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The interaction of droplet dynamics and turbulence
cascade
Marco Crialesi-Esposito 1,2✉, Sergio Chibbaro 3,4✉ & Luca Brandt 1,5✉

The dynamics of droplet fragmentation in turbulence is described by the Kolmogorov-Hinze

framework. Yet, a quantitative theory is lacking at higher concentrations when strong

interactions between the phases and coalescence become relevant, which is common in most

flows. Here, we address this issue through a fully-coupled numerical study of the droplet

dynamics in a turbulent flow at Rλ≈ 140, the highest attained up to now. By means of time-

space spectral statistics, not currently accessible to experiments, we demonstrate that the

characteristic scale of the process, the Hinze scale, can be precisely identified as the scale at

which the net energy exchange due to capillarity is zero. Droplets larger than this scale

preferentially break up absorbing energy from the flow; smaller droplets, instead, undergo

rapid oscillations and tend to coalesce releasing energy to the flow. Further, we link the

droplet-size distribution with the probability distribution of the turbulent dissipation. This

shows that key in the fragmentation process is the local flux of energy which dominates the

process at large scales, vindicating its locality.
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Turbulent flows with dispersed interfaces are at the core of
many transfer processes in gas-liquid (atomization and
sprays)1–3 and liquid-liquid (emulsions) systems4–6.

Notably, air bubbles are key for the gas transfer between ocean
and atmosphere7–9, and in the aerosol production through
bursting10,11. Despite the numerous experimental and numerical
studies12–17, the nature of the interactions between droplets of
different sizes and turbulence is not yet clear. The presence of a
deforming/breaking/coalescing interface couples the two phases
in a non-trivial way, absorbing and distributing energy over the
whole spectrum of scales. The Kolmogorov-Hinze (KH)
theory18,19 is the cornerstone of existing models and applications;
this framework is based on the breakup of isolated droplets in
turbulence and identifies the scale dH above which a droplet
breaks up due to the local environment turbulence and below
which surface tension forces are able to resist the action of the
turbulent eddies. This picture, based on breakup only, is
incomplete and has been recently challenged20.

The key observable is the distribution spectrum of the size of
the intrusions,N ðdÞ, which gives the number of droplet at a given
size d. The dynamics for large diameters has been rationalized in
the KH framework in terms of a local fragmentation process7.
The idea is that a droplet breaks up whenever the pressure forces
acting on its surface are larger than the cohesive force given by
the surface tension. In this picture, the only dimensionless
parameter is the Weber number We ¼ ρcu

2
dd=σ, where ρc is the

carrier-phase density, σ is the surface tension, and ud is the typical
velocity at the scale of the droplet size, d. The disruptive inertial-
range velocity fluctuations can initiate fragmentation above a
critical threshold Wec21. Assuming the local Kolmogorov
description of turbulence in the intertial range7,22,
u2d � εh i2=3d2=3, where εh i ¼ hνð∂iuj þ ∂juiÞ2i is the time-space
average energy dissipation rate, and using dimensional analysis,
Kolmogorov and Hinze first derived an estimate for the max-
imum droplet size for which surface tension is able to resist the
pressure fluctuations7,18,19:

dH ¼ Wec
2

� �3=5 ρc
σ

� ��3=5
εh i�2=5: ð1Þ

This is referred to as the Hinze scale, and it is the only length
scale that can be obtained from ρc; σ; εh i. For d≳ dH surface
tension forces cannot resist pressure fluctuations, and the droplets
break. A fragmentation cascade is thus triggered, with a power-
law size distribution N ðdÞ � d�10=3 obtained by dimensional
analysis solely assuming locality7, see also Supplementary Note 1
for details. Empirical evidences, notably in bubbly flows, seem to
confirm this distribution7,9,23–26, although variations may be
measured, in particular because of viscous effects in emulsions27.
Yet, recent experiments on a single bubble contradict this phy-
sical picture20, and the definition of the critical Weber number
Wec remains ambiguous and somewhat heuristic, with values in
the literature spanning more than one order of magnitude16,23,28.
Furthermore, the key feature of intermittency, that is the breaking
of scale invariance29–31, has not been considered in the analysis.

Even less clear is the behavior for d≲ dH, where observations
seem to indicate a different power-law spectrum
N ðdÞ � d�3=29,23; laboratory experiments are difficult and no
fundamental study of the collective turbulent dynamics of dro-
plets or bubbles is currently available.

To overcome these difficulties and fully understand the pro-
blem by gaining access to quantities difficult to measure in the
laboratory, we carry out a large campaign of direct numerical
simulations (DNS) of turbulent multiphase flows. The simula-
tions are performed at a high-level of multiphase turbulence,
Reλ ≈ 137, varying the surface tension, volume fraction α, and the

ratio of the two fluid viscosity. Key to our understanding is the
scale-by-scale energy budget, accessible only in numerical
experiments (See Material and Methods for the details on the
theoretical tools and the setup employed). In this work, we pro-
vide a comprehensive explanation by considering configurations
in which turbulence is modulated by the dispersed phase and
both coalescence and breakup occur. We will use an original
statistical approach analyzing the energy fluxes from fully
resolved numerical simulations to unambiguously show that there
exists a scale dH which separates two regimes–one statistically
dominated by non-local processes, like droplet coalescence, and
the other by breakup. We also show that intermittency at small
scales significantly increases in multiphase turbulence and
demonstrate how the extreme-event distribution can be inferred
directly by the droplet size distribution.

Results
Scale interpretation of droplet size spectrum. Figure 1(a) shows
a visualization of the mixture for a volume fraction of the dis-
persed phase α= 0.1 and viscosity ratio 1. The dispersed phase,
initially a single droplet, is organizing over different scales and
shapes, from large-scale drops to smaller filaments and even
smaller droplets. The droplet size distribution is shown for dif-
ferent volume fractions in the main panel of Fig. 1 with the two
scaling regimes introduced above emphasized in the inset (b). The
small-scale range is similar for the different cases, whereas the
large-scale distribution is sensitive to changes in the volume
fraction. At large volume fractions, nevertheless, our results fully
support the two empirically-proposed laws, remarkably neatly for
α= 0.5. For small volume fractions of the dispersed phase,
instead, the spectrum appears to fall exponentially at large scales.
Furthermore, the distribution spectra are only slightly altered
when changing the viscosity, as shown by the collapse of the data
at fixed volume fraction in panel (b).

The cross-over scale separating the two power-laws is the
Hinze scale, and is usually determined from the value of Wec. In
Fig. 2(a), we show C ¼ ðWec=2Þ3=5 as the iso-lines interpolating
all simulated conditions as a function of the two dimensionless
groups ρcσD95=μ

2
c and μ4c ε=ρcσ

4, where D95 is the diameter for
which 95% of the total mass is enclosed in droplets smaller than
D95, a measure of the maximum diameter at which a droplet
breaks at Wec19. Our results confirm that a unique value of the
coefficient C cannot be used to fit all the data. In particular, when
surface tension is varied while taking the viscosity of the two
fluids equal, data nicely collapse on a line of slope C � 1.
However, increasing μd/μc and α, while maintaining the
dissipation εh i almost constant, C should be increased to about
2.5 to fit the data. Note that the range C 2 ½1; 2:5� corresponds to
a critical Weber number in the range 2 <Wec < 9.5; with even
larger deviations observed in literature16. This variability of Wec,
limits the applicability of the original definition of the Hinze
scale.

We can however provide an accurate calculation of the cross-
over scale by analyzing the scale-by-scale energy fluxes32,33,
which written in Fourier space read (see Material and Methods):

∂tEðκÞ ¼ TðκÞ þDðκÞ þ SσðκÞ þ F ðκÞ ; ð2Þ
where EðκÞ is the energy spectrum, T(κ) the energy transfer due to
the nonlinear term, DðκÞ the viscous dissipation, SσðκÞ the work
of the surface tension force, and F ðκÞ is the power injected by the
forcing used to maintain the turbulence. In Fig. 2(b), we display
the net transfer due to the action of surface tension forces and the
droplet size distribution versus the wavenumber κ. The
comparison of the scale-by-scale budget and the size-
distribution clearly points out that the cross-over scale is
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unambiguously defined as the length at which the work made by
surface tension is zero, called hereafter as dHσ. It is found that this
is generally different from the standard dH computed through (1).

At larger scales (small κ), SσðκÞ< 0 which implies drainage by
the surface tension forces. This indicates that, at these scales,
cohesive forces are not able to resist disruptive turbulent eddies
and we should expect fragmentation to dominate. In this regime,
assuming statistical scale locality, that is droplets are broken only
by eddies of comparable size, it is possible to obtain the− 10/3
power-law for the droplet-size-distribution7. As in all turbulent
cascades34, the local picture cannot be strictly true. Indeed, since
droplets are stable due to surface tension when d < dHσ, the local
cascade would induce an accumulation of droplets at ℓ ≈ dHσ and
no smaller ones, at least in a statistical sense. We therefore expect
this picture to be accurate only for d⪆ dHσ, and a non-local
process to determine large-scale events. In fact, two similar
daughter drops and some smaller droplets form as a result of the
breakup of large droplets, d≫ dHσ, as confirmed
experimentally26,35. It is worth emphasizing that the droplet-
cascade process can be still approximated as local, since small
droplets have negligible volume. Yet, non-local effects are
necessary to explain the existence of droplets with d < dHσ.

At small scales, droplets cannot break up as the surface tension
is larger than the dynamic pressure, rather they should coalesce
for they try to minimize the free energy, that is the surface area.
In this case, we find positive work made by surface tension forces,
that is interface deformation increases the flow kinetic energy,
rather than absorbing it as at large scales; this is shown by the
rightmost part of the spectrum in Fig. 2(b). The full scale-by-scale
global budgets is shown in Supplementary Fig. 1 and further
discussed in ref. 36. It is important to note that the turbulence
cascade is not necessarily intended here to be related to a constant
non-linear flux from large to small scales, because of the
contribution of the surface tension.

For geometric reasons, it is more likely to have collisions and
coalescence between small and large droplets37, which promotes
the non-locality of the inverse droplet-cascade. The introduction
of a second large-scale other than the droplet diameter allows to
retrieve the −3/2 scaling7,23, see SI. The closer the droplets are to

the Hinze scale from below, i.e., d⪅ dHσ, the more local is the
process, and droplets of similar size are more likely to interact.
For d= dHσ both mechanisms occur and the net energy transfer
from surface tension is thus exactly zero i.e.,SσðκSσ

Þ ¼ 0, with
κSσ

¼ 2π=dHσ . At this scale, we observe the transition between
the−10/3 and the−3/2 power-laws. The non-locality and
randomness of the coalescence events suggest that this process
is not likely the only source for positive surface tension work at
small scales. In fact, random coalescence events should have a
considerably high frequency to sustain small scale agitation,
which is unlikely at very low volume fractions. One possible
production mechanism is the collision between a droplet and
vortices of similar size but unable to break the interface,
producing velocity fluctuations of scale smaller that the droplet
size. A precise estimation of all the mechanisms leading to small-
scale agitation is difficult to obtain from statistical data and
requires additional ad-hoc numerical experiments. Our physical
picture based on energy considerations are to be true in a
statistical sense, but we expect it to be qualitatively true also for
each single realization. Therefore, in order to gain a better
understanding of the small-scale dynamics, we remove the effect
of coalescence at statistical steady state from the picture, and
study the behavior in wave-number space of a single droplet
break up.

Single-droplet breakup. The statistical interpretation of the
break-up/coalescence process described so far relies on the
assumption that a droplet can be considered as a spherical object,
such that local variations of the surface curvature are statistically
negligible. Of course, this cannot be true for a single break-up,
and one must provide a link between the single-droplet dynamics
and the multiphase flow statistics. The morphological analysis of
a droplet break-up in turbulence enables us to identify three
stages, see Fig. 3: incipient deformation (green panels), sub-critical
deformation (yellow panels) and super-critical deformation (red
panels). In the incipient deformation stage, the droplet, originally
spherical, deforms due to the interaction with the turbulence,
panel (a). At this stage, the turbulent kinetic energy is mainly
absorbed at large and intermediate scales, as shown by the work

Fig. 1 The droplet-size-distribution of emulsions in homogeneous and isotropic turbulence. Droplet-size-distribution for emulsions in homogeneous and
isotropic turbulence at different volume fractions α, i.e., 0.03 (green dashed line) 0.06 (red dashed line) 0.1 (blue dashed line) 0.5 (ocher dashed line) at
constant large-scale Weber number (see Methods) WeL ¼ 42:6 and μd/μc= 1. The droplet diameter is normalized with the Kolmogorov scale ηsp for the
single-phase reference case (also used as initial condition for all simulations) at Reλ= 137. Similarly, inset (b) shows the DSD different viscosity ratio μd/μc,
i.e., 0.01 (black dot-dashed line) 0.1 (red dot-dashed line) 1 (cyan dot-dashed line) 10 (yellow dot-dashed line) 100 (dark green dot-dashed line), at
constant α= 0.1 and WeL ¼ 42:6. The black dashed line indicates the −3/2 power-law and the continuous black line the −10/3 power-law. Inset (a)
shows a render of the simulation at WeL ¼ 42:6, α= 0.1 and μd/μc= 1. The droplets diameter is considered to be the volumetric one, i.e.,d ¼ ð6Vd=πÞ1=3,
with Vd the droplet volume.
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of the surface tension Sσ in the bottom section of panel (a).
Deformation increases with time, progressively forming regions
with high values of the curvature ξ (panels b,c). At this sub-critical
stage, work against surface tension is acting to deform larger
interfaces while smaller structures are produced for which
interfacial forces are greater than turbulent pressure fluctuations.
At these small scales, the interface tends to relax to a spherical
shape, releasing energy to the surrounding flow (see areas of
Sσ > 0 at the bottom of panels b,c). It can be demonstrated that
high local values of ξ are directly responsible for high values of Sσ

(see Material and Methods). When super-critical deformation is
reached, the interface breaks and small droplets form, see panels
(d,e). Energy is still absorbed for the deformation of large inte-
faces, while the coalescence of the small droplets minimizes the
surface area and adds energy to the flow at small scales (panels
d,e). Simulations pleasantly confirm that most of the fragmenta-
tion process is local, while sub-Hinze droplets are formed through
a non-local dynamics. Droplets at d < dH are thus characterized
by an oscillatory motion, resulting from deformations by small
vortices and viscosity and surface-tension driven relaxation. It
should be noted that droplet relaxation and coalescence have a
similar energy footprint on the flow, as they both add energy at
scales ℓ < d. At the same time, coalescence contributes to the
formation of larger drops, thus affecting energy transfer to larger
scales, proving to be the source of non-locality from small to large
scales.

After a full large-eddy turnover time T L, the instantaneous
energy transfer due to surface tension forces, Sσ , approaches the
behavior at the statistically stationary state, corroborating the
statistical picture obtained when many droplets are considered.
This shows that droplet dynamics for sizes d < dHσ and local
interface deformations at scale ℓ < dHσ are associated to the
transfer of energy to the carrier phase by interfacial forces. Our
simulations clearly show that energy spectra of the carrying phase
are modulated by the droplets in a way fully consistent with the
above physical picture (see Supporting Movie 1).

Intermittency. The argument leading to the definition of the
Hinze scale is based on mean turbulence properties, yet turbu-
lence is characterized by fluctuations exhibiting large deviations
from the mean values, i.e., intermittency32. The definition of a
Hinze scale based on energy fluxes takes implicitly into account
intermittency in an average sense, but it does not give any insight
on the role of the extreme events on the droplet size distribution.
If the turbulence determines the droplet size distribution and the
droplets modulate the turbulence, it should be possible to relate
the droplet size distribution to the intermittency at the different
scales. If this is the case, we would be able to extract information
about the turbulence modulation and dissipation rates from the
distribution size spectrum, more accessible to experimental
measurements.

Using Eq. (1), the probability distributions of d and ε (here
intended as the space-local and instantaneous value of dissipa-
tion) may be related by ε ~ d−5/2, so to obtain7

PðεÞ � d13=2N ðdÞ : ð3Þ

This relation, further discussed in Supplementary Notes 1,
implies that small droplets are correlated to high dissipation
events (large ε), while large droplets are related to regions of small
ε. This is beautifully confirmed in Fig. 4, where we compare the
distribution P(ε), computed according to Eq. (3), with the
dissipation distribution extracted from the simulations. The tail of
the distribution, i.e., high ε, which corresponds to small scales and
the range of diameters for which the droplet distribution scales as
d−3/2, is accurately described by Eq. (3) for all cases. For small ε,
i.e., large d (see inset), Eq. (3) is in general less accurate, yet
improving with α (the whole dissipation distribution is reason-
ably well predicted for α= 0.5). Equation (3) has a clear meaning
only where a local fragmentation process is present, which in turn
should be related to the inertial-range turbulence, and indeed for
increasing values of αmore droplets are found to have sizes in the
inertial range of scales (see Supplementary Fig. 2). Figure 4 also
shows that the degree of intermittency is much higher in
multiphase flows than in single-phase turbulence, indicating an
increase of extreme events at small scales when coalescence is also

Fig. 2 The definition of the Kolmogorov-Hinze scale. a Maximum droplet
diameter D95 as a function of the energy input ε, normalized as in ref. 19.
We performed several simulations, varying one parameter (i.e., α, μd/μc and
WeL) at the time. We show results for different α (red dots) atWeL = 42.6
and μd/μc= 1; different WeL (green dots) at μd/μc= 1 and α= 0.03;
different μd/μc (purple dots) at α= 0.1 and WeL = 42.6, and different μd/μc
(yellow dots) at α= 0.03 and WeL = 42.6. The arrows indicate data
obtained with increasing values of each parameter. The blue line shows
C ¼ Wec=2

� �3=5 ¼ 1, whereas C ¼ 0:765 was originally proposed19. b The
relationship between surface tension energy transfer and droplet-size-
distribution. Top panel shows the term Sσ from Eq. (2), normalized by the
average energy dissipation and multiplied by κ to increase visibility. The
bottom panel shows the droplet-size-distribution P(d), versus the
wavenumber κ= 2π/d. The vertical lines show Sσ ¼ 0; (green-dashed) and
the Hinze scale wavenumber computed using C ¼ 1 (gold-dotted).
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important. This is thought to be due to the vorticity creation
related to interfaces, which seems to be a crucial feature of
intermittency for all practical applications38.

We are now in the position to provide a statistical description
which relates intermittency to the Hinze scale. The rationale
underlying Eq. (1) is the competition between capillary forces and
the turbulent stresses, which are related to the average turbulent
dissipation rate. As shown by the refined-Kolmogorov theory
K6231,32,39,40, high-energy intermittent events are occurring within
the dissipation range, i.e., localized at small scales41. The
correlation (not necessarily causality) between small droplets and
high values of ε, typical of small scales, suggests that a
reinterpretation of the breakup theory could be obtained by
defining a local random variable εℓ as the integral over a sphere of
diameter ℓ of the dissipation field ε(x, t). To include intermittency
in the picture, we might relate the turbulent forces to the local
dissipation rate εℓ at the relevant scale ℓ; this is in line with Hinze
proposition, and introduces a clear scale-dependence in the
formula. In this framework, the local dissipation could be estimated
as ðε‘‘Þ � u3‘ , which should read εℓ ~Πℓ in a single-phase flow.
However, in a multiphase flow at high concentration, the relevant
observable for the deformation is precisely the local flux Πℓ, which
should balance the local dissipation and the interfacial term, so that
one should use Πℓ rather than εℓ in eq. (1). Hence, if κSσ

is the
wavenumber corresponding to Sσ ¼ 0 in the shell-by-shell energy
budget, the energy flux ΠðκSσ

Þ ¼ ∑
κSσ
0 TðκÞ can be associated with

the scale-local velocity fluctuations at the Hinze scale. By replacing
ε with ΠðκSσ

Þ in (1) we obtain a refined definition of the Hinze
scale:

drH ¼ ρc
σ

� ��3=5
ΠðκSσ

Þ�2=5: ð4Þ

Note that our modified picture reduces to the original Hinze
prediction at low volume fractions when turbulence modulation
is negligible, consistently with the hypothesis discussed in ref. 19,
as Πℓ ~ εℓ ~ 〈ε〉 and the surface tension energy flux is vanishing.
The prediction obtained from this relation are compared to
classic KH theory in Fig. 4. Most of the values of drH from Eq. (4)
coincide with the values of dHσ

¼ 2π=κSσ
when using a pre-factor

0.8, clearly improving over the standard definition in Eq. (1). The
pre-factor is most likely accounting for finite-Reλ effects. It is
important to stress that the lack of the empirical parameter Wec
in the model proposed in Eq. (4) (unlike in Eq. (1)) suggests that
the main factor contributing to the variability of Wec observed in
literature is the scale-by-scale energy transport modulation
introduced by the dispersed phase. As a final remark, we note
that Eq. (4) assumes a clear scale separation between the forcing
and the dissipation, so that the nonlinear flux is not negative at
the Hinze scale.

Discussion
In the present study, we provide evidences for two crucial
hypothesis on the dynamics of multiphase flows when turbulence
modulation by the dispersed phase cannot be neglected. First, we
propose an unambiguous definition of the Hinze scale based on
the analysis of the scale-by-scale energy transfer: this is the scale
where the net energy transferred by the interfacial forces is zero.
This scale separates two regimes: the dynamics at large scales
(d > dH) is characterized by a local fragmentation cascade and a
net loss of energy of the larger flow structures when interacting
with the dispersed phase. Droplet coalescence and interfacial
deformations, instead, dominate at smaller scales where energy is
re-injected as a result of a non-local process, further extending the
dissipative range toward smaller scales36. Secondly, we demon-
strate the link between the droplet size distribution, with pivoting
Hinze scale, and the turbulent intermittency. Intermittent rare
events at small scale increase in the presence of droplets, with a
probability proportional to d13=2N ðdÞ. In addition, we show that
a consistent new definition of the Hinze scale can be achieved
considering local intermittent fluctuations of the dissipation in
the spirit of the Kolmogorov refined similarity hypothesis.

Although energy fluxes are difficult to measure, the scale drH ¼
ρc=σ
� ��3=5

ΠðκSσ
Þ�2=5 does not depend on any fitting parameter.

As drH � dHσ , this scale can be estimated from measurements of
the droplet-size spectrum and it can be used to estimate the local
energy flux ΠðκSσ

Þ. Knowing 〈ε〉, one can obtain

ΠσðκSσ
Þ ¼ ∑

κSσ
0 Sσ ¼ hεi � ΠðκSσ

Þ, which is the energy net flux
across the wavenumber κSσ

due to surface tension forces, i.e., the

Fig. 3 Time-sequence of a single droplet breakup in turbulence. The simulation is performed at μd/μc= 1 and WeL ¼ 42:6. The volume fraction is set to
α= 0.0775 (1 droplet of diameter d), so that κd= 2π/d ~ 3. Top panels show the temporal evolution of the interface during breakup, while vorticity is shown
on projected planes. Bottom panels show the surface tension energy transfer function Sσ (see Eq. (2) and Material and Methods) normalized by its
maximum values to improve readability. In each plot, in dashed-blue the instantaneous value of Sσ (corresponding to the snapshot above), while the time-
averaged value in statistical-stationary condition is reported using a black line. The dotted red line indicates κd and time t is normalized with the large-
eddies turnover time T L . The panels show the droplet deformation during the incipient (panel a with green background), the sub-critical (panels b and c
with yellow background) and the super-critical (panels d and e with red background) states.The corresponding video is provided with the Supplementary
Movie 1.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01122-8 ARTICLE

COMMUNICATIONS PHYSICS |             (2023) 6:5 | https://doi.org/10.1038/s42005-022-01122-8 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


maximum value of Πσ (see Fig. 2). This computation provides a
direct quantification of turbulence modulation due to interfacial
forces in multiphase flows. Finally, we stress that, based on our
results, from the sole observation of the droplet/bubble size-dis-
tribution, one could infer 〈ε〉 and the dissipation fluctuations (see
Fig. 4), hence the most relevant features of the flow.

Dynamical observation of the breaking of a single droplet
nicely confirms the statistical picture from a pure geometrical/
energetic point of view. We have thus demonstrated that a droplet
of size d= 2π/κ influences the energy transfer at κ through its
next topological transformation. In particular, for sub-Hinze
inclusions, d < drH , we find energy injection associated to creation
of small-scale vorticity, whereas we document energy absorption
for super-Hinze droplets d > drH , bound to break up. The present
results provide insights for future coarse-graining modelling of
droplet/bubbles dynamics at least when buoyancy effects are
negligible. The precise role of density ratio will be addressed in
future studies, where also the impact of an anisotropic mean-
shear forcing will be considered.

Methods
Numerical simulation. We study emulsions in homogeneous and isotropic tur-
bulence by means of DNS. The problem is described by the one-fluid formulation
of the multiphase Navier-Stokes equation:

ρð∂tui þ uj∂juiÞ ¼ �∂ipþ ∂i½μð∂iuj þ ∂juiÞ� þ f σi þ f Ti ; ð5Þ
where ui is the velocity field, p is the pressure, μ is the flow viscosity, and ρ the fluid
density. The term f σi ¼ σξδsni represents the surface tension forces, where δs is a
Dirac delta function that concentrate the term action at the surface, with ξ and ni
the interface curvature and normal vector. The term f Ti is the large scale forcing,
used to sustain turbulence throughout the simulation box of size L= 2π. The
forcing is the Arnold-Beltrami-Childress (ABC)42,43, implemented as:

f Tx ¼ A sin κ0z þ C cos κ0y ð6Þ

f Ty ¼ B sin κ0x þ A cos κ0z ð7Þ

f Tz ¼ C sin κ0y þ B cos κ0x: ð8Þ

Fig. 4 Revisiting the KH scale, through scale-local energy fluxes.
a Probability-density-function for the normalized energy dissipation rate ε.
Black dashed line is the reference single-phase case and colored dashed
lines show data from multiphase simulations at different volume fractions
α, i.e., 0.03 (green dashed line) 0.06 (red dashed line) 0.1 (blue dashed
line) 0.5 (ocher dashed line) at constant large-scale Weber number (see
Methods) WeL ¼ 42:6 and μd/μc= 1. The stars indicate the values of
epsilon computed from the DSD where ε∝ d−5/2 and P(ε)∝ d13/2N(d) and
their color indicates the case (same coloring as dashed lines). The inset
shows the details for the PDF at low ε. b Comparison among the different
methods used to compute the Hinze scale, i.e., the original formulation dH,
and the proposed approach dHσ

, obtained as the scale at which Sσ ¼ 0. For
dH, we show two formulations, namely the original formulation proposed
in19 (circles), and the novel interpretation drH (stars). The computation of drH
uses the wavenumber-local non-linear fluxes at ΠðκSσ

Þ, with κSσ
¼ 2π=dHσ

.
The pre-factor 0.8 is used in the expression of drH, to account for finite Reλ
effects. The black diagonal line shows where drH ¼ dHσ

, highlighting the
improvement provided by the novel interpretation of the Hinze scale.
Colors indicates different α (red) at WeL = 42.6 and μd/μc= 1; different
WeL (green) at μd/μc= 1 and α= 0.03; different μd/μc (purple) at α= 0.1
and WeL = 42.6, and different μd/μc (yellow) at α= 0.03 and WeL = 42.6.

Table 1 Parameter settings for the simulations considered in
this study: viscosity ratio μd/μc, Weber number WeL with
surface tension σ, volume fraction α and integration time to
reach statistical convergence NT .

μd/μc WeL σ α NT

SP2 – – – – 136
BE1 1 42.6 0.46 0.03 115
BE2 1 42.6 0.46 0.1 100
V11 0.01 42.6 0.46 0.03 115
V12 0.1 42.6 0.46 0.03 100
V13 10 42.6 0.46 0.03 64
V14 100 42.6 0.46 0.03 60
V21 0.01 42.6 0.46 0.1 115
V22 0.1 42.6 0.46 0.1 100
V23 10 42.6 0.46 0.1 64
V24 100 42.6 0.46 0.1 60
C12 1 42.6 0.46 0.06 100
C13 1 42.6 0.46 0.0775 100
C14 1 42.6 0.46 0.5 100
W11 1 10.6 1.84 0.03 160
W12 1 21.2 0.92 0.03 160
W13 1 106.5 0.184 0.03 100

All simulations are performed with μc= 0.006 and same ABC forcing using N= 512 grid point in
each direction. Each case is denoted by a letter indicating the parameter which is varied: V for
viscosity ratio, C volume fraction and W Weber number. SP are the single-phase flows and BE
are configurations which recur in different parameterizations (base emulsions). For the single-
phase case, the energy dissipation rate is ε≈ 1.4[L2][T−3], resulting in ηsp ¼ ðν3= εh iÞ1=4 � 2δx
The dissipation is approximately constant in all conditions.
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In order to avoid large-scale coalescence effects, turbulence is forced at
k0 ¼ 2π=L, where L is the injection scale. For all cases presented, A= B= C= 1.

The algorithm used to solve Eq. (5) is described in ref. 44, while further details
on the direct FFT solver used to solve the pressure Poisson equation are provided
in ref. 45. The interface is captured with the algebraic Volume of Fluid method
MTHINC from46.

Case setup. The cases discussed in this work are presented in Table 1. All
simulations are performed on a box domain of size 2π, with turbulence forced at
k0= 2 in order to avoid coalescence induced by the large scale dynamics37. The
simulation box is discretized with 5123 grid points (see grid-convergence analysis
in ref. 36). The total simulation time reported in the table is quantified in terms of
large-eddy turnover times, NT ¼ ttot=T L , with T L ¼ Lurms (see ref. 43), where
urms is the velocity fluctuation root-mean-square value. The dispersed phase is
initialized on a fully-developed single-phase turbulent field at Taylor-scale Rey-
nolds number Reλ= 137. We explore different large-scale Weber number, the ratio
between inertial and surface tension forces (i.e., the disperse phase deformability),
defined as WeL ¼ ρcLu2rms=σ. Furthermore, we vary the viscosity ratio μd= μc
(with d and c being the dispersed and carrier phase) and the dispersed phase
volume fraction α. For all simulations, ρd= ρc= 1.

Shell-by-shell energy balance. Significant insight on the flow dynamics is given
by the shell-by-shell energy balance. This enables us to quantify the contribution of
each term of Eq. (5) to the energy at each scale ℓ, or wavenumber κ in Fourier
space. To derive Eq. (2) in the main text, we first perform the Fourier transform
(indicated through the symbol e�) of Eq. (5), yielding

∂t eui þ eGi ¼ �iκi
gp=ρ�fVi þ ef σi þ ef Ti ; ð9Þ

where eGi and fVi are the Fourier transforms of the non-linear and viscous terms,
and i is the imaginary unit. To obtain the energy equation, we multiply Eq. (5) byeui and repeat the same operations for the complex conjugate velocity and sum the
two equations. The resulting terms are E ¼ eui eui� (the kinetic energy in the Fourier

space), T ¼ �ð eGi eui� þ eGi
� euiÞ (the energy transfer due to the non-linear term),

D ¼ �ðfVi eui� þfVi
� euiÞ (the viscous dissipation), Sσ ¼ ðef σi eui� þ ef σi � euiÞ (the work of

the surface tension force) and F ¼ ð ef Ti eui� þ ef Ti � euiÞ (the energy input due to the
large-scale forcing). We finally obtain Eq. (2) by performing a shell-integral, e.g.,
for the surface tension term Sσ ðκÞ ¼ ∑κ<jκi j<κþ1Sσ ðκiÞ. Further details on the
derivation and properties of this equation can be found in refs. 32,36,47.

Data availability
All relevant data presented in this paper are available from the corresponding author
upon reasonable request.

Code availability
The code used to perform this study is open-source and available at https://github.com/
Multiphysics-Flow-Solvers/FluTAS.
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