The asymmet- 

ic attention reduces the complexity of the attention from O (n 2 ) 

o O (n × m ) where n is the length of the input sequence, and

 is a hyperparameter defying the latent space dimensionality. 

he model can attend to long sequences and condense their se- 

antic information within a tight latent space. The convolutional 

tep extracts another representation of the same DNA sequence 

nd is then used to query the latent space in the final decoding 

tage. 

Therefore, while our model still leverages a convolutional step, 

t takes more advantage of the recent advancements of attentive 
3 
rchitectures, i.e. the Perceiver, that have originated from the orig- 

nal Transformer model. Transformers are a class of deep learn- 

ng models, first introduced by Vaswani et al. [20] , that attained 

ubstantial breakthroughs in natural language processing and com- 

uter vision. Specifically, they consist of attention blocks that ag- 

regate information from the entire input sequence by computing 

 weighted sum across the representations of all other tokens for 

ach sequence token. Since each token directly attends to all other 

ositions in the sequence, they allow for a much better informa- 

ion flow between distal elements, in contrast with convolutional 

ayers, which may require many successive layers to increase the 

eceptive field [20] . 

These methods were recently applied to model mRNA se- 

uences. However, given the quadratic complexity of attention 

 (n 2 ) , the length of the input can explode quadratically, render- 

ng it infeasible to encode sequences of more than a few thou- 

and letters. For this reason, our approach is based on the Per- 

eiver [21] , a model that builds upon Transformers but scales to 

undreds of thousands of inputs, as it leverages an asymmetric at- 

ention mechanism to distill inputs into a tight latent bottleneck 

teratively. Then, the latent arrays go through self-attention blocks 

o refine their representation and potentially other asymmetric at- 

ention layers before getting averaged to obtain the logits for the 

ask at hand. 

Specifically, we use the Perceiver IO [26] , which improved the 

ecoder capabilities of the model by adding a final decoding stage. 

his stage acts as a query on the latent arrays, allowing the model 
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o produce outputs of arbitrary size and semantics, and deal with 

iverse domains without sacrificing the benefits of deep, domain- 

gnostic processing. 

In our implementation, however, we introduce substantial mod- 

fications concerning the Perceiver IO architecture. Firstly, instead 

f learning a different set of output arrays for the decoding stage, 

e use the same InputDNA sequence after being processed by 

 Convolutional step. This step consists of multiple Conv lay- 

rs, Residual connections, and Attention Pooling layers inspired by 

he Enformer model [19] . Secondly, another difference is that our 

odel in the decoding stage also considers the processed latent ar- 

ays by applying a final head that computes their average and uses 

hem as final logits. The processing is similar to that of the origi- 

al Perceiver model. However, in our case, it is fused with the final 

ecoding mechanism proposed by the Perceiver IO. 

Hence, in our architecture, the TSS or the protein sequence 

iven in input is processed twofold: as learnable vectors for the 

erceiver flow, where the asymmetric attention is applied with the 

atent arrays, and as one-hot encoding vectors fed to the convolu- 

ional step. After embedding the input letters, we also add a learn- 

ble Positional Encoding, initialized with a sinusoidal function as in 

he original Transformer model to deal with positions in the asym- 

etric attention. 

Latent arrays are initialized with random numbers from a nor- 

al distribution with mean 0 and variance 1, while the inputDNA 

s represented with one-hot encoding vectors, applied to the Con- 

olutional step, and linearly projected into embedding vectors for 

he attention path. Moreover, mRNA half-life features are injected 

n both flows: they are appended to the latent arrays and the con- 

olutional step in the final feature representations. 

In the DNAPerceiver configuration, we predict the mRNA level 

or both human cell-line and mouse data, and we evaluate our 

odel on the Xpresso dataset, comparing it with other similar 

ethods and Xpresso itself. Further, we applied the DNAPerceiver 

odel to predict mRNA and protein levels in human high through- 

ut sequencing data. As discussed in the Dataset section, we take 

he protein labels from two real-human datasets, ending with 

0,529 pairs of labels for Lung cancer (labelProtLung) and 10,280 

airs of labels for glioblastoma (labelProtGlio). In this configura- 

ion, we output two predictions for labelGene and labelProt, mRNA 

nd protein levels, respectively, for both datasets. 

To represent the A, T, C, and G letters, we use one-hot vec- 

ors, and for the perceiver flow, we linearly project them to learn- 

ble vectors of dimensionality 32. In addition, we add the let- 

er P as padding. To represent letter positions, we employ learn- 

ble positional encodings initialized in a standard sinusoidal fash- 

on [20] . We use 128 latent learnable arrays with a dimensional- 

ty of 128 each, constituting the dimensionality of the following 

elf-attention layers. The number of heads in asynchronous atten- 

ion is set to 1, while self-attention is set to 8. The attention over 

he input is computed by considering only valid letters and mask- 

ng the rest. Feed-forward layers have a dimensionality of 256 and 

ELU nonlinearity. The depth of the Perceiver, the number of lay- 

rs of asynchronous attention followed by self-attention, is set to 

. For the convolutional query flow, we adopt a similar strategy as 

nformer [19] using the first layer of Conv1D with a kernel size 

f 15, channel dimensionality of 64 and Attention Pooling with a 

ooling size of 12. Subsequent convolutional layers, forming the 

onv tower, have a kernel size of 5 and attention pooling size of 

. Each Conv layer applies GELU nonlinearity and is followed by a 

esidual connection. The length of the InputDNA sequence is set to 

0,500, taking the majority part from the promoter side and less 

rom the actual gene, specifically considering 70 0 0 base pairs be- 

ore the TSS and 3500 after the TSS. We apply dropout throughout 

he model before each linear projection and attention layer, with a 

eep probability of 0.8. We train our model using ADAM optimizer 
4

27] , a batch size of 128, and we follow the learning rate schedul- 

ng strategy of [20] with a warmup equal to 80 0 0 iterations. We 

pply a weight decay of 0.2 and an early stopping strategy to avoid 

verfitting. We found it helpful to use the Tanh activation for our 

nal predicted scores only in this configuration and when applied 

o Xpresso mRNA levels. In the end, we weighted the loss contri- 

ution using a weight of 10 for the mRNA. 

.4. ProteinPerceiver architecture 

Supplementary Figure S1 shows the ProteinPerceiver model, 

hich aims to measure how much protein levels depend on 

he protein sequence. The main differences with respect to the 

NAPerceiver are the protein sequence as input (inputProtein) and 

he protein level as output (labelProtGlio and labelProtLung). Al- 

hough the mRNA level prediction task is debated within the sci- 

ntific community, to the best of our knowledge, there are no 

ublicly available models for protein level prediction using pro- 

ein sequences. In the last decade, the quantification of mRNA lev- 

ls has been available in large quantities. Instead, extracting and 

uantifying proteins is more recent and less mature than mRNA 

xtraction and quantification techniques. Protein quantification is 

hat scientists are most interested in biologically. However, these 

echniques are currently more expensive, limiting data availability. 

oreover, the mRNA level quantification can evaluate more than 

0 0 0 0 protein-coding genes versus approximately 2 to 8 thousand 

roteins for protein quantification. Unfortunately, given the exper- 

ments’ novelty, no comparison model in the literature is available. 

We match protein sequences and proteomics labels available, 

ssembling a total of 10,430 protein sequences for Glioblastoma 

nd 10,699 for Lung Carcinoma with corresponding proteomic la- 

els. 

The dropout keep probability is set to 0.7 and the attention 

ooling size in the convolutional query to 10 in the first layer and 

 in the following ones. Moreover, we set the maximum length of 

he protein sequence to 60 0 0 and the final weight of the MSE loss

o 100 for Lung data and 30 0 0 for Glioblastoma data. We optimize 

he model using Lamb [28] , a learning rate of 0.0 0 05, and a Cosine

nnealing schedule strategy with 80 0 0 steps of warmup. 

.5. DNA&ProteinPerceiver architecture 

The previous ProteinPerceiver model receives the protein se- 

uence as input to predict protein levels. However, the protein 

evel is determined by the protein sequence and by regulatory, 

ranscriptional, and epigenetic factors. Although considering all 

egulatory processes is not straightforward, in this configuration, 

alled DNA&ProteinPerceiver, we have evaluated the combined ef- 

ect of the protein and the TSS sequence to predict the protein lev- 

ls. This configuration simultaneously uses inputDNA and inputPro- 

ein and outputs labelProtGlio and labelProtLung. TSS and protein 

equences are matched when both are available from the Xpresso 

ataset [17] and the protein sequence dataset, ending up with a 

otal of 9815 triplets gene-protein-labels for Lung cancer and 9534 

riplets for Glioblastoma. 

Since our model deals with two different input sequences, we 

nvestigated the use of the inputs in an alternate manner: when 

he protein sequence is given to the Perceiver, we use the DNA 

SS sequence as a query in the convolutional pipeline, as shown in 

upplementary Figure S2, and vice versa, with DNA TSS sequence 

s the perceiver input, we use the protein for the query computa- 

ion, shown in Supplementary Figure S3. The Results section shows 

hat the best version differs depending on the data and the predic- 

ion. The maximum length of the protein sequence is set to 60 0 0, 

hile the DNA sequence length is set to 80 0 0. If not specified, we

ept the same hyperparameters of the DNAPerceiver configuration. 



M. Stefanini, M. Lovino, R. Cucchiara et al. Computer Methods and Programs in Biomedicine 234 (2023) 107504 

Table 2 

Summary of the different configurations of our model depending on the prediction task and the 

input-output setting. 

Model Configuration Tasks Input Output 

DNAPerceiver mRNA levels InputDNA labelGene 

DNAPerceiver mRNA&protein levels InputDNA labelGene&labelProt 

ProteinPerceiver protein levels InputProt labelProt 

DNA&ProteinPerceiver protein levels InputDNA&InputProt labelProt 
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Table 5 

Results in predicting protein levels from the protein sequence. The input is In- 

putProt, while predicted labels for protein levels are labelProtLung and label- 

ProtGlio. Results are the average of the k-fold validation method with k equal 

to 10. 

Model proteomics r 2 

ProteinPerceiver Lung 0.085 

ProteinPerceiver Glioblastoma 0.028 

Table 6 

Results in predicting protein levels from both the DNA sequence and the protein 

sequence used as inputs. The input is inputProt and inputDNA, and the predicted 

labels for protein expression are labelProtLung and labelProtGlio. Results are the 

average of the k-fold validation method with k equal to 10. 

Model proteomics r 2 

DNA&ProteinPerceiver Lung 0.141 

DNA&ProteinPerceiver Glioblastoma 0.031 
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A summary of the architecture names, prediction tasks, input, 

nd outputs is reported in Table 2 . 

. Results 

This section discusses the results obtained and the comparison 

ith the state-of-the-art approaches. 

.1. Results on mRNA level prediction using Xpresso’s labels 

In this setting, DNAPerceiver was trained on the Xpresso se- 

uences and their labels, aiming to predict the mRNA level, both 

rom mouse and human organisms (labelGeneMouse and label- 

eneHuman). We follow the split of the original dataset [17] , thus 

btaining 16,377 genes for training and 10 0 0 genes for both valida- 

ion and test set. As shown in Table 3 , DNAPerceiver performs bet- 

er than the Xpresso method in terms of r 2 in human and mouse 

ata. In human cell-line data, it reaches an r 2 of 0.62, which, com- 

ared to the 0.59 of the Xpresso model, gains 0.03 points of r 2 . 

The basenji method has a similar mRNA level prediction task 

o the one presented in this work. However, a direct compari- 

on cannot be made as Basenji uses Cap Analysis Gene Expres- 

ion (CAGE) input data which are not available for our dataset 

Xpresso’s dataset released the sequences but not the CAGE in- 

ormation). However, under his experimental conditions, Basenji 

eaches a Pearson correlation coefficient ranging from 0.138 to 

.777, depending on the genes considered. These values would 

ranslate into a coefficient of determination r 2 between 0.019 and 

.604. In this context, the DNAPerceiver model gets consistent re- 

ults. 

.2. Results on mRNA and protein levels 

Table 4 reports the results obtained with the DNAPerceiver ar- 

hitecture. High-throughput sequencing data from human tissues 

s much more complex than data obtained from cell lines. Indeed, 
Table 3 

Results on the test set of Xpresso dataset in predicting mRNA levels of cell-line 

data. The input is the InputDNA sequence, and the output is the mRNA level, 

expressed with the coefficient of determination r 2 . 

Model mRNA r 2 

Xpresso [17] human data 0.59 

Xpresso [17] mouse data 0.71 

DNAPerceiver human data 0.62 

DNAPerceiver mouse data 0.72 

Table 4 

Results on Lung and Glioblastoma data in predicting mRNA and protein level. 

The input is inputDNA, taken from Xpresso [17] publication, while predicted 

labels for mRNA and protein levels are labelGeneLung, labelGeneGlio, label- 

ProtLung, and labelProtGlio. Results are the average of the k-fold validation 

method with k equal to 10. 

Model mRNA r 2 proteomics r 2 

DNAPerceiver Lung 0.181 0.161 

DNAPerceiver Glioblastoma 0.150 0.026 
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he cell lines are systematically obtained in the laboratory to have 

 controlled context and genetic variability as small as possible be- 

ween the cells. By contrast, the sequencing data from tissues (tu- 

or tissues, too) has a high genetic variability as a multiplicity of 

egulatory factors between cells and tissues are present. Given the 

oisy nature of high throughput sequencing data, its mRNA level 

rediction is not comparable to that of a cell line culture, but it 

eaches 0.181 of r 2 . Furthermore, our focus is to predict the protein 

evel using only the InputDNA sequence. As a result, our model can 

redict the protein levels achieving 0.161 of r 2 , demonstrating its 

apability to perceive the direct connection between the InputDNA 

equence and its corresponding protein level. 

.3. Results on protein level using protein sequence as input 

Table 5 reports the result of our ProteinPerceiver model. The 

btained outcome varies depending on the data: for Lung data, we 

ound that predicting protein levels from the protein sequence is 

ore complex, achieving a r 2 of 0.085, comparing the 0.161 ob- 

ained from the InputDNA. Nonetheless, for Glioblastoma data, our 

roteinPerceiver can score a r 2 of 0.028 for protein levels, which is 

lightly better compared to 0.026 obtained by the DNAPerceiver. 

Despite the impact of data quality and prediction task complex- 

ty on the results, our model can still capture a part of the relation- 

hip between the protein sequence and its corresponding protein 

evel. 

.4. Results on protein levels using TSS and protein sequences as 

nput 

We wanted to investigate further the model’s capabilities with 

 peculiar configuration, in which we give as input both the TSS 

InputDNA) and the protein sequence. Therefore, the protein se- 

uence was input to the perceiver and the InputDNA to the convo- 

utional query and vice-versa. We report the results in Table 6 . In 

his configuration, performances also depend on the specific data: 

or Lung data, surprisingly, the use of both inputs does not improve 
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he total performances of the model, reaching 0.141 of r 2 compared 

o the 0.161 obtained using only InputDNA sequence. On the con- 

rary, using both inputs slightly improves the results on Glioblas- 

oma data, achieving 0.031 of r 2 . Finally, we computed the r 2 val- 

es obtained from a random model for each of the three inputs 

DNAPerceiver, ProteinPerceiver, and DNA&Protein Perceiver) ver- 

us the glioblastoma dataset (where proteomic results are limited). 

he random models’ 10-fold cross-validation means are 0.00253 

max 0.00813, min 2.25e-05), 0.000917 (max 0.00391, min 8.98e- 

8), and 0.00145 (max 0.00657, min 2.17e-06). Glioblastoma 10- 

old cross-validation means in predicting proteomic values for the 

hree models are 0.026 (max 0.034, min 0.017), 0.028 (max 0.035, 

in 0.014), and 0.031 (max 0.037, min 0.021). The relative protein 

xpression value (how much a protein is expressed compared to 

he others) is crucial too. Thus, although the overall effectiveness 

f the protein model is limited, its predictive power can be of in- 

erest to scientists. Indeed, 60% and 68% (globally and in medul- 

oblastoma, respectively) of the most highly expressed proteins are 

redicted as expressed. The main reason for the noisy result could 

e attributed to post-transcriptional regulatory processes which 

re widely known as crucial players in protein expression. 

. Discussion 

Regarding predicting mRNA levels from the sequence upstream 

nd downstream of the TSS (thus including part of the promoter 

nd part of the gene), DNAPerceiver shows results superior to 

presso in the case of the human cell lines and murine sam- 

les. Unlike the Xpresso model, the DNAPerceiver model exploits 

he self-attention mechanism to predict the mRNA levels. Having 

he same input sequence size and output levels as Xpresso, the 

NAPerceiver model achieves superior results since long-range in- 

eractions between the most distant regions of the promoter and 

he gene sequence are fully exploited in the model and not limited 

y the size of the convolutional kernel. Moreover, as can be ex- 

ected, the prediction of mRNA levels in cell lines achieves better 

esults than mRNA level prediction in tumor samples. This aspect 

ould be explained by the different boundary conditions of the 

wo situations. In the first case, the mRNA expression is controlled 

o ensure the reproducibility and stability of the cell lines. In the 

econd case, the intrinsic samples’ variability cannot be limited 

nd pathological conditions profoundly alter the biological context. 

ince no comparable studies in predicting protein expression levels 

re available, more distant works that predict protein expression 

re described. In particular, Barzine et al. [29] purpose is the im- 

utation of unquantified proteins exploiting mRNA expression data. 

ndeed, it does not answer whether it is possible to predict pro- 

ein expression starting from the gene sequence. In detail, mRNA 

xpression values are known in the literature to predict protein 

xpression values, as there is often a positive correlation between 

he mRNA and its protein expression. Barzine et al. also consider 

he variability of the same protein in different samples (e.g., peo- 

le) based on mRNA expression variability. As innovative as it is, 

arzine et al. answer a very different question, namely quantify- 

ng the expression values of those proteins whose mRNA value is 

nown. Fernandes and Vinga [30] aim to predict the expression 

f proteins by encoding their codons. However, the prediction was 

ade for Escherichia coli from two datasets with a limited num- 

er of proteins. The first one contains the expression levels of two 

roteins, a DNA polymerase, and a single-chain antibody, for 55 

odon encodings. The second one contains the level of a green flu- 

rescent protein produced with 154 different codon encodings. The 

ain limitation of Fernandes et al.s work is the number of proteins 

uantified based on the specific sequence detected in the sample. 

oreover, it is based on the correlation between the levels of the 

reen fluorescent protein and the free energy of the protein itself. 
6 
lthough the purpose is similar to the Perceiver, there is no way 

o make a direct comparison with our work. 

Besides the improvement in mRNA level prediction, the main 

ovelty of this work is the first adoption of the Perceiver architec- 

ure for gene expression, and the prediction of protein levels from 

he TSS and protein sequences. This aspect is doubly challenging: 

. Protein extraction and quantification techniques have emerged 

ecently, so data availability still needs to be improved compared 

o mRNA datasets; 2. The protein sequence has target regions for 

ost-translation regulators; however, the promoter region is not 

sed as input in the ProteinPerceiver model. It is noted that the 

rediction of protein levels is considerably lower than mRNA ones, 

hether the prediction exploits the TSS or the protein sequence. 

lthough the results are limited, when compared to random mod- 

ls, protein level prediction is statistically relevant. The complex- 

ty of the problem can explain this phenomenon. The protein level 

s influenced by notable post-transcriptional and post-translational 

egulatory phenomena (e.g., ubiquitination), which are not fed to 

he models. Moreover, the TSS sequences (composed of the pro- 

oter and a part of the gene) have a greater predictive power of 

he protein level than the protein sequences. This behavior could 

epend on the presence of the promoter. Indeed, the promoter is 

he region that favors the expression regulation (both of genes and, 

herefore, of proteins), and it is responsible for interacting with 

ranscription factors. When the model is trained simultaneously 

ith the TSS and the protein sequence, the predictive power of 

rotein level increases; however, it remains lower than the predic- 

ion of protein levels using only the TSS sequence. In this sense, 

he TSS sequence seems more informative than the protein one. 

lthough the protein expression level prediction is critical, the ex- 

ression value of a protein compared to the others is crucial too. In 

his sense, the predictive power of the proposed model can be of 

nterest to scientists. Indeed, 60% and 68% (globally and in medul- 

oblastoma, respectively) of the most highly expressed proteins are 

redicted as expressed. In the end, the main reason for the noisy 

esult could be attributed to post-transcriptional regulatory pro- 

esses which are widely known as crucial players in protein ex- 

ression. 

. Conclusions 

Various papers have addressed mRNA level prediction in the 

iterature, mainly convolutional or long short-term memory net- 

orks. This work presents three Perceiver-type architectures for 

redicting mRNA levels on cell lines and high-throughput human 

amples. Furthermore, a novel task is introduced, presenting the 

rediction of protein levels from the TSS and protein sequences. 

he results show the advantages of the Perceiver architecture in 

redicting mRNA levels compared to competitors. On the other 

and, protein level prediction benefits more from the TSS sequence 

han the protein one. This aspect could be explained by the pres- 

nce of the promoter region in the TSS sequence. 

The Perceiver architecture benefits are not limited to the com- 

utational aspects. Since the regulatory parts of a gene (e.g., en- 

ancer and silencer) can be at a considerable distance from the 

SS, these regions can be directly attended by Perceiver models. 

urthermore, unlike CNN and LSTM, long-range interactions can be 

xploited in the Perceiver architecture, allowing a better predic- 

ion. 

Although various experimental conditions have been consid- 

red, in the future, other biological post-transcriptional and post- 

ranslation regulations can be included in the models to improve 

rediction. Moreover, it could be possible to predict the protein 

xpression levels in sample-specific mode (the protein expression 

evel in a sample based on the expression levels in similar sam- 
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les). This step is essential when it is not possible to quantify the 

rotein expression from the detected peptides directly. 
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