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Abstract

This thesis focuses on the application of Constraint Satisfaction and Optimization techniques
in two Artificial Intelligence (AI) domains: automated design of elevator systems and
verification of Neural Networks (NNs). The three main areas of interest for my work
are (i) the languages for defining the constraints for the systems, (ii) the algorithms and
encodings that enable solving the problems considered and (iii) the tools that implement
such algorithms.

Given the expressivity of the domain description languages and the availability of effective
tools, several problems in diverse application fields have been solved successfully using
constraint satisfaction techniques. The two case studies herewith presented are no exception,
even if they entail different challenges in the adoption of such techniques. Automated design
of elevator systems not only requires encoding of feasibility (hard) constraints, but should
also take into account design preferences, which can be expressed in terms of cost functions
whose optimal or near-optimal value characterizes “good” design choices versus “poor” ones.
Verification of NNs (and other machine-learned implements) requires solving large-scale
constraint problems which may become the main bottlenecks in the overall verification
procedure.

This thesis proposes some ideas for tackling such challenges, including encoding tech-
niques for automated design problems and new algorithms for handling the optimization
problems arising from verification of NNs. The proposed algorithms and techniques are eval-
uated experimentally by developing tools that are made available to the research community
for further evaluation and improvement.
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1.1 Context and motivation

1.1.1 Automated system design

The problem of automating product configuration and design has a long history in diverse
application fields. In late 1970s, possibly the first configuration program was developed
for building computer systems meeting custom requirements by Digital Equipment Corpo-
ration McDermott (1981). Noticeably, among the earliest attempts to provide automated
product configuration we find also elevators as a case study Marcus et al. (1987). But, to
the best of our knowledge, the design of such systems has not been considered any further
until recent works Annunziata et al. (2017); Demarchi et al. (2019). More in general, re-
search in the configuration domain has flourished Zhang (2014) also thanks to the seminal
contributions of Mittal, Frayman and Falkenhainer Mittal and Falkenhainer (1990); Mittal
and Frayman (1989) who posed the foundations for the definition of configuration models.
According to their definition, configuration is the task of combining different components
with given ports, i.e., connections with other components, subject to an arbitrary number of
constraints specifying the structure of the system and the compatibility between components
at each port. The result is a set of components and the description of their connections.

In the same period, Franke (1998) suggests a set of input specifications that describe the
configuration problem, together with the concept of configuration objective, i.e., a value that
the configuration should meet. The idea of associating a value to a configuration in order to
go beyond mere feasibility is also present in Brown (1998). Here, the author defines design

as a complex process which includes configuration as a phase. However, design involves not
only selection of components according to their compatibility, but also the the generation
of values for their attributes, therefore refining the model and producing a more valuable
result than a simple combination of parts. In this paper we view the configuration task as
a constraint satisfaction problem, where one seeks any model compliant to the structural
constraints, and the design task as a constrained optimization problem, i.e., the satisfaction
problem plus cost functions to model the value of a configuration in terms of complete
design.

On this subject, a tool named LIFTCREATE Annunziata et al. (2017) has been developed.
This tool, starting from a database of commercial components, takes the designer from basic
measurements, e.g., shaft size and payload, to a complete design guaranteeing feasibility
within specific normative regulations — directive 2014/33/EU and related EN 81-20/81-50
norms. In particular, these norms introduce more stringent safety requirements for compo-
nents in the elevator design with respect to their placement and accessibility requirements,
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e.g., doors opening and car dimensions which are suitable for wheelchair access. The current
problem-solving engine is based on special-purpose heuristics developed working with pro-
fessionals in the domain of elevator design. This engine is coded to provide the user with
a fast response while computing solutions with good perceived “quality”, i.e., as close as
possible to the ones that a human designer would conceive. In other words, while many
feasible configurations may exists for the same design, the heuristic engine includes criteria
to identify the best ones, but without giving strict optimality guarantees to avoid excessive
computational burden. In the following, we quantify these criteria as configuration objectives,
i.e., the value that the configuration should meet in order to be considered an acceptable
design.

1.1.2 Neural networks verification

Adoption and successful application of deep neural networks (DNNs) in various domains have
made them one of the most popular machine-learned models to date — see, e.g., Taigman
et al. (2014) on image classification, Yu et al. (2012) on speech recognition, and LeCun et al.
(2015) for the general principles and a catalog of success stories. Despite the impressive
progress that the learning community has made with the adoption of DNNs, it is well known
that their application in safety- or security-sensitive contexts is not yet hassle-free. From
their well-known sensitivity to adversarial perturbations Goodfellow et al. (2015); Szegedy
et al. (2014), i.e., minimal changes to correctly classified input data that cause a network to
respond in unexpected and incorrect ways, to other less-investigated, but possibly significant
properties — see, e.g., Leofante et al. (2018) for a catalog — the need for tools to analyze
and possibly repair DNNs is strong.

As witnessed by an extensive survey Huang et al. (2018) of more than 200 recent papers,
the response from the scientific community has been equally strong. As a result, many
algorithms have been proposed for the verification of neural networks and tools implementing
them have been made available. Some examples of well-known and fairly mature verification
tools are Marabou Katz et al. (2019), a satisfiability modulo theories (SMT)-based tool that
answers queries regarding the properties of a DNN by transforming the queries into constraint
satisfiability problems; ERAN Singh et al. (2019), a robustness analyzer based on abstract
interpretation and MIPVerify Tjeng et al. (2019), another robustness analyzer based on mixed
integer programming (MIP). Other widely-known verification tools are Neurify Wang et al.
(2018), a robustness analyzer based on symbolic interval analysis and linear relaxation,
NNV Tran et al. (2020), a tool implementing different methods for reachability analysis,



1.1 Context and motivation 4

Sherlock Dutta et al. (2019), an output range analysis tool and NSVerify Akintunde et al.
(2018), also for reachability analysis. A number of verification methodologies — without a
corresponding tool — is also available like Wu et al. (2018), a game-based methodology for
evaluating pointwise robustness of neural networks in safety-critical applications. Most of
the above-mentioned tools and methodologies work only for feedforward fully-connected
neural networks with ReLU activation functions, with some of them featuring verification
algorithms for convolutional neural networks with different kinds of activation function. To
the best of our knowledge, current state-of-the-art tools are restricted to verification/analysis
tasks, in some cases they are limited to specific network architectures and they might prove
difficult to use for practitioners and, in general, those who are not familiar with the complete
background.

Our tool NEVER2 finds itself at the intersection of the issues explained above, and aims
to bridge the gap between learning and verification of DNNs. NEVER2 borrows its design
philosophy from NEVER Pulina and Tacchella (2011), the first tool for automated learning,
analysis and repair of neural networks. NEVER was designed to deal with multilayer per-
ceptrons (MLPs) and its core was an abstraction-refinement mechanism described in Pulina
and Tacchella (2010, 2012). As a system, one peculiar aspect of NEVER was that it included
learning capabilities through the SHARK Igel et al. (2008) library. Concerning the verification
part, NEVER could utilize any solver integrating Boolean reasoning and linear arithmetic
constraint solving — HYSAT Franzle et al. (2007) at the time. A further peculiarity of the
approach was that NEVER could leverage abstract counterexamples to (try to) repair the MLP,
i.e., retrain it to eliminate the causes of misbehaviour. NEVER2 relies on the PYNEVER

API Guidotti et al. (2021) and a first description of the system is available in Guidotti et al.
(2020b), where the verification capabilities were provided by external tools like Marabou,
ERAN and MIPVerify. This Thesis describes the new abstraction-refinement procedure
implemented by NEVER2 and formalizes all the theorems involved. The version of NEVER2
corresponding to this work is available online Guidotti et al. (2022) under the Commons
Clause (GNU GPL v3.0) license.
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1.1.3 Research questions

Formally, this Thesis poses the following research questions:

Automated System Design

• (i) How can we choose among different alternatives to encode design subtasks into
sets of constraints?

• (ii) How different constraint-based tools and their encoding impact the performance of
the design subtasks?

• (iii) How can we support declarative encodings in an interactive web application?

Verification of Neural Networks

• (iv) How can we improve existing star-based verification techniques for neural net-
works?

• (v) What is missing from other verification tools, and how can we improve that?

All the work inspired from these questions and the existing background resulted in the
following publications:

• D. Guidotti, S. Demarchi, Counter-Example Guided Abstract Refinement for Veri-

fication of Neural Networks, in Cyber-Physical Systems Summer School workshop,
CPSWS 2022, Pula, Italy, September 19, 2022, Proceedings, 2022.

• S. Demarchi, D. Guidotti, A. Pitto and A. Tacchella, Formal Verification of Neural

Networks: a Case Study about Adaptive Cruise Control, in International Conference
on Modelling and Simulation, ECMS 2022, Aalesund, Norway, May 30th-June 3rd,
2022, Proceedings, 2022.

• G. Cicala, S. Demarchi, M. Menapace, L. Annunziata and A. Tacchella, A Comparison

of Declarative AI Techniques for Computer Automated Design of Elevator Systems, in
Intelligenza Artificiale 16 (1), 131-150, 2022

• S. Demarchi, M. Menapace and A. Tacchella, Automated Design of Elevator Systems:

Experimenting with Constraint-Based Approaches, in International Conference of the
Italian Association for Artificial Intelligence, AIxIA 2021, Online, Proceedings, 2022.
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• S. Demarchi, M. Menapace and A. Tacchella, Automating Elevator Design with Satis-

fiability Modulo Theories, in IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2019, Portland, Oregon, November 4-6, 2019, Proceedings, 2019.
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1.2 Contribution

The contribution of this Thesis is twofold. First, the results of the experiments on different
ways of encoding design problems and how to employ constraint satisfaction techniques in
verification of NNs contribute to deepen the knowledge in how different ways of encoding
the constraints impact on the results. Second, for both case studies we developed special
purpose tools that provide access to all the methodologies taken in exam. In particular, we
contribute with the following results:

Declarative encodings for elevator systems. Starting from the work presented in Demarchi
et al. (2019) we investigated how to benefit from declarative encodings in the elevator
domain, and how to transfer such knowledge to generic configuration systems. In Demarchi
et al. (2021) and Cicala et al. (2022) we experimented with several declarative encodings
based on Genetic Algorithms (GAs), Satisfiability Modulo Theories (SMT) and Constraint
Programming (CP) showing the strength and weaknesses of these approaches against the
different aspects of the design task.

Neural networks verification in safety-critical domains. We use SMT as a pivot to
deal with the verification of machine learning models with neural networks. We created a
standard for the definition of benchmarks which uses SMT as the language for the definition
of the verification properties Guidotti et al. (2023) and we contribute with two new case
studies, i.e., Adaptive Cruise Control (ACC) Demarchi et al. (2022) and drone hovering. We
also experiment with optimization algorithms for our verification procedure Demarchi and
Guidotti (2022).

State of the art tool development. Alongside the encodings and the experiments herewith
reported, we also developed new tools for providing fast and easy access to the algorithms.
For the design of elevator systems we perfectioned the tool LIFTCREATE, which provides an
interface towards the different encodings. Using this tool, the experiments shared the same
overhead and provided reliable and replicable results.

In the verification topic, we created a software portfolio named NeVerTools1 which
groups the former contributions in the domain, packed in the PYNEVER Python API and two
Graphical User Interfaces (GUIs), namely COCONET and NEVER2.

1https://github.com/NeVerTools



1.3 Overview 8

1.3 Overview

The manuscript is structured as follows. Chapter 2 resumes the relevant background notions
for elevator systems, neural networks and the main techniques employed. In the first part,
Chapter 3 details the modeling of elevator systems with variables, constraints and objectives
and Chapter 4 enumerates the different encodings that we propose for replacing the current
engine. After showcasing the web application for elevator design in Chapter 5, in Chapter 6
we show our experimental campaign for the search of a new declarative encoding.

In the second part we focus on neural networks, and we meticulously detail the ab-
straction algorithms in Chapter 7. Then we detail the tools we developed in order to foster
research and collaboration in Chapter 8 and we collect the results of this topic in Chapter 9.
Finally, Chapter 10 concludes the Thesis and sheds some light on possible future research
perspectives.



Chapter 2

Background
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2.1 A primer on elevator systems

Elevator systems are characterized by different lifting mechanisms, e.g., hydraulic cylinders
or electric motors, and different setups, e.g., one or two cylinders, presence or absence of
counterweights, and dedicated machine room versus machine-room-less implements. In
this paper, we focus on Roped Hydraulic Elevators (RHEs), in which the lifting power is
provided by hydraulics. In Fig. 2.1 we show the cross-section of a RHE similar to those
produced by LIFTCREATE. Note that the image has been modified by removing some parts
while enhancing others to ease understanding by a non-technical audience. The plan view
accounts for the main components to be found in the design of an elevator. In the figure, the
shaft denotes the enclosure space in which the elevator is installed. Inside the shaft, we can
observe the hydraulic cylinder, providing lifting power, and the car attached to the car frame,
a mechanical structure that supports the car and connects it to the piston through ropes (not
visible in the plan view). The car frame slides within the shaft along the car rails. The ropes
are guided through a pulley attached on top of the piston: one end is secured to the shaft base,
the other to the car frame. Finally there are two kinds of doors, namely the car door and
the landing door. As the name implies, the car door is only one and it is attached to the car,
while there is one matching landing door for each floor.

Design of RHEs is usually performed in steps. The first one is the choice of the doors and
the car frame, whose positioning must be determined considering shaft size, encumbrances,
and tolerances since a minimum distance between moving and fixed parts must always be
taken into account. In the second step, considering other parameters like the distance between
the car and the shaft or the materials used for the car, an overall suspended weight and a
maximum payload can be computed. Based on these findings, other components like ropes,
rails, safety gear and the hydraulic cylinder can be engineered, making sure that compliance
to the norms and regulations is always respected. In this phase, review of the previous phases
might be necessary because some choices might not result in feasible solutions, which often
makes the (manual) process to obtain the final design an iterative trial-and-error endeavor.
Considering the plan view of the of RHEs in Fig.2.1, in this work we focus on elevators
whose car frame is installed on the left side and doors are installed at the bottom of the
drawing. The component selection we consider is limited to car frame, doors and hydraulic
cylinder, whereas placement involves car frame and doors.
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Figure 2.1 Cross-section (plan view) of a configured RHE. The shaft is the gray box
surrounding the other components, the car frame is on the left side and doors at the bottom
of the drawing.
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2.2 Neural Networks

Basic notation and definitions. We denote n-dimensional vectors of real numbers x ∈ Rn

— also points or samples — with lowercase letters like x,y,z. We write x = (x1,x2, . . . ,xn)

to denote a vector with its components along the n coordinates. We denote x · y the scalar

product of two vectors x,y ∈ Rn defined as x · y = ∑
n
i=1 xiyi. The norm ∥x∥ of a vector

is defined as ∥x∥ =
√

x · x. We denote sets of vectors X ⊆ Rn with uppercase letters like
X ,Y,Z. A set of vectors X is bounded if there exists r ∈ R,r > 0 such that ∀x,y ∈ X we have
d(x,y) < r where d is the Euclidean norm d(x,y) = ∥x− y∥. A set X is open if for every
point x ∈ X there exists a positive real number εx such that a point y ∈ Rn belongs to X as
long as d(x,y)< εx. The complement of an open set is a closed set — intuitively, one that
includes its boundary, whereas open sets do not; closed and bounded sets are compact. A
set X is convex if for any two points x,y ∈ X we have that also z ∈ X ∀z = (1−λ )x+λy

with λ ∈ [0,1], i.e., all the points falling on the line passing through x and y are also in X .
Notice that the intersection of any family, either finite or infinite, of convex sets is convex,
whereas the union, in general, is not. Given any non-empty set X , the smallest convex set
C (X) containing X is the convex hull of X and it is defined as the intersection of all convex
sets containing X . A hyperplane H ⊆ Rn can be defined as the set of points

H = {x ∈ Rn | a1x1 +a2x2 + . . .+anxn = b}

where a ∈ Rn, b ∈ R and at least one component of a is non-zero. Let f (x) = a1x1 +a2x2 +

. . .+anxn −b be the affine form defining H. The closed half-spaces associated with H are
defined as

H+( f ) = {x ∈ X | f (x)≥ 0} H−( f ) = {x ∈ X | f (x)≤ 0}

Notice that both H+( f ) and H−( f ) are convex. A polyhedron in P ⊆ Rn is a set of points
defined as P =

⋂p
i=1Ci where p ∈ N is a finite number of closed half-spaces Ci. A bounded

polyhedron is a polytope: from the definition, it follows that polytopes are convex and
compact in Rn.

Neural networks. Given a finite number p of functions f1 :Rn →Rn1 , . . . , fp :Rnp−1 →Rm

— also called layers — we define a feed forward neural network Abdi et al. (1999) as
a function ν : Rn → Rm obtained through the compositions of the layers, i.e., ν(x) =

fp( fp−1(. . . f1(x) . . .)). The layer f1 is called input layer, the layer fp is called output
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layer, and the remaining layers are called hidden. For x ∈ Rn, we consider only two types of
layers:

• f (x) = Ax+b with A ∈ Rm×n and b ∈ Rm is an affine layer implementing the linear
mapping f : Rn → Rm;

• f (x) = (σ1(x1), . . . ,σn(xn)) is a functional layer f :Rn →Rn consisting of n activation

functions — also called neurons; usually σi = σ for all i ∈ [1,n], i.e., the function σ is
applied componentwise to the vector x.

We consider two kinds of activation functions σ : R→ R that find widespread adoption: the
ReLU function defined as σ(r) =max(0,r), and the logistic function defined as σ(r) = 1

1+e−r .
Although we do not consider them here, affine mappings can also represent convolutional
layers with one or more filters Gehr et al. (2018). For a neural network ν : Rn → Rm, the
task of classification is about assigning to every input vector x ∈ Rn one out of m labels:
an input x is assigned to a class k when ν(x)k > ν(x) j for all j ∈ [1,m] and j ̸= k; the task
of regression is about approximating a functional mapping from Rn to Rm. In this regard,
neural networks consisting of affine layers coupled with either ReLUs or logistic layers offer
universal approximation capabilities Hornik et al. (1989).

Verification task. Given a neural network ν : Rn → Rm we wish to verify algorithmically
that it complies to stated post-conditions on the output as long as it satisfies pre-conditions on
the input. Without loss of generality1, we assume that the input domain of ν is a bounded set
I ⊂ Rn. Therefore, the corresponding output domain is also a bounded set O ⊂ Rm because
(i) affine transformations of bounded sets are still bounded sets, (ii) ReLU is a piecewise
affine transformation of its input, (iii) the output of logistic functions is always bounded in
the set [0,1], and the composition of bounded functions is still bounded. We require that the
logic formulas defining pre- and post-conditions are interpretable as finite unions of bounded
sets in the input and output domains. Formally, given p bounded sets X1, . . . ,Xp in I such that
Π =

⋃p
i=1 Xi and s bounded sets Y1, . . . ,Ys in O such that Σ =

⋃s
i=1Yi, we wish to prove that

∀x ∈ Π.ν(x) ∈ Σ. (2.1)

While this query cannot express some problems regarding neural networks, e.g., invertibility
or equivalence Leofante et al. (2018), it captures the general problem of testing robustness

1Input domains must be bounded to enable implementation of neural networks on digital hardware; therefore,
also data from physical processes, which are potentially ubounded, are normalized within small ranges in
practical applications.
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against adversarial perturbations Goodfellow et al. (2015). For example, given a network
ν : I → O with I ⊂ Rn and O ⊂ Rm performing a classification task, we have that separate
regions of the input are assigned to one out of m labels by ν . Let us assume that region X j ∈ I

is classified in the j-th class by ν . We define an adversarial region as a set X̂ j such that
for all x̂ ∈ X̂ there exists at least one x ∈ X such that d(x, x̂)≤ δ for some positive constant
δ . The network ν is robust with respect to X̂ j ⊆ I if, for all x̂ ∈ X̂ j, it is still the case that
ν(x) j > ν(x)i for all i ∈ [1,m] with i ̸= j. This can be stated in the notation of condition (2.1)
by letting Π = {X̂ j} and Σ = {Yj} with Yj = {y ∈ O | y j ≥ yi + ε,∀i ∈ [1,n]∧ i ̸= j,ε > 0}.
Analogously, in a regression task we may ask that points that are sufficently close to any
input vector in a set X ⊆ I are also sufficiently close to the corresponding output vectors. To
do this, given the positive constants δ and ε , we let X̂ = {x̂ ∈ I | ∃x.(x ∈ X ∧d(x̂,x)≤ δ )}
and Ŷ = {ŷ ∈ O | ∃x.(x ∈ X̂ ∧d(ŷ,ν(x))≤ ε)} to obtain Π = {X̂} and Σ = {Ŷ}. Notice that,
given our definition, we consider adversarial regions and output images that may not be
convex.

Reinforcement Learning. Reinforcement Learning (RL) is a machine learning approach
whose aim is to teach agents how to solve specific tasks by trial and error, i.e., having
them interact with an environment and then rewarding or punishing them to encourage or
discourage certain long-term behaviors. RL methodologies have been successfully applied to
a variety of tasks like robot control, both in simulated and real-world scenarios, and AIs for
complex strategy games like Go, chess and others.

The key concept of RL is the interaction between the agent and the environment, which
represents the world that the agent exists in and interacts with. At each step of the interaction,
the agent observes the state of the world (or a part of it) and selects an action to take, then the
environment changes in response to such action or possibly even on its own. Together with
the observation, i.e., the possibly partial information about the state of the world perceivable
by the agent, the agent also receives a reward value from the environment telling how good
or bad the current state of the world is. The aim of the agent is to maximize the cumulative
reward (also known as return) obtained by the environment.

The solution to an RL problem is a policy π , i.e., a mapping from states to actions that
maximizes the expected return when the agent acts according to it. To compare different
policies in terms of effectiveness, the concept of value is introduced: Informally, the value
of a state under a given policy is the expected return if the agent starts in that state and then
follows the policy from there on. A policy π is better than or equivalent to another policy π ′

if the value of π is greater than or equal to the value of π ′ for every state. The goal of RL



2.2 Neural Networks 15

algorithms is thus to learn (approximate) the optimal policy, i.e., the policy which is better
than or equivalent to every other policy. In our case, the optimal policy will be encoded as a
fully connected ReLU network which provides a mapping between states and actions.

Given the employ of RL as a framework for conducting robotics-based studies of NN
verification, in this work we confine ourselves to an informal description of reinforcement
learning. For more details we refer to Plaat (2022); Sutton and Barto (1998).
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2.3 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) requires a value, selected from a given finite domain,
to be assigned to each variable in the problem, so that all constraints relating the variables
are satisfied Brailsford et al. (1999). In more detail, given a set of variables together with
their domains, i.e., a set of possible values that can be assigned to each variable, and a
description of the problem in the form of mathematical constraints, a CSP is the problem
of finding values of the variables that satisfy every constraint. It is defined as a set of n

variables X = {x1, . . . ,xn}, a set of current domains D = {D(x1), . . . ,D(xn)} where D(xi) is
the finite set of possible values for variable xi, and a set C of constraints between variables.
A constraint C on the set of variables X(C) = (xi1, . . . ,xir) is a subset of the Cartesian product
D0(xi1)× . . .×D0(xir) that specifies the allowed combinations of values for the variables
xi1 × . . .× xir .

In this Thesis we consider two main approaches to solve CSPs, namely Constraint
Programming (CP) and Satisfiability Modulo Theory (SMT). CP is a powerful paradigm for
solving CSPs that draws on a wide range of techniques from artificial intelligence, operations
research, algorithms, graph theory and others Rossi et al. (2006). In general, CP provides
high level languages that allow one to describe (model) a problem in a declarative way by
means of constraints, that is, properties of the solutions to be found. Product configuration
has been established as a successful application area of CP Benavides et al. (2005); Falkner
et al. (2011); Hervieu et al. (2016); Jensen (2004); Mcdonald and Prosser (2002). A CP solver
checks whether a certain assignment of decision variables respects all the constraints, and
returns such assignment in that case. Most CP solvers deal naturally with finite domains and
have good propagators to handle injectivity constraints. SMT handles the original problem
by encoding it to the problem of deciding the satisfiability of a first-order formula with
respect to some decidable theory T . In particular, SMT generalizes the Boolean satisfiability
problem (SAT) by adding background theories such as the theory of real numbers, the
theory of integers, and the theories of data structures (e.g., lists, arrays and bit vectors) — see,
e.g., Barrett et al. (2009) for details. There exists a constraint modeling language for designing
constraint satisfaction and optimization problems in a high-level, solver independent way
called MiniZinc Marriott et al. (2014). SMT solvers comply instead to a dedicated standard
language called SMT-LIB Barret et al. (2017).

Here we provide some more detail about the SMT approach which we use as a basis
to introduce our modeling of design and configuration for RHEs. The corresponding CP
formulation can be obtained with a simple syntax-driven translation. To decide the satisfia-
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bility of an input formula ϕ in conjunctive normal form, SMT solvers typically first build a
Boolean abstraction abs(ϕ) of ϕ by replacing each constraint by a fresh Boolean variable
(proposition), e.g.,

ϕ : x ≥ y︸ ︷︷ ︸ ∧ ( y > 0︸ ︷︷ ︸ ∨ x > 0︸ ︷︷ ︸ ) ∧ y ≤ 0︸ ︷︷ ︸
abs(ϕ) : A ∧ ( B ∨ C ) ∧ ¬B

where x and y are real-valued variables, and A, B and C are propositions. A propositional logic
solver searches for a satisfying assignment S for abs(ϕ), e.g., S(A) = 1, S(B) = 0, S(C) = 1
for the above example. If no such assignment exists then the input formula ϕ is unsatisfiable.
Otherwise, the consistency of the assignment in the underlying theory is checked by a theory

solver. In our example, we check whether the set {x ≥ y, y ≤ 0, x > 0} of linear inequalities
is feasible, which is the case. If the constraints are consistent then a satisfying solution
(model) is found for ϕ . Otherwise, the theory solver returns a theory lemma ϕE giving an
explanation for the conflict, e.g., the negated conjunction some inconsistent input constraints.
The explanation is used to refine the Boolean abstraction abs(ϕ) to abs(ϕ)∧abs(ϕE). These
steps are iteratively executed until either a theory-consistent Boolean assignment is found, or
no more Boolean satisfying assignments exist.

Adding theories of cost to SMT yields Optimization Modulo Theories (OMT), an ex-
tension that finds models to optimize given objectives through a combination of SMT and
optimization procedures Sebastiani and Tomasi (2012). For example,{

ϕ : x ≥ y∧ (y > 0∨ x > 0)∧ y ≤ 0
minx,y(x+ y)

requires all the constraints in ϕ to be satisfied and the additional cost x+ y to be minimized.
Notice that OMT extends classical formulations in mathematical programming, e.g., linear
programming or mixed integer linear programming, since it allows Boolean structure to
be taken into account together with the optimization target. OMT solvers have been devel-
oped for several first-order theories like, e.g., those of linear arithmetic over the rationals
(LRA) or the integers (LIA) or their combination (LIRA). In this work we mainly consider
quantifier free theories in a mixed integer/rational domain — known as QF_LIRA in the
literature Barrett and Tinelli (2018).
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2.4 Genetic algorithms

Genetic Algorithms (GAs) are optimization procedures based on ideas borrowed from natural
selection and evolution. Detailed descriptions of GAs are to be found, e.g., in Davis (1991).
An application of GAs to a relatively simple automated configuration problem together with
a comparison with other declarative techniques can be traced back to Falkner et al. (2011),
and other earlier references leveraging GAs for automated product configuration can be
found in Zhang (2014). A recent survey Slowik and Kwasnicka (2020) cites many different
applications of GAs and other evolutionary algorithms to engineering problems, including
automated configuration and optimization scenarios such as, e.g., optimization of solar array
layouts Lv et al. (2017), load balancing in cargo ships Ramos et al. (2018), and building
energy-efficient houses Ascione et al. (2016). For the purpose of this paper, it is sufficient
to recall that GAs consider a population as a finite set P of potential solutions to the target
optimization problem. Each individual p ∈ P is characterized by a genotype comprised of
chromosomes. As in nature, chromosomes define the individual and are the basis for the
obtaining different individuals by “mating” procedures. The fitness function is a mapping
f : P → R which ranks the individuals according to a fitness score: the higher the chance of
being a good solution, the higher the fitness score. Notice that GAs provide unconstrained

optimization over the space of potential solutions. In order to take into account constraints,
as our elevator design problem requires, the fitness function should contain one or more loss

factors — see, e.g., Güngör (2022); Homaifar et al. (1994); Yeniay (2005) — which penalize
the individual design when it violates specific constraints: in this way, hard constraints are
turned into preferences about solutions. By shaping the loss factors adequately we are able
to control how much getting closer to violating a constraint can be discouraged. GAs are
initialized with a randomly chosen population P and then they seek to improve the initial
choice by repeating the following steps:

1. the fitness f (p) of each individual p ∈ P is computed;

2. a set M ⊂ P is extracted from P such that individuals in M have the highest fitness
among those in P;

3. the individuals in M are subject to “mating” procedures such as crossover, or other
evolutionary phenomena such as mutation: informally, crossover occurs when the
genotypes of two individuals are split and recombined to form new ones bearing some
chromosomes, i.e., common traits, from both their parents.
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4. The result of the previous step is a population P′ which might contain individuals fitter
than those of the previous population P; in particular, the crossover operation attempts
to combine the genes of fit individuals to produce fitter children, and mutation attempts
to maintain diversity in a population of designs.

5. Population P′ becomes the new population P and the search restarts from step (1)
unless some termination condition occurs, e.g., the fitness of the fittest individuals did
not change in the last k steps, or a fixed number of h generations has been produced,
where k and h are user-controlled hyper-parameters.



Part I

Automated System Design



Chapter 3

Design model
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Figure 3.1 Detail of the car/landing door pair and related parameters.

In this chapter we present our case study of the elevator system, how the model is
translated into variables and parameters and which constraints we need in order to perform
the configuration and the cost functions required to achieve design.

3.1 Variables and Parameters

We now introduce the decision variables and the parameters involved in the configuration
task. We note that the reference system in LIFTCREATE origins from the top left corner of
the internal shaft wall and the y axis is inverted with respect to a canonical Cartesian system.
The origin O(x,y) of this reference system coincides with the shaft base point (xsha f t ,ysha f t)

which is always set to (0,0) — see Fig. 2.1. In Fig. 3.2 we present a fragment of the plan
view focusing on the car frame structure, which is comprised of the brackets — wall-mounted
T-shaped components — to support the car rails on which the car frame core gear slides. The
car frame base point, i.e., the insertion point of the car frame structure in the configuration,
lies on the outer corner of the topmost bracket and it is marked with a cross. The coordinates
of the car frame base point (xc f ,yc f ) — denoted by (x,y)c f in Fig. 3.2 — determine a specific
placement of the structure. The overhang of the car with respect to the car frame is the
distance from the car walls to the car frame core gear edges — the top edge is ygear. As
shown in the drawing, the overhang correspond to two parameters oh1 and oh2, required to
handle the cases in which the car is not centered with respect to the car frame. The parameter
dcr denotes the distance between the car rails, i.e., the size of the core gear. Starting from
the base point of the car frame, wc f and dc f are the width and the depth of the car frame,
respectively, whereas dbr is the depth of the brackets; the total encumbrance of the car frame
in the shaft is given by the sum dc f +2dbr.
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Figure 3.2 Detail of the car frame and
related parameters.

In Fig. 3.1 we consider a fragment of the plan
view focusing on the door pair — notice that the
car door and the landing door opening must be
aligned. The drawing in Fig. 3.1 represents a
pair of telescopic doors with 3 panels. The car

door base point (xcd,ycd) — denoted as (x,y)cd

in the plan view — and the landing door base

point (xld,yld) — denoted as (x,y)ld in the plan
view — are always at the top left corner of the
corresponding structure. The value of these co-
ordinates represents a specific placement of the
car/landing door pair. The landing door open-
ing is surrounded by the frame, i.e., the structure
that surrounds the entrance to the car, with width
w f rame. The total door width is the sum of two
parameters, the left axis — lacd and lald for car
and landing door, respectively — and the right

axis — racd and rald for car and landing door,
respectively. Both axes originate from the open-
ing midpoint and, as shown in the drawing of

Fig. 3.1, in general they may not coincide. Finally, stepcd and stepld denote the depth of the
step in the car and landing door, respectively; dstep is the distance between car and landing
doors.

In Tables 3.1 and 3.2 we summarize all the quantities involved in the configuration,
separating decision variables (Table 3.1) from parameters (Table 3.2) either related to the
initial specification or extracted from the components database — all quantities are in
millimeters. We introduced all the decision variables beforehand with the exception of
(xcar,ycar), i.e., the car base point coordinates corresponding to the top-left internal edge
of the car in Fig. 2.1, and wcar and dcar, i.e., the width and depth of the car. Concerning
parameters, we consider four groups of them. The first group is related to shaft measurements
and includes wsha f t and dsha f t — width and depth of the shaft, respectively; also in this group
we have reductions (redN , redS, etc.), i.e., the distance between the car walls and the shaft,
and car wall thicknesses (cwtN , cwtS, etc.). For both such groups of parameters we have four
values (N, S, W and E) to account for different sizes on all sides (top, bottom, left and right,
respectively). The second group is related to car frame dimensioning and includes maxoh,
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Table 3.1 Explanation of the decision variables involved in the design process

Symbol Description

xc f , yc f Car frame base point
coordinates

xcd , ycd Car door base point
coordinates

xld , yld Landing door base point
coordinates

xcar, ycar Car base point coordinates
wcar, dcar Car width and depth

i.e., the maximum overhang, and other parameters detailed in the table. The third group is
related to doors — no further parameters need to be introduced in this group.

3.2 Constraints

Having defined our decision variables and parameters, we proceed to describe the (hard)
constraints required to find feasible solutions, divided into two groups related to car frame
and doors respectively. The constraints to place the car frame must take into account two
main issues. First, given the shape of the brackets, it is not possible to model the car frame as
a simple rectangle in order to fit it with the other components. Therefore the placement of
the car frame is computed by subtracting residuals from the total shaft measures. Second,
the placement of the car frame must take into account its maximum overhang, i.e., the car
cannot “lean” too much outside the car frame core gear. The considerations above lead to the
following set of constraints:

yc f −dbr ≥ ysha f t

yc f +dc f +dbr ≤ ysha f t +dsha f t

0 ≤ yc f + ygear − ycar < maxoh

0 ≤ ycar +dcar − yc f − ygear −dcr < maxoh

(3.1)

The first two constraints are required to fit the shape of the car frame, while the last two are
required to satisfy the requirement about the maximum overhang.
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Table 3.2 Explanation of the parameters involved in the design process

Symbol Description

xsha f t , ysha f t Shaft base point coordinates
wsha f t , dsha f t Shaft width and depth

red[N,E,S,W ] Distance between shaft and car
walls (North, East, South, West)

cwt[N,E,S,W ] Car wall thickness (North, East,
South, West)

wc f Distance from xc f to the left car wall
dc f External distance between car frame rails

ygear Core gear placement with respect to the
car frame base point

dbr External depth of the car frame bracket
from the base point

dcr Distance between car rails
maxoh Maximum car overhang that the car

frame is able to sustain
dp Diameter of the hydraulic cylinder barrell

opening Doors opening
lacd , racd Left and right axis size (car door)
lald , rald Left and right axis size (landing door)

stepcd Car door step
stepld Landing door step

dstep Distance between doors
w f rame Landing door external frame width

The constraints to place the car/landing door pair should guarantee that both structures fit
the shaft, that the actual opening fits the car and that the landing door frame does not exceed
the shaft size. These requirements can be translated into the following set of constraints:
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xcd ≥ xsha f t

xld ≥ xsha f t

xcd + lacd + racd ≤ xsha f t +wsha f t

xld + lald + rald ≤ xsha f t +wsha f t

xcd + lacd − opening
2 ≥ xcar

xcd + lacd +
opening

2 ≤ xcar +wcar

xld + lald +
opening

2 +w f rame ≤ xsha f t +wsha f t

(3.2)

The first four inequalities are required to guarantee that the car and the landing door structures
fit the shaft; then we list two inequalities related to the car opening, and the last inequality
guarantees that the landing door frame size is adequate for the shaft. In addition, the alignment
of the landing door with respect to the car door must be enforced with the following equality
constraint:

xld = xcd + lacd − lald (3.3)

The placement of the car and landing door on the y axis is also enforced with equality
constraints: yld = ysha f t +dsha f t − stepld

ycd = yld −dstep − stepcd

(3.4)

Further equality constraints are required to take into account that the door placement over
the y axis, together with the car frame and door selection, influences the car size as follows:

xcar = wc f + cwtW

ycar = redN + cwtN

wcar = wsha f t −wc f − cwtW − cwtE − redE

dcar = dsha f t − redN − cwtN − cwtS −Hdoors

(3.5)

where Hdoors stands for the total door occupancy over the y axis computed as:

Hdoors = stepld + stepcd +dstep (3.6)

Notice that when the car frame is positioned on the left hand side of the elevator, its x base
coordinate xc f is always set to 0.
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Table 3.3 Grouping of the constraints involved in the design process, separated by their
purpose

Class Type Number

Car Frame shape Inequality 6
Doors shape Inequality 7

Equality 3
Car shape Equality 4

Car Frame / Doors overlap Inequality 2
Components selection (SMT) Implication 308

Since the car door body may protrude over the car walls, in order to minimize the risk of
collision with other components, designers must consider a safety margin. To guarantee this
requirement, specific non-overlapping constraints are implemented. For example, if we let r

be the security margin, the non-overlapping constraint relative to car frame and car door can
be written as follows:

xcd − r ≥ xc f +wc f ∨ ycd − r ≥ yc f +dc f (3.7)

In Table 3.3 we summarize the shape of our problem by identifying the number of
constraints and their type, based on their purpose. The last element of the Table is related
to the SMT encoding where we use Boolean implications as constraints to choose the
components.

3.3 Objective

In our process, we considered four design objectives that are the main interests for technical
engineers. The first is that the car frame should be aligned as much as possible to the center
of the car on the y axis — i.e., considering Figure 2.1, the car frame should appear vertically
centered with respect to the car. The second objective regards doors positioning: in case
of symmetric doors, i.e., the opening midpoint coincides with the door frame midpoint, the
opening of the car door should be aligned as much as possible to the center of the car on the
x axis; in case of asymmetric doors, then the opening should be as close as possible to the
opposite side of the car frame in order to minimize the chance of interference. Notice that in
Figure 2.1 we have a non-symmetric door, which is aligned to the right car wall. The third
objective is that the car frame and the hydraulic cylinder should not be over-sized, and the
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opening of the car door should not be undersized during the components selection phase and
finally, the last objective is to minimize the force exerted by the elevator on the car rails.

Here we describe the single objectives and we shape them as contributions to a cost
function, mentioning the details of the parameters involved when necessary. The cost
associated to car frame misalignment on the y axis is expressed by the absolute value of the
distance between the car frame and the car axes. We define the car frame vertical axis axisYc f

as the car frame vertical base point yc f plus half of the distance between the car rails dcr

axisYc f = yc f +
dcr
2

. (3.8)

The vertical car axis axisYcar is defined as the car vertical base point ycar plus half of the car
depth dcar:

axisYcar = ycar +
dcar

2
. (3.9)

The difference between the terms (3.8) and (3.9) gives us the first contribution to the cost
function cc f :

cc f = |axisYc f −axisYcar| (3.10)

The second objective we consider is related to doors. In this case we define the horizontal car
axis axisXcar as the horizontal car base point xcar plus half of the car width wcar:

axisXcar = xcar +
wcar

2
(3.11)

The horizontal door axis axisXdoor is defined as the horizontal door base coordinate xcd plus
the length of its left axis lacd:

axisXdoor = xcd + lacd (3.12)

In the case of symmetric doors, good design practices suggest that axisXdoor and axisXcar

should be aligned. In the case of non-symmetric doors, it is preferable to have the door
opening as close as possible to the side of the car which is opposite to the car frame. In a
configuration like the one in Figure 2.1 we can define the base coordinate of such side as:

xwall = xcar +wcar (3.13)

To take into account the different arrangement of doors, we introduce a binary variable, δt ,
which is assigned to 1 if the current door is a non-symmetric door and to 0 otherwise. We
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can then summarize the contribution to the cost function as:

cdoor = ( (1−δt)|axisXcar −axisXdoor|+

δt(xwall − (axisXdoor +
opening

2 )) )

(3.14)

The first contribution of (3.14) is zero when δt = 1, i.e, for non-symmetric doors we try
to minimize the distance from the side of the elevator opposite to the car frame, whereas
when δt = 0 we try to align the door and the car axes. The third objective is related to the
selection of the components, and gives the guidelines for sizing the car frame, the doors and
the cylinder. The maximization of the door opening leads to accessible elevators which are
always considered a plus, whenever feasible; the minimization of the car frame depth dcr

and the barrel diameter dp suggests components which are not over-sized, thus helping to
keep costs at bay. These criteria can be translated into one additional contribution to the
overall cost function defined as:

csize = (dcr+dp −opening) (3.15)

Finally, the last term to minimize is the sum of Fx
cr and Fy

cr, i.e., the x and y components of
the force exerted on the car rails Fcr:

ccr = Fx
cr +Fy

cr (3.16)

The computation of Fcr is non-trivial and requires additional equations and parameters that
we briefly describe. The components of Fcr are obtained as

Fx
cr = k ·g · Qx(Q+75)+Px·carW+cdPx·cdW+c fW ·CFx

2·h
Fy

cr = k ·g · Qy(Q+75)+Py·carW+cdPy·cdW
2·h

where the parameters have the following meaning:

• k is a parameter depending on the kind of safety brakes installed;

• g is the standard acceleration due to gravity;

• Q is the car payload;

• Px and Py are the midpoint coordinates of the car;
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• Qx and Qy are obtained through the equations

Qx = max{Px +
wcar

8 ,Px − wcar
8 }

Qy = max{Py +
dcar

8 ,Py − dcar
8 };

• carW is the car weight;

• cdPx, cdPy are the coordinates of the center of gravity of the car door;

• cdW is the car door weight and c fW is the car frame weight;

• CFx is a coefficient computed as

CFx = 1.5 ·
wc f

2

where wc f is the distance from the car frame base point to to the left car wall;

• h is the distance between guide shoes, i.e., the supports which slide on the car rails.



Chapter 4

Design encoding
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In this chapter we present the encoding of the elevator constraints, and how different
choices can impact the performance of the design task. First, we present the baseline heuristic
method and some preliminary approaches dealing with Genetic Algorithms (GAs). Then, we
elaborate on lessons learned in four main aspects of the encoding, both from a general point
of view by discussing the employ of different kinds of constraints, and from a specific point
of view by discussing how arithmetic and optimization techniques can handle the problem —
leading to the CSP-based variations of LIFTCREATE.

In the following chapters, we use a number of variants of LIFTCREATE while referring to
the algorithm considered:

• LIFTCREATE-HR is the current heuristic-based engine

• LIFTCREATE-BF is a brute-force version used as a baseline

• LIFTCREATE-GA is the Genetic Algorithm-based experiment

• LIFTCREATE-RS is a random-sampling version used as a baseline w.r.t. LIFTCREATE-
GA

• LIFTCREATE-SMT is the SMT-based experiment

• LIFTCREATE-CP is the CP-based experiment

4.1 Encoding strategies

Due to the specific features of LIFTCREATE versions, there are some differences in how
configurations are generated and results are presented, differences that we describe in the fol-
lowing and that we tried to harmonize as much as possible in order to make our experimental
comparison meaningful. LIFTCREATE-HR produces at most one solution — supposedly the
“best” one according to the heuristics — for each prototype, i.e., a pair comprised of a door
and a car frame which together fit the shaft. Therefore, for each given setup, LIFTCREATE-
HR produces as many solutions as there are prototypes for which a solution exists, where
a solution features a specific placement of car frame and doors. The three versions of
LIFTCREATE based on search in the space of configurations, namely LIFTCREATE-BF,
LIFTCREATE-RS and LIFTCREATE-GA, feature a common data flow implementing the
following phases:

• Prototype generation: amounts to list all prototypes, pruning up-front those which
cannot fit the given shaft.
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• Expansion: given a prototype, potential configurations are explored by attempting to
place the car frame and the doors inside the shaft within the allowable ranges: the
results of this phase are early designs.

• Design validation: given an early design, a number of checks is performed in order to
validate the corresponding configuration and declare it feasible or not.

Specifically, the validation phase must guarantee that every constraint of Section 3.2 is
satisfied. The difference among LIFTCREATE-BF, LIFTCREATE-RS and LIFTCREATE-GA
lies in the expansion phase: exhaustive search for LIFTCREATE-BF, random sampling for
LIFTCREATE-RS and genetic algorithms for LIFTCREATE-GA. Since these versions may
produce many feasible configurations for each prototype, whereas LIFTCREATE-HR outputs
only one, we cluster configurations after the validation phase. In more details, the set of
valid placements for each given prototype is clustered around a representative, in order to
make the comparison with LIFTCREATE-HR possible. Finally, both in LIFTCREATE-CP
and LIFTCREATE-SMT the prototype expansion phase is replaced by the CP/SMT encoding
of the constraints introduced in Section 3.2, where the choice of components is restricted to
those that can fit the shaft. The subsequent phases of expansion and validation are merged
in the search for a solution by the solvers. If a cost function to drive the search towards
“optimal” designs is supplied, then LIFTCREATE-CP and LIFTCREATE-SMT output exactly
one configuration for each given setup.

4.1.1 Custom heuristics: LIFTCREATE-HR

The special-purpose heuristic engine of LIFTCREATE-HR is meant to replicate the design
flow that a professional would carry out by hand. Algorithm 1 is a pseudo-code repre-
sentation of the function COMPUTE_DESIGNS which is at the core of LIFTCREATE-HR.
COMPUTE_DESIGNS takes as input the shaft dimensions wshaft and dshaft, the list of all
available car doors D and the list of all available car frames F . The car door list is sorted in
decreasing order according to door size (ORDER_BY_OPENING) and the car frame list is
sorted in increasing order according to the distance between car rails (ORDER_BY_DCR).
The outermost for loop scans the available car frames, computing for each one the car surface
Scur (COMPUTE_CAR_SURFACE). Here, a heuristic choice is performed: if the car surface
allowed by the current car frame Scur is not greater than the one allowed by the previous one
Sprev, the algorithm skips to the next choice of car frame. If Scur is greater than Sprev, the
search continues by filtering the list of car doors (FILTER_DOORS) to discard those larger
than the shaft, while the doors left are scanned in the innermost for loop — according to
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Algorithm 1 Heuristic algorithm for LIFTCREATE-HR
1: function COMPUTE_DESIGNS(wshaft, dshaft, D = List<Door>, F = List<CarFrame>)
2: output = [ ] ▷ Design list, initially empty
3: Sprev = 0 ▷ Car surface initialization
4: ORDER_BY_DCR(F)
5: ORDER_BY_OPENING(D)
6: for i = 1 : F.length do
7: Scur = COMPUTE_CAR_SURFACE(F[i], wshaft, dshaft) ▷ Compute surface given the Car

Frame
8: if Scur > Sprev then ▷ Search only if the surface increases
9: Sprev = Scur

10: D = FILTER_DOORS (wshaft, D) ▷ Discard doors that do not fit the shaft
11: prototype = /0 ▷ Empty prototype
12: for j = 1 : D.length do
13: ld = MATCH_LANDING_DOOR(D[j]) ▷ Find a matching landing door for D[ j]
14: prototype = (F[i], D[j], ld)
15: if IS_FEASIBLE(prototype) then ▷ Check whether the tuple is feasible
16: BREAK

17: if prototype ̸= /0 then
18: design = ADD_RAILS(prototype) ▷ Add car frame rails to the prototype
19: OPTIMIZE_COMPONENTS(design) ▷ Align components
20: if IS_VALID(design) then ▷ Validate design after optimization
21: APPEND(output, design)
22: return output

the order of D, the largest opening is considered first to maximize accessibility. For each
door, a matching landing door is selected and a design prototype is created as the tuple
(F [i],D[ j], ld). The predicate IS_FEASIBLE checks whether the prototype is feasible, i.e.,
the three components can be fitted in the shaft while respecting all the hard constraints.
If so, the innermost loop comes to an end: implicitly, this is also a heuristic choice since
the procedure does not check other doors that could provide alternative design prototypes.
Given a prototype, the design is finalized by adding the car frame rails and optimizing the
placement with the function OPTIMIZE_COMPONENTS. The predicate IS_VALID checks
whether the design is valid and should be retained for further processing. Summing up, the
procedure produces at most one design per prototype associated with a specific car frame.
It is important to notice that some combinations of car frame and doors that may result in
feasible designs are never explored. While this helps in keeping the search space at bay,
LIFTCREATE-HR may return no designs also in scenarios where feasible ones exist.
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4.1.2 Genetic algorithms: LIFTCREATE-GA

In LIFTCREATE-GA the genotype is composed by 4 chromosomes, each one consisting of a
single gene. As in Carlson (1996), genes are represented by integer numbers as follows:

• Gene 1: Value of the car door x base point — xcd in Table 3.1.

• Gene 2: Value of the car frame y base point — yc f in Table 3.1.

• Gene 3: Choice of the car frame; to encode the choice among available car frames we
assigned to each one a unique integer identifier.

• Gene 4: Choice of the car door; also in this case we encoded each door with a unique
integer code.

Since the available car frame and door identifiers, i.e., the domains of the genes 3 and 4,
are restricted to those that could fit a given shaft, each individual represents a single early
design. We do not encode the variables xc f and ycd because, as pointed out in Section 3.2,
the coordinates are fixed in the design.

The fitness function to score individuals is computed by associating costs corresponding
to violations of the feasibility constraints, i.e., we turn hard constraints into soft ones to
discourage designs that violate them. However, we cannot completely exclude unfeasible
designs and this is why LIFTCREATE-GA still retains a validation step at the end to make
sure that all generated designs are valid. The cost function built in LIFTCREATE-GA includes
also terms encoding the objective presented in Section 3.3 for the choice and placement
of the car frame and the doors. We penalize projects in which the car frame is misaligned
with respect to the car axis — such as in (3.10). If the choice of the car frame is such that
overhangs are negative — i.e., if the car frame dcr is greater than the resulting car depth
dcar — the resulting value is multiplied by 103. Concerning doors, the cost detailed in (3.14)
is applied depending on the door type in order to discourage misaligned placements while
for the selection we apply a slight variation to the hard minimization of (3.15) by using a
parabolic function that grows up quickly for values less than 550mm or greater than 800mm.
The function we consider is f (x) = 0.01 ·x2−13.5 ·x+4561.25 computed with x = opening.
This is because doors whose opening is less than 550mm and doors with opening greater
than 800mm are discouraged: the former are used only in very special situations and the
latter are usually very expensive. Whether the selected door is out of range, we apply a fixed
weight which is either 105, if the actual door width is less than 550mm, or 300 if greater
than 800mm. We use a parabolic function because, as we mentioned before, GAs provide
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unconstrained optimization over the solution space, and a continuous objective is better for
the fitness computation. The GA implementation is provided by the Jenetics Wilhelmstötter
(2022) Java library, which allowed us to seamlessly plug the GA engine to our codebase by
specifying the composition of the genotype.

4.2 Constraint satisfaction: LIFTCREATE-CP/SMT

LIFTCREATE-CP and LIFTCREATE-SMT implement each with their own specific formalism
the encoding detailed in Chapter 3. Nevertheless, while experimenting in early stages of this
encoding and guided by the experience obtained with search-based techniques we identified
the following encoding alternatives that can impact the performance of a constraint solver.

4.2.1 Component selection

The car frame, the cylinder and the doors are selected from a database of components.
In order to automate the design of an elevator, we must consider that choosing different
components yields different parameter values for each one. The relationship between the
selection of a component and the assignment of the corresponding parameter values can be
encoded via Boolean implications of the form

Idx = i ⇒ x.p = v (4.1)

where Idx encodes the identifier of choice for component x (a decision variable), i is a specific
identifier value, x.p is some parameter of the component x and v is the value of x.p given
that the component x with identifier i was chosen — see, e.g., Bacchus (2007). To encode
constraints of the form (4.1) a combination of Boolean reasoning with integer arithmetic is
sufficient. However, considering the way data sets are usually encoded in MiniZinc with
arrays Marriott et al. (2014), we consider an alternative encoding where we associate an array
to each component parameter. For example, if a component x has two parameters p1 and p2,
we build two arrays P1 and P2 that will store the values of p1 and p2 for each instance of
the component. The index of the arrays becomes a decision variable chosen by the solver to
enforce the correct values of the parameters.
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Table 4.1 Look-up table to encode the number of passengers P with starting value P0 as a
function of the car surface A.

Car surface (A) No. of passengers (P)

a1 < A ≤ a2 P0
a2 < A ≤ a3 P0 +1

A > a3 P0 +2

4.2.2 Look-up tables

Some parameters, e.g., the maximum number of passengers that the car may accommodate,
are a function of others, e.g., the car surface. However, instead of expressing such constraints
directly — which might involve the use of non-linear or transcendental functions — the
correspondence between free parameters and derived ones is encoded with look-up tables.
Table 4.1 exemplifies such a table assuming that the car surface A is contained within three
ranges.

The car payload is computed in a similar way, but, since the surface ranges are different,
we need another set of constraints structured in the same way. These requirements can be
easily modeled with implications in the same way as component selection: the surface A

is a decision variable that implies the number of passengers or the payload. However, both
SMT-LIB and MiniZinc allow users to define custom functions. In practice, functions are
series of if-then-else statements about, e.g., the car surface, where each function returns, e.g.,
the corresponding number of passengers or the payload.

4.2.3 Integers vs. Reals

Most parameters involved in the design process for elevators are expressed in millimeters
which suggests integer-based encodings. However, some parameters, like the forces exerted
on the car rails, involve arithmetic over reals. This makes the corresponding constraint
satisfaction problems members of the mixed-integer arithmetic family. In such encodings,
the main disadvantage is that a large number of integer quantities may increase considerably
the solution time. We try to improve on this by relaxing some of the integer quantities to
reals. In particular, we consider component parameters since parameters are not decided

but their values are only assigned based on the choice of a component. This means that the
domain of the parameters is a finite set and we can relax the arithmetic encoding without
producing invalid results. In this representation the only operation that could add decimal
digits is division, but since in our encoding there are only a few such operations, boundary
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checking can be implemented easily. These considerations do not hold for some decision
variables including, but not limited to, the index used to select components. Also, several CP
solvers we experimented with are not affected by this choice due to the fact that they do not
support floating-point arithmetic.

4.2.4 Single and Multi-objective optimization

Here we describe alternative constructions of the cost function, using the contributions that
are detailed in Section 3.3. In previous works of ours Demarchi et al. (2019) we consider
the weighted sum of the costs cc f , cdoor and csize to obtain the overall cost function, but the
contribution ccr may conflict with the previous ones because the farthest is the door from
the car frame, the greater is the force exerted on the car rails Cicala et al. (2022); Demarchi
et al. (2021). Nevertheless, since the car rails can be chosen once the other components are
fitted, this objective can be considered with a lower priority. If we follow a single-objective
approach, we can weight the cost ccr significantly less than the other three. The overall cost
function C becomes

C = α1cc f +α2cdoor +α3csize +α4ccr (4.2)

with α4 ≪ αi for i ̸= 4.
Alternatively, we can exploit priorities among different cost functions by resorting to

multi-objective optimization using, e.g., the lexicographic method whereby preferences are
imposed by ordering the objective functions according to their significance — see Chang
(2015) for details. In this case, we consider two different cost functions:

C1 = α1cc f +α2cdoor +α3csize

C2 = ccr
(4.3)

where the objective function C1 is minimized first.
LIFTCREATE-CP and LIFTCREATE-SMT take into account the constraints and the

cost function providing an encoding to a formula in the MiniZinc Nethercote et al. (2007)
and SMT-LIB Barret et al. (2017) languages, respectively, to be solved by a number of
state-of-the-art solvers.



Chapter 5

LIFTCREATE
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Figure 5.1 Taxonomy of LIFTCREATE’s elevator models (top) and details of the components
of OnePistonRopedHydraulicElevator (bottom). Rectangles represent entities, IS-A
relations are denoted by solid arrows, and HAS-A relations are denoted by diamond-based
arrows.

In this chapter we describe our tool LIFTCREATE, which implements the heuristic
algorithm presented in the previous sections. When considering the new approaches for their
evaluation we shared the same encompassing environment and interface. LIFTCREATE is a
web-based application written in Java. To create designs from specifications, the tool retrieves
all the components data from a database of commercial parts from different suppliers and
explores the space of potential solutions guided by the user’s preferences. The interaction
with the user allows to shape and refine the heuristic search and pruning in the solutions
space: the heuristic procedure detailed in Algorithm 1 is geared towards producing solutions
as close as possible to human-conceived ones.

In practice, LIFTCREATE takes the designer from the very first measurements and
requirements, e.g., shaft size and payload, to a complete design which guarantees feasibility
within a specific normative framework. To achieve this, as first the user is asked to enter
relevant parameters characterizing the project and an overall goal to pursue. For instance,
if the size of the elevator’s shaft is known and fixed in advance, LIFTCREATE can generate
solutions which maximize payload, door size or car size. The goal is just a set of guidelines
which, e.g., prioritize door size over other elements still keeping into account the hard
constraints.
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Figure 5.2 Software architecture schema of LIFTCREATE. The three main modules reflect
the Model-View-Controller pattern and are connected via REST calls.

MODEL
(SPRING + HYBERNATE)

CONTROLLER
(SPRING )

VIEW
(VAADIN + SNAP.SVG)

SEES

USES MANIPULATES

UPDATES

5.1 Software architecture

In order to manage the space of potential designs, LIFTCREATE does not consider the RHEs
components detailed in Section 2.1 solely as drawing elements, but they must be handled as
first class data inside the application logic. For example, OnePistonRopedHydraulicElevator
is both a leaf in the taxonomy shown in Figure 5.1 (top) and also the root node of the corre-
sponding part-whole hierarchy (bottom).

Looking at the hierarchy, the structure of RHEs with one piston direct drive can be
easily learned, the only peculiar aspect being that these implements feature only one piston
(Piston). The remaining components are common to all HydraulicElevator or Elevator.
In particular, the car frame (CarFrameHydra), i.e., the mechanical assembly connecting the
car with the piston, is specific of hydraulics-powered elevators. Albeit not physically part
of the car frame, the entities CarRails, i.e., the rails along which the car is constrained to
move, Buffer, i.e., the dumping device placed at the bottom of the elevator shaft, and Ropes,
are logically part of it since their type and size must be inferred from or melded with the type
and size of the car frame.

Common to all elevator types, the entities Shaft and Car are both logically part of
the Elevator entity, but only the Car is also a physical component together with its sub-
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Figure 5.3 Screenshot of LIFTCREATE’s guidelines for generating designs. It is possible to
select the vendor for the car frame mechanics as well as for the doors, and a further filter
distinguishes between different door families.

component CarDoor. In the case of the Shaft, while landing doors (LandingDoor) are
not physically part of it, they are attached to it and their size and type must be inferred
from or melded with car doors. The relationships encoded in such part-whole hierarchy
are instrumental to LIFTCREATE when it comes to handle drawing, storage and retrieval of
designs, but also to reason about the various trade-offs of a design while searching in the
space of potential solutions.

The heuristic configuration engine and the other approaches are developed as REST
services (REpresentational State Transfer), i.e., they exchange calls and information with
the client browser as JSON objects via HTTP. In this way, it is possible to call a specific
method by mapping an URL address supporting GET and POST arguments. In Figure 5.2 the
schematic architecture following the Model-View-Controller (MVC) pattern is depicted. It
divides the related program logic in three interconnected elements and separates the internal
representations of information from the user’s point of view. The software is deployed
server-side using the SPRING Java framework, which is an asynchronous non-blocking
architecture for developing and deploying web applications in a fast and secure way. We
use this framework alongside with Hybernate, an Object Relational Mapping resource for
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Figure 5.4 Screenshot of a LIFTCREATE design obtained in the web application. On the left
it is possible to see the alternative designs proposed.

achieving object persistence in the application and easily interchange the object representation
between SQL and Java.

5.2 Web interface

In order to build an interface which is fluent and interactive with the underlying logic, we
build on the Java backend running the engine with the VAADIN framework The Vaadin
Team (2019). VAADIN allows us to incorporate the web interface in the same Java project,
keeping available all the logic components and easing interaction between the user and the
engine.

The web interface of LIFTCREATE is visible in Figures 5.3 and 5.4. Figure 5.3 is a
screenshot of the heuristic engine setup: here the user preferences are arranged in two areas.
First, the user chooses the elevator layout by selecting the car frame vendor (Fornitore arcata)
and its position in the design (Posizione arcata) — the default position is on the left, and
the main door is always at the bottom. Here the user can also request the placement of a
second door (Posizione porta secondaria). Once the layout is chosen, the door selection tab
allows to further filter the solutions space by selecting i) the door vendor (Fornitore porte),
ii) the door type (Seleziona tipologia porta) between symmetric, telescopic and folding with
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a different number of panels and iii) the door opening. This selection is actually evaluated in
real time given the car frame and shaft measurements, filtering doors having an opening too
big for the actual space.

In Figure 5.4 we show the result of an example configuration process, i.e., the output
of the heuristic design generation. Once given the initial setting, LIFTCREATE presents a
number of alternative designs — 11, in this case — matching the specifications. This is an
extra feature that optimal approaches lack in principle, since they are designed to produce
the single, best solution. The design is rendered in SVG and can be exported in the main
formats for CAD users. The SVG includes all components and their dimensioning in order
to obtain a full-fledged CAD design. We manage to render the design — and parts of it
— in the browser thanks to the Snap.svg Adobe (2022) JavaScript library, that we use for
wrapping custom components and arrange them in the viewport. Note that Figure 2.1 is a
simplified and clean version of the plan view generated by LIFTCREATE where we erased
the dimensioning. The top menu allows to fine-tune the general settings — Impostazioni —
by specifying the car wall thickness, the reductions, i.e., the distance between the car walls
and the shaft, and the safety margins.



Chapter 6

Experimental analysis
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In this chapter we present our experimental analysis to understand the impact of dif-
ferent choices for encoding our problem. We recall that LIFTCREATE-HR, detailed in
Algorithm 1, produces at most one solution per prototype, i.e., a pair of car frame and door.
LIFTCREATE-BF, LIFTCREATE-RS and LIFTCREATE-GA share a common flow that (i)
generates prototypes, (ii) expands design candidates for each prototype and (iii) validates
early designs on the hard constraints of Section 3.2. Finally, both LIFTCREATE-CP and
LIFTCREATE-SMT provide a direct encoding to a MiniZinc or SMT-LIB formula which is
fed to the corresponding solvers.

6.1 Experimental setup

The results are obtained by running the different versions of LIFTCREATE using the same
database to configure RHEs in sixteen different setups. In particular, a database of commercial
components is considered for car frames and car doors. In the LIFTCREATE web application,
the database collects all the components described beforehand as well as some additional
support tables that are not considered here. The component tables have as many columns
as the parameters that are depicted in Table 3.2, and the tables are built referencing actual
measurements from a few part suppliers. When LIFTCREATE is required to choose a car
frame and a car door, it queries the database and then initializes the specific procedures with
such data. The results herewith presented consider a database consisting of 25 car frames,
236 doors and 47 hydraulic cylinders. We run the different versions of LIFTCREATE in
sixteen different setups, i.e., configuration scenarios, including both cases in which, given
the available components, feasible solutions exist, and others for which there are none. The
setups we consider represent typical shaft sizes found in residential buildings: two families
of 8 setups, the former featuring 1300mm shaft width and the latter featuring 1500mm shaft
width; shaft depth varies in both families from 800mm to 1500mm. Overall, these setups
enable a thorough evaluation of LIFTCREATE versions considering realistic settings. All
tests run on a PC equipped with an Intel® Core™ i7-6500U dual core CPU @ 2.50GHz,
featuring 8GB of RAM and running Ubuntu Linux 16.04 LTS 64 bit.

Considering the evaluation parameters, we always measure the run time since the main
objective is to deploy an alternative, declarative-based encoding in order to replace the current
heuristic engine. When considering LIFTCREATE-GA we also measure some statistical
parameters by running 50 samples with a unique seed for each sample. Other measures,
e.g., size of the explored search space, number of sub-problems generated by the CSP
approaches, might make sense only for specific situations. We also consider two different
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Table 6.1 Results of computing configurations with heuristic techniques (LIFTCREATE-HR)
on the baseline encoding: “Time” is the total runtime in milliseconds, “No. of configs.” is
the total number of feasible configurations found (at most one for each prototype).

Shaft size Time No. of configs.

1300 × 800 1271 0
1300 × 900 731 54
1300 × 1000 715 51
1300 × 1100 633 89
1300 × 1200 633 168
1300 × 1300 764 397
1300 × 1400 1062 679
1300 × 1500 966 859
1500 × 800 1213 0
1500 × 900 1250 80
1500 × 1000 1330 160
1500 × 1100 1268 198
1500 × 1200 1544 414
1500 × 1300 1742 920
1500 × 1400 1823 1179
1500 × 1500 1548 986

sets of experiments: a baseline encoding dealing with the configuration of the car frame
and the door pair only, and a full encoding dealing also with the selection and sizing of the
hydraulic cylinder as well as the minimization of forces on the car rails. In particular, in
the baseline encoding we consider only the cost components related to car frame and doors,
whereas the full encoding takes into account all the cost components. LIFTCREATE-GA
considers only the baseline encoding, as well as LIFTCREATE-CP, while LIFTCREATE-SMT
is compared on both encodings due to numerical stability reasons detailed in the next Section.
LIFTCREATE-HR is tuned to be compared on both encodings.

When building the cost function, in the single-objective case, considering equation (4.2),
we set the free parameters α1, α2 and α3 to 0.3 and α4 to 0.1 in order to encode different
priorities. In the multi-objective encoding, we set all weights to one.

6.2 Experimental results

LIFTCREATE-HR. The results of LIFTCREATE-HR on the baseline encoding are reported
in Table 6.1; as the results show, all the setups can be solved in less than 2 CPU seconds. Note



6.2 Experimental results 48

that the heuristic search herewith considered focuses only on the car frame and doors coupling,
so that the results of the full design may appear inconsistent with Demarchi et al. (2019). The
number of configurations found ranges from 0 for the two setups having shaft depth 800mm,
to more than one thousand for deeper shafts. Notice that the number of configurations found
by LIFTCREATE-HR may not coincide with the total number of feasible configurations:
this is because heuristics in LIFTCREATE are geared towards providing arrangements that a
human designer finds satisfactory and not just feasible ones.

To better appreciate the complexity of the configuration task and the results obtained
with LIFTCREATE-HR, in Cicala et al. (2022) we present also the results obtained with
LIFTCREATE-BF. In these experiments we follow the schema depicted in Chapter 4 where
both the prototypes generation and the early designs expansion are performed by a brute-force
search, i.e., for each prototype we produce a new early design by assigning both xcd and yc f

to a possible value in their range. The runtime of LIFTCREATE-BF grows with the shaft
size and it is up to three orders of magnitude greater than LIFTCREATE-HR, the largest
slice of runtime consumed by the validation phase. This is reasonable because even if the
expansion phase generates a large number of alternatives, no processing is performed on
them. This means that LIFTCREATE-BF wastes a lot of processing time just to discard
unfeasible configurations.

LIFTCREATE-GA. Table 6.2 shows the results of LIFTCREATE-GA. According to some
preliminary experiments that we do not show for the sake of brevity, we set the mutation rate
to 10%, i.e., individuals are affected by random gene mutation with a probability of 10%. In
order to account for stochastic variability, we consider for each setting 50 sample runs of
LIFTCREATE-GA, with a unique seed for each sample. In our implementation, the GA stops
when the fitness of the fittest individuals remains unchanged for 10 generations in a row.
Column “POP” refers to the population size, which is one tenth of the total solution space
— overestimated as the product between the cardinalities of the domains of car frames and
doors. Since we run different samples, we compute the median and interquartile range for
each reported value: “V” is the number of valid designs and “C” is the number of what we
defined in Section 4.1 clusters, i.e., designs sharing the same components. We also report the
cardinality (median and interquartile range) of the intersection between LIFTCREATE-GA
clusters and LIFTCREATE-HR and the ratio between the said intersection and the total
number of clusters (column MEDI

MEDC
in Table 6.2). We can observe that, while the median

of valid designs grows with the size of the shaft, their spread is almost always at least two
orders of magnitude smaller. Concerning clusters, the difference between valid designs
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Table 6.2 Results obtained with LIFTCREATE-GA with mutation value 10% on the baseline
encoding. “POP” is the population size, “V” is the number of feasible projects, “C” is
the number of clusters, “I=C ∩ H” is the number of clusters shared by LIFTCREATE-GA
and LIFTCREATE-HR. For each pair, column “MEDx” and “IQRx” are the median and the
interquartile range of value x, respectively. Column “ MEDI

MEDC
” is the ratio between shared

clusters and LIFTCREATE-GA ones.

Shaft size POP
V C I=C ∩ H MEDI

MEDC
[%]

MEDV IQRV MEDC IQRC MEDI IQRI

1300 × 800 0 0.0 0.0 0.0 0.0 0.0 0.0 –
1300 × 900 6392 5569.5 11.75 26.0 2.75 26.0 2.75 100.00
1300 × 1000 13192 11098.0 7.5 17.0 0.0 16.0 0.0 94.12
1300 × 1100 19992 16090.0 76.25 4.0 1.0 4.0 1.0 100.00
1300 × 1200 26792 22122.5 15.75 30.0 1.0 30.0 1.0 100.00
1300 × 1300 33592 26768.0 58.0 30.0 1.75 29.0 1.75 96.67
1300 × 1400 40392 32153.5 726.75 123.0 18.75 123.0 18.75 100.00
1300 × 1500 47192 37444.5 590.0 89.0 7.75 89.0 7.75 100.00
1500 × 800 0 0.0 0.0 0.0 0.0 0.0 0.0 –
1500 × 900 8272 1363.0 149.5 16.0 5.0 12.5 4.75 78.13
1500 × 1000 17072 7694.0 1811.75 48.0 4.75 47.0 5.5 97.92
1500 × 1100 25872 21195.5 48.75 52.0 0.0 52.0 0.0 100.00
1500 × 1200 34672 28658.0 58.0 66.0 1.75 59.0 1.75 89.39
1500 × 1300 43472 35697.0 30.5 89.0 2.0 89.0 2.0 100.00
1500 × 1400 52272 38497.5 1846.5 223.5 16.5 223.5 16.5 100.00
1500 × 1500 61072 47797.5 710.25 107.0 6.0 107.0 6.0 100.00

and their clusterization is also about two orders of magnitude, meaning that lots of feasible
configurations share the same car frame and doors. Finally, the overlap of the clusters with
the designs generated by LIFTCREATE-HR is substantial, reaching 100% on 9 out of 14
setups — the two setups in which no feasible design is found are not considered — and
on the remaining setups it never drops below 78.13%. Overall, these results show that
LIFTCREATE-GA is able to reach the same “quality” as LIFTCREATE-HR, provided a
proper hyperparameter tuning.

In terms of sheer performances LIFTCREATE-HR is still superior to LIFTCREATE-GA,
but the runtimes of the latter are reasonable for online deployment with the added flexibility
of a “declarative” encoding: adding a new constraint to LIFTCREATE-GA only amounts
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Table 6.3 Comparison of computation time for solvers on the baseline encoding: the first
column reports the setup and the other columns report the time (ms) taken to solve each setup
by the solvers — best times appear in boldface.

Shaft size MiniZinc SMT-LIB

OR-Tools Chuffed ECLiPSe CPLEX Gurobi z3 OptiMathSat

1300×800 662 200 924 856 886 100 254
1300×900 645 198 703 1020 1802 432 30680
1300×1000 674 192 1401 918 933 416 58066
1300×1100 659 179 1734 940 971 582 154739
1300×1200 655 191 1796 1056 1237 417 82698
1300×1300 661 188 1771 1090 1725 495 100822
1300×1400 637 188 1366 918 887* 435 79323
1300×1500 672 206 875 1118 925* 517 98355
1500×800 644 199 678 1023 824 116 247
1500×900 664 179 691 902 881 787 101458
1500×1000 673 195 1379 987 887* 619 70082
1500×1100 639 206 1942 971 903 682 105071
1500×1200 660 264 2024 1060 934 501 83719
1500×1300 636 224 2412 987 1018 417 121801
1500×1400 645 192 1509 871 919 470 97753
1500×1500 653 216 845 856 935 463 142557

to add a term to the fitness function, whereas in the case of LIFTCREATE-HR any change
involves modifying the code.

LIFTCREATE-CP and LIFTCREATE-SMT. We test our SMT-LIB encoding with two
OMT solvers, namely z3 de Moura and Bjørner (2008) by Microsoft Research and Op-
tiMathSat Sebastiani and Trentin (2018) by FBK, and our MiniZinc encoding with five
different solvers. We use the lazy clause generation based solver Chuffed Chu (2013), the
MiniZinc challenge winner Google OR-Tools Perron and Furnon (2020), the CLP solver
ECLiPSe Schimpf and Shen (2012) and the two MIP solvers CPLEX IBM (2017) and
Gurobi Gu et al. (2019). With all these solvers we can observe how different approaches in
solving combinatorial optimization problems behave with our encoding choices. In more
detail, we run Chuffed v0.10.3, OR-Tools v7.8, ECLiPSe v7.0, CPLEX v12.7, Gurobi v9.0.1,
z3 v4.8.7 and OptiMathSat v1.7.0.1. We consider the default configuration of every solver,
even if we are aware that tuning each solver for the specific problem might yield better
results. However, we do not wish to introduce bias in our experiments due to the fact that we
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may know a solver or a technique better than others and thus obtain effective configurations
on specific solvers only. Notice that z3 and OptiMathSat do not generate proofs of their
results in their default configuration. Overall, the baseline encoding features 29 parameters
and 10 decision variables, whereas the full encoding features 42 parameters and 17 decision
variables. The number of constraints varies from a minimum of 30 for the baseline encoding
considering arrays and functions to 401 for the full encoding with implications to represent
parameters and look-up tables.

In Table 6.3 we show the results obtained on the baseline encoding by all the solvers we
consider. For each solver we report the best time obtained on two variations: one in which
the selection of components is based on arrays and another featuring Boolean implications.
Both variations are integer-based because not all the solvers support arithmetic over reals,
so we do not consider relaxations here; also, since the car surface computation involves a
division, we omit the deduction of the car payload and passengers which are required for a
complete design. All the solvers leveraging MiniZinc encodings fare the best runtime when
the component parameters are encoded with arrays: CP solvers like Chuffed seem to make
effective use of element constraints and MIP solvers appear to handle the translation of array
constraints better than Boolean implications. On the other hand, OMT solvers run faster on
the version based on Boolean implications, as the addition of arrays involves dealing with
more theories at once and this inevitably hurts performances.

As we can observe in Table 6.3, Chuffed is the one yielding the best runtimes, except for
two setups where z3 is the fastest solver. Noticeably, these setups do not admit a feasible
configuration given the shaft size and the components available. z3 and OR-Tools are second
best, their runtimes being always less than one second; MIP solvers CPLEX and Gurobi
seem slightly less effective than the leading pack. In some cases, marked with an asterisk in
Table 6.3, Gurobi returned “UNSAT or UNKNOWN” as an answer even if a solution exists
and the MiniZinc file is the same for all solvers, so we conjecture that numerical stability
might be an issue in these cases, but we are investigating other potential causes. ECLiPSe

results are mixed, i.e., some setups are solved faster than OR-Tools or z3, others take more
than two seconds to solve. OptiMathSat is surprisingly slow on these encodings: if we
exclude scenarios for which no feasible configuration exists, then OptiMathSat best result is
30 seconds to solve the 1300×900 setup.

When considering the full encoding, we limit our comparison to z3 and OptiMathSat,
since they are the only ones that appear to handle encodings which contain a substantial part
of arithmetic over reals involved in cylinder selection, sizing and computation of forces on
the car rails. Among the MiniZinc-based tools, ECLiPSe is meant to support arithmetic over
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Table 6.4 Comparison of computation time for z3 and OptiMathSat on the full encoding: the
first column reports each setup; the other columns, grouped by solver, report runtimes (ms)
of different versions: integer-based “I”, relaxed “I + R” and relaxed with functions “I + R +
F”, respectively. Subcolumns “SO” and “MO” refer to single objective and multiobjective
optimization, respectively — best times among z3 and OptiMathSat appear in boldface. The
last column reports LIFTCREATE heuristic engine runtimes.

z3 OptiMathSat

Shaft size I I + R I + R + F I I + R I + R + F Heuristic
SO MO SO MO SO MO SO MO SO MO SO MO

1300×800 157 149 131 134 143 221 109 119 100 131 116 110 583
1300×900 8878 229522 1205 844 1978 2321 — — 74960 53535 68215 52068 1784
1300×1000 36120 133325 2818 3362 4433 2704 156761 48328 136109 107356 132166 112379 921
1300×1100 36448 60589 3514 1967 2365 1554 192198 127753 160883 176491 199352 113889 2177
1300×1200 42328 5530 6876 3460 2637 4155 — 208852 276380 181817 193987 160401 6865
1300×1300 94325 8982 22279 2521 5294 5304 244973 129848 225067 165818 292777 197777 15278
1300×1400 30452 133087 7374 1779 11096 3707 259953 244078 — 256791 — 242488 11190
1300×1500 177355 25697 18810 4061 234235 1998 258119 213104 259693 172842 274986 222485 24380
1500×800 176 141 121 114 140 129 100 85 100 85 100 101 926
1500×900 25964 56674 1619 1212 3382 1876 141359 — 206751 95370 167671 100623 5215
1500×1000 91242 235192 2888 1803 5121 1725 — 118777 223241 93759 173623 187153 2952
1500×1100 — 18023 4977 7517 3925 4446 219596 187570 205041 179414 183862 156035 4875
1500×1200 139993 68562 7001 1242 7431 1571 251651 148664 231829 70431 254111 189705 6232
1500×1300 291712 — 26724 4895 20263 4325 — 225509 — 232735 — 255728 33785
1500×1400 — 6264 35073 3139 169215 2675 — 184555 271054 107886 — 180857 21910
1500×1500 — 17824 37722 2703 121472 2528 257242 222360 — 167762 — 251033 8699

reals, but even the baseline encoding with relaxations resulted in a timeout for every setup
other than the ones for which no feasible configuration exists. We experimented also with
OR-Tools on an encoding obtained considering fixed-point arithmetic over 64 bit integers,
but to no avail. We did not try the fixed-point encoding on other CP tools as they do not
support 64 bit precision which is the least one required to avoid overflowing the calculations.
In Table 6.4 we collect the results of the comparison between z3 and OptiMathSat, adding
the runtime of the heuristic search performed by LIFTCREATE for reference. We focus
on the implication-based encoding given the results with the baseline encoding. In the
table, columns labeled “I” report runtimes on the integer-based versions, columns labeled
“I+R” report runtimes on relaxed versions, and columns labeled “I+R+F” report runtimes
on versions where look-up tables are represented as nested if-then-else functions rather than
straight implications. The columns “SO” and “MO” report the results of single-objective and
multi-objective optimization, respectively. The choice of the weights detailed in the setup
reflects that the first three components of the cost function have the same priorities. Different
weights could be chosen according to the user’s preferences, and we know — from other
experiments that we do not show here to save space — that different choices do not impact
on performances.
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Considering the results in Table 6.4, we see that the integer-based version of the full
encoding is the least appealing option: while z3 performs slightly better than OptiMathSat
on this version, other solutions yield faster runtimes. In particular, relaxing the encoding
has a substantial impact both on z3 and OptiMathSat: solving time decreases by orders of
magnitude in some cases with respect to the integer-based encoding. Finally, considering
the addition of native SMT-LIB functions we see that the results are mixed, i.e., it is not so
clear that choosing them improves the solving time. Noticeably, while OptiMathSat remains
slower than z3, it never exceeds the time limit on this encoding. As for single vs. multi-
objective encoding, we can see that the multi-objective approach performs better than the
single-objective one. In spite of some exceptions, multi-objective optimization — specifically,
with z3, relaxed encodings and native SMT-LIB functions — seems to be the winning option
overall. When it comes to comparing the heuristic engine of LIFTCREATE with the best
results of the constraint-based approach, we should take into account that the former deals
with the complete design cycle and not just with some subtasks. Given this initial bias, that
in some cases the heuristic engine outperforms most constraint-based solutions, but it is
overall slower than the best ones, it is fair to say that OMT solvers with relaxed encodings
and multi-objective optimization provide a feasible replacement to heuristic search in the
design subtasks that we considered here.
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In this chapter we show the algorithms and definitions that compose our abstraction
model for the verification of neural networks by means of reachability analysis and robustness
certification. We give the general definitions for abstracting domains, and afterwards we
focus on how to propagate this abstraction throughout the activation layers.

7.1 Basic abstraction definitions

To enable algorithmic verification of neural networks, we consider the abstract domain
⟨Rn⟩ ⊂ 2R

n
of polytopes defined in Rn to abstract (families of) bounded sets into (families

of) polytopes. We provide corresponding abstractions for affine and functional layers to
perform abstract computations and we prove that their composition provides a consistent
overapproximation of concrete networks.

Definition 1 (Abstraction) Given a bounded set X ⊂ Rn, an abstraction is defined as a
function α : 2R

n → ⟨Rn⟩ that maps X to a polytope P such that C (X)⊆ P.

Intutively, the function α maps a bounded set X to a corresponding polytope in the
abstract space such that the polytope always contains the convex hull of X . Depending
on X , the enclosing polytope may not be unique — see Figure 7.1 for different examples.
However, given the convex hull of any bounded set, it is always possible to find an enclosing
polytope. As shown in Zheng (2019), one could always start with an axis-aligned regular n

simplex consisting of n+1 facets — e.g., the triangle in R2 and the tethraedron in R3 — and
then refine the abstraction as needed by adding facets, i.e., adding half-spaces to make the
abstraction more precise.

Definition 2 (Concretization) Given a polytope P ∈ ⟨Rn⟩ a concretization is a function
γ : ⟨Rn⟩ → 2R

n
that maps P to the set of points cointained in it, i.e., γ(P) = {x ∈ Rn | x ∈ P}.

Intutively, the function γ simply maps a polytope P to the corresponding (convex and
compact) set in Rn comprising all the points contained in the polytope. As opposed to
abstraction, the result of concretization is uniquely determined. We extend abstraction
and concretization to finite families of sets and polytopes, respectively, as follows. Given
a family of p bounded sets Π = {X1, . . . ,Xp}, the abstraction of Π is a set of polytopes
Σ = {P1, . . . ,Ps} such that α(Xi) ⊆

⋃s
i=1 Pi for all i ∈ [1, p]; when no ambiguity arises, we

abuse notation and write α(Π) to denote the abstraction corresponding to the family Π.
Given a family of s polytopes Σ = {P1, . . . ,Ps}, the concretization of Σ is the union of the
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Figure 7.1 Three possible abstractions of a set: the first row depicts the bounded set X , and
the second the enclosing polytope P. Starting from the left, the first set is a convex set whose
polytope matches perfectly. The second is not linear, and it is approximated with an octagon.
The third is linear but non convex, therefore is split into two convex polytopes.
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concretizations of its elements, i.e.,
⋃s

i=1 γ(Pi); also in this case, we abuse notation and write
γ(Σ) to denote the concretization of a family of polytopes Σ.

Given our choice of abstract domain and a concrete network ν : I → O with I ⊂ Rn

and O ⊂ Rm, we need to show how to obtain an abstract neural network ν̃ : ⟨I⟩ → ⟨O⟩ that
provides a sound overapproximation of ν . To frame this concept, we introduce the notion of
consistent abstraction.

Definition 3 (Consistent abstraction) Given a mapping ν : Rn →Rm, a mapping ν̃ : ⟨Rn⟩ →
⟨Rm⟩, abstraction function α : 2R

n → ⟨Rm⟩ and concretization function γ : ⟨Rm⟩ → 2R
m

, the
mapping ν̃ is a consistent abstraction of ν over a set of inputs X ⊆ I exactly when

{ν(x) | x ∈ X} ⊆ γ(ν̃(α(X))) (7.1)

The notion of consistent abstraction can be readily extended to families of sets as follows.
The mapping ν̃ is a consistent abstraction of ν over a family of sets of inputs X1 . . .Xp exactly
when

{ν(x) | x ∈ ∪p
i=1Xi} ⊆ γ(ν̃(α(X1, . . . ,Xp))) (7.2)

where we abuse notation and denote with ν̃(·) the family {ν̃(P1), . . . , ν̃(Ps)} with {P1, . . . ,Ps}=
α(X1, . . .Xp)



7.1 Basic abstraction definitions 58

To represent polytopes and define the computations performed by abstract layers we
resort to a specific subclass of generalized star sets, introduced in Bak and Duggirala (2017)
and defined as follows — the notation is adapted from Tran et al. (2019).

Definition 4 (Generalized star set) Given a basis matrix V ∈ Rn×m obtained arranging a
set of m basis vectors {v1, . . .vm} in columns , a point c ∈ Rn called center and a predicate

R : Rm →{⊤,⊥}, a generalized star set is a tuple Θ = (c,V,R). The set of points represented
by the generalized star set is given by

[[Θ]]≡ {z ∈ Rn | z =V x+ c such that R(x1, . . . ,xm) =⊤} (7.3)

In the following we denote [[Θ]] also as Θ. Depending on the choice of R, generalized star
sets can represent different kinds of sets, but we consider only those such that R(x) :=Cx ≤ d,
where C ∈ Rp×m and d ∈ Rp for p ≥ 1, i.e., R is a conjunction of p linear constraints as
in Tran et al. (2019); we further require that the set Y = {y ∈ Rm |Cy ≤ d} is bounded.

Proposition 1 Given a generalized star set Θ = (c,V,R) such that R(x) := Cx ≤ d with

C ∈ Rp×m and d ∈ Rp, if the set Y = {y ∈ Rm |Cy ≤ d} is bounded, then the set of points

represented by Θ is a polytope in Rn, i.e., Θ ∈ ⟨Rn⟩.

The proof of proposition (1) is straightforward, since the set Y is a polytope in Rm, the
mapping V x+c is an affine mapping from Rm to Rn and affine mappings of polytopes are still
polytopes. From Tran et al. (2019) we know that polytopes can be represented as generalized
star sets, and thus our restricted form of star sets provides an equivalent representation of
polytopes in Rn; in the following, we refer to generalized star sets obeying our restrictions
simply as stars.

The simplest abstract layer to obtain is the one abstracting affine transformations. As we
have already mentioned, affine transformations of polytopes are still polytopes, so we just
need to define how to apply an affine transformation to a star — the definition is adapted
from Tran et al. (2019).

Definition 5 (Abstract affine mapping) Given a star set Θ = (c,V,R) and an affine mapping
f : Rn → Rm with f = Ax+b, the abstract affine mapping f̃ : ⟨Rn⟩ → ⟨Rm⟩ of f is defined as
f̃ (Θ) = (ĉ,V̂ ,R) where

ĉ = Ac+b V̂ = AV

Intuitively, the center and the basis vectors of the input star Θ are affected by the
transformation of f , while the predicates remain the same.
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Proposition 2 Given an affine mapping f : Rn → Rm, the corresponding abstract mapping

f̃ : ⟨Rn⟩ → ⟨Rm⟩ provides a consistent abstraction over any bounded set X ⊂ Rn, i.e.,

{ f (x) | x ∈ X} ⊆ γ( f̃ (α(X))) for all X ⊂ Rn.

To prove proposition (2), we observe that the set α(X) is any polytope P such that
P ⊇ C (X) — equality holds only when X is already a polytope, and thus X ≡ C (X) ≡ P.
Let ΘP = (cP,VP,RP) be the star corresponding to P defined as

cP = 0n VP = In RP =CPx+dP ≤ 0

where 0n is the n-dimensional zero vector, and In is the n×n identity matrix — the columns of
In correspond to the standard orthonormal basis e1, . . . ,en of Rn, i.e., ∥ei∥= 1 and ei · e j = 0
for all i ̸= j with i, j ∈ [1,n]; the matrix CP ∈ Rq×n and the vector dP ∈ Rq collect the
parameters defining q half-spaces whose intersection corresponds to P. Given our choice of
c and V , it is thus obvious that ΘP ≡ P. Recall that f = Ax+b with A ∈ Rm×n and b ∈ Rm;
from definition (5) we have that f̃ (ΘP) = Θ̂P with Θ̂P = (ĉP,V̂P,RP) and

ĉP = A0n +b = b V̂P = AIn = A

The concretization of Θ̂P is just the set of points contained in Θ̂P defined as

γ(Θ̂P) = {z ∈ Rm | z = Ax+b such that Cpx ≤ dP} (7.4)

Now it remains to show that { f (x) | x ∈ X} ⊆ γ(Θ̂P). This follows from the fact that, for
a generic y ∈ { f (x) | x ∈ X} there must exists x ∈ X such that y = Ax+b; since x satisfies
Cpx ≤ dP by construction of P, it is also the case that y ∈ γ(Θ̂P) by definition (7.4).

7.2 ReLU abstraction algorithms

Algorithm 2 Guidotti et al. (2021) defines the abstract mapping of a functional layer with
n ReLU activation functions and adapts the methodology proposed in Tran et al. (2019).
The function COMPUTE_LAYER takes as input an indexed list of N stars Θ1, . . . ,ΘN and an
indexed list of n positive integers called refinement levels. For each neuron, the refinement
level tunes the grain of the abstraction: level 0 corresponds to the coarsest abstraction that
we consider — the greater the level, the finer the abstraction grain. In the case of ReLUs, all
non-zero levels map to the same (precise) refinement, i.e., a piecewise affine mapping. The
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Algorithm 2 Abstraction of the ReLU activation function.
1: function COMPUTE_LAYER(input = [Θ1, . . . ,ΘN ], refine = [r1, . . . ,rn])
2: output = [ ]
3: for i = 1 : N do
4: stars = [Θi]
5: for j = 1 : n do stars = COMPUTE_RELU(stars, j, refine[ j], n)
6: APPEND(output, stars)
7: return output

8: function COMPUTE_RELU(input = [Γ1, . . . ,ΓM], j, level, n)
9: out put = [ ]

10: for k = 1 : M do
11: (lb j,ub j) = GET_BOUNDS(input[k], j)
12: M = [e1 ... e j−1 0 e j+1 ... en]
13: if lb j ≥ 0 then S = input[k]
14: else if ub j ≤ 0 then S = M * input[k]
15: else
16: if level > 0 then
17: Θlow = input[k]∧ z[ j]< 0; Θupp = input[k]∧ z[ j]≥ 0
18: S = [M * Θlow,Θupp]
19: else
20: (c,V,Cx ≤ d) = input[ j]
21: C1 = [0 0 ... −1] ∈ R1×m+1, d1 = 0
22: C2 = [V [ j, :] −1] ∈ R1×m+1, d2 =−ck[ j]
23: C3 = [

−ub j
ub j−lb j

·V [ j, :] −1] ∈ R1×m+1, d3 =
ub j

ub j−lb j
(c[ j]− lb j)

24: C0 = [C 0m×1], d0 = d
25: Ĉ = [C0; C1; C2; C3], d̂ = [d0; d1; d2; d3]
26: V̂ = MV , V̂ = [V̂ e j]
27: S = (Mc,V̂ ,Ĉx̂ ≤ d̂)
28: APPEND(out put, S)
29: return out put

output of function COMPUTE_LAYER is still an indexed list of stars, that can be obtained by
independently processing the stars in the input list. For this reason, the for loop starting at
line 3 can be parallelized to speed up actual implementations.

Given a single input star Θi ∈ ⟨Rn⟩, each of the n dimensions is processed in turn by the
for loop starting at line 5 and involing the function COMPUTE_RELU. Notice that the stars
obtained processing the j-th dimension are feeded again to COMPUTE_RELU in order to
process the j+1-th dimension. For each star given as input, the function COMPUTE_RELU

first computes the lower and upper bounds of the star along the j-th dimension by solving
two linear-programming problems — function GET_BOUNDS at line 11. Independently from
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the abstraction level, if lb j ≥ 0 then the ReLU acts as an identity function (line 13), whereas
if ub j ≤ 0 then the j-th dimension is zeroed (line 14). The ∗ operator takes a matrix M, a star
Γ = (c,V,R) and returns the star (Mc,MV,R). In this case, M is composed of the standard
orthonormal basis in Rn arranged in columns, with the exception of the j-th dimension which
is zeroed.

7.2.1 Exact abstract propagation

When lb j < 0 and ub j > 0 we consider the refinement level. For any non-zero level, the input
star is “split” into two new stars, one considering all the points z < 0 (Θlow) and the other
considering points z ≥ 0 (Θupp) along dimension j. Both Θlow and Θupp are obtained by
adding to the input star input[k] the appropriate constraints. If the analysis at lines 17–18 is
applied throughout the network, and the input abstraction is precise, then the abstract output
range will also be precise, i.e., it will coincide with the concrete one: we call complete the
analysis of NEVER2 in this case. The number of resulting stars is worst-case exponential,
therefore the complete analysis may result computationally infeasible.

Proposition 3 Given a ReLU mapping f : Rn → Rn, the corresponding abstract mapping

f̃ : ⟨Rn⟩ → ⟨Rn⟩ defined in Algorithm 2 provides a consistent abstraction over any bounded

set X ⊂ Rn, i.e., { f (x) | x ∈ X} ⊆ γ( f̃ (α(X))) for all X ⊂ Rn.

Proposition 4 Given a concrete network ν : Rn → Rm comprised of a finite number p of

layers f1 : Rn → Rn1, . . . , fp : Rnp−1 → Rm such that each fi is either an affine or functional

layer implementing ReLUs, the corresponding abstract network ν̃ : ⟨Rn⟩ → ⟨Rm⟩ comprised

of the corresponding abstract layers f̃1 : ⟨Rn⟩ → ⟨Rn1⟩, . . . , f̃p : ⟨Rnp−1⟩ → ⟨Rm⟩ provides a

consistent abstraction over any bounded set X ⊂ Rn, i.e., {ν(x) | x ∈ X} ⊆ γ(ν̃(α(X))) for

all X ⊂ Rn.

Proposition 4 enforces that we can prove the (local) robustness of a neural network by
propagating the abstraction of an input set representing the l∞ ball around a given input
with a small perturbation ε and check whether the output set is large enough to cause a
misclassification.

Proposition 5 The intersection of a star Θ = (c,V,R) and a half-space H = {z|Hz ≤ g} is

another star with the following characteristics: Θ = Θ∩H = (c,V ,R) with c = c, V =V ,

R = R∧R′ and R′(x) = (HV )x ≤ g−Hc
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The proof of the proposition is straightforward since it is analogous to adding new constraints
to the predicate of the star, as done for the ReLU abstract transformer.

Proposition 6 Let [Θ1, ...,Θn] be a star set obtained by applying Algorithm 2 to a network

of interest ν and an input star set corresponding to the input component of the property of

interest P. Moreover let Ĥ be an half-space corresponding to the unsafe zone as defined by

the property of interest. If Θi = Θi ∧Ĥ = /0 for i = 1, ...,n then the neural network ν satisfy

the property P.

Proposition 7 If in Algorithm 2 the stars were always refined for all neurons it is possible

to compute the complete counter input set (i.e., the set containing all possible inputs that

make the neural network unsafe) as CΘ =
⋃

i(c,V,Ri) where Ri are the predicates of the stars

obtained by the intersection between the unsafe zone and the output star set, whereas c and

V are the center and basis matrix of the input star.

Proof 1 If the complete version of Algorithm 2 is used then all the stars in the computation

process are defined on the same predicate variables x = [x1, ...,xm] which do not change

during the computations since only the number of constraints on x is changed by the abstract

transformers. As consequence the Ri contain values of x that make the network unsafe,

moreover it also contains all the constraints of the base predicate R of the input star. Therefore

the complete counter input set containing all possible inputs that make the neural network

unsafe is CΘ =
⋃

i(c,V,Ri), Ri ̸= /0.

7.2.2 Over-approximate abstract propagation

If the refinement level is 0, then the ReLU is abstracted using the over-approximation
proposed in Tran et al. (2019) and depicted in Figure 7.2. This approach is much less
conservative than others, i.e., based on zonotopes or abstract domains, and provides a tighter
abstraction.

As can be seen in Figure 7.2, three constraints are needed to construct the over-approximation:

y j ≥ 0

y j ≥ z j

y j ≤ ub j
z j − lb j

ub j − lb j

Such constraints must be added to the predicate matrix of the star, therefore we define
an auxiliarly variable xm+1 and we modify the basis matrix so that y j = xm+1 (line 26 in
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Figure 7.2 Graphical representation of the ReLU function (left) and the over-approximation
considering a single variable (right) with lb j =−2 and ub j = 2.
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Algorithm 2). By doing so we make it possible to express our constraints only in terms of
the predicate variables. We remember that z j =Vjx+ c j, substituting it in the constraints we
obtain:

xm+1 ≥ 0

xm+1 ≥Vjx+ c j

xm+1 ≤ ub j ·
Vjx+ c j − lb j

ub j − lb j

If we reorder these constraints we can bring them in the format Cx ≤ d:

−xm+1 ≤ 0

Vjx− xm+1 ≤−c j

−
ub j

ub j − lb j
Vjx+ xm+1 ≤

ub j

ub j − lb j
(c j − lb j)

From these constraints it is straightforward to identify the corresponding matrices in lines 21
to 23 of the algorithm.

If this analysis is carried out throughout the network, then the output star will be a (sound)
over-approximation of the concrete output range: we call over-approximate the analysis of
NEVER2 in this case. The number of star remains the same throughout the analysis, but at
the cost of a new predicate variable for each neuron which, in turn, increases the complexity
of the linear program required by GET_BOUNDS.
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7.2.3 Mixed abstract propagation

In Guidotti et al. (2021) it is proposed a new approach that adopts different levels of abstrac-
tion during the analysis: since each neuron features its own refinement level, algorithm 2
controls the abstraction down to the single neuron. This setting strikes a trade-off between
complete and over-approximate settings. In order to reduce as much as possible the approxi-
mation error, we rank the neurons in each layer based on the area of the over-approximation
triangle depicted in Figure 7.2: intuitively, the neuron with the widest bounds introduces a
broader triangle and, by design, a bigger approximation.

We concretize the star along that neuron and propagate the approximate method along the
others, such that each layer results in at most a single split. This reduces the computational
cost significantly, as the growth becomes quadratic in the number of layers and the complexity
increase by the approximation is contained. We call mixed the analysis of NEVER2 in this
case.
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Figure 7.3 ReLU split subsumption example along axis z1 (the actual lower star is collapsed
to a line)

(a) In this example the lower star can be sub-
sumed by the upper one

(b) In this example the lower star cannot be
subsumed by the upper one

7.3 Improving abstract propagation

The abstraction procedure detailed in Section 7.1 allows to control the number of stars
produced during the layer propagation. Nevertheless, we can note that the lower star in the
ReLU split could be completely subsumed by the upper one depending on the bounds along
the other variables.

Figure 7.3 exemplifies this statement: in case 7.3a the lower star is negligible when
projected to the z2 axis while in case 7.3b the projection adds information which is not
present in the upper star. More formally, we can say that if the lower star bounds along the
dimension z2 are lesser than the upper star ones, then the upper star subsumes the lower on
dimension z2. We can generalize by stating that for the dimension, i.e., neuron i we can
ignore the lower star if and only if for all other dimensions, i.e., neurons j = 1, ...,n, i ̸= j:

ub j
upp ≤ ub j

low ∧ lb j
upp ≥ lb j

low

The procedure is sound because the star set we obtain by the COMPUTE_RELU function
with the exact method in the same layer is guaranteed to contain stars with the same number
of dimensions such that the comparison is possible. Furthermore, given that ReLU does not
perform affine transformations, all stars share the same center and the dimension in the basis
matrix which is zeroed corresponds to the projection of the lower star on that dimension.

Algorithm 3 details the procedure for checking the elimination of the lower star. In order
to contain the number of LPs to solve, since each dimension is processed subsequently, we
start checking the dimensions following the one alongside which the ReLU split occurred:
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Algorithm 3 Star elimination algorithm
1: function GET_UNIQUE(lower, upper, v)
2: lower.lbv = lower.ubv = 0
3: upper.lbv = 0
4: dim_list = ORDER(tot_vars, v)
5: for j in dim_list do
6: lb_low j,ub_low j = GET_BOUNDS(lower, j)
7: lb_upp j,ub_upp j = GET_BOUNDS(upper, j)
8: if ub_upp > ub_low or lb_upp < lb_low then
9: return [lower, upper]

10: return [upper]

11: function ORDER(num_vars, j)
12: output = [ ]
13: for i = j+1 : num_vars do
14: APPEND(output, i)
15: for i = 0 : j−1 do
16: APPEND(output, i)
17: return output

18: function COMPUTE_RELU(input = [Γ1, . . . ,ΓM], j, level, n)
. . .

19: if level > 0 then
20: Θlow = input[k]∧ z[ j]< 0; Θupp = input[k]∧ z[ j]≥ 0
21: S = GET_UNIQUE(M * Θlow,Θupp, j)

. . .

in this way, even if the check fails, the LP does not add extra computational time as it is
used for the next neuron. This is obtained by function ORDER in line 4. After ordering
the dimensions, we perform the subsumption check for each one of them; whenever this
check fails, both the lower and the upper star are returned without spending further time
checking other dimensions (line 9). Only if the check is successful for every dimension, the
function returns the upper star only (line 10). This modification is highlighted in the fragment
of COMPUTE_RELU in lines 18−22. The cost for the extra LPs paid when the upper star
subsumes the lower is balanced by the reduction of the number of stars that are propagated,
whereas if the subsumption check fails soon enough, no extra LPs are computed since the
bounds are used in the next neuron computation. The worst case scenario is a check that
takes almost all the dimensions to finally fail, which leads eventually to a major overhead.
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7.4 Counter-example Guided Abstraction Refinement

Our algorithm can be used to compute the complete or over-approximate reachable set of
the neural network of interest. Once the reachable set has been computed, the property of
interest can be verified by computing the intersection between the negation of such property
and the reachable set (which we call reachable counter set). If such intersection is the empty
set, then the network is compliant with the property of interest; otherwise, if the reachable set
is complete, we have shown that the network is unsafe. However, if the reachable set is over-
approximated, the concrete network may satisfy the property, and the over-approximation
may be too coarse. In both cases in which the reachable counter set is not the empty set, we
are interested in extracting concrete input points corresponding to the output contained in the
reachable counter set. In particular, when we have a complete counter reachable set we can
leverage the following theorem, adapted from Tran (2020):

Theorem 1 Let ν be a feed-forward neural network, Θ = (c,V,R) be a star input set,

ν(Θ) =
⋃k

i=1 Θi, Θi = (ci,Vi,Ri) be the reachable set of the neural network and S be a safety

specification. Denote Θi = Θi ∩¬S = (ci,Vi,Pi), i = 1, ...,k. The neural network is safe if

and only if Pi = 0 for all i. If the neural network violates its safety property then the complete

counter input set containing all possible inputs in the input set that lead the neural network

to unsafe states is C =
⋃k

i=1(c,V,Pi),Pi ̸= 0.

For the proof of Theorem 1 we refer to Tran (2020). Using Theorem 1 we can easily
compute the complete counter input set, so the problem of extracting concrete input points
becomes the problem of extracting points from a star-set which in itself can be considered as
extracting points from a single star. To do this, we consider the problem of extracting points
from the predicate of the star, which, under our pre-conditions, is always a polytope. We will
then apply to the points of the predicate (α) the affine transformation x = c+V α to obtain a
corresponding point of the star of interest. To extract the point from the polytope defined by
the predicate, we leverage the hit and run sampler Smith (1996). It should be noted that while
the hit and run algorithm produces an approximation of a uniform distribution for the α of
the predicate, the application of the affine transformation needed for the transformation to
the point of the star skews such distribution. A possible solution to this issue is to transform
the predicate to its V-representation, apply the affine transformation directly to the polytope,
return to the H-representation and apply the hit and run sampler. However, for our aims,
the skew of the distribution is not that relevant. Therefore, at least at this time, we do not
need to transform between the two representations, which is computationally expensive. The
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problem is different when we are working with the over-approximate reachable counter set:
in this case, we do not have a way to compute the counter input set since the addition of
the new variables needed for the over-approximation to the predicate of the star invalidates
Theorem 1. Therefore an alternative solution is needed to compute inputs that allegedly are
not compliant with the property of interest. We define the abstract counter output set (ACOS)
as the intersection between the abstract reachable set and the negation of the property S. Our
algorithm extracts a point from the ACOS using hit and run sampling and then searches for
the corresponding input point. Formally the search problem of the corresponding input point
can be defined as:

Definition 6 Given a reference output point ŷ, a starting input point x and a feed forward

neural network ν we can define the search problem for the point x̂ which satisfies ν(x̂) = ŷ

as the following minimization problem:

x̂ = min
x

||ŷ−ν(x)||2

However, the non-convexity and non-linearity of the function make the minimization problem
not easily solvable: the non-convexity and the presence of local minima make it extremely
difficult to apply gradient descent. Consequently, we developed a simple search-by-sampling
algorithm which, given a starting point in the input space, generates a “cloud" of points using
a normal distribution with the starting point as center and a given variance. Such points
are then compared, and the one whose corresponding output is nearest to the desired one
is selected as the center for another step of the algorithm. The search terminates when the
euclidean distance between the output found and the one we are searching for is less than a
given threshold or when a given number of steps is exceeded. If the algorithm finds an input
point in the concrete input set and whose corresponding output is in the ACOS, we have found
a concrete counter-example, and the network is proven unsafe. Otherwise, the point found is
a point whose corresponding output is reasonably close to the ACOS and can be leveraged for
our refinement. Once an adequate sample is found, we can use it to guide our refinement. The
idea behind the refinement algorithm is to rank the approximation error for each neuron by
computing the triangle areas of the approximate method — see, Section 7.2 — and enhance it
with a measure of the relevance of the neurons with respect to the sample found. To compute
the relevance, we leveraged the layer-wise relevance propagation algorithm Samek et al.
(2016) which, while traditionally used by the explainability community for classification
models, can provide an adequate relevance measure even for regression tasks. It should be
noted that our implementation of the algorithm supports, at present, only fully-connected
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Algorithm 4 CEGAR Algorithm.
1: function CEGAR_VERIFICATION(input_set, unsafe_zone, network)
2: ref_levels = [0, ...,0]
3: ACOS, areas, sa f e = STARSET_VER(input_set, unsafe_zone, network, ref_levels)
4: if IS_EMPTY(ACOS) then
5: return ACOS, areas, True

6: out put_counter = GET_SAMPLE(ACOS)
7: input_counter = INPUT_SEARCH(network, output_counter)
8: if input_counter ∈ input_set then
9: return ACOS, areas, False

10: neuron_relevances = COMPUTE_REL(input_counter, network)
11: re f _levels = COMPUTE_REF_LEVELS(neuron_relevances, areas)
12: return STARSET_VER(input_set, unsafe_zone, network, ref_levels)

layers and ReLU activation functions. For more details on layer-wise relevance propagation
we refer to Montavon et al. (2019).

The refinement procedure is detailed in Algorithm 4 Demarchi and Guidotti (2022). As
the first thing, it needs to apply our verification methodology in its over-approximate form
(line 3) to compute the over-approximate reachable counter set and the triangle areas. If
the network is proven to be safe (line 4) then the verification algorithm terminates (line
5), otherwise we can search the counter-example as shown before (line 6 and 7). If we
found a concrete counter-example then the network is proven to be unsafe and the procedure
terminates (line 8 and 9), otherwise we use the spurious counter-example to find the relevances
of the neurons of the network (line 10). At this point, the relevances and the triangle areas can
be used to evaluate the significance of each ReLU neuron of the network. Once a measure
of the significance is computed for each neuron of each ReLU layer, we can choose a given
number of neurons to refine for each layer (line 11), and we can change the refinement levels
of Algorithm 2 as needed. Then our verification methodology is applied again using the
new refinement levels (line 12). Concerning the measure of significance, we investigate on
Product significance (PS) which computes, for each neuron, the value of the multiplication
between its relevance and the area of the triangle abstraction, and mixed-R (mR), which uses
the relevances as coefficients for the ranking used in the standard mixed methodology.
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NeVerTools: COCONET and NEVER2
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In this chapter we describe our tools COCONET and NEVER2 that are part of the
NeVerTools suite. The two tools are complementary and serve two purposes: COCONET

aims to bridge the gap between the representation and the conversion of neural networks
in the verification community; on the other hand, NEVER2 is our graphical user interface
(GUI) for learning and verification. Both COCONET and NEVER2 are written in Python and
rely on two components: the PYNEVER API Guidotti et al. (2021) which contains the actual
methods for the training and verification and the PyQt5 API Summerfield (2007) which
allows to design GUIs for a desktop environment.

8.1 COCONET

The verification community has stabilized in the recent years and started in 2020 the Inter-
national Verification of Neural Networks Competition (VNN-COMP) Müller et al. (2022)
that gathers verification benchmarks for evaluating the performances of verification tools. In
order to even the workflow and process of verification tools, the VNN-COMP relies on the
VNN-LIB Guidotti et al. (2023) standard, which consists of the ONNX Bai et al. (2023) file
format for the neural networks and the SMT-LIB Barret et al. (2017) for the specification
of the property. Since there exist many different formats for the representation of neural
networks, we developed COCONET 1 for allowing researchers to convert their networks to
ONNX. It is also possible to build a network from scratch visually in the environment.

8.1.1 Software architecture

The architecture of COCONET is detailed in Figure 8.1. Relying on PyQt5’s model for
building GUIs, we use the classes GraphicsScene and GraphicsView to control the logical
model and the rendering, respectively. In particular, we separate the building elements (blocks
and edges) in the class Scene from the methods and utilities for managing the exchange
with the view in GraphicsScene. The class Project serves as a controller for reflecting
the actions taken in the graphical environment to the neural network that is built within
PYNEVER. The main window of the application is displayed by the class EditorWidget
which is associated with the CoCoNetWindow class containing the logic for displaying the
GraphicsView and all the menus and layouts involved.

In order to comply with the VNN-LIB standard we have two kinds of available blocks:
the LayerBlock that represent the layers of a neural network, and the PropertyBlock that

1https://github.com/NeVerTools/CoCoNet
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Figure 8.1 UML Class Diagram representing the main software components of COCONET.
Using the PyQt API we leverage the QGraphicsView and QGraphicsScene interfaces to
build a workspace in the QMainWindow. On the other hand, the class Scene serves as a
controller for the creation and display of graphics blocks and as an interface to the PYNEVER

components.

represent a property to link to the input or the output of the network. Each LayerBlock

is initialized with a LayerNode object from PYNEVER, i.e., represents a layer of the neu-
ral network displaying all the fields and allowing the modification of some parameters.
PropertyBlock objects are initialized with a PYNEVER property, which allows to define a
SMT-based rule on the input and/or the output.

8.1.2 Application interface

Figure 8.2 is a screenshot of COCONET’s main window. The view contains a simple network
with a single Fully Connected layer with a ReLU activation function. The available layers
from PYNEVER are displayed in the left toolbar, where the last three entries are different
versions of a property. The displayed nodes show the information related to the corresponding
node: while the ReLU layer has no parameters, the Fully Connected layer shows the inputs,
the outputs and the dimension of the weight and bias matrices. When a network is loaded or
created in the view, it is possible to add properties or save it in the VNN-LIB format creating
one ONNX file for the network and a SMT-LIB file for the property.

It is possible to connect one or more properties to the neural network displayed, in the
left toolbar we have three alternatives:

• Generic SMT - a simple text dialog where it is possible to directly write a property in
plain SMT-LIB language
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Figure 8.2 Screenshot of COCONET’s GUI. The network is displayed in the Graphics Scene,
and there is a toolbar with the available blocks divided in nodes and properties on the left.

• Polyhedral - a property that allows to set an upper or lower bound to each variable the
property is connected to

• Local robustness - a property that allows to specify a pair of input and output samples
with an ε-δ perturbation

In Figure 8.3 we show the dialogs for the specification of the different properties. For the
Polyhedral property the variables are constrained to the number of inputs for a pre-condition
or the number of outputs for a post-condition and can be bounded with all the relational
operators, i.e., <,≤,=,>,≥. The Local robustness property requires two samples, one for
the input and one for the output, and the two ε and δ measures.

Once the network and the properties are set, it is possible to save the benchmark in the
VNN-LIB format: using the Save as... menu, it is possible to select VNN-LIB as the output
file format. In this way, the neural network will be saved — or converted, if opened as a
different format — as an ONNX file and the properties will be stored in a separate SMT-LIB
file with the same name of the network.
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Figure 8.3 Screenshot of the edit dialogs for three properties available in COCONET.
From left to right, as described in the dialog label, there is the Generic SMT property, the
Polyhedral property and the Local robustness property.
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8.2 NEVER2

Given the interest on providing a community tool for the conversion and management
of neural networks we built COCONET as a stand-alone tool. Nevertheless, COCONET

leverages almost every functionality of PYNEVER and lacks only the core features of learning
and verification. For this reason, we built NEVER2 as a “twin” to COCONET with the
extended functionalities, with the purpose of letting COCONET grow within the community
and keeping NEVER2 as the interface for our verification algorithms.

A neural network created or imported in NEVER2 can be trained using a visual proxy to a
PYTORCH2-based training procedure: every parameter for controlling the training algorithm
is accessible and accounts for all kinds of datasets. It is possible to load from the user
machine a custom dataset, providing the data type, the number of samples and the delimiter.
Finally, the main focus of NEVER2 is the verification of a network. Altough our current
capabilities do not cover all the network architectures, we provide a verification interface for
fully connected neural networks with ReLU activation functions. The verification procedure
requires a trained network, but within this environment it is possibile to take on the complete
procedure from scratch.

8.2.1 Learning

In Figure 8.4 we show the design of the training dialog. The current abstraction of a training
strategy features a single procedure which requires the neural network and a dataset instance,
and updates the network displayed with new weights and biases. Currently, we have designed
and implemented a single training procedure based on the Adam optimizer Kingma and Ba
(2017). Our implementation requires a PYTORCH representation to train the network, but
this is handled transparently by PYNEVER which converts the network before training.

First, it is required to load a dataset to train the network. We made available the MNIST
and Fashion MNIST datasets directly, since they can be downloaded within PYTORCH

without requiring extra steps. It is also possible to load a custom dataset by the user, given
some extra parameters visible in Figure 8.5. The custom dataset requires to define the target
index, i.e., the index for each row that distincts the inputs from the outputs, the data type
and the delimiter character for the dataset entries. After the dataset selection, in the “Dataset
transform” entry, it is also possible to specify some transformation functions for the input
and/or the output, depending on the needs.

2https://pytorch.org
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Figure 8.4 Screenshot of the training dialog in NEVER2. In this example it is pre-loaded
for a MNIST dataset with all the default parameters of the Adam optimizer.

Figure 8.5 Screenshot of the dataset dialog in NEVER2. It provides default values for the
data type (float) and delimiter character (,).

Once the dataset setup is completed, a number of training parameters is available to the
user in order to tune the learning algorithm: the Optimizer is, for now, only Adam and the
Scheduler only ReduceLROnPlateau. Both the optimizer and the scheduler have further
parameters that are accessible in the right side of the dialog — in Figure 8.4 we see the
parameters related to the Adam optimizer. We can select the Loss function to be either Cross
Entropy or MSE loss, as well as the Precision metric to be either Inaccuracy or MSE
loss too. Then, we can choose the number of training Epochs, the share of the dataset to be
used as the Validation set and the Training batch and Validation batch sizes. Finally, it is
possible to leverage the CUDA cores of the GPU, if the architecture supports it, to set an
early stopping criterion via the Train patience, change the directory in which Checkpoints

are stored and control the Verbosity level.
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Figure 8.6 Screenshot of NEVER2 with a loaded property and the verification dialog open.
Given a trained network and a property it is possible to launch the verification using one of
the three algorithms provided.

8.2.2 Verification

In Figure 8.6 we show the verification dialog on a NEVER2 window. The network is already
trained and there is a property attached — the orange blocks. The dialog requires to choose
the verification strategy based on the different abstract propagation algorithms: Complete for
the exact method, Over-approximated and Mixed for the approximate ones; the Mixed method
requires to specify the number of neurons to refine per layer. The verification procedure
logs the layers abstraction and returns True or False depending on whether the property is
verified or not. Within PYNEVER there are two kinds of properties: NeVerProperty and
LocalRobustnessProperty. NeVerProperty represents a generic property based on the
VNN-LIB standard, meaning that is parsed by reading a SMT-LIB file and consists of the
input bounds and output unsafe regions. On the other hand, LocalRobustnessProperty
is a “pre-cooked” property encoding the search of an adversarial example corresponding
to a specific data sample. PYNEVER specifies also different verification strategies, namely
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NeVerVerification, i.e., the main contribution detailed in Guidotti et al. (2021) and De-
marchi et al. (2022), and a refinement-based variation presented in Demarchi and Guidotti
(2022), namely NeVerVerificationRef. Altough complete and ready to use, we chose not
to expose all the verification interfaces in NEVER2 since they are too much experimental
for the moment; should the verification benchmarks and the community benefit from this
implementation, we will expose them in a future version.



Chapter 9

Experimental analysis
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9.1 Case studies

Here we describe our case studies developed in order to experiment with our algorithms and
to build new benchmarks for the verification community: Adaptive Cruise Control Demarchi
et al. (2022) and drone control. The purpose of creating a new benchmark for the evaluation
of verification algorithms is that, while the verification community has been prolific in
developing novel methodologies, very few general benchmarks have been proposed, among
which the most popular is still the ACAS XU benchmark Katz et al. (2017), released in 2017.

Furthermore, autonomous driving and drone control are tasks relevant for modern appli-
cations and, at the same time, the neural networks used in this kind of control are usually
small enough for the existing verification methodologies to be successfully applied.

9.1.1 Adaptive Cruise Control

Technically, an adaptive cruise control (ACC) is an autonomous driving function of level
one1, which controls the acceleration of the ego car — the car whereon the ACC is installed
— along the longitudinal axis. An ACC has two competing objectives: keeping the ego car
at the speed set by the user (speed following mode) and keeping a safe distance from the
exo car in front (car following mode). The ACC that we consider has one output, i.e., the
acceleration a suggested to the ego car in m · s−2, and five inputs, two of which are fixed:

• vp[m · s−1]: the speed of the ego car.

• vr[m · s−1]: the speed of the exo car relative to the ego car; when there is no exo car,
this input has the value 0.

• D[m]: the actual distance between the ego car and the exo car; when there is no exo car
or when the exo car is farther than 150m this input has the default value of 150m.

• T H[s]: Minimum headway time; this is the minimum time gap between the exo car
and the ego car: T H · vp corresponds to Ds, i.e.,the minimum safety distance.

• D0[m]: A safety margin to be added to the minimum safety distance Ds.

In production vehicles the ACC function is implemented using classical control laws. We
view the production function — called ACCo in the following — as a black-box whose
behavior should be learned by a neural network.

1“Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor
Vehicles”, SAE Standards, J3016_202104.
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Figure 9.1 Box plot for a million samples of the Adaptive Cruise Control data set (T H = 1.5;
D0 = 5)

Given the goal of learning ACCo using a NN, we should generate several instances of
input-output data using, e.g., a car simulator. Since a simulator was unavailable to us at the
time of this writing, we generated the dataset to learn various NNs by drawing samples from
uniform distributions over the input values of ACCo, considering the following lower and
upper bounds for vp, vr and D:

0 ≤ vp ≤ 50

−50 ≤ vr ≤ 50

0 ≤ D ≤ 150

(9.1)

The values of T H and D0 are kept fixed, and we obtain the corresponding output a by
feeding ACCo with the generated inputs. We generate 16 different data sets, each composed
by a million samples, that feature 16 different combinations of T H and D0, where T H ∈
{1,1.5,2,2.5}, while D0 = {2.5,5,7.5,10}. Figure 9.1 shows the distributions of input and
output samples using box plots in the case T H = 1.5 and D0 = 5.

We tested three NN architectures comprised of affine and ReLU layers: we refer to them
as Net0, Net1 and Net2 in the following. These NNs feature increasing complexity both
in terms of the number of layers and in the amount of neurons per layer. The networks
considered differ from one another only for the details of the hidden layers, which are the
following:

• Net0: two affine layers of 20 and 10 neurons respectively, each followed by a ReLU
layer;

• Net1: two affine layers of 50 and 40 neurons respectively, each followed by a ReLU
layer;
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• Net2: four affine layers of 20, 20, 20 and 10 neurons respectively, each followed by a
ReLU layer.

The input of the network is in all the cases a three dimensional vector. All the networks
present an output layers consisting of a linear layer of dimension 1 (without a following
ReLU layer).

To learn the NNs we split the data sets in two parts, one for training and one for testing,
with the ratio of 4:1. Our training phase lasts 100 epochs for each of the 16 data sets. We
consider the Adam optimizer Kingma and Ba (2017) and the ReduceLROnPlateau scheduler.
For both our loss function and our performance metric we leveraged the Mean Squared Error

(MSE) loss. We set batch sizes to 32 for training, validation, and test sets. In our setup,
we dedicated 30% of the training set to the validation process. Concerning the optional
parameters, we also set the learning rate to 0.01, the weight decay to 0.0001 and the training
scheduler patience to 3, i.e., the number of consecutive epochs without loss decrease that
triggers training procedure abortion. All the training is perfomed inside NEVER2 which, in
turn, is based on the PYTORCH library. For this reason, all the remaining parameters required
by learning algorithms are set to their default PYTORCH values.

Verification setup. We consider three properties to be verified for the ACC case study, and
we verify them in NEVER2 with different NNs. The first property that we define, called
OutBounds in the following, simply checks that the output acceleration does not exceed the
bounds of the ACCo function. Stated formally, this amounts to have NEVER2 check that,
given the preconditions in Eq. (9.1) the output a satisfies the postcondition

−3 ≤ a ≤ 1. (9.2)

The second property we consider is called Near0, and it is aimed at making sure that the
ACC system does not output positive accelerations when the vehicle ahead is too close. We
frame this concept via the precondition

0 ≤ vp ≤ 50

−50 ≤ vr ≤ 50

0 ≤ D ≤ 150

T H · vr +D0 ≥ D+ ε

(9.3)
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where ε ∈ R+ is a positive tolerance value in the last inequality. Notice that the input bounds
are the same as Outbound. The last inequality stems from the fact that T H · vr is the safety
distance required to stop the ego car in time if the exo car brakes, and D0 is a buffer value
which, like T H, is constant for each data set. The corresponding output postcondition for
Near0 is

−3 ≤ a ≤ 0. (9.4)

Intuitively, we do not want the network to output positive accelerations in this case.
Finally, the last property we consider is Far0, which is symmetrical with respect to Near0.

The precondition is
0 ≤ vp ≤ 50

−50 ≤ vr ≤ 50

0 ≤ D ≤ 150

T H · vr +D0 ≤ D− ε

(9.5)

where ε ∈ R+ is still a tolerance value and the input bounds coincide with OutBounds and
Near0 properties. In this case, we want to verify that when the ego car is too far from the exo
car (or there is no vehicle ahead at all), the NN does not suggests negative accelerations. The
output postcondition is

0 ≤ a ≤ 1. (9.6)

In our experiments, we consider two different sub-settings for the mixed algorithm, called
mixed and mixed2 which differ in the number of neurons to refine, either 1 or 2, respectively.

9.1.2 RL-based drone hovering

Here we consider another benchmark which is based on a reinforcement learning environment:
autonomous drone control. In particular, we consider the problem of making a drone take
off and hover at a chosen altitude. Our motivation for dealing with a robotics framework is
twofold: first, the control problems arising in robotics are more and more relevant in the real
world scenario; drones and unmanned agents in general are being employed in several tasks
that require a high confidence in the agent. Second, using the Soft Actor-Critic architecture
we are able to employ reasonable-sized network architectures for the agent that we are able
to verify, and we delegate the more complex tasks to the critic which is not required to be
certified.



9.1 Case studies 84

Figure 9.2 The Bitcraze Crazyflie 2.1 drone considered in our setup

We focused on building a modular setup for the generation of benchmarks using well-
maintained and stable resources to be able to easily extend it to new case studies and network
architectures. In particular, we leveraged:

• GYM2: an open source Python library providing a standard API for communication
between reinforcement learning algorithms and environments.

• STABLE BASELINE33: an open source training framework providing scripts for train-
ing and evaluating RL agents using standard state-of-the-art algorithms.

• PYBULLET4: an open source physics simulator for robotics and reinforcement learning.

• GYM-PYBULLET-DRONES5: an open source GYM-stile environment supporting the
definition of various learning tasks on the control of one or more quadcopters.

Using these open source resources we greatly simplified the complexity of our setup and
we were able to directly train the network of interest in the environment corresponding
to our case study with the chosen state-of-the-art RL algorithm. In Figure 9.2 we show
the quadcopter model of choice, which was the default one proposed in GYM-PYBULLET-
DRONES (Bitcraze’s Crazyflie 2.x). To evaluate our algorithms we built the experimental
setup detailed in the following.

2https://github.com/openai/gym
3https://github.com/DLR-RM/stable-baselines3
4https://pybullet.org/
5https://github.com/utiasDSL/gym-pybullet-drones
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Table 9.1 Actor network architectures used in our experimental evaluation, arranged in two
(AC1 to AC4) or three (AC5 to AC8) hidden layers. The size of layers, i.e., the number of
neurons in each layer, is detailed in column No. of neurons. Each hidden layer is followed
by a ReLU layer.

Architecture Network ID No. of neurons

Two layers

AC1 32, 16
AC2 64, 32
AC3 128, 64
AC4 256, 128

Three layers

AC5 32, 16, 8
AC6 64, 32, 16
AC7 128, 64, 32
AC8 256, 128, 64

RL setup. The reinforcement learning setup we used to train our model was based on the
one proposed by Panerati et al. (2021): in particular, we leveraged their HOVERAVIARY

environment, together with the STABLE BASELINE3 implementation of the Soft Actor-Critic
(SAC) algorithm, to train our neural networks of interest. We chose this algorithm because it
is more stable than traditional actor-critic algorithms, but it still makes use of two different
networks: the actor to learn a policy and the critic to approximate the optimal value function.
Because of this, it is possible to learn a relatively small actor network, which is then subject to
verification, while the critic network can be as complex as the task requires without impacting
on the verification performances since only the actor network is relevant for this purpose. The
hyperparameters chosen for the SAC algorithm were the default ones proposed by STABLE

BASELINE3 except for the network architectures of the actor and the critic: in particular,
for the critic we chose a fixed architecture with four hidden layers with 512,256,128,64
neurons, respectively, each followed by a ReLU layer, whereas for the actor we considered
the eight different architectures presented in Table 9.1.

The observation type considered was the kinematic information (pose, linear and angular
velocities) of the quadcopter, and the action type was the revolutions per minute (RPMs)
applied to all the four rotors of the drone (similarly to what is done in the experimental
evaluation of Panerati et al. (2021)). All the actor models considered in our experiment were
trained for 50000 steps and, at the end of the training process, the version of the actor model
presenting the best mean reward in an evaluation environment was chosen.
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Verification setup. The verification task we consider in our experiments is an analysis of
the local robustness of our actor model with respect to small variations of the input, which
could be interpreted as small noise on the sensors providing the input signal. Formally we
consider the following assumption:

∀ε,x0 : |x− x0|∞ ≤ ε → ν(x0)−δ ≤ ν(x)≤ ν(x0)+δ (9.7)

where x0 is a specific input vector for the network ν , and ε and δ are scalar values repre-
senting the maximum noise on the input and the corresponding maximum output deviation,
respectively. Our aim is to determine the values of δ corresponding to fixed values of ε and
x0 for all the actors presented in Table 9.1. The encoding of this verification task is straight-
forward in NEVER2: we only need to define as input star the convex polytope defined by
the constraints corresponding to |x− x0|∞ ≤ ε and then propagate it in our abstract network,
applying the abstract transformer presented in Section 7.2, to obtain the abstract output set,
whose stars can be easily analyzed to compute the reachable bounds of the output and, as a
direct consequence, the maximum value of δ . In the experiments we evaluated our complete,
over-approximate and mixed algorithms: in particular, in our mixed algorithm we considered
the case in which a single neuron is refined for each ReLU layer. We also considered two
different values (0.1, 0.01) for ε .

Our experimental setup is available online in the public repository of PYNEVER6, and
the experiments herewith presented can be easily replicated. The experiments were run on a
machine with 2 Intel Xeon Gold 6432 CPUs and 128 GB of DDR4 RAM.

6https://github.com/NeVerTools/pyNeVer/tree/main/examples/submissions/IEEEAccess2023
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9.2 Experimental results

In this Section we present the evaluation of our methodology on the case studies detailed
before, as well as further experiments involving the star elimination algorithm and the
CEGAR algorithm presented in Sections 7.3 and 7.4.

9.2.1 ACC

We run our tests on a workstation featuring two Intel Xeon Gold 6234 CPU, three NVIDIA
Quadro RTX 6000/8000 GPUs (with CUDA enabled), and 125.6 GiB of RAM running
Ubuntu 20.04.03 LTS. For the sake of brevity, we are only going to report here in Table 9.2 a
fraction of the experiments we ran for the data set with T H = 1.5 and D0 = 5, considering
ε = 0 and ε = 20. The results we show here are consistent with the results obtained on other
data sets that we do not report. In particular, looking at Table 9.2 we can observe that:

• All the properties can be checked on all the networks in reasonable time by NEVER2:
less than one minute of CPU time is required independently from the network architec-
ture and the specific setting considered.

• The complete setting is the most expensive in computational terms; given the con-
siderations above this should come at no surprise, but in one case, namely Net2 on
property Near0, the complete setting is able to prevail over the others, i.e., it certifies
that the property is true; indeed mixed and over-approximated settings (shortened as
over-approx in Table 9.2) take less time, but state that the property is false because
they do not manage to reach enough precision to state the correct result.

• The over-approximated setting is often faster than the other ones: 6 out of 9 cases for
ε = 0 and 7 out of 9 cases for ε = 20; however it must be noted that its results are
definitive only when the property is true: 3 out of 9 cases for both values of ε and
always for the (simplest) property OutBounds.

• The mixed setting is at times faster than the over-approximated one, but only in one
case, namely property Far0 on Net0 it is able to provide a definite answer while
outperforming both the complete and over-approximated settings.

Overall we can conclude that while further research is needed to improve on the capability of
NEVER2 to provide definite answers with faster techniques involving over-approximation,
still the tool is able to check a number of interesting properties in networks involving hundreds
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Table 9.2 NEVER2 results for the ACC data set with T H = 1.5 and D0 = 5, with ε = 0 (left)
and ε = 20 (right). CPU time is in seconds rounded to the third decimal place. The best
setting for each network and property is highlighted in boldface.

Network ID Property Setting ε = 0 ε = 20
Result Time Result Time

Net0

OutBounds

Over-approx True 5.139 True 5.037
Mixed True 5.055 True 5.063
Mixed2 True 5.112 True 4.996

Complete True 6.273 True 6.203

Near0

Over-approx False 5.666 False 5.034
Mixed False 5.251 False 5.101
Mixed2 False 5.203 False 4.965

Complete False 6.319 False 5.345

Far0

Over-approx False 5.078 False 5.008
Mixed False 4.986 True 5.016
Mixed2 False 5.139 True 5.068

Complete False 5.186 True 5.62

Net1

OutBounds

Over-approx True 5.931 True 5.948
Mixed True 6.662 True 6.934
Mixed2 True 7.309 True 7.232

Complete True 51.683 True 52.318

Near0

Over-approx False 5.906 False 5.436
Mixed False 6.676 False 5.797
Mixed2 False 8.071 False 5.955

Complete False 50.469 False 7.667

Far0

Over-approx False 5.709 False 5.344
Mixed False 5.888 False 5.776
Mixed2 False 6.301 False 6.226

Complete False 13.041 False 8.212

Net2

OutBounds

Over-approx True 9.525 True 9.532
Mixed True 10.482 True 10.149
Mixed2 True 12.525 True 12.065

Complete True 26.958 True 26.794

Near0

Over-approx False 9.515 False 9.379
Mixed False 10.292 False 9.872
Mixed2 False 13.636 False 11.653

Complete False 24.496 True 10.696

Far0

Over-approx False 9.753 False 9.453
Mixed False 9.944 False 9.848
Mixed2 False 12.148 False 11.558

Complete False 13.27 False 10.854

of neurons in a relatively small amount of CPU time. We view this as a positive result and
an enabler for preliminary testing of NEVER2 at industrial settings featuring networks of
comparable size to our ACC case study.
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Table 9.3 NEVER2 results for the drones case study. Column Network ID refers to the same
actor architectures as detailed in Table 9.1. Column Return reports the best return obtained
during the testing of the Actors in the evaluation environment, while column Epsilon reports
the ε values tested in our experiments. Columns Over-approx, Mixed and Complete refer to
the selected verification algorithm, with the maximum Delta (δ ) obtained and the elapsed
Time in seconds, respectively. The cells reporting “–” correspond to experiments in which
our algorithm was not able to complete the verification successfully in less than 70 seconds.

Network ID Return ε
Over-approx Mixed Complete

δ Time δ Time δ Time

AC1 -27.15
0.10 4.18 0.48 3.71 0.51 3.23 0.61
0.01 0.34 0.47 0.33 0.49 0.33 0.47

AC2 -27.28
0.10 2.40 0.71 2.11 0.78 1.82 5.91
0.01 0.10 0.52 0.10 0.52 0.10 0.58

AC3 -27.33
0.10 12.90 2.66 12.86 2.82 – –
0.01 1.51 0.79 1.51 0.76 1.51 1.08

AC4 -27.69
0.10 6.23 5.37 5.91 8.60 – –
0.01 0.41 1.27 0.40 1.58 0.40 11.84

AC5 -28.31
0.10 17.65 0.82 17.09 0.83 14.40 2.25
0.01 1.20 0.73 1.20 0.74 1.20 0.76

AC6 -27.63
0.10 1.99 0.94 1.79 0.98 1.57 7.79
0.01 0.11 0.77 0.11 0.78 0.11 0.78

AC7 -32.06
0.10 2.89 1.84 2.45 2.02 2.24 61.81
0.01 0.23 0.95 0.23 0.99 0.23 1.18

AC8 -27.81
0.10 30.14 9.50 28.97 14.45 – –
0.01 0.56 1.63 0.56 1.78 0.56 4.91

9.2.2 Drones

From the results reported in Table 9.3 it would seem that, at least for the task considered,
an increased size for the actor network does not necessarily correspond to an increase
in performance. This would seem to support our belief that, in this kind of control task,
small networks yield adequate performances, and therefore are still relevant in meaningful
applications. Furthermore, from the values of δ obtained by our reachability analysis, it
would seem that bigger networks do not present significantly increased robustness to local
perturbation and, at least in our experiments, they often result to be less robust than smaller
ones. Regarding the comparison between the different reachability algorithms we notice
that, as expected, the values of δ found by the complete algorithm are stricter than — or
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Table 9.4 Experimental results for the star elimination algorithm on the ACAS Xu benchmark.
The number of stars layer-by-layer for each network is compared between the original
algorithm and the elimination-based version. All times are expressed in seconds.

Network ID Layer Original Elimination

No. of stars Time No. of stars Time

1_1

1 18 10.89 18 10.9
2 49 11.36 49 11.48
3 230 12.43 230 12.56
4 1466 24.42 1465 24.52
5 3894 67.02 3864 66.19
6 31706 305 31025 303.72

1_3

1 2 10.8 2 10.72
2 30 11.27 30 11.04
3 146 12.21 146 12.48
4 287 13.75 287 13.87
5 1700 28.52 1686 28.58
6 4121 69.78 4066 70.36

2_3

1 11 10.75 11 11.04
2 35 10.95 35 11.15
3 102 11.77 102 12
4 230 13.31 230 13.59
5 408 17.46 408 17.26
6 2128 30.58 2115 30.75

as strict as — the ones found by the mixed algorithm, and that the same behavior can be
observed between the mixed and over-approximate algorithms. As we would expect, the
computational time needed by the different algorithms increases with their complexity and
the only exceptions appear to be when the coarser algorithms are already good enough to
compute a very strict δ , which means that the number of unstable ReLU — causing the loss
of precision and the splitting of the stars in the over-approximate and complete algorithm
respectively — is extremely limited.

9.2.3 Star elimination

Here we show some preliminary results on the star elimination algorithm detailed in Sec-
tion 7.3. For the comparison, we considered three networks from the ACAS Xu evalua-
tion Katz et al. (2017) and the networks for drone control presented before. ACAS Xu is
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Table 9.5 Experimental results for the star elimination algorithm on the drone case study,
both with ε = 0.01 and ε = 0.1. The number of stars layer-by-layer for each network is
compared between the original algorithm and the elimination-based version. All times are
expressed in seconds.

Network ID Layer
ε = 0.01 ε = 0.1

Original Elimination Original Elimination
Stars Time No. of stars Time No. of stars Time No. of stars Time

AC1
1 17 11.67 17 11.35 520 16.67 518 17.13
2 25 11.34 25 11.33 2660 22.84 2579 25.01

AC2
1 3 11.13 1 11.23 3187 56.21 2712 72.09
2 5 11.15 1 11.09 6397 119.24 5367 103.82

AC3
1 18 11.90 5 11.63 - - 5008 228.73
2 81 12.77 14 11.43 - - - -

AC4
1 226 24.54 226 24.70 - - - -
2 490 39.52 487 43.48 - - - -

AC5
1 3 11.03 3 11.06 1962 20.24 966 19.34
2 5 11.08 5 11.10 4677 42.71 1993 25.29
3 5 11.00 5 11.10 11318 49.97 4572 27.07

AC6
1 4 11.08 4 11.21 5992 105.60 3504 94.00
2 4 11.06 4 11.15 11593 198.89 6287 128.23
3 4 11.11 4 11.03 - - 14298 171.42

AC7
1 16 11.32 16 11.38 - - - -
2 43 11.87 43 11.92 - - - -
3 88 12.14 87 12.03 - - - -

AC8
1 12 12.30 10 12.94 - - - -
2 18 12.41 14 12.07 - - - -
3 45 11.89 30 11.62 - - - -

an airborne collision avoidance system based on DNNs whose purpose is to issue advisory
commands to an autonomous vehicle (ownship) about evasive maneuvers to be performed if
another vehicle (intruder) comes too close. In particular, we selected Property 3 and 4 since
they could be easily expressed as a single verification query in our tool. In the words of Katz
et al. (2017), these safety properties “deal with situations where the intruder is directly ahead

of the ownship and state that the NN will never issue a COC (clear of conflict) advisory”.
Considering the analysis in Katz et al. (2017), each property can be assessed on 42 different
networks depending on the choice of two parameters, i.e., the the previous advisory value
and the time to loss of vertical separation.

Table 9.4 shows the results of the elimination algorithm for three networks in the ACAS
Xu set. We selected only three networks as they are representative enough for the analysis
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herewith presented. Column “Layer” refers to the layer of the network in which we analyize
the abstract propagation: each network in the ACAS Xu pool is made of six layers and in
each layer the number of stars increases. Comparing the original algorithm and the optimized
one, we can see that in this case the number of stars that can be deleted is almost neglectable:
in network 1_1 we remove less than 700 stars in the last layer, with more than 31k stars alone.
On the other hand, the comparison of CPU time is encouraging: even with the overhead
introduced by Algorithm 3 we do not pay a significant toll. This allows us to determine that,
at least, we can always try in principle to optimize the number of stars in the propagation.

In Table 9.5 we show a more encouraging result. We applied the same elimination
algorithm to the drones case study and in this case the experiments show that star elimination
can actually improve the performance of the verification algorithm. Comparing the results
with ε = 0.01 and ε = 0.1 we observe that in the former case we propagate a very small
number of stars: this is reasonable since a tighter input bound is more likely to be more
stable. This stability makes the elimination-based version very similar to the original one
with notable exceptions, e.g., in network AC2 all the extra stars created in the original
algorithm can be deleted and only one star is significative. The experiment with ε = 0.1
is more representative since the number of stars grows higher. Here we obtain slightly
better results than ACAS Xu for networks AC1 and AC2, but already in AC3 the optimized
algorithm manages to propagate the first layer within a timeout of 5 minutes where the
original algorithm fails. Then, on networks AC5 and AC6 it manages to cut the number of
stars in less than a half with a valuable speed-up in computational time, too.

Given the preliminary nature of these experiments, the discrepancy between the CPU
times in Tables 9.3 and 9.5 is due to the fact that the latter experiments are run on a machine
equipped with an Intel® Core™ i7-6500U dual core CPU @ 2.50GHz, featuring 8GB of
RAM and running Ubuntu Linux 16.04 LTS 64 bit.

9.2.4 CEGAR

Here we provide the results of the empirical evaluation of the CEGAR method. All the
experiments ran on a laptop equipped with an Intel i7-8565 CPU (8 core at 1.8GHz) and
16 GB of memory with Ubuntu 20 operating system. We test the CEGAR algorithm on
the ACAS Xu benchmark: among the networks available, we selected those for which
our over-approximate analysis could not find a definitive answer, ending with a total of 9
networks.
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Table 9.6 Experimental results for CEGAR on a subset of ACAS Xu networks. Columns
Property and Network ID report the property and the network considered, respectively.
The other columns report the verification time in seconds and result (Verified) for Mixed,
CEGAR-PS and CEGAR-mR analyses, respectively. Given the randomic nature of the
counter-example generator, we report the average time and the number of results over 10
repetitions of the experiment.

Property Network ID Mixed CEGAR-PS CEGAR-mR

Time Verified Time Verified Time Verified

# 3

1_1 13 True 10 3/10 9 9/10
1_3 10 True 14 6/10 10 0/10
2_3 7 True 10 9/10 7 6/10
4_3 15 True 17 10/10 14 10/10
5_1 6 True 11 10/10 9 10/10

# 4

1_1 11 True 10 0/10 9 0/10
1_3 8 True 16 0/10 11 0/10
3_2 12 True 12 10/10 12 10/10
4_2 12 True 11 10/10 12 10/10

In Table 9.6 we show the performance of the two versions of the refinement algorithm
explained in Section 7.4, and we compare them with our mixed abstraction methodology.
The PS refinement (CEGAR-PS) selects six neurons in the whole network to refine, while the
mR refinement (CEGAR-mR) refines one single neuron for each layer. Note that, by design,
the number of neurons refined is the same for every methodology: six in the whole network.
The difference between the three algorithms is which neurons are selected and how. As can
be seen, the performances of the two refinement algorithms are comparable; however, they
seem to be less effective than our mixed methodology and CEGAR-PS seems to be slightly
more accurate than CEGAR-mR at the cost of a small increase in the time needed to solve
the query. We believe that the difference in performance is mainly attributable to the fact
that, while the measurements of relevance we used are valid, they do not capture how the
coarseness of the abstraction changes dynamically when a particular neuron is refined. On
the contrary, the mixed methodology chooses in each layer the neuron to refine based on the
values of the areas of the triangles given the previous layer output. As a consequence, the
choice of which neurons to refine is guided by the coarseness of the abstraction after the
refinement is already applied in the previous layers.
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10.1 Conclusions

The work presented in this Thesis has advanced the state of the art with the following
contributions:

• We experimented with declarative encodings for the automated design of a complex
system, and generalized some best practices that can apply to different case studies.

• We expanded and structured the reachability analysis for DNNs employing the notion
of generalized Star set.

• We developed some variations of the verification algorithms pushing towards the
optimization of some existing bottlenecks in the procedures.

• We developed state of the art tools for both case studies, i.e., a web-based application
for the design of elevator systems and two GUIs for the construction, conversion,
learning and verification of DNNs.

In Demarchi et al. (2019) we started by encoding the elevator design problem first described
in Annunziata et al. (2017) using the Satisfiability Modulo Theories paradigm, and we
observed that with the employ of specific constraints it was possible to reach and also
outperform the baseline algorithm. Encouraged by this result, we considered using pure
Constraint Programming solvers in Demarchi et al. (2021) in order to understand the impact
of the encoding choiches that we observed with SMT. While a full encoding is still best
handled by an SMT solver when encountering computations involving real parameters, CP
solvers provided a significant speed-up when considering integer encodings only. Finally,
in Cicala et al. (2022) we resumed all our work and included another comparison using
Genetic Algorithms.

We applied the work of Guidotti et al. (2020a) and Guidotti et al. (2021) to new case
studies, namely Adaptive Cruise Control in Demarchi et al. (2022) and Reinforcement
Learning-based drone control. Here we perfectioned our tool NEVER2 in order to build
the networks, train them and define the properties to verify. The drone setup is the first
step for a RL-based verification framework for robotics case studies that we are building.
We also investigated an optimization for parts of our verification methodology in order
to cope with the pervasive and well-known scalability issues: in Demarchi and Guidotti
(2022) we investigated a counter-example guided abstract refinement which was introduced
in Guidotti (2022) and we experimented with a way for deleting degenerate stars in the
complete verification algorithm.
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Finally, we published state of the art tools in both domains. LIFTCREATE is a research
prototype available at liftcreate.ailift.it, still focused on the heuristic engine but designed in
order to be able to switch between new engines on the fly. COCONET and NEVER2 are the
two interfaces in the NeVerTools portfolio, which is part of a larger open-source ecosystem
which is still in progress, called NeuralVerification1: here we collect all the resources about
our research and development including the VNN-LIB standard Guidotti et al. (2023) that
we use in the verification community.

In conclusion, the work presented in this Thesis can be evaluated on the initial research
questions:

• (i) The choice of specific encodings, i.e., arithmetic theories, logic encapsulation,
optimization, is a key point in the design encoding. In fact, the experimental evalu-
ation proves how impactful they can be in order to obtain a result faster than other
methodologies.

• (ii) The choice of solvers and tools is complementary to the choice of the encoding:
there is no silver bullet when it comes to choose a tool for solving a design problem.
Depending on the problem shape and how it is encoded, different solvers yield different
results.

• (iii) The integration of new encodings in an existing and complex application was a
challenging task that impacted the original architecture as well. In fact, in order to
factorize common elements in the design flow and to build design processes that could
be seamlessly integrated in the base application, it was necessary to rewrite or refactor
several tasks that degraded the baseline performances, too.

• (iv) Abstraction-based methods for the verification of neural networks have proven
very efficient in the compact representation of sets for evaluating the reachability of a
network. On the other hand, exact analysis suffers from the curse of dimensionality
when it is necessary to branch into several alternatives in order to explore exhaustively
the solutions space. Corroborated by different case studies, this Thesis proposes an
improvement of exact reachability analysis by discarding duplicate solutions during
branching.

• (v) The most important contribution that is presented in this Thesis is the NeVerTools

suite with the tools COCONET and NEVER2. In fact, NEVER2 is the only tool in the

1www.neuralverification.org

liftcreate.ailift.it


10.1 Conclusions 97

verification community to provide a single environment where it is possible to build,
edit, learn and verify a network. Leveraging the VNN competition, the employ of
COCONET and NEVER2 by practitioners interested in providing guarantees on their
systems should benefit from contributions by the whole community.



10.2 Future work 98

10.2 Future work

Here we outline the research directions that could follow the work of this Thesis. The
promising results obtained experimenting with LIFTCREATE and declarative encodings
have proven valuable enough to consider a commercial distribution of the tool for technical
designers.

Our experimental analysis allows us to also make considerations in a broader sense,
reasoning about design of technical systems in general. Considering the current research
and industry scenario, where implementation of algorithms, tools, solvers and computational
capability are a widespread available resource, possible and viable extension to this research
can be the study of techniques to optimize the problem definition and encoding. Professional
engineers strive for a computational approach to design but, except for some very advanced
solutions, tools are somehow related to technical legacies or to partial, non-integrated
solution.

For what concerns the topic of neural networks verification, there are several things that
could improve the functionalities and capabilities of the application. While PYNEVER is
structured to support the conversion and training of sequential network architectures, the
verification methodology only supports fully connected layers with ReLU and Logistic
activation functions: for this reason our principal interest is to provide abstract transformers
for other layers in order to be able to work with more complex architectures. To this end, we
are interested in constraint propagation as a mean to provide a faster approximate algorithm.
Preliminary tests using plain constraint propagation on fully connected architectures showed
that it is possible to propagate bounds with any activation function in a fraction of the time
we use in our abstraction, altough with a very coarse approximation. Employing further
constraints, specific for each layer, could help use improve the results.

Finally, the problem of scalability remains the principal issue in every computer-intensive
application and we can only try to optimize the search space or to employ dedicated LP
solvers for the greater bottlenecks — which are the bounds computation in all algorithms.
We are also working on improving the CEGAR algorithm for refining approximate analysis
and we are deploying new RL-based case studies that could help us to benchmark our future
implementations.
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