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Introducing Temporal Correlation in Rainfall and
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Abstract—While in the past the prediction of wind and rainfall
from underwater noise was performed using empirical equations
fed with very few spectral bins and fitted to the data, it has recently
been shown that regression performed using supervised machine
learning techniques can benefit from the simultaneous use of all
spectral bins, at the cost of increased complexity. However, both
empirical equations and machine learning regressors perform the
prediction using only the acoustic information collected at the time
when one wants to know the wind speed or the rainfall intensity. At
most, averages are made between spectra measured at subsequent
times (spectral compounding) or between predictions obtained
at subsequent times (prediction compounding). In this article,
it is proposed to exploit the temporal correlation inherent in the
phenomena being predicted, as has already been done in methods
that forecast wind and rainfall from their values (and sometimes
those of other meteorological quantities) in the recent past. A
special architecture of recurrent neural networks, the long short-
term memory, is used along with a data set composed of about
16 months of underwater noise measurements (acquired every
10 min, simultaneously with wind and rain measurements above
the sea surface) to demonstrate that the introduction of temporal
correlation brings significant advantages, improving the accuracy
and reducing the problems met in the widely adopted memoryless
prediction performed by random forest regression. Working with
samples acquired at 10-min intervals, the best performance is
obtained by including three noise spectra for wind prediction and
six spectra for rainfall prediction.

Index Terms—Acoustical meteorology, machine learning (ML),
rainfall intensity prediction, regression, temporal correlation,
underwater noise, wind speed prediction.
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I. INTRODUCTION

THE prediction1 of wind speed and precipitation intensity
using underwater noise measurements has received con-

siderable attention over the years. Setting up sensor networks
to gather these meteorological quantities, with high spatial and
temporal resolution and without the need for instruments in-
stalled above the sea surface, is becoming increasingly important
[1], [2], with a view to preventing environmental risks and moni-
toring climate change. For places with harsh working conditions
for surface instrumentation and poor satellite coverage, such as
in polar waters, measuring underwater noise may even be the
only way to infer wind speed and rainfall intensity [3], [4], [5].

For many years, this prediction was carried out using empir-
ical equations linking the desired quantity, be it wind or rain, to
the noise intensity measured at a precise frequency [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13] or, in rare cases, at a few
frequencies [14]. Due to their simplicity, these equations have
proven to be effective tools in predicting wind and rain with good
accuracy, especially in the most frequent ranges. Recently, it was
proved that solutions based on supervised learning techniques,
exploiting the information contained in all frequencies of the
measured noise spectrum, can improve prediction accuracy and
make it more robust against interferences (e.g., passing ships).
In particular, Taylor et al. [15] proposed random forest (RF)
and CatBoost to predict wind and rainfall from hourly averaged
noise spectra. RF [16], [17] was also used in [18] for rainfall
detection from hourly averaged noise spectra, as well as in [19]
for wind prediction. In the latter case, the averaging of predic-
tions obtained from instantaneous noise spectra (i.e., prediction
compounding) was adopted because it provided better perfor-
mance than the traditional averaging of spectra (i.e., spectral
compounding) before the prediction.

1According to the machine learning (ML) community, this article reserves the
term estimation to the choice of the best parameters involved in the empirical
equation or ML model, using a set of training data. Instead, the term prediction
is adopted to indicate the calculation of the output variable using the already
built model and a vector of input variables. In this article, the wind speed or
rainfall intensity at a time T is predicted using a given equation or model and the
underwater noise measurements, gathered at time T or until T (i.e., from T−Δt
to T), as input data. The term forecast is adopted to indicate the future evolution
of wind and rain, i.e., the computation of the wind speed or rainfall intensity at
a time T, using a given model and physical quantities gathered until T0, with
T0 < T, as input data. Forecasting is a particular type of prediction. Although
the method proposed in this article is not concerned with forecasting, some of
the literature cited about the temporal correlation of wind and rain deals with
forecasting.
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Both empirical equations and ML regression techniques pre-
dict wind and rainfall at the time the underwater noise is
measured, possibly averaging over a given time interval (the
most common is 1 h) to improve accuracy and robustness. The
innovative contribution of this article is to introduce temporal
correlation in the wind and rainfall prediction: to obtain the
prediction at a given time interval, the underwater noise samples
collected in several previous intervals are individually exploited.
To model the temporal correlation of wind speed and rainfall
intensity, and to set the regressor that takes into account the
current and previous noise samples, it was decided to use the
ML tools already adopted for wind and rainfall forecasting in
the meteorological field.

To the best of the authors’ knowledge, no one has previously
tried to use the temporal memory of wind and rainfall to improve
predictions performed by using underwater noise. Instead, the
temporal correlation has been exploited to forecast wind and rain
using the present and past values of these two quantities and, in
some cases, the values of other meteorological quantities. Con-
cerning the hourly average of wind speed, the autocorrelation
functions estimated at seven different locations are shown in
[20]. Based on the observation that the correlation coefficient
(CC) generally remains above 0.8 in the first hour and above
0.5 in the first 4 h, several techniques have been proposed [21],
[22], [23], [24], [25], [26], [27] for forecasting wind speed, from
a few minutes to a few hours ahead, using the past values of
the wind speed itself. Both methods for the statistical analysis
of time series, such as autoregressive moving-average, and ML
models, such as support vector machines and artificial neural
networks, have been tested and compared. In recent years, the
long short-term memory (LSTM) architecture, a recurrent neural
network (RNN) used in the field of deep learning, has attracted
particular attention [25], [26], [27]. In addition, the advantage
of averaging subsequent forecasts (at 10-min intervals) to obtain
the hourly average forecast has been reported [23].

Similarly, for rainfall intensity, both statistical analysis of time
series and ML models have been proposed to forecast precipita-
tion over successive days [28], [29], [30]; successive hours [31],
[32], [33], [34], [35]; or sequences of shorter intervals [36].
For short-term forecasting (i.e., limited to a few hours ahead),
the input variables generally consist of the rainfall intensity,
and sometimes other meteorological quantities, recorded over a
period going from the last 45 min to the last 3 h [31], [32], [33],
[34], [35], [36]. As for wind, the most recent contributions [29],
[30], [34], [35] focus on the LSTM network. According to the
results reported in previous papers, Barrera-Animas et al. [35]
state that forecast models based on LSTM networks “outperform
other models in the task of forecasting rainfall on an hourly, daily,
and monthly basis.”

This article exploits a sequence of underwater acoustic noise
spectra covering a period of approximately 16 months with a
10-min time interval, acquired at a depth of 36 m on a 1200-m
seabed. The acoustic data are synchronized with measurements
of wind speed and rainfall intensity taken at the same location,
using a sonic anemometer and a rain gauge mounted 10 m above
sea level. This data set has already been used to predict hourly
averages of wind speed and rainfall intensity [11], [15], [18], [19]

by applying both empirical equations and ML techniques, in both
cases without considering temporal memory. The best results
for wind prediction are those reported in [19] where the RF
regression [16], [17] and the average of consecutive predictions
(namely, six predictions at 10-min intervals were averaged to
yield the hourly average) were adopted. For rainfall prediction,
the best results in [15] were obtained with an RF regressor
fed by the hourly averaged spectra, using only a fraction of
the mentioned data set. Both in [15] and [19], as well as in
all other papers using underwater noise, only noise samples
collected during the interval in which the wind or rainfall is
predicted are exploited. In contrast, the LSTM network [37],
[38] is used in this work to model the temporal correlation of the
two meteorological phenomena under consideration and exploit
antecedent noise samples for their prediction.

The assessment of LSTM networks for wind and rainfall
prediction was performed both in chronological order (i.e., using
the first noise samples for the model training and the remaining
samples to test it) and by K-fold cross-validation (i.e., the data
set is split into K subsets. K−1 subsets are used for the model
training and the remaining one to test it; this is repeated until each
subset has been used to test the model [17]). For comparison,
the same testing approach is applied to an RF regressor, which
is considered by the literature to be one of the best options [15],
[19] when temporal memory is not considered. With both LSTM
and RF, six consecutive predictions are averaged [19] to compute
the hourly average of wind speed and rainfall intensity.

The importance of introducing temporal correlation lies in
a significant improvement in the prediction accuracy, both in
general and in cases where wind speed is particularly high.
The main limitation reported for the RF regression [19] is the
underprediction for high wind speeds, probably due to the low
probability of such values occurring. The LSTM network signif-
icantly reduces this problem. In addition to increased accuracy,
robustness is also an important feature of the method proposed
in this article: all acoustic signals acquired are used to predict
wind and rainfall, with no samples discarded because they are
altered by noise from passing ships, the presence of animals, or
other sources. In this way, the temporal resolution in wind and
rainfall prediction is maintained and any possible error in the
prior classification of acoustic samples (e.g., discarding samples
that are not really blurred by ship noise) is avoided.

However, the dependence of the results on the location where
the acoustic system is deployed remains to be verified. If the
acoustic propagation and meteorological conditions that charac-
terize the location are kept almost unaltered, it is reasonable to
assume that the trained system may retain performance similar to
that reported in this article. If, on the other hand, the propagation
and meteorological conditions change significantly, partial or
total retraining will be necessary and performance fluctuations
cannot be excluded.

The rest of this article is organized as follows. Section II
describes the experimental data set, the models for wind and
rainfall prediction encompassing the temporal correlation, and
the performance assessment. Section III reports the results ob-
tained and discusses the importance of modeling the temporal
correlation. Finally, Section IV concludes this article.
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Fig. 1. Distribution of (a) wind speed and (b) rainfall intensity in the period
from June 17, 2011 to October 10, 2012. Only rainfall samples greater than
0.1 mm/h are considered.

II. MATERIAL AND METHODS

A. Experimental Measurements

Underwater noise, wind speed, and rainfall intensity were
gathered from June 17, 2011 to October 10, 2012. In this time
window, data were collected without a fixed time step, common
to all instruments, but in such a way that it is possible to
organize them in 10-min intervals. The data acquisition process
experienced only a few short interruptions, usually for system
maintenance, the longest of which was about one day (i.e., May
10, 2012). The total number of samples recorded at 10-min
intervals is 69 120. All the sensors were installed on the W1M3A
meteo-oceanographic observatory part of the EMSO-ERIC net-
work of Eulerian stations [39]. This buoy was moored on a deep
seabed of 1200 m, about 80 km off the Ligurian coast, in the
northwestern part of the Mediterranean Sea (see details in [40]).

The wind speed was measured by a WindSonic 2-D sonic
anemometer, mounted 10 m above sea level on the buoy trellis.
At the same height, the rain gauge Vaisala Raincap Sensor was
mounted, comprised of a Vaisala Weather Transmitter WXT520,
used to measure the rainfall intensity [11], [41]. Anemometer
measurements acquired at 5-s intervals were averaged within
the 10-min intervals in which the shared time grid is organized.
Analogously, rain gauge measurements acquired at 5-s intervals
were accumulated within the 10-min intervals and expressed
in millimeters per hour. These measurements are assumed
to be the ground truth and will be referred to as the actual
wind speed and rainfall intensity values. With reference to the
whole period considered, Fig. 1 shows the distribution of wind
speed measurements, ranging from 0.4 to 20.7 m/s, and that
of rainfall intensity measurements above 0.1 mm/h (i.e., the
output resolution of the deployed sensor), with an average of
2.5 mm/h and a maximum of 51.5 mm/h.

The underwater acoustic noise was acquired by a dedicated
oceanic recorder, based on passive aquatic listener technology
[12], [41], [42], clamped to the body of the platform at a depth of
36 m. The recorder was powered by an internal battery assuring
long-term operation and equipped with a low-noise wideband
hydrophone (Hi-Tech-92WB) with a sensitivity of –160 dB

relative to 1 V/μPa. The acoustic system was set up to acquire an
acoustic noise snapshot every 10 min, but when significant noise
changes were automatically detected, the system reduced the
interval between successive snapshots [41], [42]. For this reason,
in the available data set, there are on average seven acoustic noise
snapshots per hour. Each snapshot consists of a time series of
4.5 s, sampled at 100 kHz, which is processed on board to obtain
a spectrum composed of 64 frequency bins, with a resolution of
0.2 kHz from 0.1 to 3 kHz and 1 kHz from 3 to 50 kHz. When
more than one acoustic snapshot is contained within a given
10-min interval, the spectrum associated with that interval is
obtained by averaging the available data and is referred to as
an instantaneous spectrum. Examples of the collected spectra,
depending on wind and rain, are shown and discussed in [18]
and [19].

As the anemometer and rain gauge data are acquired every 5 s
and averaged/cumulated, respectively, over the 10-min interval,
wind and rain variations on a time scale of less than 10 min are
filtered out and are no longer detectable in the ground truth data.
In contrast, acoustic noise is acquired for a duration of 4.5 s only
once (or at most very few times) in a 10-min interval. Unlike the
anemometer and rain gauge, phenomena with a time scale of
less than 10 min can strongly influence noise measurements.
From a spatial point of view, anemometer and rain gauge data
are acquired exactly at the location of the buoy. In contrast, the
noise collected by the hydrophone at a depth of 36 m is mainly
generated inside a circle on the sea surface (centered on the
buoy) with a radius of approximately 100 m [11].

Therefore, while the data from surface sensors (i.e., ground
truth data) come from a precise location but have undergone
temporal average, the noise data have a precise temporal ori-
gin but have undergone spatial average. These discrepancies
may contribute to the poor agreement between predictions and
ground truth data that has been reported when working on single
10-min intervals [19] and may explain why averaging operations
over longer time intervals (typically, 1 h) achieve significantly
better agreement [19].

B. Recurrent Neural Networks (RNNs) and LSTM Networks

Deep-learning architectures are inspired by the processing
schemes of biological neural networks. They are generally struc-
tured in multiple layers to progressively extract higher-level
information from the raw input data. Each layer is composed of a
collection of units, called artificial neurons, that are connected to
the units of the adjacent layers. In analogy with their biological
counterparts, artificial neurons perform local processing on the
signals that are received from the upstream units and then
transmit such processed signals to the downstream neurons in
the network. The local processing is parametrized by a set of
weights and bias terms.

Specifically, each unit performs a weighted average of the
input data and applies a nonlinear activation function after
adding a bias term. Let x = [x1, x2, . . . , xn] be an input vector
and g(·) be the nonlinear activation function, then the output yu
of a single neuron is computed according to

yu = g

(
n∑

i = 1

wi xi + b

)
= g (w · x+ b) (1)
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Fig. 2. (a) Single processing unit. (b) Overall architecture of a feed-forward
network.

where w = [w1, w2, . . . , wn] is a vector containing all the
weightswi and b is the bias term. In a multilayer (deep) network,
both the weights and the bias terms of all the units in all the layers
(namely W and B) are optimized during the training phase by
minimizing a loss function Q based on a labeled training set

(W ∗, B∗) = arg min
(W,B)

Q (y∗,y) (2)

where y∗ is the collection of labels in the training data set and
y is the collection of output provided by the network when
each element of the training set is fed as input. In particular,
each element y∗ is the label that, according to the training set,
corresponds to the input x and y is the output of the network
whenx is fed as input. Fig. 2 shows an example of a feed-forward
network with details on the single processing unit and overall
network architecture.

RNNs [43] are a family of neural networks that have been
specifically designed to process sequential data. Just as convolu-
tional networks [44] can scale to images with large sizes, RNNs
can scale to long sequences, enabling applications that would be
impractical for standard networks without sequence-based spe-
cialization. The main foundation lies in the parameter-sharing
strategy. In case separate parameters are used for each time
step within the input sequence, it would not be possible to
generalize to lengths that are not present in the training data, nor
to share statistical strength across different sequence lengths or
across different positions in time. Indeed, parameter sharing is
particularly important when a specific piece of information can
occur at many different positions [38].

Following the philosophy of dynamical systems, RNNs are
based on the concept of state. In fact, even if they share
parameters across time, they propagate the state information
along the sequence. The state is then used to augment the
output with information related to the whole input sequence.
For the sake of simplicity, let us focus on a scalar input se-
quence x = {x1, x2, . . . , xn} and a scalar output sequence
y = {y1, y2, . . . , yn} . At each time index t, the output is
computed according to

ht = g
(
wx · xt + wh · ht−1 + bx

)
(3)

yt = g
(
wy · ht + by

)
(4)

where ht is the hidden state at the time index t and
(wx, wh, wy, bx, by) are the weights and bias terms that are
shared across the different time steps. Unlike the case of the
feed-forward neural network above, the weights and bias terms
are divided into multiple sets due to the increased number of

computations that are required to integrate the state information
in the processing scheme. The extension to the case of nonscalar
inputs and multiple layers is straightforward and only requires
substituting the scalar weights with vectors as seen previously.
A graphical representation of the simplified case is provided
in Fig. 3, where both the unfolded sequence and the recursive
representation are shown.

One of the main drawbacks of RNNs as seen so far is
their difficulty in handling long-term dependencies [45]. LSTM
networks are a special kind of RNN that can overcome this
limitation by learning such long-term dependencies [37]. The
general idea is similar to the RNN case, with the recurrent
structure and the parameter-sharing strategy across different
time steps. Nevertheless, LSTM networks have been designed to
augment state information with the concept of memory. Indeed,
they do propagate both the hidden state ht and a cell state ct

from one time step to the following.
The architecture of an LSTM unit is depicted in Fig. 4, where

a comparison with the simple RNN unit is shown. For the sake
of simplicity, the weights are omitted in the representation of
the LSTM unit. Each LSTM unit contains a cell state and three
gates implemented via sigmoidal units σ(·): a forget gate f t

controlling the amount of memory to keep; an input gate it

controlling the amount of memory that the current input can
modify; and an output gate ot deciding which part of the cell
state to use to update the hidden state, and thus to compute the
output. It is worth noting that the output of a sigmoidal unit
ranges between zero and one, thus determining the amount of
information that should be let through the resulting gate for each
component.

For ease of notation and consistency with the RNN
case above, let us consider a univariate input sequence
x = {x1, x2, . . . , xn} and a univariate output sequence
y = {y1, y2, . . . , yn} . The unit takes the input value at the
current time step xt and the hidden state at the previous time
step ht−1 to update the internal hidden state and compute the
output according to the following equations:

f t = σ
(
wf

[
ht−1, xt

]
+ bf

)
(5)

it = σ
(
wi

[
ht−1, xt

]
+ bi

)
(6)

c̃t = tanh
(
wc

[
ht−1, xt

]
+ bc

)
(7)

ct = f t ct−1 + it c̃t (8)

ot = σ
(
wo

[
ht−1, xt

]
+ bo

)
(9)

ht = ot tanh
(
ct
)

(10)

yt = g
(
wy · ht + by

)
(11)

where (wf ,wi,wc,wo, wy) and (bf , bi, bc, bo, by) are the
learnable weight vectors and bias terms, and [ht−1, xt] repre-
sents a vector containing the previous hidden state ht−1 and the
input xt. Also, in this case, the extension to the multivariate
case is straightforward. The rationale of said processing scheme
is that, through the forget gate f t, the LSTM unit decides which
part of the cell state (i.e., the memory) to forget. Then, a new
candidate memory c̃t is computed based on the hidden state and
input value. Therefore, the cell state is updated according to the
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Fig. 3. Graphical representation of an RNN: unfolded (left) and compact (right).

Fig. 4. Comparison between (a) standard RNN unit and (b) LSTM unit.

filtering behavior of the input gate it. Finally, the hidden layer
is updated based on the updated cell state ct and according to
the output gate ot.

C. LSTM Architecture for Wind and Rainfall Prediction

In [19], it was demonstrated that the prediction obtained by
averaging a sequence of successive predictions, each generated
by feeding the instantaneous noise spectrum into the regressor,
is better than the prediction generated by feeding the average
noise spectrum into the regressor. Namely, the wind speed on
an hourly basis was computed by averaging six predictions
obtained from instantaneous spectra acquired every 10 min,
as shown in Fig. 5. In this scheme, the model (e.g., an RF
regressor) generates predictions without considering the spectra
of previously recorded noise.

To integrate time correlation into the prediction process, it is
possible to design an LSTM architecture in such a way that
predictions made every 10 min can be generated using not
only the most recent instantaneous spectrum but also a given
number of previous instantaneous spectra. The average of suc-
cessive predictions (all obtained taking into account the temporal

correlation of the phenomenon) will provide the compounded
prediction, for instance on an hourly basis.

Fig. 6 shows an example of a many-to-one LSTM network
designed to predict hourly average wind speed or rainfall inten-
sity using instantaneous underwater noise spectra, organized in
10-min intervals. With this kind of LSTM network, an input
sequence of a given length produces a single instantaneous
output that, thanks to the state information, depends on the
whole input sequence. Using t to identify a current time in-
dex in the 10-min grid, each instantaneous prediction ŷt is
computed based on L instantaneous spectra: the current spec-
trum and the last L− 1 spectra . Let x denote a sample, and
let also x = [S(f1), . . . , S(fNF

)] be a vector composed of
the NF spectral bins S(fk) , k = 1, . . . , NF (in this study,
NF = 64). Denoting with xt the sample collected at time t,
let Xt = [xt−L+1, . . . ,xt] be the collection of L consecutive
samples with t as last time index. Then, the instantaneous
prediction ŷt is computed on the basis of the sequence Xt.
Specifically, Fig. 6 provides a graphical representation of the
proposed network in case the compounding is done on an hourly
basis and the input sequence has length L = 3.

It is worth noting that two main hyperparameters are influ-
encing the architecture of the proposed network: the number of
LSTM units Nh and the number of dense units Nd. The former
specifies the dimension of the compressed representation ht,
whereas the latter specifies the number of hidden neurons in
the feed-forward neural network that is applied to the output
of the LSTM network to generate the prediction. Indeed, the
output of the LSTM network is not scalar, whereas the target
of the regression task is the estimation of a scalar quantity
(i.e., the wind speed or rainfall intensity). Therefore, a simple
feed-forward network is applied to the output of the LSTM to
reduce the dimensionality and compute the prediction. Fig. 7
depicts the complete architecture (Fig. 6 proposed a simplified
representation for the sake of readability). The LSTM output is
fed to a dense hidden layer composed of Nd units, whose output
is processed by a single neuron to produce the scalar output.

D. RF Regression

In [15], [18], and [19], it was shown that detection and
regression by ML techniques, exploiting all the spectral bins,
achieve better performance than those obtained from empirical
rules and equations, which use a very limited set of spectral
bins. Of the many ML techniques tested for wind and rainfall
prediction, RF has always provided satisfactory results, often the
best among those collected. For this reason, in this article the
results obtained from the LSTM networks, exploiting temporal
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Fig. 5. Prediction scheme in which the hourly average (green dot) is obtained compounding six predictions generated by the model M (e.g., an RF regressor) fed
by the instantaneous spectrum (blue dot). Temporal memory is not taken into account.

Fig. 6. Prediction scheme in which the hourly average (green dot) is obtained compounding six predictions generated by an LSTM network fed by the last three
instantaneous spectra (blue dots). Although they are the same network, LSTM networks applied for prediction at successive time indexes have different colors for
ease of visualization.

correlation (as shown in Fig. 6), will be compared with those
provided by an RF regressor, trained with the same samples,
without considering any memory (as shown in Fig. 5). An
introduction to RF regression in relation to wind prediction
can be found in [19]; a more methodological, rigorous, and
comprehensive RF description can be found in [16] and [17].

As with LSTM, with RF the hourly average wind speed or
hourly average rainfall intensity is also calculated from the
average of six instantaneous predictions at 10-min intervals (i.e.,
through prediction compounding), as shown in Figs. 5 and 6.

E. Performance Assessment

Four different metrics are adopted to assess the accuracy and
bias of the prediction approaches mentioned above: root mean
squared error (RMSE), mean absolute error (MAE), Pearson
CC, and mean error (ME). Denoting with yi the ith hourly

average of the actual wind speed or rainfall intensity, ŷi the
corresponding prediction (obtained by averaging a given number
of instantaneous predictions ŷt; namely, six predictions in this
study), H the total number of hourly samples, μy the average of
the H actual values yi, and μŷ the average of the H predictions
ŷi, the four metrics are computed as follows:

RMSE =

√
1

H

∑H

i=1
(ŷi − yi)

2 (12)

MAE =
1

H

H∑
i = 1

|ŷi − yi| (13)

CC =

∑H
i=1 (ŷi − μŷ) (yi − μy)√∑H

i=1 (ŷi − μŷ)
2∑H

i=1 (yi − μy)
2

(14)
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Fig. 7. Complete and unfolded architecture of the proposed LSTM-based
model for wind speed and rainfall intensity prediction.

ME =
1

H

H∑
i = 1

ŷi − yi. (15)

The accuracy is assessed through RMSE and MAE, which
measure, in two different ways, the distance between actual
values and the corresponding predictions. The prediction bias
is measured through the ME. Finally, CC is a normalized metric
that evaluates the tendency of the actual quantity and prediction
to be simultaneously greater than, or simultaneously less than,
their respective mean values. These metrics are used when the
model assessment is performed both in chronological order and
by K-fold cross-validation [17]. In the latter case, the metrics are
computed on the whole data set, but never involve training data
in the prediction test. Because the data set is split in K subsets
nonoverlapped and of approximately equal size (referred to as
folds), it is possible to evaluate the dispersion of the metrics: the
RMSE, MAE, CC, and ME can be computed K times, one for
each fold used for the test, and, in the end, their averages and
standard deviations will be available.

III. RESULTS AND DISCUSSION

Although the total number of data set samples is 69 120,
acquired at 10-min intervals, the number of hours populated by
6 samples is 11 509, involving 69 054 samples. Due to the need
to work with homogeneous hourly samples, the remaining 66
samples are discarded. Thus, 69 054 instantaneous noise spectra,
11 509 hourly averaged wind speed actual values, and 11 509
hourly cumulative rainfall intensity actual values are used for
the experimentation of the prediction models. It is worth noting
that of the 69 054 instantaneous spectra, none are discarded due
to the presence of noise from passing ships, animals, or other
sources.

When the chronological order is adopted to split the data set
into a training set and a test set, the samples collected during the
first 9400 h (i.e., approximately 13 months) are used to compose
the training set and those collected during the last 2000 h, ranging
from July 19, 2012 to October 10, 2012, are used to compose
the test set.

All the experiments are run on a PC with an Intel Core i7-4790
CPU and 24 GB of RAM memory. The programming language

is Python, and the software is run in an Anaconda virtual en-
vironment. The Scikit-learn library is used for the experiments
related to the RF regression, whereas the TensorFlow library
is used for the LSTM implementation. In this configuration, the
training times of the LSTM and the RF models are approximately
20 min and 15 s, respectively.

A. Wind Speed Prediction

The hyperparameters of the LSTM network have been op-
timized following a grid search strategy and taking into con-
sideration the chronological order scenario. In particular, the
hyperparameters that have been considered are as follows:

1) the length of the input sequence for the LSTM model, L,
which is selected among 2, 3, 6, and 9;

2) the batch size, selected between 32 and 64;
3) the number of LSTM units, Nh, between 64 and 128;
4) the number of dense units, Nd, between 32 and 64.
Concerning Nh and Nd, the choices are meant to test the

tradeoff between a simpler architecture aimed at keeping over-
fitting under control and a more complex architecture that may
prevent high bias error [38]. Values outside the considered ranges
were experimented during a preliminary analysis of the hyper-
parameters and resulted in high-bias and high-variance models,
with poor performance. Conversely, the batch size controls the
way in which the training data are handled during the training
process and influences the dynamics of the learning algorithm.
The backpropagation process allows one to differentiate the loss
function and compute the gradients used to update the weights of
the neural network. The estimation of such gradients improves
with the number of training samples used in each update, i.e., the
batch size. While a larger batch size improves the estimate of the
gradients, a smaller batch size helps reduce the time and memory
requirements of the training procedure. Indeed, the weights are
updated more frequently (i.e., once every bs samples, with bs
being the batch size, not once every time the entire data set is
processed) and only a subset of the samples (i.e., bs samples) is
loaded in memory to compute the loss function and estimate the
gradients.

Table I reports the performance of the combinations of the
hyperparameters that provide the 5 lowest RMSE values: the
configuration providing the best accuracy is given by a se-
quence length L = 3, a batch size of 64, several LSTM units
Nh = 64, and a set of Nd = 32 dense units. Setting L = 3
means performing the instantaneous prediction using the noise
samples recorded at the current time, 10 min before and 20 min
before. The validity of the choice is confirmed in Fig. 8, in which
the RMSE and CC as a function of L are shown, averaged over
all values of the other hyperparameters (i.e., averaging over all
possible models, once the length of the sequenceL is fixed). This
result is consistent with the conclusions of [23] where, working
with wind speed measurements in 10-min intervals, the best
forecast (the one 10 min ahead) was obtained using the last two
or three measurements.

Concerning the hyperparameters of the RF model, according
to the analysis performed in [19] using the same data set, 50 trees
are used and 32 features (out of the 64 spectral bins) are randomly
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TABLE I
LSTM NETWORK CONFIGURATIONS THAT PROVIDED THE LOWEST RMSE VALUES WHEN THE WIND PREDICTION IS ASSESSED IN CHRONOLOGICAL ORDER

TABLE II
WIND PREDICTION METRICS FOR THE LSTM NETWORK AND RF REGRESSOR, ASSESSED IN CHRONOLOGICAL ORDER AND BY K-FOLD CROSS-VALIDATION

Fig. 8. (a) RMSE and (b) CC for the wind prediction in chronological order, as
a function of the extent of the temporal correlation considered, i.e., the sequence
length L. The values of RMSE and CC are averaged over all values of the other
hyperparameters.

selected at each node. As demonstrated in [19] a change in these
values, even over wide intervals, does not significantly affect the
performance.

When the chronological order scenario is applied (train-
ing with the first 9400 h and test with the last 2000 h), the
performance achieved by the LSTM network and RF model,
configured as described above, are summarized in Table II. RF
performance is almost identical to that obtained in [19], working
on the same training and test data. The values of the four metrics
for the LSTM regressor are better than those obtained from the
RF regressor. Fig. 9 provides visual confirmation of this fact,
showing the scatter plots for the two prediction models, along
with the lines that best fit the predictions (i.e., the regression
lines) and the quadrant bisectors.

Fig. 9. Scatter diagrams of the wind predictions generated by (a) LSTM
network and (b) RF regressor in the chronological order assessment. The lines
that best fit the predictions are inserted (golden lines) in comparison with
quadrant bisectors (black lines).
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Fig. 10. Performance metrics for the chronological order assessment, com-
puted considering the samples whose actual wind speed is in [R, R+2], R = 0,
2, 4, . . . m/s. (a) RMSE. (b) CC. (c) ME.

The main problems encountered in [19] with RF regression
are the failure to predict the wind when its speed is below 2 m/s
and the considerable underprediction for wind speeds above
12 m/s (resulting in increased RMSE for the corresponding
samples). Fig. 10 shows the RMSE, CC, and ME for samples
whose actual wind speed is included in [R, R+2], R = 0, 2,
4, . . . m/s, comparing the predictions performed by RF and
LSTM. On the one hand, the LSTM regression does not solve
the problem in the interval 0 to 2 m/s: in fact, it is well known
that wind produces underwater noise only when its speed is
greater than a threshold value, between 2 and 3 m/s [4], [8],

[9], [11], [12], [19], below which acoustic prediction becomes
impossible. On the other hand, the introduction of the tempo-
ral correlation through the LSTM network solves, to a large
extent, the underprediction problem2 above 12 m/s, especially
in the interval 14 to 16 m/s. While the ME reduction implies
a lower prediction bias, the RMSE decrease implies a better
prediction accuracy. In addition, the LSTM regression provides
a CC close to 0.7 for speeds greater than 12 m/s, whereas
the CC of the RF regressor in the interval 14 to 16 m/s was
approximately 0.

To test the two prediction models using all the samples com-
posing the data set (thus testing the models in all seasons of
the year), the K-fold cross-validation strategy can be adopted,
as already mentioned. To keep the temporal evolution of the
observed phenomenon unaltered, the data set is not shuffled
before the split in K subsets. In this way, the subset used for
the test represents a segment of the data set containing a fraction
of the samples (those not used for training) in their original
temporal sequence. It is possible that the subset used for the
test contains a rare event, not present in the subsets used for
training, making prediction particularly difficult. Shuffling the
data set avoids these criticalities, but it is not applied here to
better simulate a real-case scenario, where the model is called
to predict a set of consecutive samples.

The values of the four metrics obtained for the LSTM network
and RF regressor when K is set equal to 10 are entered in Table II,
including the average and standard deviation for each metric.
The scatter plots of the predicted values are shown in Fig. 11,
where all samples of the data set are present (i.e., including the
predictions made on each subset during the K training and test
cycles). Finally, in analogy with Fig. 10, the analysis of RMSE,
CC, and ME as a function of the wind speed interval, considering
the entire data set, is shown in Fig. 12.

The results of the K-fold cross-validation assessment, re-
ported in Table II, make some observations possible.

1) LSTM prediction outperforms RF prediction in terms
of RMSE, MAE, and CC, observing both average and
standard deviation.

2) The predictions show stable performance over the dif-
ferent subsets (i.e., folds) as the standard deviations of
RMSE, MAE, and CC are small compared to the re-
spective average. The ME is an exception: although the
average is less than 0.04 m/s, the standard deviation is
larger, revealing that the individual folds are affected by
some bias. In any case, the bias is limited as the standard
deviation is less than 0.17 m/s for the RF prediction and
less than 0.14 m/s for the RMSE prediction. In this case,
LSTM is also advantageous compared to RF.

3) For both LSTM and RF, the performance obtained in
the K-fold cross-validation case is slightly worse than
the respective performance obtained in the chronological
order case. Only CC shows a minor improvement.

4) The results obtained in [19] by using the RF regressor and
applying the K-fold cross-validation on the same data, but

2As noted in [19], this problem is probably due to the small number of samples
in the dataset for which the wind speed exceeds 12 m/s.
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Fig. 11. Scatter diagrams of the wind predictions generated by (a) LSTM
network and (b) RF regressor in the K-fold cross-validation assessment. The
lines that best fit the predictions are inserted (golden lines) in comparison with
quadrant bisectors (black lines).

after the data set shuffle operation, show better accuracy:
RMSE was 0.81 m/s and MAE was 0.62 m/s. This confirms
what was mentioned above: the shuffle eliminates the
criticalities inherent in following the temporal evolution of
the phenomenon, performing the prediction on temporal
segments of which no sample was used in the training
phase. Although it achieves lower accuracy, the test with-
out shuffle (the results of which are reported in Table II) is
more consistent with the real deployment of the prediction
system at sea.

The analyses in Figs. 11 and 12 confirm that the introduction
of the temporal correlation significantly reduces the underpre-
diction problem above 12 m/s [19], both in terms of bias and
accuracy. When, through the K-fold cross-validation strategy, all
the data set samples are considered, the LSTM network keeps
the ME above –0.6 m/s and the RMSE below 1.65 m/s, also in
the interval 14 to 16 m/s.

B. Rainfall Intensity Prediction

As for wind speed prediction, the LSTM network hyperpa-
rameters have been optimized following a grid search strategy
and taking into consideration the chronological order scenario.
The values considered are as follows:

Fig. 12. Performance metrics for the K-fold cross-validation assessment,
computed considering the samples whose actual wind speed is in [R, R+2],
R = 0, 2, 4, . . . m/s. (a) RMSE. (b) CC. (c) ME.

1) the length of the input sequence, L, selected among 3, 6,
and 9;

2) the batch size, selected between 1 and 2;
3) the number of LSTM units, Nh, between 32 and 64;
4) the number of dense units, Nd, among 16, 32, and 64.
It is worth noting that the batch size changes consistently from

the wind prediction case. On the one hand, larger batch size is
generally able to afford better regularization properties. On the
other hand, since precipitation events are rare (587 rainy samples
out of the 11 509 hourly samples), rainy samples negligibly
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TABLE III
LSTM NETWORK CONFIGURATIONS THAT PROVIDED THE LOWEST RMSE VALUES WHEN THE RAINFALL PREDICTION IS ASSESSED IN CHRONOLOGICAL ORDER

Fig. 13. (a) RMSE and (b) CC for the rainfall prediction, as a function of
the extent of the temporal correlation considered, i.e., the sequence length
L. The values of RMSE and CC are averaged over all values of the other
hyperparameters.

influence the update of the network weights during the training
process if a large batch size is used. Conversely, a small batch
size ensures that the rainy samples, when processed, give a
significant contribution to the update of the weights. Concerning
Nh andNd, as for the wind speed prediction case, the grid search
boundaries have been chosen to study the tradeoff between
the complexity of the model and the resulting generalization
capabilities. In this case, again, values outside the selected ranges
gave a poor performance, due to high bias or overfitting.

Table III reports the performance of the combinations of the
hyperparameters that provide the 5 lowest RMSE values: the
configuration providing the best accuracy is given by a sequence
length L = 6, a batch size of 2, several LSTM units Nh =
32, and a set of Nd = 64 dense units. Setting L = 6 means
performing the instantaneous prediction using the noise samples
recorded from 50 min earlier to the current time. The validity of
the choice is confirmed in Fig. 13, in which the RMSE and
CC as a function of L are shown, averaged over all values
of the other hyperparameters (i.e., averaging over all possible
models, once the length of the sequence L is fixed). This result
is consistent with the conclusions of [36], where, working with
15-min-interval rainfall measurements, the best forecast using
data collected at a single spatial point is obtained using the last
three measurements (i.e., a 45-min interval), and [34], where,
working with 10-min-interval rainfall measurements, the best
forecast is obtained using data collected in the last 60 min.

Concerning the hyperparameters of the RF model, as for
the wind prediction, 50 trees are used and 32 features (out of
the 64 spectral bins) are randomly selected at each node. The
authors verified that this choice provides the lowest RMSE in the
prediction of the rainfall intensity following the chronological
order scenario. However, a change in these values, even over
wide intervals, does not significantly reduce performance.

When the chronological order scenario is applied, the per-
formance achieved by the LSTM network and RF model, con-
figured as described above, are summarized in Table IV. The
metrics are calculated on the whole test set and on two subsets
of it: the samples where the actual rainfall intensity is greater
than zero (rainy samples) and those where the actual rainfall
is zero (nonrainy samples). The number of rainy samples is
equal to 70, whereas the number of nonrainy samples is equal
to 1930. Since for nonrainy samples the actual rainfall inten-
sity is zero, according to (14), the CC is indeterminate and
the corresponding boxes in Table IV are left empty. With the
sole exception of the ME for rainy samples, the values of the
four metrics for the LSTM network are significantly better
than those obtained from the RF regressor. Fig. 14 provides
visual confirmation of this fact, showing the scatter plots for
the two prediction models, along with the lines that best fit the
predictions (i.e., the regression lines) and the quadrant bisectors.
It is worth noting that the LSTM network provides precipitation
predictions with an RMSE of less than 0.77 mm/h when rainfall
is actually present and less than 0.06 mm/h in the absence of
rainfall.

The bias in the LSTM predictions for rainy samples
(ME = –0.276 mm/h), which is more significant than that
reported by the RF regressor (ME = –0.187 mm/h), is mainly
caused by some rainy samples, with an intensity below 1.6 mm/h,
for which the network predicts an intensity close to zero, as
visible in Fig. 14. This bias does not prevent the accuracy of the
predictions provided by the LSTM network for rainy samples
from being significantly better than that of the RF regressor, both
in terms of RMSE and MAE. The CC of the LSTM network is
also considerably higher.

In [15], a portion of the data set used in this article and an RF
regressor were employed to predict rainfall intensity, adopting
spectral compounding instead of the prediction compounding
adopted here (see Fig. 5). Rainy samples were split between the
training set and the test set, resulting in an RMSE of 1.514 mm/h.
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TABLE IV
RAINFALL PREDICTION METRICS FOR THE LSTM NETWORK AND RF REGRESSOR, ASSESSED IN CHRONOLOGICAL ORDER

Fig. 14. Scatter diagrams of the rainfall predictions generated by (a) LSTM
network and (b) RF regressor in the chronological order assessment. The lines
that best fit the predictions are inserted (golden lines) in comparison with
quadrant bisectors (black lines). A zoom of the region near the origin of the
axes is inserted.

According to Table IV, the RMSE of the RF regressor developed
in this article, considering only rainy samples, is 1.210 mm/h:
the improvement over [15] is probably due to the advantages of
prediction compounding, as demonstrated in [19] for wind pre-
diction. In this perspective, the RMSE of 0.768 mm/h obtained
through the LMTS network on the same samples assumes further
significance.

To test the two prediction models on several rainy samples
larger than the 70 samples present in the last 2000 h and in all

Fig. 15. Cumulative rainfall computed with actual measurements and predic-
tions by the LSTM network and RF regressor. The red ellipse shows a time when
the two prediction models fail to follow the actual rainfall accumulation.

seasons of the year, a K-fold cross-validation strategy, with K =
10, was adopted. For rainfall prediction, as in the case of wind, no
shuffle is applied to the data set before splitting it into K subsets.
Overall, 587 rainy samples out of 11 509 samples are available in
the data set. The values of the four metrics for the LSTM network
and RF regressor are entered in Table V, including the average
and standard deviation. Since some of the ten subsets have almost
no rainy samples, the CC for these subsets is meaningless and
disturbs the average and standard deviation calculation. For this
reason, only one CC value, calculated over the whole data set,
was included in Table V.

A comparison between Tables IV and V reveals that by mov-
ing from the chronological order to the K-fold cross-validation
assessment, the results deteriorate significantly, particularly
those of the LSTM network. The inspection of the cumulative
rainfall profiles (a quantity of special interest in climate science
studies) allows one to identify the main problem. Fig. 15 shows
these profiles for the entire data set, computed by setting equal to
zero all the rainfall values below 0.1 mm/h (i.e., the output res-
olution of the deployed rain gauge). The two prediction models
work properly (especially the LSTM network) until the hourly
sample 3380, where the actual cumulative rainfall increases
at great speed. Both the prediction models fail to follow the
gradient. Subsequently, they resume following the actual trend
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TABLE V
RAINFALL PREDICTION METRICS FOR THE LSTM NETWORK AND RF REGRESSOR, ASSESSED BY K-FOLD CROSS-VALIDATION.

TABLE VI
RAINFALL PREDICTION METRICS FOR THE LSTM NETWORK AND RF REGRESSOR, ASSESSED BY K-FOLD CROSS-VALIDATION (REMOVING TWO

FLOODING DAYS FROM THE DATA SET)

(the LSTM network is particularly accurate in this respect) but
the gap that occurred at the mentioned time remains. This heavy
rain event corresponds to a particularly severe flood that struck
the city of Genoa (on the Ligurian coast, approximately 80 km
away from the buoy) on November 4th and 5th, 2011 causing
damage and loss of lives. When the related acoustic samples are
in the fold used for the test phase, both LSTM and RF are unable
to predict such heavy rainfall because no similar event is present
in the remaining folds (i.e., those used as the training set).

Due to the exceptional nature of the flooding, the tenfold
cross-validation assessment is repeated using a data set from
which all samples collected on the two days mentioned are
removed. The values of the four metrics for the LSTM network
and RF regressor are entered in Table VI, including the average
and standard deviation, where applicable. The scatter plots of
the predicted values are shown in Fig. 16, where all samples of
the data set are comprised. Finally, Fig. 17 shows the cumulative
rainfall profiles, computed by setting equal to zero all the rainfall
values below 0.1 mm/h (i.e., the output resolution of the rain
gauge).

The results of the K-fold cross-validation assessment, re-
ported in Table VI, make some observations possible.

1) LSTM prediction outperforms RF prediction in terms
of RMSE and CC, observing both average and standard
deviation. For the rainy samples, this statement also holds
in terms of MAE and ME.

2) Although the standard deviations of RMSE, MAE, and CC
are lower than the respective averages, their magnitude
is significant, greater than what was reported in wind
prediction. This means that the prediction performance
shows considerable fluctuations over the different folds

that may also comprise different types of precipitation
(i.e., drizzle, stratiform, or convective).

3) For nonrainy samples, the RF regressor provides a lower
overprediction than the LSTM network. However, the ME
and MAE values for both prediction models are well below
0.1 mm/h, which is the output resolution of the deployed
rain gauge. The advantage of RF is therefore of little
importance. As the nonrainy samples are about 95% of
all samples, the lower overprediction of the RF regressor
is reflected on MAE and ME referred to all test samples:
their values for the RF regressor are lower than those for
the LSTM network.

4) For both LSTM and RF, the performance obtained in the
K-fold cross-validation case is worse than the respective
performance obtained in the chronological order case. The
worsening is more significant for rainy samples and for the
LSTM network.

The analyses in Figs. 16 and 17 confirm that the introduc-
tion of the temporal correlation significantly reduces the un-
derprediction that characterizes the RF regressor for rainfall
samples with an intensity higher than 5 mm/h. Indeed, the
line that best fits the LSTM predictions is much closer to the
quadrant bisector than that for the RF predictions. Furthermore,
over about 16 months of rainfall observation, the cumulative
precipitation profile computed using the LSTM predictions
closely follows, with small discrepancies, the shape, and magni-
tude of that computed from actual data. The maximum discrep-
ancy between the two profiles never exceeds 25 mm, despite
the accumulated precipitation amounting to around 700 mm at
the end of the period. In the case of the RF prediction, instead,
the profile is smoother, rising where it should remain constant
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Fig. 16. Scatter diagrams of the rainfall predictions generated by (a) LSTM
network and (b) RF regressor in the K-fold cross-validation assessment (remov-
ing two flooding days from the data set). The lines that best fit the predictions
are inserted (golden lines) in comparison with quadrant bisectors (black lines).
A zoom of the region near the origin of the axes is inserted.

and underestimating heavy rain events, in this way introducing
greater discrepancies. Nevertheless, the ME value reported in
Table VI for the “all test samples” case is very close to zero:
this allows RF to provide a cumulative prediction that does not
significantly diverge from the actual profile.

IV. CONCLUSION

This work demonstrates the value of considering temporal
correlation in wind and rainfall prediction from underwater
acoustic noise measurements. While previous articles have
shown that ML techniques can improve the accuracy of memory-
less prediction of wind and rainfall from underwater noise, com-
pared to that obtained with empirical equations,3 here it has been
shown that the LSTM architecture is a supervised ML technique
able to successfully model the temporal correlation which is
inherent in the meteorological phenomena mentioned. The study
focused on predicting hourly average wind speed and rainfall
intensity from data recorded every 10 min over a period of about
16 months. The acoustic data were used to generate predictions,

3It is worth recalling that improvement is achieved through richer input
information and at the cost of greater complexity.

Fig. 17. Cumulative rainfall computed with actual measurements and predic-
tions by the LSTM network and RF regressor (removing two flooding days from
the data set).

with and without temporal memory, computing the hourly av-
erage for the wind speed and hourly cumulative for the rain
intensity by compounding between all the instantaneous predic-
tions made within 1 h. The predictions were compared with wind
speed and rainfall intensity data measured above the sea surface,
at the same location as the acoustic recording. While the LSTM
network was used to include temporal correlation, memoryless
predictions were performed by means of an RF regressor, which
was particularly appreciated in the previous literature.

In wind prediction, the introduction of the two past spectra
in addition to the current one (i.e., going back 20 min) resulted
in better performance and, in particular, significantly reduced
the underprediction that occurs with RF regression when wind
speeds exceed 12 m/s. The assessment of ML models through
tenfold cross-validation without data set shuffle4 showed that
LSTM networks predict wind speed with RMSE of 0.843 m/s,
MAE of 0.665 m/s, and CC higher than 0.95. In the speed interval
from 14 to 16 m/s, the RMSE is kept below 1.65 m/s. This perfor-
mance was achieved without eliminating any acoustic samples:
it is, therefore, robust against other sources of underwater noise,
such as passing ships, and does not insert any time gaps in the
prediction sequence.

Concerning rainfall prediction, the introduction of the five
past spectra in addition to the current one (i.e., going back
50 min) resulted in performance significantly better than that
achieved by the RF regression. After removing the samples
collected during two days when a flood hit the city of Genoa
(about 80 km away from the sensors) from the data set, the LSTM
architecture, assessed through tenfold cross-validation without
shuffle, provided rainfall intensity predictions with RMSE of
0.223 mm/h, MAE of 0.070 mm/h, and CC of about 0.93.
Considering only the samples where rain is actually present,
the metrics are RMSE = 1.349 mm/h, MAE = 0.777 mm/h, and
CC = 0.922. Even for precipitation, acoustic samples affected
by other noise sources were not discarded.

4Each fold used to test the model is a particular segment of the dataset, which
preserves its original temporal order, and which was not used to train the model.
Finally, the model is tested using, fold by fold, the entire dataset.
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The use of temporal correlation not only improves the pre-
diction accuracy, it also reduces the fluctuation in performance
across the different folds that compose the data set. However,
while a training set with a duration of about 14.4 months (i.e.,
nine-tenths of the entire data set) ensures considerable stability
of performance in the case of wind, the same cannot be said for
rainfall. As the latter is a phenomenon observed in only about
5% of the available samples, it is difficult to train the regressor
for all possible rainy events. For example, despite training sets
of considerable duration, the regressor was not prepared for the
flood that occurred on the coast during the observed period. To
incorporate rainfall-related temporal memory and achieve more
stable performance, training sets of even longer duration would
probably be necessary.

Therefore, while wind prediction using LSTM networks can
be considered an advantageous option for the design of devices
operating at sea, in the case of rainfall, the encouraging results
obtained so far do not exclude the need for further investigation.
In addition, the dependence of the results on the site where
the acoustic system is installed remains to be verified. If the
underwater acoustic propagation or meteorological conditions
that characterize the site change significantly, it may be nec-
essary to re-train the system and the prediction accuracy may
vary. Future research could address these aspects. In particular,
domain adaptation is an ML technique [46] that could allow
the regression model, trained using a large amount of data, to be
retained and adapted to a new installation site thanks to a limited
number of samples acquired at the new site. The combined use
of samples acquired at different installation sites could alleviate
the need for registrations lasting many months to properly train
the system.
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