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A B S T R A C T   

The assessment of the uncertainty about the evolution of complex processes usually requires different re
alizations consisting of multivariate temporal signals of environmental data. However, it is common to have only 
one observational set. MarineTools.temporal is an open-source Python package for the non-stationary parametric 
statistical analysis of vector random processes suitable for environmental and Earth modelling. It takes a single 
timeseries of observations and allows the simulation of many time series with the same probabilistic behavior. 
The software generalizes the use of piecewise and compound distributions with any number of arbitrary 
continuous distributions. The code contains, among others, multi-model negative log-likely functions, wrapped- 
normal distributions, and generalized Fourier timeseries expansion. Its programming philosophy significantly 
improves the computing time and makes it compatible with future extensions of scipy.stats. We apply it to the 
analysis of freshwater river discharge, water currents, and the simulation of ensemble projections of sea waves, 
to show its capabilities.   

1. Introduction 

In environmental and engineering sciences, the understanding and 
quantification of the evolution of processes are highly related to the 
capacity to measure the variables involved and the ability to build up 
models capable to reproduce their interrelationships (Moges et al., 
2021). Some processes can be modeled as systems that respond to a 
forcing, usually represented by one or several input time series. If the 
driving agent has a random character, as with climate forced processes, 
it may be interesting to stochastically characterize the response. How
ever, for a given measured or projected time series, the model just 
provides a single realization of the output. Most processes are complex 
enough so that their statistical nature cannot be directly inferred from 
the joint distributions of the input variables. Under such circumstances, 
simulation techniques can be used to obtain a large number of input 
realizations whose responses constitute a sample of the output. From 
that sample, it is possible to assess the uncertainty that the response 
inherits from the forcing (see e.g. Baquerizo and Losada (2008); Meier 
et al. (2019)). The study of this type of simulation techniques is nowa
days a hot topic in climate driven processes (Refsgaard et al., 2007) and 

climate change projections (Kundzewicz et al., 2018; Ellis et al., 2021; 
Uhe et al., 2021). One of approaches consists in the stochastic charac
terization of a vector random process (VRP) coupling several probability 
models (PMs) which parameters are assumed non-stationary (NS), with 
a vector autoregressive model (VAR), which characterize the multivar
iate and temporal dependency [see Solari and Van Gelder (2011); Solari 
and Losada (2011) among others]. The theoretical applicability of the 
later approach has been illustrated in works where specific subsets of 
probability models were analyzed independently for different purposes, 
among others: (i) the observed wave climate variability in the preceding 
century and expected changes in projections under a climate change 
scenario (Lira-Loarca et al., 2021); (ii) the optimal design and man
agement of an oscillating water column system (Jalón et al., 2016; 
López-Ruiz et al., 2018), (iii) the planning of maintenance strategies of 
coastal structures (Lira-Loarca et al., 2020), (iv) the analysis of monthly 
Wolf sunspot number over a 22 year period (Cobos et al., 2022), and (v) 
the simulation of estuarine water conditions for the management of the 
estuary (Cobos, 2020). 

We follow a novel approach in MarineTools.temporal, a package 
included in MarineTools which is a Python framework that integrates 

* Corresponding author. Department of Structural Mechanics and Hydraulic Engineering, University of Granada, Edificio Politécnico, Campus de Fuentenueva, 
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software that can be used in the search for solutions to real engineering 
and marine problems. This “temporal” package is, to the best of the 
authors’ knowledge, the first open-source and free available general tool 
aimed at providing users with a friendly, general code to statistically 
characterize vector random processes (VRP) and to obtain realizations of 
them. It generalizes the above-mentioned approaches for VRPs whose 
components are NS and have piecewise or compound distributions 
defined by means of any number of arbitrary continuous distributions. 
Its programming philosophy, widely used in Python, significantly im
proves the computing time and allows the use of any probability dis
tributions included in future extensions of scipy.stats, the most widely 
used Python statistical package. It is implemented in Python - an 
interpreted, high-level, object-oriented programming language widely 
used in the scientific community - and it makes the most of the Python 
packages ecosystem. Among the existing Python packages, it uses 
Numpy, which is the fundamental package for scientific computing in 
Python (Harris et al., 2020), SciPy, which offers a wide range of opti
mization and statistics routines (Virtanen et al., 2020), Matplotlib 
(Hunter, 2007), that includes routines to obtain high-quality graphics, 
and Pandas (McKinney et al., 2010) to analyze and manipulate data. In 
addition to third-party packages, MarineTools.temporal also contains, 
among others, novel routines for the required negative log-likely func
tions, the generalized Fourier time series expansion, the use of 
wrapped-normal distributions, the multi model ensemble approach for 
climate projections and a whole set of plotting functions for the 
non-stationary representation. 

These examples use time series commonly used in coastal engi
neering (sea waves significant wave height, peak period and mean di
rection), oceanography (sea surface temperature and currents at open 
sea), hydrology (river discharge), and astronomy (sunspots number). 
Their choice is aimed at representing all the capabilities, including (i) 
the analysis of circular variables, (ii) the treatment of times series with 
persistent low values and (iii) the analysis of multi-model climate pro
jections. In addition, four more examples that enlarge even more the 
applicability of the software are included in the repository. 

The paper is divided into five sections. After the introduction, the 
theoretical basis for fitting the parameters of the NS probability models 
(PMs), the description of the temporal and multivariate dependence, the 
time series simulation and the analysis of multi-model climate data are 
briefly presented in Section 2. Some applications to illustrate the use of 
MarineTools.temporal are presented in Section 3. The discussion about 
the algorithms, some hints about its use and expected upgrades is given 
in Section 4, and finally, Section 5 concludes the study. 

2. Theoretical background and definition of the parameters 

This tool is aimed at (1) characterizing a vector random process, X→ =

(X1(t),…,Xi(t),…,XN(t)), that can be uni- or multivariate, where t be
longs to a set of index, on the basis of an observation of it at No discrete 

points, xo→(tj) = (xo
1(tj),…, xo

i (tj),…, xo
N(tj)) for j = 1, …, No, and (2) 

simulating other random realizations that have the same joint proba
bilistic behavior than the first one. For the sake of simplicity, from now 
on we will speak about temporal time series and assume that the RPs are 
measured at equally spaced instants. 

The characterization includes (1a) the fit of the marginal NS distri
bution functions of each random variable Xi and (1b) the description of 
the dependence of the value of each component at time tj with previous 
values of all the components through a vectorial autoregressive model. 

The tool can also deal with multi-model time series coming from 
different combinations of global and regional climate models (GCM- 
RCM) through the use of compound marginal variables and an ensemble 
averaged VAR model as proposed by Lira-Loarca et al. (2021). 

The time series simulation is based on those results. It first generates 
a stationary multivariate time series of non-exceedance probabilities 
and then it recovers the values of each variable by using the inverse of 

the non-stationary cumulative distribution function. 
Fig. 1 shows the flow chart of the algorithm. The cascade analysis 

consists of several steps being the initial inputs the observed or hind

casted data, xo→(tj), j = 1, …, No and the dictionary that contain the key 
parameters that provide the probability structure of the RPs, the infor
mation regarding the VAR model and the simulation. The tool has a 
simple syntax based on dictionaries (see Table 1) and it helps users to 
supply the input information, particularly for step (1a), which requires 
some knowledge about the phenomena under study. 

At the end of each step the results of the analysis are saved to a file 
whose name and some information regarding the modelling process, are 
appended to the input dictionary. 

In the following, a brief description of the methodology implemented 
in MarineTools.temporal is presented and, at the same time, the options 
and values of the parameters that represent the relation between 
mathematical and statistical methods used in the tool are commented. 
The interested reader is referred to Cobos et al. (2022); Lira-Loarca et al. 
(2021, 2020); Egüen et al. (2016); Solari and Losada (2011); Solari and 
Van Gelder (2011), among others, where several examples of its appli
cation can be found. 

The description, values and examples of the key variables for the 
analysis and simulation tool are defined in Table 1. The identifiers ‘MF’, 
‘TD’, ‘TS’, and ‘EA’ given in the 1st column stand for the marginal fit, the 
temporal dependence analysis, the time series simulation, and the 
ensemble average multimodel analysis of climate projections, 
respectively. 

2.1. Fit to marginal probability models (MF options) 

Each random component Xi is fitted to a marginal distribution FXi (xi)

with the Maximum Likelihood method. 
The variables that describe the angles of vector magnitudes such as 

the wind or wave direction, require a special analysis. The model allows 
to indicate that a variable is circular by including the key “circular” with 
the value True. Among others, circular PMs like von-Mises (Mardia and 
Jupp, 2009) included in Scipy, can be used. The wrapped-normal 
(Pewsey, 2000) that was implemented ad-hoc by following the philos
ophy of SciPy package is also available. 

For some variables such as the precipitation or the fresh-water river 
discharge in water-scarce areas, the presence of abrupt changes in time 
makes difficult the fitting of multiple PMs. For those cases, it is suggested 
to apply a parametric and monotonic transformation to deal with 
Gaussian distributed data. For that purpose, the methods included in 
MarineTools.temporal are those proposed by (Box and Cox, 1964) and 
(Yeo and Johnson, 2000). This option can be set-up by adding a dic
tionary with the key “transform” with a set of keys. The first one, 
“make”, indicates that the transformation will be done if it is equal to 
True. The “model” key indicates the selected transformation method 
(items “Box-cox” or “Yeo-Johnson”). The users can also indicate to the 
tool whether they want to plot the CDF of the normalized data (key 
“plot” equal to True). 

2.1.1. Structure of the marginal CDFs 
The distribution can be constructed from multiple PMs so that it can 

properly represent the non-exceedance probability of all the plausible 
values, including the tails and the body (see Appendix B.1). The distri
butions are defined either by a piecewise function (key “piecewise” 
equal to True, see Cobos et al. (2022)) or by a mixture or compound 
distribution (key “piecewise” equal to False). The first option also 
contemplates the use of a single distribution. In any of these choices the 
functions involved are specified in key “fun”. For a piecewise distribu
tion with more than one PM, the user has to provide (in key: “ws_ps”) the 
initial guesses for the common endpoints percentiles of the intervals in 
which the real axes has been divided. If a compound distribution is 
selected, the values provided in “ws_ps”, are the first guesses of the 
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Fig. 1. Flow chart of MarineTools.temporal. Observations and some information about the VRPs (PMs, number of models, weights, stationarity, etc …) have to be provided. These initial guesses are collected into 
transverse dictionaries that focus on the different features of the tool (marginal fit, temporal dependency, simulation, and multi-model ensemble analysis). Finally, a json file (a simple format, free open and readable file 
with any text editor) per variable is created with the estimated parameters of the marginal fit, a json file including the multivariate and temporal dependency and several simulation files according to the number of 
simulations given by users. 
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Table 1 
Description of the input dictionary to define the keys to obtain the marginal distribution of Xi, the multivariate and temporal dependency of Xi and the simulations. 
Asterisks in default column stand for mandatory parameters. a The default parameters are given in scipy.optimize.minimize.  

Id. Description Key Values/data type Default Observations Example  

Marginal fit (see 2.1 and B.1)      
MF Name to identify the variable “var” “Xi” * This name will appear in output 

files and in plots 
“Hs” 

MF Option to deal with a circular 
variable 

“circular” True or False False Its use is recommended for 
variables that describe the angle of 
a vector field. 

True 

MF Option to normalize the 
variable and to plot the CDF of 
the normalized data 

“transform” “make”: True or False, “plot”: 
True or False, “method”: “box- 
cox” or “Yeo-Johnson” 

False, 
False, 
None 

It is recommended to use this 
option for variables that values 
show abrupt changes in time 

{“make”: True, “plot”: 
False, “method”: “box- 
cox”}, 

– Definition of the CDF (see 
2.1.1 and B.1) 

– – – – – 

MF Structure of the CDF “piecewise” True or False False If set to True, the CDF is a 
piecewise function (eq. 1), 
otherwise it is a compound 
distribution (eq. 3). 

True 

MF Definition of the PMs “fun” 0: “function_1”, 
1: “function_2”, …, n_F-1: 
“function_nF” 

* Available functions: wrapped- 
normal (“wrap-norm”) PM and all 
PMs included in SciPy package 

0: “genpareto”, 
1: “lognormal”, 
2: “genextreme” 

MF Option to provide Initial 
guesses of the percentiles of 
the common endpoints or the 
weights of the PMs, for 
piecewise and compound 
distributions respectively 

“ws_ps” 
[
p1…pα…pNI − 1

]
if “piecewise” =

True 

[ω1…ωα…ωNI − 1] if “piecewise” 
= False 

List like If multiple PMs are given, this 
information has to be provided 

[0.2, 0.8] 

– Use of a NS approach (see 
2.1.2 and B.2) 

– – – – – 

MF Option to use a NS approach “non_stat_analysis” True or False True If it is set to True, the parameters 
are assumed to be time-dependent 
functions 

True 

MF Option to provide the number 
of years (Ny) for the NS analysis 

“basis_period” Integer 1 It defines the interval t ∈ [0, Ny] in 
which the NS analysis will be 
performed. It implicitly assumes 
that the signal has a periodicity of 
Ny. Only smaller time scales 
variations will be detected 

22 

MF Option to specify the 
parameters of basis functions 
for the GFS expansion and the 
number of terms 

“basis_function” “method”: “trigonometric”, 
“modified”, “sinusoidal”, …(see 
Table 2), “no_terms”: An integer 

“trig. ” It is mandatory if “NS_analysis” is 
set to True. See all the available 
options in Table 2 

{“method”: “sinusoidal”, 
“no_terms”: 4} 

MF Option to choose the 
optimization method ad to set 
up the options 

“optimization” “method”:“SLSQP”, 
“dual_annealing”, 
“differential_evolution”, “shgo”, 
“eps”: double, 
“maxiter”: integer, 
“ftol”: double, 
“giter”: double, 
“bounds: double 

a Options to run the optimization 
algorithm. See scipy.optimize. 
minimize for further information. 
The key “giter” stands for ensuring 
the convergence of the 
optimization algorithm by making 
several attempts from different 
initial conditions 

{“method”:“SLSQP”, 
“eps”:1e-7, 
“maxiter”:1000, 
“ftol”:1e-3, 
“giter”:10, 
“bounds”:0.5}, 

Id. Description Key Values/data type Default Observations Example 
– Time dependence(see 2.2 and 

B.3) 
– – – – – 

TD Names of the variables for the 
uni- or multivariate time 
dependence analysis 

“vars” [“X1”, …, “Xi”, …, “XN”] * – [“Hs”, “Tp”, “θm”] 

TD Time dependence analysis 
model for the uni- or 
multivariate analysis 

“method” “AR or “VAR” “VAR” – “VAR” 

TD Maximum order of the time 
dependence model 

“order” Integer 72 The tools analyzes all the orders up 
to that value and selects the one 
with a smaller BIC value 

24 

TD Alternative analysis of storms 
analysis 

“events” True or False False Storm events are defined as 
exceedances of the 1st variable 
over a certain threshold and the 
time dependence analysis is done 
between them and the concomitant 
values (see Lira-Loarca et al. 
(2020)). In this case, the marginal 
fit of the main variable is used for 
the simulation (key “mvar”, see 
below) 

False 

TD Main variable for conditional 
analysis (Lira-Loarca et al., 
2020) 

“mvar” “Xi” None The governing variable for 
multivariate cases and conditional 
analysis 

“Hs” 

– – – – – – 

(continued on next page) 
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weights of the first PM’s (the weight of the last PM is derived from the 
others so that their sum equals 1). 

2.1.2. Choice of the stationary or NS character of the analysis 
The analysis can be stationary, which means that the parameters of 

the PMs (i.e., shape, location or scale) do not vary in time. Otherwise, 
they are assumed to vary over a given time interval with a duration of Ny 
years and, therefore, the distribution function, FXi (xi(t); t) is non- 
stationary. The choice is done by setting the option “NS_analysis” to 
False or True respectively. 

In that regard, if the NS analysis is chosen, the parameters are 
expanded into a generalized Fourier series (GFS) over the interval [0, 
Ny], which is truncated to NF terms (see Appendix B.2). The basis 
functions are chosen by setting up “basis_function” with one of the 
choices provided in Table 2 and by indicating the number of terms to be 
retained in the series (key “no_terms” equal to an integer number). If the 
basis function contains periodic functions, it is recommended to perform 
a previous spectral or harmonic analysis of the time series in order to 
gain knowledge about the oscillatory components. 

The tool selects by default Ny = 1, which allows to analyze time 
variations up to the yearly scale. In some time series, longer variations 
associated to climatic indexes oscillations can be found (Le Mouël et al., 
2019). The tool offers an option to modify the basis period to Ny years, 
which allows the oscillations to be analyzed on a different (see Cobos 
et al. (2022)). 

With the choices provided by the user in the input dictionary for 
variable Xi, the tool internally computes an initial guess of all the pa
rameters involved in the definition of the PMs and the coefficients of the 
GFS and it finds the optimum values of these coefficients and the values 
provided in key “ws_ps”. The tool also shows some informative messages 
and includes some guidance plots to help in the selection of the marginal 
fit properties. The package also contains several functions to assess the 

goodness of the fit of the analysis and the simulations. Some of these 
functions have been used to present the results of the study cases in 
section 3. 

2.2. Multivariate and temporal dependency of the RPs (TD options) 

Once the marginal probability structure of the random variables has 
been obtained, the temporal multivariate (or univariate) dependency 
might be inferred by using autoregressive methods. In this version the 
models available are the uni- and multivariate autoregressive AR(q) and 
VAR(q) respectively that assume a linear relationship between the value 
of the RPs at a given time and their past q-values. Other possibilities such 
as ARMA, ARIMAX, DAR, EGARCH, GAS or Gaussian local level, can be 
easily implemented with Python functions included in PyFlux package. 

The information related to the temporal dependence is provided in a 
dictionary where the names of the variables to be jointly analyzed are 
given in key “vars” and the method selected in “method”. Starting from 
the first order, the model tests all the orders up to the maximum value, q, 
indicated in “order” and provides the information from the one with the 
smaller value of the Bayesian Information Criterion (BIC). 

It is worth noting that although in the marginal fitting of every RP, 
the time series can contain small gaps in time, for the assessment of the 
temporal univariate or multivariate dependency, the observations need 
to have the same resolution. 

Table 1 with Id. ‘TD’, contains a description of the possibilities that 
the tool offers for multivariate temporal dependency analysis, their 
values, syntax and examples. 

2.3. The simulation process (TS options) 

The simulation process is done by retrieving the information from 
dictionaries of the marginal fit, multivariate and temporal dependency 
analysis and, if selected, the multi-model ensemble average. In addition, 
the tool requires the starting and ending dates of the simulation period 
(keys “start” and “end” in the standard datetime format of Python) and 
the number of simulations (key “nosim”). Then it writes in different files 
every random realization of the univariate or multivariate RP as output. 
The same temporal time step than the original dataset is used in order to 
guarantee the same probabilistic behavior. 

Table 1 (continued ) 

Id. Description Key Values/data type Default Observations Example 

Simulations of new time 
series (see 2.3) 

TS Date and time of the start/end 
of the period 

“start” and “end” A string with the date * In the standard format of a 
datetime (Python) 

“2000/01/01 00:00:00” 

TS Number of simulations “nosim” An integer * The tool obtains as many as 
indicated realizations (time series) 
of the vector RP 

100 

TS Simulation of extreme events “events” True or False None The simulation method described 
in Lira-Loarca et al. (2020) 

True 

TS Option to deal with of 
ensemble multi-models from 
GCM-RCMs 

“ensemble” True or False False  True 

– Use of ensemble mean (see 
2.4) 

– – – – – 

EA Option to use the ensemble 
average for multi-model 
climate projections 

“make” True or False False  False 

EA Regional or Global Climate 
Models name 

“models” [‘RCA4-MPI-ESM-LR’, ‘RCA4- 
IPSL-CM5A-MR’, …, ‘RCA4- 
CNRM-CM5’, ‘CCLM4-8-17- 
MIROC5’] 

None The main dictionary must contain 
the keys defined in for the marginal 
fit and temporal and multivariate 
analysis updated with the results 
obtained 

[‘RCA4-MPI-ESM-LR′, 
‘RCA4-IPSL-CM5A-MR’] 

EA Weights of GCM-RCM models “weights” “equal” or a list “equal” – [0.45, 0.55]  

Table 2 
Sets of basis expansion solutions available for the GFS.  

Denomination Values 

Trigonometric series expansion “trigonometric” 
Modified Fourier series expansion “modified” 
Sinusoidal series expansion “sinusoidal” 
Chebyshev series expansion “chebyschev” 
Legendre series expansion “legendre” 
Laguerre series expansion “laguerre”  

M. Cobos et al.                                                                                                                                                                                                                                  
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2.4. Characterization of ensemble average multi-model climate 
projections (EA options) 

Climate services provide several climate projections from different 
combinations of GCM-RCM climate models under a certain greenhouse 
gas concentration trajectory associated to a Representative Concentra
tion Pathway (RCP) adopted by the IPCC. Lira-Loarca et al. (2021) 
proposed to gather the information of different GCM-RCMs through the 
use of a compound distribution that weights the NS marginal distribu
tions and their VAR(q) coefficients to obtain a multi-model ensemble 
average characterization of the multivariate random processes. 

The package includes an option (key “ensemble” equal to True) to 
work with the multi model ensemble averages, using equal weights, a 
choice corresponding to the commonly used rule “one model-one vote” 
recommended by the IPCC (Pörtner et al., 2019) or the values provided 
in key “weights”. To do so, the marginal fit analysis and the temporal 
multivariate dependence analysis need to be done previously for all the 
models as explained in Sections 2.1 and 2.2. The tool provides several 
files with the non-exceedance probabilities of the compound variables 
and the corresponding VAR coefficients. 

3. Applications to Earth and environmental modelling 

In the following subsections, we illustrate the capabilities of 
MarineTools.temporal with some novel applications for the analysis of 
environmental VRPs. More precisely, the examples include (i) the uni
variate PM analysis of projections of freshwater river discharge at Alcalá 
del Río dam (Spain), (ii) the multivariate analysis and temporal de
pendency of velocity currents at the Strait of Gibraltar (Atlantic Ocean). 
Furthermore, (iii) the simulation of new projections from marine climate 
data (significant wave height, peak period and incoming mean direction, 
wind velocity and incoming mean direction) at the Alborán Sea (at the 
western Mediterranean Sea) under the RCP8.5 scenario, from the 
ensemble multivariate multi-model information (Lira-Loarca et al., 
2021). We present a detailed description of the MarineTools.temporal 
framework methods and how they operate together to capture the 
non-stationarity and to create simulations of some general examples. 

Small pieces of code will be shown next to the exemplifying dictionaries 
to run the analysis. 

These applications and those described in Table 3 have been selected 
in order to illustrate a set of representative options that the tool in
tegrates. However, many other types of VRPs can also be considered. 

The documentation is available at the GitHub (gdfa-ugr) repository. 
It includes the code, case studies and the examples of Table 3 (included 
as Jupiter notebook files). This will allow interested readers to repro
duce the applications with similar synthetic data sets and to facilitate its 
adaptation to other time series. 

3.1. Freshwater river discharge projection at Alcalá del Río dam 

This first example is focused on a univariate time series, denoted by 
Qd(t), of the projection of daily fresh-water river discharge from the 
Alcalá del Río dam to the Guadalquivir river estuary (37.29◦ N, − 6.06◦

W), from January, 1st of 2020 to December, 31st of 2040. This series are 
obtained from the Hydrological Predictions from the Environment 
model HYPE forced with the atmospheric model REMO 2009 for the RCP 
2.6 scenario (Source: Swedish Meteorological and Hydrological Insti
tute, SMHI). Due to the strong regulation of the river at this dam, the last 
one in the river course before its flow into the Atlantic Ocean, the series 
shows low values in summer (Qd < 40 m3/s) that are almost squared in 
winter (Qd ≈ 1000 m3/s). To deal with the high variability between 
seasons, a Box-Cox transformation with λ = 0.0796 parameter is used. 
The properties of the marginal fit are given in Table 4. A Weibull of 
maxima model was selected. The highly temporal variability and the 
clear seasonal behavior lead to the Sinusoidal temporal expansion over 
Ny = 1 year retaining NF = 10 oscillatory terms (covering frequencies up 
to 10 yr− 1). 

The following code shows the Python dictionary with the input in
formation required for the marginal fit analysis in the present example. 

Table 3 
Description of other datasets and main parameters used for the analysis. All these examples are located in a folder of the GitHub repository (https://github.com/ 
gdfa-ugr).  

Data Information basis 
period 

basis function noterms fun (ps ws) 

Historic daily river discharges in the Guadalquivir river estuary at 
the last regulation point (Navarro et al., 2019), the Alcalá del Río dam 
(37.29◦ N, − 6.06◦ W), (Source: Andalusian Water Agency, Junta de 
Andalucía). The regulation of this dam is aimed not only at controlling 
floods but also at fulfilling several water management strategies. The 
time series varies from very low values (usually in summer Q < 40 
m3/s) to those that are almost squared in winter (Q ≈ 1000 m3/s) with 
sporadic sudden changes. The analysis deals with this high variability 
by setting-up a Box-Cox transformation. 

1 Sinusoidal 20 Weibull of maxima 

Monthly Wolf sunspot number, available from 1749 (Source: WDC- 
SILSO, Royal Observatory of Belgium, Brussels). The signal contains the 
well-known 11 years Schwabe cycle, the 22 years and smaller time 
scales variations described in Usoskin and Mursula (2003). The 
analysis focus on the detection of these cycles from 22 years down to 
the seasonal scale. 

22 Modified 44 Lognorm and Norm (p1 = 0.85) 

The monthly mean sea surface temperature at 38◦ N, 0◦ (in a location 
next to Cape Palos, Mediterranean Sea) that covers the period 01/15/ 
1 854 - 05/15/2 021 (source: NOAA). The analysis was conducted to 
reproduce large scale oscillations as in the case of sunspots. 

20 Trigonometric 40 Gaussian 

The multivariate time series of the wind field hindcasted at 10 m 
above the mean sea level at the SIMAR point 1052 048 located at 37◦ N, 
7◦ W in the Gulf of Cádiz (Source: Puertos del Estado, Spain). The 
simulations obtained were compared to the hindcasted data in terms of 
bivariate density function, autocorrelation and sojourns above and 
below some reference levels, showing a fairly well agreement. 

1 Sinusoidal Four terms for wind 
magnitude and 12 for 
wind direction 

Generalized Pareto for the tails and 
Lognorm for the body of the wind 
magnitude (p1 = 0.05; p2 = 0.96) 
Two truncated normal for wind direction 
(p1 = 0.5)  
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With the previous dictionary (params), the dataset as a pandas 
DataFrame (data), and importing the package analysis as 

from marinetools.temporal import analysis 

the marginal fit function is invoked just coding 
analysis.marginalfit(data, params). 
The results will be saved in a file in a new folder called “marginalfit”. 
Fig. 2 shows the empirical and theoretical (fitted) NS-CDF. The 

empirical NS-CDF was computed by using a window size of 14 days 
which is large enough to obtain representative values of the empirical 
percentiles but not so long that lower significant variations are neglec
ted. In the authors’ experience for climatic variables with this temporal 
resolution, a window length of 14 days is appropriate for time series 
longer than 20 years. As it is observed in Fig. 2, the NS-PM adequately 
reproduces the non-stationary behavior during the year. The theoretical 
PM captures the overall seasonal behavior during almost all the year for 
all the percentiles, with a marked valley during summer and peaks in the 
previous and subsequent seasons. Only some deviations from the peaky 

behavior are observed during February–March and at the end of 
November for the highest represented percentile, 0.99, which is slightly 
underestimated. 

3.2. Currents at the Strait of Gibraltar 

The second example analyzes the multivariate time series of the 
water current field (mean current velocity, U, and mean incident current 
direction, θU) hindcasted at 0.5058 m below the mean sea level at a point 
located in 35.9166◦ N, 5.5◦ W at the Strait of Gibraltar (data provided by 
Marine Copernicus System). The hindcast time series has ≈27 years 
duration, with data that spans from 1993/01/01 to 2019/12/31 with a 
daily temporal cadence. The IBI (Iberian Biscay Irish) ocean Reanalysis 
system provides 3D ocean fields (product identifier “IBI_MULTIYEAR_
PHY_005_002”). The IBI model numerical core is based on the NEMO 
v3.6 ocean general circulation model run at 1/12◦ horizontal resolution. 

The marginal fits were carried out with the characteristics given in 
Table 4. Briefly, the univariate analysis of U was carried out using a 
Gaussian PM. The water current incident direction was fitted using a 
Weibull of maxima PM. For both variables the trigonometric Fourier 
expansion was performed over a basis period of one year (Ny = 1) with 
eight oscillatory components (NF = 8). Fig. 3.a shows the empirical and 
theoretical models of the NS-CDF for U. As it is observed, the Gaussian 
model fairly reproduces the temporal variation of the probability dis
tribution function. Fig. 3.b shows the same analysis with θU. A marked 
eastwards flow (around 270◦) is observed, showing that the mean cur
rents at that location of the Strait of Gibraltar and at the selected depth 
flow into the Mediterranean Sea, which is in accordance with observa
tions of the water masses exchanges between the Atlantic Ocean and the 
Mediterranean sea (see e.g., Sverdrup and Fleming (1942)). A Weibull of 
maxima reproduced also fairly well the probability structure in time, 
slightly overestimating the water current directions at the highest 
percentiles. 

Once the parameters of the marginal distributions were obtained, the 
multivariate and temporal analysis were carried out. The maximum q- 
order analyzed of the VAR model was 72. These properties are set-up in 
the dictionary as: 

Fig. 2. Non-Stationary Cumulative Distribution Function for (a) normalized fresh-water river discharge using Box-Cox method (“transform”:{“plot”: True}), and (b) 
fresh-water river discharge (“transform”:{“plot”: False}). Dots represent the empirical NS-CDF from observations. Lines stand for the theoretical NS-CDF. Two 
horizontal axes are represented showing the normalized and natural year. 
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The following code is required to load the json file with the param
eters from the preceding marginal fits: 

from marinetools.auxiliar import read 

params[”U”] = read.rjson(”filename_U”) 
params[”DirU”] = read.rjson(”filename_DirU”) 
Given the dictionaries with the results from the marginal fit and the 

properties of the temporal and multivariate analysis, the VAR model is 
applied by coding: 

df_dt = analysis.dependencies(data, params) 

The results are saved to a file in a new folder called “dependency”. 
Among all the orders analyzed, the one with the minimum BIC was q 

= 6. As it is observed in Fig. 4, the pattern of the joint density function of 
hindcast data U and θU (panel a) is well reproduced by one of the random 
simulations (panel b). The simulation slightly reduces the probability of 
the modal bump (yellow pixels at 275◦ and 0.4 m/s approx.). 

3.3. Climate projections using ensemble average multi-model NS 
distributions at the Alborán Sea 

Finally, a multivariate analysis for wave and wind climate pro
jections at the Alborán Sea (3.608◦ W - 36.66◦ N) is presented. From that 
purpose, we used hourly data from the RCP 8.5 scenario and projections 
of the following Global and Regional Climate Models (GCM-RCM) 
CCLM4-8-17-MIROC5, RCA4-CNRM-CM5, RCA4-EC-EARTH, RCA4- 
HadGEM2-ES, RCA4-IPSL-CM5A-MR and RCA4-MPI-ESM-LR (IH, 
2019). The characteristics of these GCM-RCM are described in Pérez 
et al. (2017). It comprises the significant wave height (Hs), the peak 
wave period (Tp), the mean incident wave direction (θm), the wind ve
locity (Vw), and the mean wind incoming direction (θw) during an in
terval that spans from 2025/02/01 to 2046/01/01 (Source: IH 
Cantabria). The ensemble mean properties were computed using equal 

weights, a choice that represents the rule of ‘one model-one-vote’ rec
ommended by the IPCC (Pörtner et al., 2019). 

The options selected for the analysis and the simulation of five re
alizations of 20 years are shown next: 

With the previous dictionary (params) of the average multi-model 
GCM-RCM and importing the simulation package with 

from marinetools.temporal import simulation 

the simulations are achieved by coding 
simulation.simulation(params). 
The simulated time series are saved into files in a new folder called 

“simulations”. 
For each GCM-RCM, (i) the variables were fitted using combinations 

of PMs as Fig. 5 shows which properties are summarized in Table 4, (ii) 
the temporal dependency was computed for q-orders that range from 26 

Fig. 3. Non-Stationary Cumulative Distribution Function for (a) water currents magnitude, and (b) water current mean incoming direction. Dots represent the 
empirical NS-CDF from observations. Lines stand for the theoretical NS-CDF. Two horizontal axes are represented showing the normalized and natural year. 
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to 38 h. The one corresponding to 26 h had the lowest BIC, which means 
that Hs-Tp-θm-Vv-θw are strongly related with the previous 26 sea-states. 
This value is consistent with the one obtained by Lira-Loarca et al. 
(2021) using hindcast data and projections from the MeteOcean group of 
the University of Genoa. 

In the following, the probabilistic characterization of one of the 20 
years simulations and the obtained ensemble mean multi-model are 
compared. Panels a and b of Fig. 6 show the joint CDFs for the simulated 
and ensemble averaged projections for Hs - Tp, and Hs - Vv, respectively. 
It can be observed that the degree of agreement between the simulation 
and the hindcasted data is generally good, which demonstrate that the 
simulation maintains the joint dependency. Moreover, the R2 co
efficients between data of the joint probability density functions (PDF) 
of Hs-Tp, Hs-θm, Hs-Vv and, Vv-θw of the simulation and the multi-model 
ensemble were for all cases greater than 0.97. 

Fig. 7 shows the wind roses at Alborán sea for ensemble mean data 
projections and one random simulation. The tool enables the creation of 
several subplots and the chance to include into them any plot function 
available in the graphics package Matplotlib. 

A proper way to verify the temporal dependency of the simulation 
and the input data is by computing the autocorrelation function 
(Papoulis and Saunders, 1989). Fig. 8 depicts the autocorrelation of Hs, 
Tp, θm, Vv and θv for the simulation (solid lines). The shadow areas 
delimit the values obtained for the autocorrelation functions for all the 
RCMs. As it is observed, the simulation and observations show a similar 
variability with values ranging between 0.7 and 1. The wind field shows 
a smaller autocorrelation than the RCMs during 5 - ≈ 20 h lag. Also, the 
autocorrelation of θm is underestimated for all the lags. This difficulty of 
reproducing directional variables, already pointed out by (Monbet et al., 
2007), is clearly seen in this dataset that correspond to the Gulf of Cádiz, 

Fig. 4. Comparison between the joint probability distribution of U and θU for a) hindcast data and, b) one random simulation.  

Fig. 5. Non-Stationary Cumulative Distribution Function for (a) significant wave height for RCA4-IPSL-CM5A-MR RCM, and (b) peak period for RCA4-HadGEM2-ES 
GCM-RCM. Dots represent the empirical NS-CDF from observations. Lines stand for the theoretical NS-CDF. Two horizontal axes are represented showing the 
normalized and natural year. 
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a place where abrupt wind changes are experienced. It should be high
lighted, however, that the difference is lower than 1%, showing auto
correlation values larger than 0.91 in all cases. The results point out that 
the multivariate and the temporal dependency is also well reproduced. 

4. Discussion 

The goal of MarineTools.temporal is the search for the optimum values 
for any combination of PMs and several basis functions. Actually, most 
of the computational time is spent on the estimation of the optimal 
parameters of each marginal NS distribution. Therefore, while it is not 
critic, an appropriate selection of the PMs will certainly reduce the 
computational time. A suitable combination of PMs will usually ensure 
the convergence of the optimization process. However, in some cases, a 
slight modification of the weights or percentiles of the common end
points should be required. The tool incorporates several sanity checks to 
provide a user-friendly experience working with NS-PMs. 

The choice of the basis function is also relevant for the optimization, 
as some basis functions give a better fit with a considerable smaller 
amount of terms. This is the case of the sinusoidal functions that usually 
requires about the half of terms in the series than the Trigonometric of 
the Modified Fourier expansion. 

The input time series for the marginal fits can have small gaps since 
to the search for the optimum value of the NLLF does not require to have 
a regularly observed time series. However, for the temporal dependence 
analysis, concomitant time series observed with a fixed time step are 
required. 

The model has been coded to deal with any basis period. The ex
amples included for the analysis are done with one year and multiples of 
it because at temperate latitudes the yearly periodicity is predominant in 
climate data. When long time series are available (as it is the case for the 
Sunspot number), many years can be considered to capture longer time 
scale variations. It is worth noting that when the basis period is larger 
than 1 year, the initial date and time of the simulations have to be 
selected carefully in order to avoid an artificial shift of the oscillatory 

variability. 
MarineTools.temporal has just included one of the temporal de

pendency models AR and VAR. However, there are many other possi
bilities in (PyFlux for Python) to characterize these relationships such as 
ARMA, ARIMAX, DAR, EGARCH, GAS, Gaussian local level. For inde
pendent variables, the simulations will show no correlation in multi
variate analysis. So, it is recommended in those cases an independently 
simulation of each variable. 

The framework MarineTools.temporal gives a step forward in the need 
of bridge the gap between the current software development and the 
coastal and marine engineering practice (Magaña et al., 2020), including 
advances not only in multivariate analysis which approach to marine 
design is not now only available for academic use as Jonathan and 
Ewans (2013) indicated. 

The tool has been applied to the examples given in section 3 and 
Table 3 which include timeseries coming from coastal engineering (sea 
wave height, peak period and mean direction), oceanography (sea sur
face temperature and currents at open sea) and hydrology (river 
discharge) as proof of evidence that continuous RVPs can be adequately 
analyzed and simulated. The tool was also applied to analyze and 
simulate raining patterns (results not shown). 

Additionally, the use of new simulations generated within the 
MarineTools framework might reveal behaviours that emerge from the 
intrinsic nature of the vector random process analyzed and derived 
processes, which cannot be previously capture and analyze by using one 
realization, which is paramount for structure design and environmental 
planning. 

5. Conclusions 

MarineTools is an open-source project hosted on GitHub. The tem
poral package is dedicated to the analysis of stationary and NS RPs and 
the simulation of Earth and environmental data with the same proba
bilistic behaviour. All scripts discussed in the present paper and the 
synthetic data files are in the repository. Further examples, given as 

Fig. 6. Comparison between joint cumulative distribution functions of: (a) Hs and Tp, and (b) Hs and θm. Contour lines represent the iso-probability lines for one 
random simulation while the filled areas at the background showed the iso-probability areas for the ensemble data from GCM-RCMs. 
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Jupyter notebooks, covering the full use of MarineTools.temporal are also 
available on GitHub. 

The present paper shows the options included in MarineTools.tem
poral together with the examples: marginal fit of freshwater river 
discharge from a dam, multivariate and temporal dependency of water 
currents at the ocean, and multivariate simulations of sea and wind 
climate states. It is demonstrated how the optimization of the NLLF for 
NS-PMs succeeds for several combinations of the PMs included in scipy. 
stats and the wrap normal. Three main scripts which include the pre- 
processing steps, marginal fit, multivariate and temporal analysis, 
ensemble average multi-model GCM-RCM projections and, finally, the 
simulation of Earth and environmental time series are presented in 

detail. The use of MarineTools.temporal offers a very general framework 
which can be successfully applied to a wide variety of environmental 
and engineering problems. 

Software availability  

● Name of software: Marinetools  
● Developer: Environmental Fluid Dynamics Group (University of 

Granada)  
● Contact information: mcobosb@ugr.es  
● Year first available: 2021  
● Software required: specified at the GitHub repository  
● Program language: Python  
● Program size: 58.6 KB 
● Cost: Open-source tools released under the GNU General Public Li
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● Repository: 
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Original draft preparation. P. Otiñar1: Writing draft preparation. P. 
Magaña1: Data curation, Software. A. Lira-Loarca2: Data curation, 
Software, Methodology. A. Baquerizo1: Conceptualization, Methodol
ogy, Writing - Original draft preparation. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work was performed within the framework of the following 
projects: (1) AQUACLEW, which is part of ERA4CS, an ERA-NET 
initiative by JPI Climate, and funded by FORMAS (SE), DLR (DE), 
BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by 
the European Commission [Grant 690462] and (2) Flooding and erosion 
works in coastal areas of Andalusia under a climate change scenario, 

Fig. 7. Wind roses at the Alboran sea for (a) ensemble mean data from projections, and (b) one random simulation.  

Fig. 8. Positive part of the autocorrelation for the simulation (solid lines) 
compared to the band between the minimum and maximum auto-correlation of 
the RCMs for the sea and wind fields at the Alborán Sea. 

M. Cobos et al.                                                                                                                                                                                                                                  

mailto:mcobosb@ugr.es


Environmental Modelling and Software 150 (2022) 105359

12

funded by the Ministry of Agriculture, Livestock, Fisheries and Sus
tainable Development of the Junta de Andalucía [Contrat No. CONTR 
2018 66984]. Part of this study has been conducted using E.U. 

Copernicus Marine Service Information. Funding for open access 
charge: Universidad de Granada / CBUA.  

Appendix A 

Some useful information about the requirements, installation and computing times can be found in the present appendix. 
The model was developed in a virtual environment which packages can be installed from a requirements file (GitHub). The working area can be 

easily and quickly raising up just using those packages. 
The computational time mainly depends on the number of parameters to be optimized which at the same time depends on the number of GFS or 

polynomial time expansion and the number of PMs. So, more than three PMs are not recommended due to the computational time increases 
exponentially.  

Table 4 
Description of models and parameters for the analysis of the present paper. The computational time was obtained with a user personal computer (Intel(R) Core(TM) i7- 
9700F CPU @ 3.00 GHz and 8 cores). In those cases, the weights represented a threshold of the transition between PMs and not the weight of the PM. The optimization 
method more frequently used by authors is SLSQP due to the high efficiency, however, in some cases a high-cost computational method will be required for ensuring 
convergency. a means that a reduction of the number of parameters involved is applied following Solari and Losada (2011). Column names are described in section 2.  

Var Section circular transform GFS noterms ps_ws fun Computational time (s) 

Qd 3.1 False Yes Sinusoidal 20 – Weibull of maxima 11.75 
U 3.2 False No Trigonometric 8 – Norm 21.54 
θU 3.2 True No Trigonometric 8 – Weibull of maxima 14.25 
Hs 3.3 False No Trigonometric 4 0.05 - 0.85 Generalized Pareto + Lognorm + Generalized 

Paretoa 
1854.24 

Tp 3.3 False No Trigonometric 4 0.05 - 0.85 Generalized Pareto + Norm + Generalized Paretoa 1766.18 
θm 3.3 True No Trigonometric 4 0.49/0.61 - 0.39/0.51 Truncated Norm + Truncated Norm 652.87 
Vv 3.3 False No Trigonometric 4 0.05 - 0.85 Generalized Pareto + Gamma + Generalized Paretoa 2759.81 
θv 3.3 True No Trigonometric 4 0.42/0.48–0.52/0.58 Truncated Norm + Truncated Norm 714.97  

The use of MarineTools.temporal requires a basic understanding of the Python programming language, as well as of functional code design. In 
particular, guidelines for an easy installation of the required packages of MarineTools.temporal will be found in GitHub repository. Some information 
about the properties of PMs and methods using in the examples of section 3 are described in Table 4. 

Appendix B 

In this section, the main formulas of the methodology are given. 

B.1. Marginal distribution 

The marginal distribution may have any of the following structures: 

B.1.1. Piecewise distributions 
The random variable X probability density function fX(x) is expressed as a piecewise function defined over a partition of the real axes into Ny 

subintervals: (uα− 1, uα] for α = 2, …, NI − 1, I1 = (− ∞, u1] and INI = (uNI − 1, + ∞): 

fX(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k1f1(x) x ≤ u1
k2f2(x) u1 < x ≤ u2
… …
kαfα(x) uα− 1 < x ≤ uα
… …
kNI fNI (x) uNI − 1 ≤ x

(1) 

In eq. 1 fα denotes the probability density function (PDF) of the model selected for Iα. The values of the coefficients are: 

kα =
a1

b1
…

aα− 1

bα− 1

[

c1 +
∑NI − 1

α=2
cα

a1

b1

a2

b2
…

aα− 1

bα− 1

]− 1

(2)  

where aα = fα(uα), bα = fα+1(uα) and cα = Fα(uα) − Fα− 1(uα− 1), provided that bα and the denominator in eq. (2) are both different from zero. 
The corresponding dictionary must include the names to identify the NI PMs selected (key: “fun”) and the initial guesses of the values of the 

percentiles of the common endpoints in key “ws_ps”, that is of, pα = F− 1(uα) for α = 1, …, NI − 1. 

B.1.2. Compound distribution 
The PDF of the random variable X is expressed as a weighted sum of NI different PDFs: 

fX(x) =
∑NF

α=1
ωαfα(x) (3) 
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where w1 + ⋯ + wα + ⋯ + wI = 1. The dictionary of X must include the names to identify the NI PMs selected (key: “fun”) and the initial guesses of 
values of the percentiles of the NI − 1 common endpoints in key “ws_ps”, that is, ωα for α = 1, …, NI − 1. 
B.2. Non-stationarity 

If the distribution of X is non stationary, the parameters of the PMs models given in key “fun” can be approximated over the interval [0, Ny] by a 
truncated generalized Fourier Series. If a(t) is any of those parameters, its expression is given by: 

a(t) =
∑NI

n=1
anφn t ∈ [0,Ny], (4) 

Where an denotes any of the parameters and {φn(t)}n is the set of basis functions. 

B.3. Temporal dependence 

The Vector Auto-regressive, VAR(q) model is applied to the following normalized time series: 

ZXi (tj) = Φ− 1[FXi

(
xo

i (tj); tj
) ]

, (5)  

where Φ− 1 is the inverse of the Gaussian cumulative distribution function with zero mean and unit standard deviation and FXi (xi(t); t) is the NS 
probability distribution function of Xi. 

Denoting the values of the normalized series (eq. 5) at time tj as yi
j = ZXi (tj) and Yj =

(
y1

j ,…, yi
j,…, yN

j

)T 
where T stands for the vector transposition, 

the dependence in time between variables in the VAR(q) model is given by: 

Yj = c + A1Yj− 1 + A2Yj− 2 + ….+ AqYj− q + ej, (6)  

where c =
(
c1,…, ci,…, cN

)T contains the mean values of the variables, Am, m = 1, …, q are the N × N coefficients matrices and ej =
(

e1
j ,…, ei

j,…, eN
j

)T 

is the vector with the white noise error terms. Using eq. (6) to relate data at an instant tj to their previous q values, for j = q + 1, …, No, we obtain Y =
Aχ + E, where Y = (Yq+1Yq+2 … YN), χ = (χq+1χq+2 … χN), with χj = (1YT

j− 1…YT
j− q)

T , A = (A1A2 … Aq) and E = (eq+1eq+2 … eN). 
The solution is obtained by means of minimum least square errors as A = YχT(χχT)

− 1, where E = Y − Aχ and Q = cov(E) is the covariance matrix of 
the error. A detailed description can be found e.g., in Lütkepohl (2005). 
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