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Abstract 

Idiopathic pulmonary fibrosis, the archetype of pulmonary fibrosis (PF), is a chronic lung disease of a poor prognosis, 
characterized by progressively worsening of lung function. Although histology is still the gold standard for PF assess-
ment in preclinical practice, histological data typically involve less than 1% of total lung volume and are not amenable 
to longitudinal studies. A miniaturized version of computed tomography (µCT) has been introduced to radiologically 
examine lung in preclinical murine models of PF. The linear relationship between X-ray attenuation and tissue density 
allows lung densitometry on total lung volume. However, the huge density changes caused by PF usually require 
manual segmentation by trained operators, limiting µCT deployment in preclinical routine. Deep learning approaches 
have achieved state-of-the-art performance in medical image segmentation. In this work, we propose a fully auto-
mated deep learning approach to segment right and left lung on µCT imaging and subsequently derive lung den-
sitometry. Our pipeline first employs a convolutional network (CNN) for pre-processing at low-resolution and then a 
2.5D CNN for higher-resolution segmentation, combining computational advantage of 2D and ability to address 3D 
spatial coherence without compromising accuracy. Finally, lungs are divided into compartments based on air content 
assessed by density. We validated this pipeline on 72 mice with different grades of PF, achieving a Dice score of 0.967 
on test set. Our tests demonstrate that this automated tool allows for rapid and comprehensive analysis of µCT scans 
of PF murine models, thus laying the ground for its wider exploitation in preclinical settings.
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Introduction
Idiopathic pulmonary fibrosis (IPF), the archetype of pul-
monary fibrosis (PF), is a potentially fatal chronic lung 
disease characterized by a progressively worsening lung 
function due to the development of fibrous connective 
tissue as a reparative response to injury [1]. Although two 

antifibrotic drugs1 are now available for the treatment of 
IPF and other forms of progressive fibrosis, their clinical 
efficacy is limited and lung transplantation remains the 
only option to prolong the survival of such patients [2]. 
The development of new drugs for IPF patients strongly 
relies on preclinical studies, whose usefulness depends 
on the ability of animal models to mimic human physi-
ology, disease pathogenesis and response to treatments. 
Although none of the present pulmonary fibrosis (PF) 
murine models fully reproduces the features of the 
human disease, the bleomycin (BLM)-induced PF model 
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is widely used to study disease pathogenesis and evaluate 
the efficacy of potential new drugs [3]. Current outcomes 
measured in BLM models of PF involve time-consuming 
invasive approaches, such as histological scoring that 
requires animal sacrifice at fixed time-points, thus pre-
cluding any longitudinal examination which is essential 
to fully understand disease development and progression 
[4].

In clinical practice, computed tomography (CT) plays 
a key role in the diagnosis and monitoring of lung inju-
ries [5]. It enables a highly reproducible and longitu-
dinal quantification of lung injuries, as recommended 
by international diagnostic guidelines [6]. Owing to the 
linear relationship between X-ray attenuation and tissue 
density, lung densitometry has been demonstrated to be 
widely feasible, reproducible, and much less time con-
suming than visual assessment in several lung disorders 
[7]. Histogram-based measurements refer to Hounsfield 
Units (HU, also referred as CT-numbers or CT-values) 
frequency distribution (i.e. physical density distribu-
tion). Therefore, information on air levels in specific lung 
regions can be derived from lung density histograms.

Recently, a miniaturized version of CT (µCT) has been 
optimized and validated as a tool to assess PF at different 
time-points in live animals [8]. This imaging modality can 
be used in the BLM mouse model of PF to understand 
the pathogenesis of fibrosis by monitoring the air content 
of specific lung compartments as well as to evaluate the 
efficacy of new antifibrotic drug candidates.

In the present study, we developed a deep learning 
approach aimed to localize and segment the left and right 
lungs in thoracic µCT scans of fibrotic mice, thus allow-
ing an automatic quantitative analysis (lung densitome-
try). In particular, we propose a fully automated pipeline 
for left and right lung segmentation in native µCTs. This 
relies on a first coarse U-Net for pre-processing, followed 
by other U-Nets for a fine lung segmentation, accounting 
for spatial coherence. Furthermore, the proposed algo-
rithm automatically subdivides the lungs into functional 
compartments (i.e., normo-aerated, hypo-aerated, non-
aerated, and hyper-inflated) based on µCT voxel density 
to quantitatively assess changes in specific lung regions 
while monitoring disease progression.

Background
Lung segmentation is a prerequisite for any quantitative 
analysis of CT scans of the chest, including lung densi-
tometry, but manual segmentation is time-consuming 
and prone to inter-observer and intra-observer variation. 
Therefore, the development of a fully automated seg-
mentation algorithm to facilitate rapid quantitative 
analysis of CT images has become an important goal of 
medical imaging research. Recently, with the advent of 

increasingly powerful graphics processing units (GPUs), 
deep learning techniques have shown excellent perfor-
mance in the field of medical image analysis. Indeed, sev-
eral deep learning architectures have been proposed as a 
way to overcome the problems encountered with conven-
tional segmentation algorithms and to handle pulmonary 
diseases causing lung density changes.2To name a few, 
Gerard et al. [9], Park et al. [10], and Jalali et al. [11] have 
shown that different types of deep learning approaches 
can be successfully applied to chest CT imaging.

Besides the different pixel size (mm vs µm), pre-clini-
cal µCT differs from clinical CT in several aspects. The 
acquisition time of μCT needs to be longer to collect 
more projections to provide accurate image reconstruc-
tion during free-breath scanning. In addition, compared 
to clinical CT detectors used have a limited dynamic 
range, typically 12–14 bits (compared with 20 bits in 
clinical CT). Thus, the integration of advanced automatic 
algorithms into image processing could pave the way to a 
fully automated lung densitometric investigation, where 
fibrosis assessment and evaluation of new candidate 
drugs will be completely µCT-guided.

Mouse organ segmentation on µCT is challenging even 
in healthy animals due to the intrinsically low contrast. 
For this reason, atlas-based approaches were initially 
proposed instead of intensity-based ones [12]. However, 
the results obtained with these methods may be affected 
by multiple factors such as the size of the dataset used 
to create the atlas, variations in mouse anatomy, and 
the specific methodology employed for image registra-
tion. In recent years, deep learning-based algorithms 
have also been proposed for organ segmentation in µCT. 
However, µCT imaging research is mostly performed by 
academic laboratories, which usually operate on a small-
scale in terms of the number of healthy mice employed 
for experimentation.

Schoppe et  al. [13] presented a U-net-based architec-
ture, called AIMOS, that automatically segments major 
organs, including the lungs, in 2D coronal µCT whole-
body sections of healthy mice. The authors added a post-
processing step based on an ensemble voting procedure 
to eliminate outlier predictions. Malimban et  al. [14] 
devised a 2D and 3D U-Net-based nnU-Net architec-
ture for lungs self-construction on µCT of mice thorax, 
even in the presence of a low contrast. In the work of 
Sforazzini et al. [15], the developed deep learning model 
efficiently segmented the lungs on CT images from 
mice with different degrees of fibrosis. The authors also 

2  Idiopatic pulmonary fibrosis (IPF, chronic obstructive pulmonary disease 
(COPD), Coronavirus Disease 2019 (COVID-19), Interstinal lung abnormal-
ity (ILA).
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explored the applicability of a transfer learning approach 
to achieve lung segmentation using the proposed net-
work from µCT images of healthy mice, but the test set 
only consisted of four specimens.

Lung densitometry is not addressed in any of the pro-
posed approaches. Birk et al. [16] proposed a deep learn-
ing approach to automatically detect the central part of 
the right and left lung on a µCT stack and perform lung 
densitometry on these portions of the lung. Many murine 
models of BLM-induced fibrosis show some limitations 
in the distribution of the disease across the lobes and 
more generally across the left and right lungs. Lung den-
sitometry performed on the left and right lung separately 
may help overcome this limitation of the animal model. 
However, to the best of our knowledge, no approach pro-
posed so far has been designed for lung segmentation 
in mouse µCT with significant changes in parenchymal 
density as those observed in severe PF. In addition, none 
of the reported approaches integrate an automated den-
sitometric analysis of the entire lung volume or separate 
left and right lobe volumes.

Materials and methods
Dataset
The dataset used in this study has been provided by 
Chiesi Farmaceutici S.p.A (Parma, Italy)3 and consists 
of Micro Computed Tomography (µCT) scans of female 
murine models of BLM-induced pulmonary fibrosis.

Data acquisition
Pulmonary fibrosis is induced by instillation of BLM 
(25 µg/mouse for each instillation) on day 0 and 4. Ani-
mals were lightly anesthetized with 2.5% isoflurane and 
bleomycin hydrochloride in saline solution was admin-
istered via oropharyngeal aspiration (OA). This protocol 
was shown to ensure a uniform distribution of fibrotic 
lesions throughout the lung [17].

On day 7, mice were divided into two groups: healthy 
(saline) and pathological (BLM).4 On days 7, 14, 21 from 
BLM administration, mice were anesthetized with 2% 
isoflurane and scanned on a Quantum GX MicroCT 
PerkinElmer,5 Inc. Waltham, MA.

Lungs were scanned 360° with X-ray tube voltage of 
90  kV, and current of 88 µA, using ‘high speed’ acqui-
sition mode with a respiratory gating technique. The 
respiratory gating strategy consists in an intrinsic retro-
spective two phase gating technique which has been ide-
ally developed for animal models in which measurements 
can be adversely affected by heart or lung motion.

In particular, once the animal was placed on a scanner 
bed in supine orientation, the chest was aligned withing 
the field of view (FOV) using X, Y, and Z axis motorized 
stage controls in Live mode with the respiratory region 
of interest (ROI) positioned over the diaphragm. The res-
piratory signal trace, the respiratory cycle lengths and the 
respiratory rate were monitored by reading the values 
inside the Respiratory Synchronization window. Projec-
tion images were collected in list-mode over a single con-
tinuous gantry rotation, total rotation time of 4 min and 
14.688 raw projections are acquired, one per 16 ms (one 
per 0.024° angle of rotation).

Back-projections associated with different phases of 
the respiratory cycle are acquired, contrarily to clinical 
CT that is acquired at the end of a full breath-hold.6

For the scope of this work only end-inspiratory (P01) 
and end-expiratory (P02) projections were retrospec-
tively sorted (on average 900 projections for each phase) 
and automatically reconstructed using a GPU-based 
filtered back-projection algorithm with a Ram-Lak fil-
ter [18]. Therefore, for each acquisition, two stacks of 
512 cross-sectional images, resulting in two 3D datasets 
with 50  µm isotropic reconstructed voxel size and cor-
responding to the two different phases P01 and P02 of 
the breathing cycle (end-inspiration and end-expiration, 
respectively) were produced. Figure 1 shows coupled P01 
and P02 scans for a PF mouse.

The system is calibrated monthly with standard phan-
toms for noise, uniformity, low contrast, and resolution 
[19]. The µCT scans provided have been carried out from 
the same device and acquired with the same voxel size 
(50 × 50 × 50 µm3), therefore a voxel size normalization is 
not required. Indeed, if input scans are acquired by dif-
ferent machines or in different institutions, they are likely 
to have different spatial resolution. However, to enable 
networks to learn spatial semantics correctly, it is prefer-
able to choose a fixed voxel size and resample all input 
scans to that size. Manual segmentations were performed 
in µCT after the application of a median filter with kernel 
size 5 × 5 × 5 to remove noise. Following the same proce-
dure, the input scans were filtered in the pre-processing 

3  https://​www.​chiesi.​com/.
4  All animal experiments described herein were authorized by the official 
competent authority and approved by the intramural animal-welfare body 
(AWB) of Chiesi Farmaceutici and authorized by the Italian Ministry of 
Health (protocol number: 449/2016-PR). All procedures were conducted in 
compliance with the European Directive 2010/63 UE, Italian D.Lgs 26/2014, 
the revised “Guide for the Care and Use of Laboratory Animals” and with 
the Animal Research: Reporting of In  Vivo Experiments (ARRIVE) guide-
lines.
5  https://​www.​perki​nelmer.​com/​it/.

6  On average, the acquisition time is 3 s, but it may vary from system to sys-
tem, depending on the sensitivity of the detector and dynamic range differ-
ences.

https://www.chiesi.com/
https://www.perkinelmer.com/it/
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stage. In addition, µCT scanner used in this work pro-
vides grey levels images and HU conversion has been 
implemented to perform the analyses.

The dataset contains 219 µCTs of end-expiration phase 
(P02) from different longitudinal studies performed in 
healthy (saline) and pathological animals (BLM). In addi-
tion, 83 µCTs of end-inspiration phase (P01) are pro-
vided and used to test the generalization capability of the 
approach.

Data annotation
Each µCT volume was segmented semi-automatically by 
trained operators by means of Analyze software (Ana-
lyze 12.0; Copyright 1986–2017, Biomedical Imaging 
Resource, Mayo Clinic, Rochester, MN),7 according to 
Chiesi Farmaceutici S.p.A. well-established and tested 
protocol. Since ground truth generation is a time-con-
suming process, each µCT scan was segmented by a sin-
gle operator.

Lungs were finely segmented into 167 µCT P02 vol-
umes and 67 µCT P01 volumes (Dataset A). In the 
remaining 52 P02-phase µCT scans and 20 P01-phase 

µCT scans, right lung and left lung were finely segmented 
separately (Dataset B). In addition, heart and airways 
were coarsely segmented in each µCT volume.

Table 1 shows data partitioning by time point, acquisi-
tion phase (end-expiration/end-inspiration) and disease 
prevalence.

Data splitting
µCT acquisitions and corresponding segmentations have 
been divided into three sets (training set, validation set, 
test set) ensuring that the µCTs acquired for each mouse 
at different time points were included in the same set. For 
each training, a fivefold split approach was adopted to 
evaluate the prediction on each µCT in the dataset and 
the final model was trained afterwards. Training set and 
test set are respectively exploited to train and evaluate 
the network, whereas validation set is used both to pre-
vent overfitting during the training process by early stop-
ping regularization and to define the threshold needed to 
binarize the coarse probability maps provided by the first 
network.

Lung segmentation pipeline
The proposed approach for automatic lung segmenta-
tion and analysis is described in Fig. 2. A first multiclass 

Fig. 1  An example of coupled scans: P01 (end-inspiration) scan on the left and P02 (end-expiration) scan on the right. Both scans are shown with 
window level (WL) = 590 HU and window width (WW) = 4310 HU. In end-inspiration scan, lungs are darker and stretched downward due to air 
within the lung parenchyma

Table 1  Data partitioning by time point, acquisition phase (end-expiration P02/end-inspiration P01) and disease prevalence

Dataset summary

0 days 7 days 14 days 21 days # Scans Prevalence

P02 P01 P02 P01 P02 P01 P02 P01 P02 P01 P02 P01

Dataset A 4 5 41 15 35 21 87 26 167 67 84% 92%

Dataset B 5 5 21 5 5 5 5 21 52 20 69% 60%

7  https://​www.​analy​zedir​ect.​com.

https://www.analyzedirect.com
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2D U-Net trained on subsampled µCT axial slices 
(down-sample factor = 4) in raw grey levels is used to 
extract a preliminary segmentation of lung, airway, 
and heart from µCT scans and perform pre-process-
ing. Coarse airways and heart segmentations are used 
to perform conversion from grey levels to HU. Coarse 
lung segmentation, on the other hand, is used to extract 
a bounding box in which the lung volume is entirely 
contained to identify the Region of Interest (ROI) in 

the higher resolution image. The ROI identified and 
converted to HU is then processed by three different 
2D U-Nets trained separately in the axial, sagittal and 
coronal planes, obtained by extracting 2D slices along 
the x, y and z axes of the higher-resolution µCT scan. 
The predictions provided by the three U-Net planes 
are then combined to provide a final spatially coher-
ent segmentation of the left and right lungs. Of note, 
segmentation is considered as a multiclass classification 

Fig. 2  The proposed pipeline for lung segmentation and densitometry. First, a multiclass network is used to identify the lungs, heart, and 
airways. Heart and airways segmentations are both needed to compute transfer function from raw grey levels into Hounsfield units (HU). Lung 
segmentation is used to identify the region of interest for the subsequent analysis. Then, three different higher-resolution 2D networks are used 
to segment the right and left lung on the three views (axial, sagittal, and coronal) of the HU-converted and cropped µCT scans. The result of these 
three networks is integrated to obtain an accurate and spatially coherent segmentation and thresholded in the [− 1040, + 121] HU range to 
remove voxels labeled by the network as lungs but whose corresponding value in the µCT scan is outside the appropriate range. Finally, this clean 
segmentation is compartmentalized based on the corresponding voxel value in µCT according to the thresholds introduced by [20]
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problem, so each pixel in the image is classified as one 
of the structures of interest or as a background.

Lung localization and Hounsfield unit conversion
As mentioned above, µCT scans are not provided in HU. 
Therefore, as a first step, the transfer function from grey 
levels to HU is computed. In addition, a Bounding Box 
(i.e., a cuboid) in which the lung volume is completely 
contained is identified.

A preliminary multi-class 2D U-Net model is used 
to segment the airways, lungs, and heart from the axial 
view. The network is trained and validated on µCT axial 
slices in raw grey levels resized to 128 × 128 (down-
sample factor = 4) to reduce the memory requirement. 
The probability map provided by the coarse 2D model 
is binarized with three different thresholds optimized 
on the validation set to obtain the preliminary segmen-
tations of the airways, lungs, and heart. The resulting 
coarse segmentations of the airways and heart are used 
to extract the average grey level values of these two struc-
tures. The transfer function from raw grey levels (GL) to 
Hounsfield unit (HU) is a linear function, computed sim-
ply by imposing that the average grey level values of air-
ways and heart are − 1000 and + 50, respectively. In our 
settings, the mean values of the raw grey levels for air-
ways and heart are 801.8 and 2250.19, respectively. The 
derived transfer function is simply applied to the μCT 
in raw grey levels at full resolution to obtain the μCT in 
HU. This step is critical for calculating lung densitometry 
because it introduces a linear relationship between the 
µCT image unit and tissue density. The resulting coarse 
segmentation of the lungs, on the other hand, is used to 
extract a bounding box of the lung mask. A cuboid of 
dimension 384 × 320 × 384 centred in lungs is used to 
crop the converted µCT image at higher resolution. This 
step is performed to crop the µCT and its segmentation 
and thus retain only the information useful for segmen-
tation, excluding part of the background to speed up the 
next steps.

Single‑view segmentation
Each µCT scan is analyzed in axial, sagittal, and coronal 
2D views. The scans are converted to HU and cropped 
with the cuboid based on the information calculated in 
the first step from the coarse segmentations. The cropped 
and converted scans are down sampled (down-sampling 
factor = 2) from the original µCT scans to meet memory 
requirements.

Initially, a deep learning model based on the same 
U-Net architecture is trained separately to segment the 
lungs on each orthogonal view. Subsequently, we used 
transfer learning to obtain the models able to segment 

right and left lung separately: in particular, the decod-
ing path of the three previously obtained models was 
retrained with the data for which segmentation into 
right/left lung was available, while the encoder path was 
frozen during the network retraining.

This step was necessary because of the low number 
of data labeled with right and left lung. In this way, we 
trained the model to identify the entire lung morphology 
and then to discriminate between right and left lung.

The outputs provided by the single plane networks are 
2D probability maps where each intensity value repre-
sents the probability that a given pixel is right lung, left 
lung, or background. Analogously to coarse segmenta-
tion, the single-view label map is obtained by binarizing 
the prediction map with two thresholds optimized on the 
validation set.

Multi‑view aggregation
The aggregation stage is intended to regularize the voxel 
prediction by considering the spatial information from 
the three orthogonal views. Each single-view network 
makes a prediction for the voxels in the µCT scan and 
the corresponding label maps are generated. The Major-
ity Voting integration approach was implemented to 
combine single-view segmentation. According to the 
approach suggested by Zhou et  al. [20], the predicted 
label (right lung, left lung or background) is assigned to 
the voxel following the majority voting rule among the 
predictions of the single-view networks.

Lung densitometry
Mecozzi et  al. [20] proposed densitometric cut-off val-
ues to identify lung abnormalities such as fibrosis and 
emphysema in animal models. The ranges introduced are 
[− 121, + 121] HU for Non-Aerated, [− 435, − 121] HU 
for Hypo-Aerated, [−  860, −  435] HU for Normo-Aer-
ated, [− 1040, − 860] HU for Hyper-Inflated.

The segmentation obtained by deep learning is auto-
matically subdivided into lung compartments accord-
ing to the thresholds proposed by Mecozzi et  al., and 
quantitative analyses for assessing disease progression 
in different subjects are performed. Figure 1 shows pro-
posed pipeline. First, the final segmentation provided 
by the deep learning model is thresholded in the range 
[−  1040, + 121] HU. This step is performed to remove 
voxels labeled as lungs by the network, but whose corre-
sponding value in the µCT scan is outside the appropriate 
range. Then, this clean segmentation is compartmental-
ized based on the corresponding voxel value in µCT (i.e. 
the aeration) according to the thresholds introduced and 
quantitative analyses are performed.
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Metrics and data analysis
The segmentations and conversions in HU obtained with 
the proposed pipeline are compared to ground truth 
annotations using different criteria:

•	 Dice score (DSC) of the segmentation network: used to 
evaluate the performance of the network as an over-
lap measure between the predicted and the ground 
truth segmentations. The Dice coefficient between 
two binary segmentations is defined as follow:

	 where GT  is the ground truth volume and Pred is the 
automatically segmented volume.

•	 Absolute percent error of volume: represents the abso-
lute value of the difference in volume between the 
volume calculated from the predicted segmentation 
and volume calculated from the ground truth seg-
mentation divided by the volume calculated from 
ground truth segmentation: |VolPred−VolGT |

VolGT
	 Vol is calculated as the number of non-zero voxels in 

lung segmentation multiplied by the volume of the 
single voxel 503 µm3 = 12.5 10–5 mm3).

•	 Percent absolute error of compartment: is the abso-
lute value of the difference between the percentage 
of a certain compartment on total volume calculated 
from the predicted segmentation and that calculated 
from the ground truth segmentation.

This metric represents a more complete evaluation 
because it involves both the conversion to HU and the 
predicted segmentation.

Experiments and results
Experimental settings
The experiments were performed on 219 scans acquired 
at the Chiesi Farmaceutici S.p.A Laboratory in Parma 
(Italy). Additional 87 scans were used for testing. Both 
training, validation and testing were performed on a 
NVIDIA Tesla K40c graphic card with CUDA compute 
capability = 3.5 and a NVIDIA Titan Xp with CUDA 
compute capability = 6.1, under Ubuntu operating sys-
tem. The deep learning models were implemented in 
Python using Keras framework based on Tensorflow 
with GPU support. These models, developed for Chiesi 
Farmaceutici S.p.A, are routinely used to perform predic-
tions in new µCTs using an NVIDIA Tesla P40 graphics 
card with CUDA = 6.1 computational capability, under 
Windows operating system.

DSC =
2 GT ∩ Pred

|GT | + Pred

∣

∣%Vol
comp

Pred − %Vol
comp
GT

∣

∣

For model trainings, categorical cross-entropy was 
used as a loss function in the coarse multi-class model 
and the final single-view multi-class models. Binary 
cross entropy was used for the intermediate single-view 
models trained to segment the lungs jointly. The Adam 
optimizer with learning rate = 0.0001 was adopted to 
optimize the network parameters. In each iteration, a 
mini-batch containing 24 and 4 slices randomly sampled 
from the training set was provided to the coarse U-Net 
and single view U-Net, respectively. The training process 
was stopped using early stopping criteria, with patience 
set to 10 epochs.

A data augmentation procedure was adopted: images 
and masks in the mini batch were modified on the fly 
during the training process with random rotations, shifts, 
and zoom factors to augment training and validation sets. 
The transformation parameters were extracted randomly 
from a uniform distribution range of maximum varia-
tion of [− 5°,5°] for rotation, [− 5%, + 5%] for shifting and 
[− 15%, + 15%] for zooming.

Only P02 scans were used for model training and vali-
dation because densitometric analyses are typically per-
formed on end expiratory (P02) scans. This allows to 
avoid any possible bias caused by lung-entrapped respira-
tory air as in end-inspiratory (P01) scans where the spec-
imen breathing capacity may affect image attenuation.

For both coarse and single-view models, fivefold split 
approach was adopted to evaluate the prediction on each 
µCT in the dataset. Specifically, 5 different models were 
initially trained on 5 different splits of the dataset. A final 
model was then trained by setting the number of epochs 
and the binarization thresholds as medians of the param-
eters obtained in the splits to train the model on as many 
data as possible. Approximately 5% of the data was used 
as a control test set. During the k-fold splitting process, 
models were tested on end-expiration (P02) µCTs vol-
umes only. For single-view models, the above procedure 
was initially applied to Dataset A. This dataset was com-
prised of 167 µCTs and allowed end-to-end learning of 
lung segmentation. Then, the final model thus obtained 
was used as a starting point to perform the same proce-
dure (k-fold splitting and end-to-end training) a second 
time using Dataset B. This dataset was comprised of 52 
µCTs and allowed learning of right and left lung segmen-
tation by transfer learning from models that segmented 
these two structures together.

Table 2 shows the number of training, validation, and 
test sets for each step. The proposed pipeline was further 
tested on the end-inspiration µCTs volumes (P01).

Lung localization and Hounsfield unit conversion
The first U-Net has two different purposes: (1) coarsely 
identify the lungs to extract a bounding box through 



Page 8 of 14Vincenzi et al. Respiratory Research          (2022) 23:308 

which cut µCT scans; (2) coarsely locate heart and air-
ways to derive the transfer function from raw grey levels 
to HU with which to convert the µCT volume.

In the first case, our main interest was the quality of 
segmentation, which, therefore, was evaluated in terms 
of a DSC. The coarse segmentations of the lungs pre-
dicted by the preliminary model featured an average 
DSC of 0.933 ± 0.084 on the µCT volumes.

In the second case, however, our main interest was 
not segmentation but, rather, the average grey value of 
the segmented structures. In addition, the ground truth 
segmentations related to the heart and airways are not 
accurate enough so the DSC would provide unreliable 
evaluations. Therefore, coarse segmentation of the air-
ways and heart was evaluated by comparing the mean 
grey values and the slope and intercept of the transfer 
function derived automatically, via neural network, 
with those derived manually in the Chiesi Farmaceutici 

Laboratory. Lung densitometry related to ground truth 
segmentation derived from automatically converted 
µCT scans was also compared with the original, man-
ually converted µCT scans generated in the Chiesi 
Laboratory.

Lung compartments were calculated based on previ-
ously tested thresholds [20] using manual lung segmenta-
tion (ground truth) to construct the mask. Table 3 shows 
the errors obtained regarding raw grey values detected, 
transfer function parameters and compartmental volume 
derived from densitometry. More specifically, in the first 
part, we report the absolute percentage error between 
the average grey level values derived from manual and 
network coarse segmentation for both airways and heart. 
In the second part, the absolute percentage error relative 
to slope and intercept of the transfer function obtained 
from manual and network coarse segmentation is 
reported. For the last evaluation, the scan was converted 
by two different transfer functions: one obtained from 
airway and heart manual segmentations and the other 
one from automatic segmentations. We have computed 
the percent absolute error (defined in Sect.  2.4) in lung 
densitometry of the two different conversions, using the 
manual lung segmentation as mask. In this way, we have 
verified that using a transfer function based on automatic 
segmentation results in a lung densitometry very similar 
to the one obtained using manual segmentation.

The final preliminary model was then trained by keep-
ing a small control test set. Table 4 shows the data for this 
training procedure and the performance on the control 
test set.

Single‑view lung segmentation
Axial, sagittal, and coronal U-Nets were separately 
trained on the converted µCT cropped around the ROI 
using Dataset A. Segmentations predicted by axial, sagit-
tal, and coronal single-view models achieve mean DSC of 
0.943 ± 0.034, 0.938 ± 0.055, 0.943 ± 0.035, respectively, 
over the splits. Then, the final axial, sagittal, and coronal 

Table 2  Data Splitting in training, validation and test set for Dataset A and Dataset B in each split and in final training

Data splitting

# train # validation # test

A B A B A B

Split 1 144 34 29 8 36 10

Split 2 93 32 36 12 30 8

Split 3 108 34 32 6 33 12

Split 4 107 32 31 10 37 10

Split 5 115 36 30 8 31 8

Final 195 46 0 0 14 6

Table 3  A summary of the evaluations performed to assess the 
goodness of automatic HU conversion

HU conversion evaluations

Raw Grey levels detected

Structure Absolute percentage error

Airways 4.3% ± 1.9%

Heart 0.1% ± 0.1%

Transfer function

Parameter Absolute percentage error

Slope 3.6% ± 0.2%

Intercept 3.4% ± 0.3%

Lung densitometry

Compartmental volume Percent absolute error

Normo-aerated volume 0.5% ± 5.6%

Hypo-aerated volume 2.9% ± 4.8%

Non-aerated volume 0.4% ± 6.7%
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models were trained, keeping a small control test set. 
Table 5 shows the data employed in this training and the 
performance on the control test set for the three views.

These models are able to segment the lungs together 
but not to segment separately right and left lungs. There-
fore, the decoding path of the single-view models was 
re-trained on µCT and related segmentation maps with 
the distinction between right and left lungs (Dataset 
B). Axial segmentations of right and left lung predicted 
by the model yielded a mean DSC of 0.964 ± 0.021 and 
0.954 ± 0.027, respectively, over the splits. Sagittal seg-
mentations of right and left lung featured a mean DSC 
of 0.948 ± 0.033 and 0.940 ± 0.029, respectively, over 
the splits. Coronal segmentations of right and left lung 
record a mean DSC of 0.965 ± 0.017 and 0.957 ± 0.020, 
respectively, over the splits.

Then, the final axial, sagittal, and coronal models for 
segment left and right lungs were trained, keeping a small 
control test set. Table shows the data employed in this 
training and the performance on the test set for the three 
views.

Multi‑view aggregation
Multi-view aggregation is a crucial step in the proposed 
pipeline. A majority Voting approach was implemented 
to integrate axial, sagittal, and coronal predictions into 
a final segmentation. In addition, by combining the left 
and right lung segmentations and binarizing the resulting 
probability map, total segmentation was achieved.

The results obtained with multi-view aggregation were 
compared with those generated by single-view segmen-
tations to evaluate the impact of the proposed approach 
on the test set. As shown in Table 6, the combination of 
orthogonal segmentations led to better results compared 

to those of single-view segmentations. The models were 
only evaluated on Dataset B because transfer learn-
ing was performed on the models trained on Dataset A. 
Figure 3 shows the ground truth and predicted segmen-
tations overlaid on a µCT scan with a high degree of 
fibrosis.

To corroborate the quality of the models, their per-
formances were divided according to the corresponding 
time-points and relative DSC values were calculated (see 
boxplots in Fig.  4). Furthermore, to test the generaliza-
tion capability of the models, the optimized pipeline was 
also tested on P01 scans. The resulting DSC values were 
0.926 ± 0.077 on the left lung, 0.950 ± 0.044 on the right 
lung and 0.949 ± 0.38 on both lungs.

To eliminate out-of-band voxels, the neural network-
generated segmentation was thresholded in the range 
[−  1040, + 121] HU. The volume calculated by ground 
truth segmentation was compared with the volume 
yielded by automatic segmentation. The absolute per-
cent error thus achieved was + 2.6 ± 1.9% on the left 
lung, + 1.9 ± 1.7% on the right lung and + 2.2 ± 1.6% on 
both lungs.

Lung densitometry
The clean segmentation was compartmentalized based 
on the corresponding voxel values in µCT scans (i.e., aer-
ation) according to pre-defined thresholds [20]. Table  7 
shows the difference in percent points between a specific 
compartment detected in manual segmentation (ground 
truth) and in automatic neural network segmentation. As 
shown by the Bland Altman plots of left-lung compart-
ments in Fig. 5, nearly all data are within the confidence 
intervals highlighted by the dashed grey lines. We also 

Table 4  A summary of data employed to perform coarse axial model together with information on the training process

Coarse axial model summary

Number of train 
µCT

Number of test 
µCT

Image dimension Number of 
epochs

Training time [h] Binarization 
threshold

Lung DSC on test 
set

Coarse 195 (99,840 2D 
slices)

14 (7168 2D slices) (128, 128) 28 02:35:37 [0.45, 0.45, 0.45] 0.939 ± 0.040

Table 5  A summary of data employed to perform single-view segmentation model together with information on the training process

Single-view models summary on single class (lungs)

Number of train µCT Number of test µCT Image dimension Number 
of epochs

Training time [h] Binarization 
threshold

Lung DSC on test set

Axial 195 (74,880 2D slices) 14 (3376 2D slices) (192, 120) 4 05:49:37 0.55 0.943 ± 0.038

Sagittal 195 (37,440 2D slices) 14 (2688 2D slices) (192, 192) 10 06:52:29 0.55 0.934 ± 0.055

Coronal 195 (31,200 2D slices) 14 (2240 2D slices) (192, 120) 9 06:37:13 0.5 0.943 ± 0.037



Page 10 of 14Vincenzi et al. Respiratory Research          (2022) 23:308 

compared the percentage of normo-aerated compart-
ments and poorly-aerated compartments (hypo-aer-
ated + non-aerated) derived from manual volume and 
automatic total volume analyses. As shown by the scatter 
plots in Fig. 6, the trend lines indicate a significant cor-
relation between manual and automatic measurements in 
both compartments (R2 = 0.99).

Discussion
In this study, we present a deep learning approach for 
spatially coherent lung segmentation and lung densitom-
etry based on whole lung volumetric µCT data. To the 
best of our knowledge, this is the first approach applied 
on µCT scans for lung segmentation in fibrotic mice.

Table 6  A summary of data employed to perform single-view right/left segmentation model together with information on the 
training process

Single-view models summary on multi-class (left lung/right lung)

Number of train 
µCT

Number of test 
µCT

Image 
dimension

Number 
of 
epochs

Training time [h] Binarization 
threshold

Left lung DSC on 
test set

Right lung 
DSC on test 
set

Axial 46 (17,664 2D 
slices)

6 (820 2D slices) (192, 120) 6 02:19:12 [0.45, 0.45] 0.952 ± 0.021 0.963 ± 0.043

Sagittal 46 (39,168 2D 
slices)

6 (1152 2D slices) (192, 192) 9 02:53:39 [0.40, 0.40] 0.940 ± 0.031 0.950 ± 0.042

Coronal 46 (32,640 2D 
slices)

6 (960 2D slices) (192, 120) 11 02:27:39 [0.40, 0.40] 0.957 ± 0.028 0.964 ± 0.027

Fig. 3  Ground truth and predicted segmentations are overlaid on the corresponding µCT belonging to the test set. The segmentation 
ground-truth segmentation is shown in magenta for the left lung and green for the right lung, while automatic segmentations are shown in cyan 
for the left lung and red for the right lung. The overlap of the two segmentations is then shown in purple for the left lung and in orange for the right 
lung. Both scans are shown with window level (WL) = 590 HU and window width (WW) = 4310 HU

Fig. 4  Boxplots related to pipeline performance on the left and right 
lung segmentation divided by timepoint
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Several pulmonary segmentation approaches have 
previously been proposed for clinical CT analysis of IPF 
patients [9–11] but the preclinical setting has received 
considerably less attention, except for a few reports deal-
ing with healthy animals [13–15]. These approaches, 
however, do not work in the presence of the marked 
lung parenchyma alterations associated to pulmonary 
diseases. Indeed, such alterations significantly affect the 
contrast of the lungs in µCT, making it difficult to distin-
guish them from the surrounding soft tissue. Our data-
set, conversely, includes multiple independent µCT scans 
from healthy and BLM animals with different degrees of 
fibrosis.

Our segmentation pipeline is based on the U-Net 
architecture proposed by Ronneberger et  al. [21]. This 
procedure can perform efficient image segmentation 
using a limited number of labeled training images and it 
is thus considered the gold standard in medical segmen-
tation [22].

The first step of the proposed pipeline includes auto-
matic coarse identification of the lungs from µCT scans. 
This step is performed to retain only the information 
needed to segment the lungs, excluding some of the 
background and speeding up subsequent steps. This 
approach has been widely adopted in medical image seg-
mentation, especially when the structures of interest are 

Table 7  Evaluation of percent absolute error of compartment in right, left and total lung volume

Lung densitometry

Left lung Right lung Both lung

Normo − 0.6% (− 2.0%, + 1.6%) − 0.3% (− 1.7%, + 1.9%) − 0.5% (− 1.9%, + 1.8%)

Hypo  + 1.3% (− 1.3%, + 2.9%)  + 1.4% (− 1.8%, + 2.8%)  + 1.5% (− 1.5%, + 2.3%)

Non − 0.1% (− 3.5%, + 0.1%) − 0.4% (− 2.8%, + 0.1%) − 0.2% (− 2.8%., + 0.1%)

Hyper  + 0.0% (− 0.1%, + 0.1%)  + 0.0% (− 0.1%, + 0.1%)  + 0.0% (− 0.1%, + 0.1%)

Fig. 6  Scatter plots of manual compartment volume (derived from ground truth) vs. predicted compartment volume (derived from pipeline 
prediction): on the left side, normo-aerated compartment and, on the right side, poorly-aerated (hypo-aerated + non-aerated) compartment. In 
both cases, the trend line shows good significant correlation between the two measures with a R2 = 0.99

Fig. 5  Bland Altman plots of normo-aerated (left), hypo-aerated (center) non-aerated (right) compartment of the left lung which is usually the 
most affected by the disease. The corresponding Bland Altman plots relating to the right lung are not shown for brevity but show similar results. In 
all graphs, almost all data are within the confidence interval [Lower LoA, Upper LoA]
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small compared to the image size. In the work proposed 
by Fantazzini et al. [23] for aorta segmentation in angio-
CT images, a first 2D U-Net was exploited to extract 
the ROI from subsampled CT images, then a second 2D 
U-Net performs a finer segmentation on higher-reso-
lution cropped CTs. A similar approach, based on a 3D 
U-Net, was proposed by Jia et al. [24] for segmentation of 
the left atrium in MR images.

In our pipeline, we extend these approaches by using 
an initial 2D U-Net to simultaneously segment airways 
and heart in order to obtain the information required for 
HU conversion in a single step without slowing down the 
overall pipeline. In this way, our HU conversion approach 
allows us to automatically examine all those scans for 
which a reference (e.g., a phantom) is not available for 
conversion. Future work will address the possibility of 
designing a procedure for HU conversion independently 
from segmentation of other structures, in order to fur-
ther speed up the pipeline and eliminate its dependence 
on the quality of segmentations.

We preferred a multi-view orthogonal integration 
approach of 2D CNN rather over a single 3D CNN for 
finer lung segmentation.

3D CNNs allow to extract more discriminative infor-
mation than 2D CNNs because the kernels learn volumes 
rather than sections, and this is useful for segmenting 
large organs (such as lungs). Kleesiek et al. [25] used CNN 
3D to extract brain boundaries, with an improvement of 
approximately 6% compared to other methods. However, 
3D CNNs require a significantly higher number of param-
eters compared to 2D CNNs and, as a result, are much 
more resources- and time-demanding, usually needing 
image subsampling. Moreover, 3D CNNs often require 
very large data set to enable end-to-end learning and 
memory requirements are usually very high [25]. On the 
other hand, the multi-view integration of CNN 2D (the so-
called 2.5D approach) is a widely used alternative because 
it offers a good balance between overall performance and 
computational efforts [23, 25]. In particular, it is possible 
to preserve an high image resolution, which is one of the 
most important issues, especially for small structures or 
low contrast images such as µCT. With our architecture, 
a 2D single-view Unet network has 34,535,875 parameters 
while a 3D Unet network has 103,546,435 parameters. 
The 2.5D approach requires 3 single-view Unet networks 
and therefore 3 × 34,535,875 = 103,607,625 parameters. 
Thus, the number of parameters in our 2.5D approach is 
slightly larger than that required by a 3D approach. How-
ever, in the 2.5D approach the three nets are trained inde-
pendently, so the number of parameters involved for each 
single-view training is that of a 2D Unet. On the contrary, 
in 3D networks all the parameters are involved simultane-
ously and therefore the computational resources required 

are much greater. The huge memory requirement is often 
addressed by limiting the complexity of the model. More-
over, because in our 2.5D approach each µCT volume 
is decomposed into axial, sagittal and coronal 2D slice 
stacks, the single-view 2D networks can be trained with 
a large amount of data. This advantage is not exploited 
with a 3D network, that processes the whole µCT scans, 
thus requiring more training data than a 2D network. In 
addition, 2.5D approaches often return results with com-
parable accuracy to 3D approaches but with lower com-
putational efforts.

A thresholding step was included after segmentation to 
remove voxels labeled by the network as lungs but whose 
corresponding value in the µCT scan is outside the 
appropriate range [20]. Indeed, it is possible that small 
portions of ribs or tissue areas of the airways are errone-
ously included in the lung segmentation. This is because 
models learn from manual segmentations in a super-
vised manner, and manual segmentation may contain the 
above-mentioned errors. To limit this effect, it would be 
necessary to collect multi-user segmentations for each 
individual µCT in the training set, thus making the model 
more robust and limiting errors in areas that are difficult 
to segment. In our dataset, however, out-of-range voxels 
excluded from the predicted segmentations however are 
typically less than 1% of the total lung volume.

The final step in the proposed pipeline involves the 
computation of lung densitometry.

Considering only a specific portion of the lung [16], 
even a central one, might be reductive because the most 
relevant changes in lung parenchyma density are usu-
ally localized to peripheral regions such as the acces-
sory lobe or the right apical lobe. In our work, instead, 
densitometry was performed on the the whole lung vol-
ume, taking into account all areas of the lungs and, con-
sequently, more meaningful parameters were obtained. 
This approach also allows to determine the fractional 
content (percentage) of singular compartments relative 
to the total volume of the lungs to monitor their varia-
tion during disease development and/or treatment with 
candidate new drugs.

Conclusion
In clinical settings, chest CT is widely used for diagnostic 
purposes and plays a crucial role in patient management 
[5]. A large community of radiologists is increasingly 
committed to the creation and distribution of new CT-
based diagnostic tools and algorithms [9–11, 26]. In the 
pre-clinical setting, conversely, the deployment of µCT 
and automatization approaches are much less common. 
Imaging research based on µCT is mostly performed in 
academic centers and is usually limited to relatively small 
numbers of healthy mice. This contrasts with the needs 
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of fibrosis drug discovery, where µCT imaging has to be 
applied to a large number of mice and to provide useful 
results in a relatively short time in order to support the 
efforts of pharmaceutical companies, aimed at quickly 
identifying the most promising drug candidates for clini-
cal development.

The key role played by µCT imaging in this drug dis-
covery process has been corroborated by the results of 
several studies documenting the correlation between in-
vivo µCT and ex-vivo histological analysis [8, 20].

In addition, µCT enables longitudinal studies, which 
in addition to a more detailed monitoring of disease pro-
gression, allows a sizable scaling down of the number 
of required animals. In this work, we presented a fully 
automated time-saving tool that enables densitometric 
analysis of the entire lung in murine µCT scans even in 
the presence of large changes in tissue density. Areas of 
dense tissue are particularly important when studying the 
mechanisms involved in pulmonary fibrosis as well as the 
effects of new potential antifibrotic strategies in murine 
models.

However, available semi-automated software fails 
to detect these regions and in order to avoid potential 
artifacts (and associated confounding effects) segmen-
tations must be corrected manually by trained opera-
tors. Considering that drug discovery experiments 
may require the analysis of up to 1000 scans/year, our 
approach can significantly reduce the experimental 
workload. To better substantiate this time-saving, we 
note that, on average, our pipeline took about 81 ± 15 s 
per scan (48 ± 9  s per segmentation, 33 ± 6  s per den-
sitometry analysis) compared to the > 40  min required 
by a complete manual analysis performed under severe 
pathological conditions (coarse segmentation of air-
ways and heart, accurate segmentation of right and left 
lungs, conversion to HU and lung densitometry). Our 
automated pipeline is being used successfully for drug 
discovery experiments and independently validated at 
Chiesi Farmaceutici S.p.A.

We also anticipate that the proposed pipeline, 
although developed in mice, could be extended and 
adapted to other animal models with different lung 
anatomies such as rabbits or rats. The only require-
ment to set-up a transfer learning procedure and create 
dedicated models for these alternative animal models, 
would be the availability of a sufficient number of µCT 
volumes and corresponding manual segmentations.
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