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Abstract

With modern technologies moving towards the internet of things where seemingly every
financial, private, commercial and medical transaction being carried out by portable and
intelligent devices; Machine Learning has found its way into every smart device and applica-
tion possible. However, Machine Learning cannot be used on the edge directly due to the
limited capabilities of small and battery-powered modules. Therefore, this thesis aims to
provide light-weight automated Machine Learning models which are applied on a standard
edge device, the Raspberry Pi, where one framework aims to limit parameter tuning while au-
tomating feature extraction and a second which can perform Machine Learning classification
on the edge traditionally, and can be used additionally for image-based explainable Artificial
Intelligence. Also, a commercial Artificial Intelligence software has been ported to work
in Client/Server setups on the Raspberry Pi board where it was incorporated in all of the
Machine Learning frameworks which will be presented in this thesis. This dissertation also
introduces multiple algorithms that can convert images into Time-series for classification and
explainability but also introduces novel Time-series feature extraction algorithms that are
applied to biomedical data while introducing the concept of the Activation Engine, which is a
post-processing block that tunes Neural Networks without the need of particular experience in
Machine Leaning. Also, a tree-based method for multiclass classification has been introduced
which outperforms the One-to-Many approach while being less complex that the One-to-One
method.

The results presented in this thesis exhibit high accuracy when compared with the
literature, while remaining efficient in terms of power consumption and the time of inference.
Additionally the concepts, methods or algorithms that were introduced are particularly novel
technically, where they include:

1. Feature extraction of professionally annotated, and poorly annotated time-series.

2. The introduction of the Activation Engine post-processing block.



viii

3. A model for global image explainability with inference on the edge.

4. A tree-based algorithm for multiclass classification.
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Part I

Introduction



Chapter 1

Overview

1.1 Thesis Overview

Artificial Intelligence is playing a prominent role in modern technology while changing our
culture, means of entertainment, and accessing services online in an accurate unmanned and
automated manner. In another case, which in its primitive form is unrelated, we find the
adoption of Machine Learning (ML) in every edge device in the world of the Internet of
Things, where limitless implementations in biomedical, industrial, and robotic applications
can be observed. ML is employed on the Edge to identify and classify images, biomedical
signals and monitor user behavior by means of the deployment of Artificial Intelligence (AI)
models on embedded devices, which in terms, infer and act accordingly based on past training
and inspection. This case requires lightweight models, high accuracy, and fast convergence
or else the overall system cannot be utilized commercially in the real world.

In the field of the Internet of Things (IoT), AI techniques are more commonly used as the
cognitive engine for decision-making and identification. These findings may include heart
failure, seizure detection, gender recognition and satellite data classification.

Furthermore, AI is being used in every aspect of our lives from marketing, purchases,
and banking transactions as well as being used in cutting-edge military crafts and monitoring
systems, therefore, this thesis aims to follow this trend by aiming to always rely on ML to
automate classification, interpret-ability and to solve engineering problems that may arise
due the immense power of modern AI algorithms and workflows.
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1.2 Motivation

The motivation behind this thesis is primarily to follow a trend which is the proliferation
of AI in every engineering system realizable. The presented work consists of various ML
models which classify and interpret targets accurately and efficiently, while remaining in-
creasingly portable to other data sources or domains with minor tuning of the ML parameters.
Furthermore, the different projects described in this thesis aim to classify pre-processed data,
pre-process images and Time-series (TS), and automate the tuning of ML setups by means
of novel light-weight post-processing algorithms. Additionally, another AI model was used
to perform global image explainability on image-based data while competing with other
classifiers reported in the literature that were taken from diverse application domains having
a differing nature in data.

An additional motivation for the work presented in this thesis is related to the necessity
of edge computing models in modern systems and services. As shown in Figure 1.1 in part
(a), communication networks and devices have become interconnected within the same scope
and often return to a central cloud server as a root for storage, processing and orchestration.
Although this model has been successful during the time of its inception, the proliferation of
smart devices, AI, and Big Data in every application imaginable has led to high computational
costs and most importantly increased network traffic which leads to congestion and delay.
Consequently, edge computing as shown in part (b), is a primary candidate as a solution for
this problem. Instead of performing all data and computing operations on the cloud, when
possible, specific tasks may be implemented on so-called edge devices, which are IoT devices
themselves, where this limits the network traffic and the delay of sending and receiving data
between all devices and the centralized cloud server.

Additionally, the edge computing paradigm works in synergy with ML algorithms in mod-
ern systems, therefore, in Cecilia et al. (2020); Lapegna et al. (2021), the authors implement
light-weight ML programs on GPU-enable IoT boards which help in reducing the power
consumption as well as reducing the real-time inference time on portable edge computing
modules. Additionally, in Novac et al. (2021), ML algorithms are run on embedded microcon-
trollers by taking power consumption into consideration, while performing inference indoors
where pre-processing is applied through radio frequencies. This demonstrates that IoT boards
are involved in every phase of the ML workflow, from collection, training, inference and
deployment.

In regards to pure software applications, the authors in Canedo and Skjellum (2016);
Hodo et al. (2016) employ ML for improving the security of IoT system where NNs are used
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Fig. 1.1 (a) Classic cloud computing architecture with the processing and storage being
computed solely on the cloud. (b) The edge computing model which offloads certain tasks
onto IoT devices(Xu et al. (2020)).

as the ML model of choice. This applications takes into account information from software,
networking, and cryptography data which expands the scope of applications of AI on the
Edge.

1.3 Synthesis and Summary

The thesis implements ML on the edge with a general applications perspective while dealing
with edge computing issues such as power consumption and the time of inference. Also,
global image explainability was discussed by providing human-understandable statement in
the field of gender classification. Moreover, the vectorized automation of ML workflows was
presented which contains multiple pre-processing and post-processing techniques. Further-
more, the pure software aspect of porting a complete system from one platform to another
has been explained in detail.

The remainder of this thesis continues as follows: Chapter 2 presents the three main
projects undertaken in this thesis, Chapter 3 provides the related literature and fundamentals
to the presented AI projects, Chapter 4 outlines the contributions and lists the publications,
Chapter 5 deals with radar classification using ML, Chapter 6 experiments with additional
datasets and contributes with a novel image classification algorithm, Chapter 7 presents the
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CACAO-X framework which deals with Explainable AI (XAI) and inference on the edge and
Chapter 8 presents the VAMPIRE framework which provides novel techniques for Feature
Extraction (FE) and automation while achieving efficient and accurate performance. Chapter
9 concludes the thesis while two appendices are included at the end where Appendix A
describes in detail an FE algorithm from Chapter 8, and Appendix B presents some practical
implementations which were carried out in Chapter 7.



Chapter 2

Research Projects

2.1 Classic ML on the Edge and Tree-based Multi-class
Classification

This thesis contains three main projects; the first major project in this thesis concerns ML
classification of pre-processed data on the edge, as well as implementing an Image-to-TS
conversion algorithm and a tree-based multi-classification approach.

The first task was to port the commercial software Rulex (Muselli (2005, 2012); Muselli
and Ferrari (2009)) onto the Raspberry Pi (Vujović and Maksimović (2014)). This includes
the compilation of internal and external libraries used in the Rulex source code in order
to operate the tool in a client/server setup (Hajdarevic et al. (2014)) and perform ML
classification in an IoT setting. The first dataset was split into four classes, where a tree-based
approach was used for the classification methodology. In this method multiple forecasts
were applied where the sub-classes were grouped as one class before splitting that parent
class in the proceeding prediction. this method was able to surpass the common One-VS-All
technique which is commonly used in multi-class classification by improving the performance
metrics in addition to securing the ability for the designer to group the classes based on
his own judgment where in the applications or data sources employed in this Thesis were
classified with competitive results.

To test the Rulex/IoT system on larger datasets, forecasts were performed on pre-
processed sources where the setup proved to be robust as it is portable to multiple domains.
Also, an Image-to-TS conversion algorithm was applied on a random inconsistent image-
based gender dataset, where Rulex achieved very good results while competing with forecasts
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from the literature that mostly used mug-shot or forward-facing images. Moreover, in every
case this arrangement exhibited low power consumption on the raspberry Pi.

2.2 Flexible Neural Networks and Explainability

A Flexible Neural Networks model name CACAO-NET is developed in this second project
where it consists of arrangements of Multi-Layer Perceptrons (MLP), a Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM) blocks which are used for general-
purpose ML applications. The CACAO-X overall framework includes XAI for image data
having a global set of output rules.

Regarding image classification using Flexible Neural Network (NN) models, a modified
version of the Image-to-TS conversion algorithm, mentioned in Project 1, was used alongside
landmarks features and an explicative labeling algorithm to achieve global image explain-
ability. This consisted of a novel NN model, Rulex, and additional XAI tools employed in
a complex setup. Moreover, this framework was used as a traditional image classifier on
the Raspberry Pi where it achieved high accuracy without putting stress on the hardware
and power resources. Moreover, the Image-to-TS algorithm which contains returns distance
and image data of the each filtered image was implemented in the low-level C programming
language, which is considerably faster than Python, and since the algorithm has reasonably
high complexity. Furthermore, the compiled version of the code was interfaced into python
and the conversion was applied per image and in real-time on the Raspberry IoT board for
proven portability and deployment.

2.3 The AI Pre-processing and Post-processing Framework

The third major project that was developed in this thesis led to the design and implementation
of the VAMPIRE framework, which is basically a set of pre-processing and post-processing
algorithms targeted toward the edge. Firstly, regarding the set pre-processing algorithms, two
versions have been presented which deal with professionally annotated datasets and with
poorly annotated recordings. The FE algorithms VAMPIRE FE1 and FE2 deal with TS, and
in the published works, three types of biomedical TS were used as sources for FE and later
training and testing on the Raspberry Pi.

In regards to the post-processing part, VAMPIRE presents the Activation Engine which
is a new concept in the field of ML. A couple of Activation Engines are used to extract the
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optimal threshold of the final layer on an NN to apply binary classification while using the
tree-based approach discussed in Section 2.1 to perform multi-class classification.

The algorithms presented in this project are light-weight, converge quickly, and consume
little power when compared with the literature. The framework introduces a novel repre-
sentation of an input time-varying waveform to represent it in the D-Domain, which is a
co-representation of the original signal as correlated with its frequency response thus having
a resulting unit of V.Hz fluctuating over time.



Chapter 3

Literature and Fundamentals

The related work is outlined in this chapter by splitting the content into two main sections,
where the first corresponds to the fundamental concepts used in this thesis and the second
being a summary for the corresponding literature relating to each of the three projects that
the thesis presents.

3.1 AI on the Edge: Fundamentals

In the following section, the basic ML algorithms which have been used in the experimental
results of each project or chapter have been described fundamentally with the theoretical
background as the operation of these AI models. These consist of Support Vector Machines
(SVM), K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Logistic Regression
(LR), AdaBoost, Decision Trees (DT), and Random forest (RF) classifiers. Also, all of the
described algorithms have been implemented on the low-resource Raspberry Pi IoT module.
Additionally, the basic methods used to collect some of the recordings and images which
have been employed for training and testing in the upcoming sections will be described in
detail.

3.1.1 Classification and Regression Algorithms

Regarding the ML forecasts implemented in this thesis, there is a mixture of well-known
fundamental algorithms which have been applied in addition to some novel designs which
will be described in the upcoming chapters. This subsection provides the fundamental
working of the models which have been used either to perform forecasts within the scope
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of a project or to compare the classic ML models with the ML techniques which have been
developed in this thesis.

Support Vector Machines

A SVM (Cervantes et al. (2020); Ghosh et al. (2019); Muthukrishnan et al. (2020); Okwuashi
and Ndehedehe (2020)) is a mature ML algorithm which relies on hyperplanes as a factor of
safety for robust and high-performance metrics across a wide range of application domains.
In this subsection, the fundamental concepts behind these methods are outlined.

Considering n points {xi,yi} i = 1, . . . ,n where yi ∈ {−1,1} being a set of xi.The classes
may be expressed as: yi = 1 and yi =−1. Therefore, we need to determine aa hyperplane
that maps xi’s in the form of a higher dimensional space to create a factor of safety in case of
the classification. The said hyperplane must have a margin that can maximize the minimum
distance of the hyperplane in the case of the closest data points. an illustration of a linear
hyperplane is displayed in Figure 3.1

Fig. 3.1 Two SVM hyperplanes
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In case of a linear function, the hyperplane may be applied as follows:

xiw+b = 0

For two hyperplanes that create the factor of safety, their minimum distance must be as large
as possible. this is presented in the following equation:

xiw+b =+1

and
xiw+b =−1

It can be proven that the distance between these two hyperplanes is equal to 2
||w|| :

d++d− =
|1−b|
∥w∥

+
|−1−b|
∥w∥

=
2
∥w∥

(3.1)

Consequently, we can minimize ∥w∥ which is always positive. Also, for every i ∈ (1,n), xi

and yi the following constraints arise:

xiw+b≥+1, yi =+1 (3.2)

xiw+b≤−1, yi =−1 (3.3)

≡ (3.4)

yi(xiw+b)−1≥ 0, ∀i (3.5)

Consequently, in this thesis, SVM has been used in performing forecasts either as a proof of
concept or in order to perform a comparison with the presented novel algorithms, due to its
robustness.

K-Nearest Neighbor

KNN (Abu Alfeilat et al. (2019); Ayyad et al. (2019); Gou et al. (2019)) is an algorithm
which relies on distance measurements between a target node and the k closest surrounding
nodes to determine the class label of that single data point. An illustration of this setup is
illustrated in 3.2 where the newly introduced yellow dot that is closer in Euclidean distance
to the green dot class than the red dot class will be appointed to the green class. In case
the surrounding dots are of mixed classes, a voting scheme of counting or summation may
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Fig. 3.2 A 2D map representing how KNN operates in case of a binary classification problem
having two features.

be employed as a reliable metric for classification. Additionally, in case of ML regression,
averaging can be employed to estimate the target value.

Algorithm (3.1) describes shows how KNN operates where a counting scheme is used for
classification, as presented, and the Euclidean distances between the target point and all other
points are computed, then to closest k points are extracted before finalizing the classification
or regression task using the appropriate method.

Algorithm 3.1 K-Nearest Neighbor operation
Require: ∀ (Xi, Yi), k
Ensure: Classification and Regression task

1: for every new point (X_, Y_) do
2: for every points i of (Xi, Yi) do
3: Append Euclidean Distance ((Xi, Yi),(X_, Y_))→ Distances
4: end for
5: "j1, j2, j3, ..., jk"← Argmin(Distances,k)
6: if Task is Regression then
7: Return Average(Distances[j1:jk])
8: end if
9: if Task is Classification then

10: Return) MAX(LabelCount[j1:jk])
11: end if
12: end for
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Decision Trees

A DT is a supervised ML model (Charbuty and Abdulazeez (2021); Wan et al. (2020);
Yoo et al. (2020)), used in both classification and regression and consists of a hierarchical
tree-based structure composed of one root node and multiple internal nodes and leaves where
each leaf corresponds to a specific class label from the target dataset.

As shown in 3.3, the DT begins at the root, which does not have any incoming branches.
The proceeding branches connect decision nodes which dictate (based on a condition) which
path down the tree the algorithm will take in order to reach a decision, in the form of a leaf,
where the leaves represent every possible result in the domain dataset.

A DT employs a greedy search while adopting a divide-and-conquer approach to identify
the best diversion down the tree in order to reach a leaf. This process splits the tree from top
to bottom recursively every time input is introduced where DT model metrics are usually
evaluated with cross-validation.

Fig. 3.3 Decision Tree composed of nodes, leaves and sub-trees.

Logistic Regression

The LR model (Boateng and Abaye (2019); Nusinovici et al. (2020); Rymarczyk et al.
(2019)) is mostly implemented for classification and predictive applications. LR estimates
the probability of an event may occur while relying on independent variables where the
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overall probability is usually bounded between 0 (False) and 1 (True). A depiction of
the LR classification for a binary example is shown in Figure 3.4. Therefore in LR, logit
transformation is employed which infers the probability of a True label over the probability
of False label. This probability in case of a dataset having n variables Xi may be extracted in
the following expression:

Pr(Yi = 1|Xi) =
exp(β0 +β1Xi +β2X2 + ..+βnXn)

1+ e.xp(β0 +β1Xi +β2X2 + ...+βnXn)
(3.6)

Consequently, a more compact form of this activation function can be written as follows:

σ(z) =
1

1+ e−Xβ
(3.7)

It can be proven the log likely-hood function which is to be maximized in the optimization
process during training, can be used as provided here:

l(β ) =
n

∑
i=1

[yiXiβ − log(1+ eXiβ )] (3.8)

In LR, the β variables are updated through iterations in order to achieve the best fit while
relying on the log likely-hood. Consequently, the iterations maximize this function to extract
the most feasible parameters. Afterwords, conditional probabilities are used per input to
implement a reliable prediction.

Bayesian Classification: Naive Bayes Classifier

The NB ML algorithm (Balaji et al. (2020); Salmi and Rustam (2019)) is a probabilistic
classifier based on fundamental probability theory which relies on robust assumptions. In
some cases, these assumptions may not be based on real truth, which is why they are
considered as naive.

the fundamental expression which the algorithm is based upon may be viewed in this
equation:

P(Y |X) = P(Y )
P(X |Y )
P(X)

(3.9)

In case of binary classification, and in practice, the above function may be employed in
the following pair of expressions:
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Fig. 3.4 Logistic regression operation with two class labels.

P(X = (a,b)|Y = 1) = P(X1 = a|Y = 1)∗P(X2 = b|Y = 1) (3.10)

P(X = (a,b)|Y = 0) = P(X1 = a|Y = 01)∗P(X2 = b|Y = 0) (3.11)

Finally, in order to predict any unseen data input, the maximum of the last two equations is
used to reach an assumption:

Y = MAX(P(X = (a,b)|Y = 0),P(X = (a,b)|Y = 1)) (3.12)

NB in employed in Chapter 7 for comparison purposes where the employed model in tuned
for optimal performance.

Multilayer Perceptron

The most simple form of a NN is a MLP (Mirjalili and Mirjalili (2019); Singh and Banerjee
(2019); Sreedharan et al. (2020)), as shown in Figure 3.5, where its units are grouped into
layers, each layer having identical units. In a MLP, each unit in a layer is connected to every
unit in the upcoming layer; hence the term fully connected, where the first layer is the input
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Fig. 3.5 Simple Multilayer Perceptron.

layer, and the last layer is the MLP output. finally, all the layers in between a referred to as
hidden layers.

A simple MLP which computes the XOR function which is shown in Figure 3.5 having a
hidden unit h1 that detects if at least one of the inputs is 1, and another unit h2 that detects if
they are both 1. Therefore, the output unit will only activate in case h1 = 1 and h2 = 0 or if
h1 = 0 and h2 = 1.

The set if equations which describe the operation of these layers can be observed as
follows:

h1 = σ
1(W1 x + b1) (3.13)

h2 = σ
2(W2 h1 + h2) (3.14)

y = σ
3(W3 h2 + h3) (3.15)

The σ function can be anyone of multiple types of activation functions which all have been
used and studied in the literature, where there is no universal choice or conformity to which
is best for a particular application or which combination yields better results. On the other
hand, the choice of the activation function may be considered as just another hyper-parameter
which is always tuned in the ML model development workflow.
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Fig. 3.6 Random Forest with multiple trees having different input combinations.

Fig. 3.7 Bootstrapping in Random Forest where a subset input is used in every tree.

Random Forest

A RF model (Schonlau and Zou (2020); Speiser et al. (2019); Tyralis et al. (2019)) consists
of multiple DTs, where the program starts with a question, followed by a series of questions
to infer probable classification. These questions are basically the nodes in the tree, acting
as a means to split the data. Each question assists the overall model in reaching a decision,
which is nothing but a leaf node.
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Algorithm 3.2 Adaptive Boosting: Adaboost

Require: Initialize Weights Wi = 1
N for every i

Ensure: Classification and Regression task
1: Start with NULL classifier fo(x) = go(x) = 0
2: for t = 0 till T-1 do
3: Generate training Dataset using Wi
4: Fit a weak learner gt
5: Set λ t = 1

2
1−et

et
6: Wi← Wieλ t if wrongly classified
7: Wi← Wie-λ t if correctly classified
8: end for
9: Output Final Model fT(x) = sgn(∑T−1

t=0 λ t.gt )

In RF, bootstrapping in usually implemented, which consists of employing a finite set of
DTs which take as input a subset of the records from the dataset in addition to a subset of
features from the same source. Consequently, these trees are trained using the sub-datasets
before attempting to introduce unseen records.

After training, a new sample is used as input for the RF, where all the trees in the forest
produce a resultant classification. As shown in Figure 3.6, a majority is applied to vote for
the final classification. Also, in case of regression applications, an averaging scheme may be
employed instead for a reliable output.

Adaptive boost: Adaboost

AdaBoost or Adaptive Boosting (Shahraki et al. (2020); Wang et al. (2019); Wang and
Sun (2021)), is a ML Algorithm which is usually used with DTs to improve performance
metrics better than other ML algorithms. This is shown in 3.8 where the outputs of the
sub-algorithms, often called weak learners, are employed by relying a weighted sum which
sets the classification prediction at the output of Adaboost. AdaBoost is sensitive to noise,
however, it may be less susceptible to over-fitting than traditional learning algorithms.

The overall steps taken iteratively by Adaboost to reach a final model are provided by
Algorithm 3.2. As shown, a weight is set for each record in the training dataset while training
the model. After each iteration, this weight is updated from the previous model before
summing all generated models in an attempt to achieve a strong classifier from multiple weak
classifiers with improved performance metrics.
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Fig. 3.8 Adaboost ML Algorithm which uses boosting and a weighted sum to improve
performance.

Ensemble Learning: Stacking

Ensemble learning (Dong et al. (2020); Zhou et al. (2021)) is the process of employing
multiple weak ML algorithms in parallel or a predefined order before fusing in diverse
ways the outputs of this set of learning in order to reach a unified decision having improved
performance metrics such as accuracy.

Three main types of ensemble exist:

1. Bagging which relates to bootstraping, is the method used in the RF classifier and
consists of a majority decision scheme.

2. Boosting which is applied in Adaboost and relies an summing the weights of ordered
classifiers.

3. Stacking which consists of applying mutliple diverse ML algorithms in parallel before
applying a voting layer at the output for improved training and inference.

Figure 3.9 represent a stacking setup, which is generally dubbed ensemble learning, and is
repeatedly used in the literature to reach very high-performance and benchmark results. The
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final node is sometimes included in the training process which gives the ensemble method its
superior performance.

Fig. 3.9 Ensemble learning by means of stacking.

Meta-Learning

Meta-Learning (Hospedales et al. (2021); Wang (2021)) is an optimization approach to tuning
ML models. Instead if manually tuning the hyperparameters or implementing a dedicated
methodology, an Automated Machine Learning (AutoML) setup is implemented to optimize
the parameters using a global optimizer which learns the internal ML model.

Figure 3.10, provides a high-level setup of how this architecture may be setup. the ML
model to be tuned is an MLP for increased simplicity in this diagram. After training and
evaluating the MLP model, performance metrics are compared with some criteria, which
may a threshold or a settling points. Afterwords, a feedback control loop if formed in the
Meta-Learning setup to continue tuning the hyperparameters or maybe the structure of the
ML model until the target is reached or the performance criteria are satisfied.

3.1.2 Data Sources from Diverse Domains

Electroencephalogram: EEG

An Electroencephalogram (EEG) is used to measure and asses a brain’s electrical activity
(Aggarwal and Chugh (2022); Hosseini et al. (2020); Rasheed et al. (2020)). Even though
imaging techniques have been developed for use in most medical applications, the EEG
remains the goto tool for seizure prediction.
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Fig. 3.10 Meta-learning by means of optimization and feedback.

EEG hardware includes electrodes, amplifiers, filters and digital processors, as shown in
Figure 3.11. The electrodes are connected to the scalp to measure the electrical signal from
the brain which is amplified and filtered before being sampled by a digital embedded system
which connects to some form of display.

Brain waves may be assigned to one of four frequency bands. Namely: Beta, Alpha,
Theta and Delta, mentioned from highest frequency till the lowest. After being filtered, these
signals are provided in Figure 3.12 where the frequency ranges can also be inspected.

Electrocardiogram: ECG

An Electrocardiogram (ECG) collects recordings of the electrical activity from the heart
(Sahoo et al. (2020); Wasimuddin et al. (2020)). It is an essential tool in the assessment and
evaluation of cardiac-related symptoms for a patient. ECG is non-invasive and is generally
used when investigating the severity of cardiovascular diseases. It is also employed to monitor
patients undergoing surgery, and for observing people working in high-risk environments.
Additionally, ECGs are used for research purposes in parallel with ML algorithms for
automated medical diagnosis which can be more accurate and efficient than a medical
expert’s opinion.
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Fig. 3.11 EEG signals having different frequencies after filtering the original wave.

Fig. 3.12 EEG signal sampling using analog and digital electronics.

The shape of the measure ECG wave is in the shape shown in Figure 3.13 where it
is defined by three steps: P, QRS and T. Although patients with arrhythmia may exhibit
distorted ECG signals, which can be detected by AI Algorithms.

The hardware used to collect ECG waves is composed mainly of a virtual ground reference
generator, an instrumentation amplifier, filters, an Analog to Digital Converter (ADC) and a
microcontroller system for digital sampling. This can be inspected in Figure 3.14 where after
amplification three filters are used to block any unwanted disruption from physical noise to
power line sampling in the ECG electronic system.

Photoplethysmogram: PPG

A Photoplethysmogram (PPG) is a simple biomedical sampling device which relies on Light
Emitting Diode (LED) and a photosensitive transistor for the purpose of monitoring a patient’s
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Fig. 3.13 ECG signal sampling using analog and digital filters and circuits.

Fig. 3.14 An ECG signal having five key phases which are displayed in perfect operation.

heart rate (Chowdhury et al. (2020); El-Hajj and Kyriacou (2020); Roh and Shin (2021)).
As shown in Figure 3.16 PPGs rely on non-invasive methods through emitting light into the
body while a photo-detector is placed on the surface of the skin for reliable measurement.
Similarly to ECG waveforms, PPG signals may be used in research for automated diagnosis
and detection with the aid of ML techniques. These waveforms are illustrated in Figure 3.15
where a total of six heartbeats are present.
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A PPG signal is not exclusively used in estimating heart rate, but also for pulse oxymetry
readings. Additionally, the second derivative of these waveforms contains key information
health-related symptoms where it assists in the early detection of cardiovascular illnesses
prematurely, in addition to the detection of fatigue in a subject.

Fig. 3.15 PPG signal sampling using sampled using an analog pre-processing circuit.

Image Feature Extraction: Edge Detection

The Sobel filter (Chethan et al. (2019); Khlamov et al. (2022)) is an edge detection technique
which is nothing but a mask and is used to detect edges in both the vertical and horizontal
directions.

As shown in Figure 3.17, two matrices are used to apply the edge detection vertically and
horizontally by means of convolution. The is evident in Figure 3.18 where the photo of a
woman is passed through this filter resulting in the pencil drawing photo to the right.

The output pixel value in each image, when convolving the input, is determined by the
following expression:

G =
√

Gx2 +Gy2 (3.16)
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Fig. 3.16 A PPG signal sampled using a simple LED-based circuit.

Fig. 3.17 Sobel filters which are to be convolved with the input image to perform edge
detection.

The angle or path of each edge is estimated as follows:

Θ = atan(
Gy
Gx

) (3.17)
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Fig. 3.18 Example of edge detection using the Sobel filter.

The Sobel filter is used in Chapters 2 and 3 where its resulting output is employed with a
novel FE algorithm that generates a corresponding TS applied in various ML setups related
to image classifications and XAI.

3.2 State of the Art

3.2.1 General Machine Learning on the Edge-Related Work

When applying ML on Edge Computing devices, usually power consumption and resource
management are crucial issues. Many works in the literature address these issues where
applications spanning various fields have been reported.

Consequently, authors in Al-Khafajiy et al. (2018) present an edge computing framework
for resource management optimization between IoT nodes to optimize the offloading of tasks
in biomedical networks. They were able to optimize the load as well as job allocation. This
architecture may be able to minimize resources management while maintaining a sustainable
network paradigm for edge healthcare systems, thus stressing to the need developing software
techniques for decision-making on the edge having a resource-aware perspective.

An additional key performance factor in ML on the edge is power consumption in IoT.
Authors in Cecilia et al. (2020); Lapegna et al. (2021) discuss the use of light-weight AI
algorithms to be applied on low-power GPU-enable boards on the edge, which is a relevant
topic highlighting to low processing capabilities of traditional IoT boards and the demands
for portable AI algorithms as well the ability to efficiently infer predictions. Authors inNovac
et al. (2021), employ AI models on microcontrollers to address this issue by noting that
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power consumption is rudimentary during ML classification on Edge Computing hardware,
since their power sources may be insufficient due to packaging limitations. Moreover, in
Novac et al. (2021) authors apply ML forecasts in an indoor scenario where features are
collected from radio frequency measurements, which points out that the IoT boards are
involved in every phase of the ML workflow, from data collection, training, inference and
deployment. Forecasts in Kanawaday and Sane (2017) are applied on TS data for failure
detection on a slitting machine where the data is sourced from multiple IoT sensors. This
edge computing setup is based on industrial manufacturing data and hardware. this expands
the scope of operation to mechanical processes and biomedical data, thus proliferating the
range of applications to every other domain. Also, authors in Canedo and Skjellum (2016);
Hodo et al. (2016) use AI to secure IoT network systems by employing NN, which adds
the software, networking, and cryptography data as an application in ML on the Edge, thus
stressing the requirement for employing AI on IoT boards, having a general applications
perspective.

3.2.2 Tiny-ML Literature

Tiny Machine Learning (TinyML) is a way to compress trained ML models so they can
operate and infer decisions on resource-constrained devices such as microcontrollers. Imple-
menting AI algorithms is challenging due to limitations in power, memory, and computation.
Usually, the training is performed on more powerful hardware and the classification of new
data is applied after compressing the model offline.

In Ren et al. (2021) TinyOL is presented, which is a TinyML library with online learning
capability. Due to the phenomenon of concept drift, a trained ML model may become less
accurate over time if no online learning is performed using recent and relevant data mainly
due to real-world changes. Therefore TinyOL introduced an unfrozen layer at the edge of a
NN which is training by itself as a remedy to this problem.

A set of TinyML benchmarking tests have been performed and collected in Sudharsan
et al. (2021) by using multiple datasets, NN models, and various IoT boards with the models
being trained, compressed and then deployed on the edge. Furthermore, the experimental
results and source code have been posted online as a benchmark reference for research
purposes.

In Sanchez-Iborra and Skarmeta (2020) a survey describing the use of TinyML on smart
and cheap embedded devices is discussed and the authors propose a multi-radio network
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access architecture based on their findings. Additionally, the evaluate Tiny-ML frameworks
being run on an Arduino Uno through various traditional ML models.

3.2.3 Flexible Neural Networks Literature

Flexible NNs as presented in this thesis are composed of a hybrid architecture where MLPs,
a CNN and a LSTM are used in a complex setup for classification in various splits while
having a global architecture which includes an architecture for XAI.

In regards to Flexible NN for classic inference and explainability, the same models are
used for multiple applications generally and competitively, where three topics need to be
studied:

1. Transfer Learning.

2. Application-specific ML.

3. Explainable AI.

Transfer Learning

Transfer learning is the act of using a pre-trained model, trained on original data, to be
retrained partly on a different data source which is sometimes unrelated to the original
application. Since numerous well-known architectures have been published with highly
successful results, this approach has gained popularity where a from-the-scratch model is not
available.

In Deepak and Ameer (2019), authors implement transfer learning using GoogLeNet on
a Three-Class brain tumor dataset while using a k-fold setup with five folders. This setup
includes the addition of a SVM at the output of the GoogLeNet which was included in the
training. This setup achieves benchmark accuracy using this approach; however, it does not
report the accuracy using a greater number of classes.

Skin Cancer classification using CNN is discussed in Brinker et al. (2018) where transfer
learning is compared with a from-scratch setup. They conclude that CNN achieves the best
performance when it is pre-trained by means of another larger dataset before optimizing the
parameters of the final layers which are tuned to the target application. Authors in Kadhim and
Abed (2019) implement multiple transfer learning setups using AlexNet (Lu et al. (2019)),
VGG19 (Carvalho et al. (2017)), GoogLeNet (Tang et al. (2017)) and Resnet50 (Mukti
and Biswas (2019)) for satellite image classification, where they conclude that Resnet50
achieves the best performance on the three different datasets. Even so, the CACAO-NET
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model presented in this thesis outperforms transfer learning approaches in multiple cases and
remains competitive in others, as will be presented in Chapter 7.

Application-specific features in ML Classification

FE is employed to reduce the dimensionality of datasets thus improving performance while
at the same time increasing the accuracy of ML algorithms. This task is usually application-
specific where it is beneficial for the specific application since the pre-processing steps
should always be appropriate for the target data source. Consequently, ML algorithms are
seldom preceded by FE, wherein Lu et al. (2014), a weather classification FE technique
is discussed wherein addition to application-specific features, label-specific features are
used. The features which have been extracted include sky and shadow detection, as well
as the Sunny and Cloudy classes. Furthermore, authors in Roser and Moosmann (2008)
introduce histogram-based features applied to weather data applied to driver assistance. A
vector is applied to an SVM setup where the features used are related to brightness, contrast,
sharpness, saturation...etc. Even though these features are not application-specific, they are
only applicable to image data where the ambiance of a photo infers correct classification.

In Zhang et al. (2016), a multiple kernel learning algorithm for weather classification is
presented that relies on category-specific dictionary learning. The following set of features
are used: sky, shadow, rain, streak, snowflake, dark channel, contrast, and saturation. This
means the sky is cropped out and that the remaining landscape and shadows are detected
using a shadow detection tool taken from Sajjad et al. (2019).

Explainable AI for image classification

XAI is the process of clearly identifying the reason behind a ML classification. Usually ML
programs are black-box systems. This means that the logic inferring why a specific target is
classified as it was is not evident. XAI on the other hand aims to provide a way to explain to
the operator the reason for every decision. This is done by adding and removing features
while estimating it’s effect in a mathematically intuitive fashion.

XAI is split into two disciplines: 1- local explainability, which deal with each instance
in isolation, and 2- global explainability which provides rules that generalize for the entire
dataset. The work in this project relates to global image explainability.

A domain-specific XAI technique is used in Stieler et al. (2021) to provide the user with
reasons behind the classification of skin cancer images through the LIME tool, where the
ABCD-rule is applied which is a method used by dermatologists for the diagnosis kin cancer
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lesions. Scatter plots are used to display the local explainability features. In Vermeire et al.
(2022) a counterfactual XAI model is provided where segments are cropped out to determine
the local parts that lead to correct or incorrect classification.

Authors in Pintelas et al. (2020) implement an XAI framework for global image ex-
plainability that uses CNN as the reference model. A brain tumor dataset was chosen in the
experiments undertaken where questions and answers are generated providing explicative
rules. The framework outputs specific and humanistic sentences as global explainable results
for the application. Firstly, in regards to global explainability, the cited work includes the
tumor’s size, sum and correlation scores, however, it does not provide any general information
as extracted from the image dataset and model. Also, this output remains abstract as it cannot
be applied to objects due to the variability in color, size, shape and settings where this model
cannot provide useful information.

3.2.4 Feature Extraction and Automation Related Work

Firstly, pre-processing or FE is used to reduce the dimensionality of data and to convert
measurements to a more compatible format to be used as input in a ML workflow. Secondly,
post-processing is the act of applying some cognitive block or engine at the output of a ML
classification for improved performance.

Feature extraction and pre-processing of TS

Raw data may not be applied directly to a ML model. Therefore, FE is performed on a TS
which is mostly the case in biomedical measurements.

Authors in Fister et al. (2018) apply a Nature-Inspired Differential-Evolution algorithm
is a pre-processing stage used with a Logistic Regression block. The features are selected
based on an accuracy threshold which is taken from the output of the LR algorithm.

A framework for biomedical signal pre-processing (Jovic et al. (2017)) was applied to
ECG time-series having examples diagnosed with myocardial ischemia, atrial fibrillation,
and congestive heart failure. Since biomedical waveforms are noisy, therefore, filtering is
almost always employed as a pre-processing step. The authors in Venkatesan et al. (2018)
pre-process an ECG with the aid of an adaptive filter to remove the noise before using
the discrete wavelet transform and extract features for classification using SVM. Wavelet
transform is also applied to extract features from an EEG signal for classification using MLP
in Kalayci and Ozdamar (1995).
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In Khalid et al. (2014), a review on FE and feature selection in ML methods are presented.
The review describes how FE is used to reduce the dimensionality in data sources through
feature space transformation, and that feature selection reduces dimensionality since it points
out the subset of features having the most crucial effect on classification accuracy.

A Python-based pre-processing Library which is based on nature-inspired algorithms has
been developed in Karakatič (2020). The EvoPreprocess library is compatible with the ML
Scikit-Learn Library and performs well compared to other frameworks.

A Bag-of-Words representation for TS is presented in Wang et al. (2013), where the
presented techniques treat a TS as a text document and extract its segments as words.
Ensemble learning was applied to biomedical TS in Jin and Dong (2016) where the Chinese
cardiovascular disease database (Zhang et al. (2010)) was used as a data source.

Automated ML and post-processing

In the process of ML model development the hyper-parameters need to be tuned for the best
performance. This also includes class-weights and feature-weights and ML model-specific
parameters.

This requires expertise in ML in general and may demand ML experience in that particular
application. Therefore, to facilitate the tuning process automated ML techniques have been
reported in the literature and industry where these workflows may become time-consuming
and require sufficient processing power and may not be applied on small IoT boards.

One way to avoid tuning is through post-processing techniques such as ensemble-learning
which votes for the best results among a few others where each classifier corresponds
to a standalone ML model. This method may avoid iterations but is not necessarily less
compute-intensive than an optimization solution.

Meta-learning, is another automated ML method which consists of a global optimization
that holds sub-problems within its sphere. The sub-problems are ML workflows which
are sometimes of the same architecture but with different parameters wherein other cases
they may be differing in both composition and hyper-parameters. In contrast to ensemble
learning which is a parallel arrangement, this is and iterative process which may take more
time depending on the hardware. It should be noted that is not uncommon to have both
meta-learning and ensemble learning in the same optimization problem.

Authors in Rasp and Lerch (2018) employ an ensemble learning setup using MLP for
weather forecasts by implementing diverse configurations. In Tanwani et al. (2009) the
authors present guidelines for ML scheme selection for biomedical applications. They have
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performed forecasts on 31 datasets and applied various ML algorithms to select the best
configuration.

In (Thornton et al. (2013)), Auto-WEKA package is presented which is based on the
original WEKA tool (Hall et al. (2009)), developed as a tool for easy-to-implement ML.
Auto-WEKA applies Bayesian optimization to automatically select the ML algorithm with its
optimized parameters. Auto-WEKA is designed for non-experts to achieve near-professional
results. In Feurer et al. (2020) AUTO-SKLEARN is presented by the authors which is a
Python module based on the Scikit-Learn Library. AUTO-SKLEARN implements both
ensemble learning and meta-learning to automate the hyper-parameters for the most suitable
ML algorithm.

The authors in Guo et al. (2017) claim that modern MLPs are poorly calibrated since
increasing the depth of the network improves accuracy, however, they argue that this may af-
fect the calibration negatively. This is due to the complexity of large MLPs where specialized
architectures are a preferred solution.

3.2.5 Research Questions

From the previous sections in the present Chapter, many questions arise related to the motiva-
tion for the projects implemented in this Thesis. They encompass portability, explainability,
and efficiency. The main questions are as follows:

1. Can general-purpose and commercial ML tools be deployed on limited resource boards
while preserving accuracy and efficiency?

2. Is it possible to automate ML workflows by novices using a simple MLP model with
competitive accuracy and with high efficiency on the Edge?

3. Can light-weight and general-purpose ML models with a competitive performance
which are deploy-able on the Edge be used as reference models for Global Image
explainability, which is itself a standalone task?

The projects presented in this thesis aim to respond to these questions by developing
Automated FE and light-weight post-processing techniques that are light weight, yet still
capable to be deployed on the edge, while remaining competent with traditional offline
approaches and having the versatility to perform at a high level across AI disciplines.
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Thesis Contributions and Publications

4.1 Thesis Contributions

In this section, the contributions for each research project are presented and outlined and
mostly specific to the fields of ML and automation. The contributions are arranged based
on every project (grouping one or more publications) rather than specifying those for each
publication mainly to avoid any overlap.

4.1.1 Contributions for the ML on the Edge and Tree-based Multi-class
Classification Project

The main contributions performed in the first project consist of converting images into
TS using statistical radial scanning for ML classification. Additionally, to the best of our
knowledge, the tree-based multi-class approach is the first algorithm using this methodology
to be published. These contributions can be viewed in the following list:

1. Multiclass classification using a tree-based methodology.

2. Image-to-TS FE based on radial scanning.

3. Porting Rulex onto the Raspberry Pi.

4. Classifying gender using inconsistent images with competitive accuracy while out-
performing other techniques which rely on a controlled environment and consistent
subject criteria.
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4.1.2 Contributions for the Flexible Neural Networks and Explainabil-
ity Framework (CACAO-X)

The main contributions performed in the second project consist of the development of a
general-purpose ML model dubbed CACAO-NET meaning Contour Assisted Constitutional
Neural Networks with Image Explainability and Inference on the Edge. The model achieved
accurate results in terms of validation an test on the edge as well as being part of the overall
CACAO-X framework which performs global image XAI with the aid of novel algorithms
and a new architecture for this purpose.

1. Classifying images and their extracted TS with hybrid NN.

2. Using a model and its local explainable features for global explainability.

3. Using a model with application-specific landmarks for global explainability.

4. Using explicative labeling with an explainability algorithm to generate rules.

5. A callback function which tracks the mean and deviation of the validation accuracy.

4.1.3 Contributions for the AI Pre-processing and Post-processing Frame-
work (VAMPIRE)

The framework which is called VAMPIRE consists of novel Pre-processing and Post-
processing algorithms that extract features from TS and tune NN models without heavy
structural and parameter manipulation. Additionally, the tree-based technique previously
mentioned is written in the form of a complexity notation to provide a mathematical model
for the algorithm. The summary of the contribution to be found in this Project/Publication
can be viewed below:

1. VAMPIRE FE1 for mundane Time-series.

2. VAMPIRE FE2 for semi-annotated Time-series.

3. VAMPIRE Activation Engines for NN threshold extraction.

4. The Complexity of the multiclass tree-based approach.

5. The introduction of the D-Domain (V.Hz-Domain)
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4.2 Publications listing

The work described in this thesis has allowed the publication of five scientific manuscripts
confirming the validity of the results achieved and which report a summary of the experimen-
tal results obtained. They consist of one book chapter and four scientific articles:

The following are the publications corresponding to Project 1 entitled "Classic ML on
the Edge and Tree-based Multi-class Classification":

• Daher, A.W., Rizik, A., Randazzo, A., Tavanti, E., Chible, H., Muselli, M. and Caviglia,
D.D., 2020. Pedestrian and multi-class vehicle classification in radar systems using
rulex software on the raspberry pi. Applied Sciences, 10(24), p.9113.

https://doi.org/10.3390/app10249113

• Daher, A.W., Rizik, A., Muselli, M., Chible, H. and Caviglia, D.D., 2020, November.
Porting Rulex Machine Learning Software to the Raspberry Pi as an Edge Computing
Device. In International Conference on Applications in Electronics Pervading Industry,
Environment and Society (pp. 273-279). Springer, Cham.

https://doi.org/10.1007/978-3-030-66729-0_33

• Daher, A.W., Rizik, A., Muselli, M., Chible, H. and Caviglia, D.D., 2021. Porting
Rulex Software to the Raspberry Pi for Machine Learning Applications on the Edge.
Sensors, 21(19), p.6526.

https://doi.org/10.3390/s21196526

The following publication corresponds to Project 2 entitled "Flexible Neural Networks and
explainability":

• Daher, A.W., Ferrari, E., Verda, D., Chible, H., Muselli, M., and Caviglia, D.D., 2022.
CACAO-X: Contour Assisted Convolutional Neural Networks with Global Image
Explainability and Edge Computing Classification. Preprint.

https://doi.org/10.2139/ssrn.4250119

The following publication corresponds to Project 3 entitled "The AI Pre-processing and
Post-processing Framework":
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• Daher, A.W., Ferrari, E., Muselli, M., Chible, H. and Caviglia, D.D., 2022. VAMPIRE:
vectorized automated ML pre-processing and post-processing framework for edge
applications. Computing, pp.1-35.

https://doi.org/10.1007/s00607-022-01096-z
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Chapter 5

Radar Classification using ML on the Edge

5.1 Chapter Abstract

Nowadays, cities can be perceived as an increasingly dangerous place. Usually, Closed
Circuit Television (CCTV) is one of the main technologies used in a modern security system.
However, poor light situations or bad weather conditions (rain, fog, etc.) limit the detection
capabilities of image-based systems. Microwave radar detection systems can be an answer to
this limitation and take advantage of the results obtained by low-cost technologies for the
automotive market. Transportation by car may be dangerous, and every year car accidents led
to fatalities of many individuals. Humans require automated assistance when driving through
detecting and correctly classifying approaching vehicles, and more importantly, pedestrians.
In this thesis, we present the application of ML to data collected by a 24 GHz short-range
radar for urban classification. The training and testing take place on a Raspberry Pi as an edge
computing node operating in a Client/Server arrangement. The software of choice is Rulex,
a high-performance ML package being controlled through a remote interface. Forecasts with
a varying number of classes were performed with one, two, or three classes for vehicles
and one for humans. Furthermore, we applied a single forecast for all four classes, as well
as cascading forecasts in a tree-like structure while varying algorithms, cascaded blocks
order, setting class weights, and varying the data splitting ratio for each forecast to improve
prediction accuracy. The presented approach achieved an accuracy of 100% for human
classification and 96.67% for vehicles overall, which is useful in practice. The proceeding
subclasses were predicted with accuracies of 90.63% for Motorcycles, and the same accuracy
of 77.34% for both the Cars and Trucks subclasses.
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5.2 Introduction

As cities are getting smarter, and as the spread of intelligent surveillance technologies is
gaining popularity within developed countries, making urban transport secure and efficient
plays a key role in the safety of individuals as well as in affecting traffic flow, which in terms
may negatively impact businesses within a city (Carter (2020)).

Unlike video cameras, the operation of short-range microwave radars is not much affected
by the presence of adverse weather conditions. This fact makes them ideal, in addition to
classical CCTV systems (Norris et al. (2004)), for operating round-the-clock automatic
surveillance in an urban environment. Radars (Prophet et al. (2018); Rizik et al. (2019);
Rohling et al. (2010)) can be used for vehicle and pedestrian classification by relying on FE
from the range and Doppler profiles of each target. The data collected by radar measurements
can be used as input to ML algorithms for classification. However, the hardware should be
low-cost, lightweight while providing good performance. So, for this application, we have
chosen a Raspberry Pi (Maksimović et al. (2014); Vujović and Maksimović (2014); Zhang
et al. (2018)), a small portable edge computing device, which is a very effective platform
for real-world scenarios as well as for educational and research purposes. Raspberry Pi
is ideal for Edge Computing applications, where the node or embedded device possesses
high processing capabilities and is required to have enough storage space to avoid cloud
access. With the large number of wireless sensor nodes that are used over a wide range
of applications, from wearable sensors to image processing and surveillance, along with
the integration of AI and ML in their decision-making, they are required to be as smart as
possible to avoid cloud access and reduce network traffic. Urban classification may not have
cloud access and requires low latency, so it is the ideal example where both training and
testing need to be applied on an edge computing node.

The main goal of the present work is the porting of the state-of-the-art ML package Rulex
(Muselli (2012)) onto the Raspberry Pi computational platform. The dependencies were
compiled to produce output binary files that are compatible with the target platforms, the
first being the Windows 32 Bit Client and the second being the Raspberry Pi Server, which is
where the Rulex engine runs.

The remainder of this thesis is organized as follows: Section 2 presents a review on
Pedestrian–Vehicle Classification, Section 3 introduces the porting of Rulex on the Raspberry
Pi, and Section 4 describes the adopted ML architecture. Also, Forecast results obtained with
the present implementation are presented in Section 5. Finally, we draw some conclusions in
Section 6.
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5.3 Chapter Related Work

Radar systems can be used for detecting and classifying different targets, such as pedestrians
and vehicles (Prophet et al. (2018); Rizik et al. (2019); Rohling et al. (2010)). Indeed, such
systems produce, through a proper antenna, an electromagnetic wave that propagates to the
objects eventually located in the inspected scenario. The targets interact with the impinging
radiation employing the well-known scattering mechanism, generating a scattered field that
partly returns to the radar receiver. Specifically, the reflected waves contain information about
the characteristics of the objects that generated them. In this work, a 24 GHz Continuous-
Wave Frequency-Modulated (FMCW) radar system has been used (Rizik et al. (2019)).
Consequently, the main information that can be obtained is related to the range and radial
speed of the objects. In particular, such quantities are embedded in the frequency shift due to
the propagation delay and to the Doppler effect (which is always present when dealing with
moving targets) and are extracted from the range-Doppler maps obtained by performing a
double Fast Fourier Transform (FFT) of the acquired data (Rizik et al. (2019); Wojtkiewicz
et al. (1997)).

From these measurements, it is possible to derive features to be used for ML classification.
Specifically, the ML features used for training are the extension of the range and velocity
profiles, as well as the standard deviation, mean, and variance for the same variables, in
addition to the radar cross-section and the estimated target velocity (Rizik et al. (2019)).
However, in vehicle classification, there is the issue of lateral moving vehicles (i.e. along
a direction perpendicular to the radar axis), which may be mistaken for pedestrians (Heuel
and Rohling (2012)). Indeed, longitudinal moving vehicles (i.e. traveling along the direction
of the radar axis) have a large range profile and a point-shape velocity profile on the range-
Doppler diagram. The opposite is true for pedestrians, due to multiple velocities caused by
the movement of limbs. As for lateral moving vehicles, their range profile is comparable to
the range profile of pedestrians and their velocity profile may approach that of longitudinal
moving vehicles, so it is needed to calculate the lateral and longitudinal velocities, and with
these additional features, we attempt to avoid misclassification. Another feature is the Radar
Cross section (RCS), which is the equivalent scattering surface of the target seen by the radar
and is related to the amount of power that is reflected by the object (Liaqat et al. (2011);
Skolnik (2001)). In the rest of this work, we will refer to data obtained with the system
described in Rizik et al. (2019) that have been made available to us courtesy of the authors.
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5.4 Porting Rulex to Raspberry Pi

5.4.1 AI on the Edge Fundamentals

Due to increase use of online data and the rise of portable smart devices and the IoT,
online traffic congestion costs and resource demands are being exhausted. Additionally, ML
models are becoming ubiquitous in every engineering system or device, from smartphones to
transportation, manufacturing and all consumer electronics. consequently, Edge Computing
has been introduced, where the data traffic and processing are performed on IoT devices
which are distant from the concerned server or data center, hence the term: Edge.

However, Edge Computing devices remain less powerful when compare with servers or
even larger personal devices, therefore, the algorithms being run on IoT devices need to take
into account their processing power, their storage and speed (or Latency).

When it comes to ML predictions on the Edge, especially with large datasets and image
data, specific pre-processing or FE needs to be performed on the input that for practical
operation. Also, the ML models themselves have to be lightweight in order to accommodate
for the memory and engine of the IoT device.

In this project, the target is to prove that the employed ML models and the newly
introduced conversion algorithms are able to run on small general-purpose IoT board with
competitive results while maintaining tolerable inference speed and power consumption-

5.4.2 System Setup

Rulex is a ML Software that supports various ML algorithms that can be easily applied in a
user-friendly environment (Muselli (2012)). The Rulex Graphical User Interface (GUI) pro-
vides a means of importing training data and manipulating it before applying ML Algorithms.
The main proprietary algorithm for Rulex is the Logic Learning Machine (LLM) (Muselli
(2005); Muselli and Ferrari (2009)) which implements XAI. LLM was the main algorithm
used for most of the classifications, where a tree-based structure, that combines vehicle
classes to achieve more accurate results, was adopted. Then, these new combined classes are
split recursively until all vehicles have been classified in their respective sub-classes.

The Raspberry Pi is a credit-card-sized Personal Computer (PC), which can perform
application-specific tasks as well as performing general-purpose everyday computing, where
it can connect to most PC Input/output hardware. The Raspberry Pi has multiple Digital
Input/Output pins which can be used in embedded system applications such as motor control,
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serial communications, Liquid Crystal Display (LCD), and interfacing with a practically
infinite variety of sensors.

Nowadays, IoT devices are becoming more intelligent because they support AI software
and algorithms, so in this work, we have deployed Rulex to operate on the Raspberry Pi
which is one of the most popular IoT hardware platforms. In order to port a software package
from one platform to another, all of its internal and external dependencies should be compiled
on the target platform. After compilation with a specific tool, binaries or executables are
generated, which are a formatted version of the code to be linked to succeeding layers of
the source code. Furthermore, before porting software from 64 Bits to 32 Bits, all of its
dependencies should be compiled in 32 Bits. Visual Studio may be used to compile the
libraries and code when porting to Windows 32 Bits. However, when porting to Linux, we
used CMake (Clemencic and Mato (2012); Fober et al. (2018)), which is a cross-platform
application for generating executables or libraries.

Rulex external libraries were ported to 32 Bits as the first step before compiling the entire
code. We ported the source code on Windows 32 Bits which is the interface and Raspbian
32 Bits which is where the engine runs. During porting, one of the issues we faced was the
incompatibility of some data types with 32-Bit hardware and software, so they were either
changed or cast into a compatible data type. Another issue is the inability to generate a larger
number of threads, so we developed two software tests, where one was written in Python
and the other in C-plus-plus (Cpp) as an attempt to find out what was the maximum number
of threads that could be generated. Moreover, the source code was modified accordingly to
optimize the maximum number of threads. After compiling locally on Windows 32 Bits,
we proceeded to remotely compile the source code. Rulex was also debugged remotely and
made compatible with both Operation Systems (OS) by using various Macros and correctly
setting variable types.

5.5 Classification architecture

5.5.1 Classification methodology

In urban classification, there are usually four classes: a pedestrian class and three vehicle
classes. We can go about and run forecasts by relying on multiple algorithms in one overall
simulation. Rulex possesses various algorithms to choose from, such as NN, KNN, DR, SVM,
and LLM, all of which can be used for classification, however, since the adopted methodology
applies multiple ML algorithms in a cascaded setup and tests multiple arrangements, which
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can have a large number of forecasts, we have included just NN and LLM. This has been
adopted since NN is a widely used ML algorithm, and also LLM for being the commercial
algorithm of Rulex. Since the vehicle class can be split into 3 sub-classes, namely cars,
trucks, and motorcycles, and since there is no need to differentiate between them in real-world
scenarios, we have taken advantage of this fact by applying a sub-class-based tree structure,
where the classes are nodes and the algorithms are branches. The forecasts of the tree-based
method can lead to improved validation results by setting different weights in each forecast
for every class, and by choosing a convenient split ratio between training and testing data,
also separately for each forecast, where the split method used is holdout validation. It is also
possible to use different classification algorithms in each forecast on each branch. This is
useful in case the adopted algorithm is not generating the expected results for the dataset at
hand. Figure 5.1 presents such a tree structure, where the leaves are the final classification
outputs. As presented, different types of algorithms were applied to the final branches of the
tree since they possess the lowest success rate. So, the prediction accuracy is optimized by
varying weights, data splitting, and more critically the algorithm used for classification. The
further we go down the tree the harder it gets to differentiate between classes.

Fig. 5.1 Sub-Class based Tree Structure.
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5.5.2 System set-up

The ML system used consists of the Rulex Engine running on the Raspberry Pi as an
application server, which is where forecasts are applied. This Engine is accessed through a
graphical Interface running on a windows Client, while a PostgreSQL Server is used as the
common storage point between both nodes.

The Data acquisition system has been described in Rizik et al. (2019). It is a standalone
system dedicated to FE developed and operated separately concerning the Client/Server Rasp-
berry Pi arrangement used to run Rulex for target classification. It consists of a Distance2Go
radar board developed by Infineon technologies (Infineon (2022)), a Raspberry Pi 3 B+,
and a video camera oriented in the same direction as the radar beam. The system supply is
provided by a 5 V, 10 Ah power bank that is sufficient for operating the whole system for
several hours: for this wok, it was installed on an internal road of the DITEN department of
the University of Genoa. The system collects the raw data from the radar board through a
Universal Serial Bus (USB) connection and extracts the features which are then forwarded to
the processing chain of the Rulex software for classification.

5.6 Results and Discussion

The dataset collected by the data acquisition system described consists of 120 rows equally
distributed into 4 classes with 30 patterns for every class. The features consist of the mean,
variance, and standard deviation of the range and Doppler profiles, along with their reflectivity
and the estimated velocity of the target.

In order to maximize forecast accuracy, we have applied multiple tree-based subclass
arrangements to simulate using Rulex in a Client/Server setup (Hajdarevic et al. (2014)). As
stated earlier, multiple cascaded simulations were applied with a varying number of classes
as well as cascaded order. So, a summary of all the applied forecasts is presented in Figure
5.2, and described in detail in this Section. In Figure 5.2, the red labels stand for the Cases
and ML algorithms used in that particular simulation, and the green labels represent classes
that will be split into subclasses in the upcoming simulation. In Case 1, we split the data into
two classes: Humans, and vehicles where LLM was used. The accuracy is shown in Table
5.1.

In Case 1, the ML algorithm used is LLM for classification. However, in Case 2 we only
consider vehicle sub-classes. The simulation was applied using LLM where the prediction
accuracies are found in Table 5.2: In Case 3 we apply forecast using LLM for vehicle classes
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Table 5.1 Humans and Vehicles training and testing prediction accuracy.

Class Training Testing

Humans 100% 100%
Vehicles 95% 100%

Table 5.2 Vehicles, 3 Classes training.

Class Training Testing

Cars 96% 75%
Motorcycles 94% 91%
Trucks 100% 72%

Table 5.3 Cars/Trucks and Motorcycles training and testing prediction accuracy.

Class Training Testing

Motorcycles 100% 91%
Cars/Trucks 98% 100%

by splitting the data into 2 classes as shown in Table 5.3. In Cases 4 and 5, the Cars/Trucks
class has been split into two sub-classes, cars and trucks. In Case 4 we use NN, whereas LLM
has been used in Case 5. The results of these can be found in Tables 5.4 and 5.5 respectively.

Table 5.4 Cars and Trucks with NN training and testing prediction accuracy.

Class Training Testing

Cars 95% 87%
Trucks 100% 70%

Cases 1 to 5 were processed separately to get a glimpse of how LLM would perform
with this given dataset. From the outputs generated in Tables 5.1 to 5.5, we can estimate
the overall prediction accuracy for a cascaded setup. Furthermore, it should be noted that
misclassified records in preceding forecasts will be treated as correctly classified in upcoming
forecasts, which leads to the overall accuracy of the cascaded system being incorrectly
estimated. The preceding forecasts were all done with a 70%/30% split for training and
testing data respectively, and with all weights being set to unity. Furthermore, we can apply
multiple cascaded setups which are based on the previous forecasts. If we cascade Cases 1
and 2, the projected output is presented in Table 5.6. In Case we cascade Cases 1, 3, and then
4, the projected output is provided in Table 5.7.
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Table 5.5 Cars and Trucks with LLM training and testing prediction accuracy.

Class Training Testing

Cars 95% 100%
Trucks 100% 66%

Fig. 5.2 Cases 1 – 7 featuring all applied forecasts presented in this article.

Table 5.6 Cases 1 then 2 prediction accuracy.

Class Forecast

Humans 100%
Motorcycles 91%
Cars 75%
Trucks 72%

Table 5.7 Cases 1, 3, and then 4 prediction accuracy.

Class Forecast

Humans 100%
Motorcycles 91%
Cars 87%
Trucks 70%
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If we cascade Cases 1, 3, and 5 we get the results shown in Table 5.8. Other variations of
initializing the cascaded system with LLM can be found in Table 5.9, which is Case 6 where
one class for humans along with 2 classes for vehicles are taken.

Finally, a single forecast for all 4 classes which is applied using LLM is presented in
Table 5.10, namely Case 7, that consists of forecasting all classes in a single block. With
the variation added in Tables 5.9 and 5.10, we can apply two additional combinations to
cascade. So, we can cascade Case 6 followed by Case 4 which employs NN or we can
cascade it with Case 5 which uses LLM. These last two combinations include a situation
where the previous prediction was not 100% accurate, so we need to take that into account
when theoretically estimating the overall accuracy. When combining Case 6 followed by
Case 4, the Cars/Trucks class has an accuracy of 94%, so naturally, the Neural Network
predictions in Case 4 will be multiplied by 0.94. The same can be said for Case 5, where the
Cars and Trucks classes’ success rates are multiplied by the same factor. Tables 5.11 and 12
provide the projected output forecast accuracy for the last two scenarios.

Table 5.8 Cases 1, 3, and then 5 prediction accuracy.

Class Forecast

Humans 100%
Motorcycles 91%
Cars 100%
Trucks 66%

Table 5.9 Humans and Vehicles 2-Classes training and testing prediction accuracy.

Class Training Testing

Humans 94% 69%
Motorcycles 94% 100%
Cars/Trucks 97% 94%

Table 5.10 Default LLM forecast training and testing prediction accuracy.

Class Training Testing

Humans 100% 73%
Cars 100% 100%
Motorcycles 84% 91%
Trucks 90% 72%
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Table 5.11 Cases 6 then 4 prediction accuracy.

Class Forecast

Humans 100%
Motorcycles 69%
Cars 0.94*87 = 82%
Trucks 0.94*70 = 66%

Table 5.12 Cases 6 then 5 prediction accuracy.

Class Forecast

Humans 100%
Motorcycles 69%
Cars 0.94*100 = 94%
Trucks 0.94*66 = 62%

All the preceding simulations only provide an estimation of actual results, when cascading
multiple engines. This is due to not considering the false-positive Cases of the forecast. We
took into consideration the entire dataset for each algorithm block and ignoring some of the
rows which were correctly classified in the abandoned class. In Case two algorithms are
cascaded, the first block should be followed by a Rulex Data management block which will
filter out the True and False positives in the abandoned class and remove them from the table.
However, we still have to multiply the proceeding blocks with their parent class’s success
rate to calculate the overall accuracy.

For Case 1, we split that data 70/30, with 70% used for training and 30% being used for
testing. The same was applied for Case 3. However, for Case 4, with the reduced number
of rows, the data was split 65/35 with 65% used for training and the remaining 35% being
used for testing. The main reason for changing the split ratio in Case 4 is due to the fact
the prediction is applied to half of the dataset, and we found that increasing the size of the
test-set can lead to higher accuracy for the given data.

As for weights, the only way to set them and optimize results is by trial and error, and
intuition. There is no universal method to select weights accordingly. Unity gain in the Case
1 block already should provide very good results, so there is no need to change the weights.
With a unity gain, in Case 3, the Cars-Trucks class, which will be used in the proceeding
block, should be accurate while keeping the Motorcycles class forecast precise enough. A
gain of 1.5 was chosen for the Cars-Trucks field and 1.0 for Motorcycles. As for the final
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block, which is Case 4, both Trucks and Cars classes which originate in Case 3, have an
equal True positive rate of 80% in testing. So, weights are left at unity.

Table 5.15 represent the accuracy for training and testing of Cases 1, 3, and 5 respectively,
and as predicted using Rulex. All the forecasts present good results for testing. Humans were
detected with a rate of 100%, and vehicles overall at a rate of 96.67%. In Case 3, which is
block 2, the Cars-Trucks class has a true positive rate of 93.75% and motorcycles at 90%.
As for the Cars and trucks block, which is Case 5, the success rate is 80% for both trucks
and cars. Tables 5.13 and 5.14 present the overall output true and false-positive rates for
the chosen All-LLM forecast. Humans are detected without any errors for the test dataset.
The overall forecasts of the motorcycles, cars, and trucks have been calculated based on the
preceding forecasts to become 90.63% for Motorcycles and 77.34% for both cars and trucks.
Furthermore, the overall prediction of vehicles is 96.67%, which can be useful in practice.

Table 5.13 Main forecast.

Class Forecast

Cars 100%
Humans 96.67%

Table 5.14 Forecast for Vehicles.

Class Forecast

Motorcycles 0.9667*93.75=90.63%
Cars 0.9667*80 = 77.336%
Trucks 0.9667*80 = 77.336%

Table 5.15 Forecast for Vehicles.

Case Training Testing

Case 1 Humans Vehicles Humans Vehicles
100% 95.82% 100% 96.67%

Case 2 Cars/Trucks Motorcycles Cars/Trucks Motorcycles
100% 100% 100% 93.75%

Case 3 Cars Trucks Cars Trucks
95% 100% 80% 80%
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5.7 Chapter Conclusion

The ML software Rulex has been ported to the Raspberry Pi in a Client/Server setup, to apply
for edge computing applications. The device was used to make forecasts on a pedestrian
and vehicle classification dataset for urban security applications. Multiple forecasts were
cascaded in a tree-like structure while tuning the parameters of every forecast. Classes were
split into subclasses and single process simulations were applied, where we’ve estimated the
overall accuracy for various cascaded setups. After, exhausting all the possible arrangements,
the setup with the best-projected output was simulated in a cascaded configuration, which
provides an improved prediction outcome. This approach achieves higher accuracy over
the classical approach of applying a single forecast for all classes. Also, combining classes
into a parent class can be useful in practice such is the case with the vehicles parent-class.
However, this approach is exhaustive and time-consuming and may require setting parameters
for different forecasts and various ML algorithms. Moreover, the tree-based method for
improving ML forecasts can be used in various configurations. After applying the proposed
method, humans were classified with an accuracy of 100% and vehicles with an accuracy
96.67%. The final vehicles subclasses forecast accuracies are 90.63% for Motorcycles and
77.34% for the Cars and Trucks classes. In regards the this present radar dataset, using Rulex
LLM on the edge, the overall accuracy is 86.32% which outperforms the results reached
in Rizik et al. (2021) by 1.3% mainly due to the tree-based setup, newly introduced in this
thesis.



Chapter 6

Porting ML Software on the Raspberry Pi and
Image to TS Feature Extraction

6.1 Chapter Abstract

Edge Computing enables to perform measurements and cognitive decisions outside a central
server by performing data storage, manipulation, and processing on the IoT node. Also,
AI and ML applications have become a rudimentary procedure in virtually every industrial
or preliminary system. Consequently, the Raspberry Pi is adopted, which is a low-cost
computing platform that is profitably applied in the field of IoT. As for the software part,
among the plethora of ML paradigms reported in the literature, we identified Rulex (Muselli
(2012)), which can be found online in Muselli (2022), as a good ML platform, suitable to
be implemented on the Raspberry Pi. In this thesis, we present the porting of the Rulex ML
platform on the board to perform ML forecasts in an IoT setup. Specifically, we explain the
porting Rulex’s libraries on Windows 32-Bits (WIN32), Ubuntu 64 Bits, and Raspbian 32 Bits.
Therefore, with the aim of carrying out an in-depth verification of the application possibilities,
we propose to perform forecasts on five unrelated datasets from five different applications,
having varying sizes in terms of the number of records, skewness, and dimensionality. These
include a small Urban Classification dataset, three larger datasets concerning Human Activity
detection, a Biomedical dataset related to mental state, and a Vehicle Activity Recognition
dataset. The overall accuracies for the forecasts performed are: 84.13%, 99.29% (for SVM),
95.47% (for SVM), and 95.27% (For KNN) respectively. Finally, an image-based gender
classification dataset is employed to perform image classification on the Edge. Moreover,
a novel image pre-processing algorithm was developed that converts images into TS by
relying on statistical contour-based detection techniques. Even though the dataset contains
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inconsistent and random images, in terms of subjects and settings, Rulex achieves an overall
accuracy of 96.47% while competing with the literature which is dominated by forward-
facing and mugshot images. Additionally, power consumption for the Raspberry Pi in a
Client/Server setup was compared with an HP laptop, where the board takes more time, but
consumes less energy for the same ML task.

6.2 Introduction

The IoT paradigm is rapidly extending to many sectors of society because it allows to
substantially improve the monitoring or control of complex and extensive processes, offering
an innovative approach for multiple fields of application, such as quality of life, urban
challenges, logistics, agriculture and livestock, climate change, mass production, health,
energy and water production and distribution, and many more.

The huge amount of data produced by the nodes of the networks of which the IoT is
made up must be processed in an efficient and effective way, and ML techniques are certainly
among the most suitable for this purpose. Therefore, it is straightforward that ML tools can
play a key role in further expanding the scope of applications, as well as their effectiveness.
In past implementations, ML forecasts have been performed on a remote server before
delivering results on the IoT Computing Node to limit network traffic, Edge Computing
(Premsankar et al. (2018); Yu et al. (2017)), setups can be employed to avoid intensive cloud
access and keep that data storage and processing on the IoT device as much as possible.

Our work is placed in this perspective. Notably, this thesis reports an extended version
of the work previously presented at ApplePies 2020 (Daher et al. (2020a)). The system we
report is based on the Raspberry Pi platform , which is a low-cost, low-power credit-card-
sized board that is used for embedded system and general-purpose computing applications.
As for ML software, we have adopted for this investigation Rulex (Muselli (2012)), an AI
environment intended for non-domain experts, and we have ported it to the Raspberry Pi
platform.

Rulex was ported to three different OS, namely to WIN32, Ubuntu 64 Bits, and on
Raspbian 32 Bits which is the official OS of the Raspberry Pi. All external and internal
dependencies have been compiled (Daher et al. (2020a)) and verified. Moreover, the Clien-
t/Server setup has been used to perform forecasts on the edge after debugging the software
through its source code.

To explore the application possibilities of this operating environment, in addition to
the Radar Classification dataset already reported in (Daher et al. (2020a)), three new pre-
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processed datasets taken from diverse domains were also implemented using Rulex on the
Edge. These encompass a Human Activity Detection dataset using Smartphones, a Brainwave
Mental State Classification dataset, and an Activity Recognition dataset for Dumpers in earth
moving sites that are also recorded using Smartphones. We also investigated the problem
of performing gender detection. To this end, a new pre-processing Algorithm for image
classification was developed to convert facial images into TS using a contour-based approach.

The contributions presented in this thesis include the porting of a high-performance
ML package on the Raspberry Pi in a Client/Server setup, as well as the development of
a novel pre-processing Algorithm that converts images into Time-series using statistical
measurements, that are directly applicable to any ML configuration. The methodology in this
chapter consists of compiling all the required libraries on the target platforms. The correct
version of the libraries should be chosen where all libraries should be compatible with their
predecessor since libraries may be built on top of each other. Also, in the linking process,
the code needs to be changed to satisfy all the target platforms Windows 64-bits (WIN64),
WIN32, Raspbian 32-bits, and Ubuntu 64-bits). Finally, the fully featured Rulex software
package can be run on open-source hardware. Additionally, the pre-processing contribution
and the ML tests on the system using multiple datasets and, in a Client/Server arrangement
demonstrate the system effectiveness.

In the rest of this chapter Section 2 presents the literature review, Section 3 describes the
actions taken to bring Rulex on Raspberry Pi in a Client/Server arrangement (Hajdarevic
et al. (2014)), Section 4 presents in detail the image pre-processing algorithm, and reports the
results of all the ML forecasts and energy consumption achieved. Finally, Section 5 draws
the conclusions.

6.3 Chapter Related Work

6.3.1 Hardware platform

The hardware platform adopted in this work is the multi-purpose Raspberry Pi (Maksimović
et al. (2014); Vujović and Maksimović (2014)). It was conceived to handle application-
specific tasks, as well as being used for everyday computing operations. It supports USB,
High Definition Multimedia Interface (HDMI), and Secure Digital (SD) Card connections, in
addition to having standard digital Input/Output pins controlled through the on-board ARM
microcontroller.



6.3 Chapter Related Work 54

Regarding Communication protocols, the Raspberry Pi ports Local Area Network (LAN)
and Wi-Fi connectivity. Furthermore, the Raspberry Pi’s digital pins can be used for in-
terfacing with a wide variety of peripherals, for applications ranging from motor control,
LCD Display functions, and many more, and can be interfaced with compatible smart sensor
modules.

6.3.2 Machine Learning platform

The AI suite named Rulex (an acronym for Rule Extraction) has been created specifically
for the management, the visualization, and the analysis of data: it consists in an integrated
visual platform which allows to perform any operation in a simple and direct way, freeing
the user from the necessity of knowing implementation details about memorization and
execution (Muselli (2012)). It actually implements many ML Algorithms (both supervised
and unsupervised) such as LLM (Parodi et al. (2018)), NN, DT, KNN, and others through
an easy-to-use GUI. Specifically, the LLM is a method of supervised analysis based on
an efficient implementation of the Switching NN (Muselli (2005)) and Monotone Boolean
Reconstruction (Muselli and Quarati (2005)) through the Shadow Clustering technique
(Muselli and Ferrari (2009)) and is able to extract intelligible rules from data.

Rulex, through its GUI, also allows you to choose and apply other standard ML algorithms
to perform predictions. Through the interface, it is also possible to manipulate and filter
data before applying forecasts using the same software package. Rulex (Muselli (2012)) is
natively supported on WIN64 Bits PCs, where it operates in a standalone setup, storing its
workflows on a local database.

6.3.3 Machine Learning and IoT systems

As mentioned in the previous section, IoT is being applied to many applications and systems.
For example, authors in Al-Khafajiy et al. (2018) propose and edge computing framework
for collaboration among nodes with the aim to improve resources management and achieve
optimal offloading directed toward healthcare systems. Also, energy consumption on the edge
and the used of ML to improve its performance is addressed in Cecilia et al. (2020); Lapegna
et al. (2021); Novac et al. (2021), since energy consumption is essential during ML forecasts
due to the limited power supplies available for light-weight IoT devices. Furthermore, authors
in Novac et al. (2021) apply ML algorithms for an indoor classification applications which
uses features collected from radio frequency measurements. Also, ML forecasts are applied
on TS in Kanawaday and Sane (2017) to predict failure on a slitting machine by relying on
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data collected by IoT sensors. Additionally, ML is used to secure IoT networks in Canedo
and Skjellum (2016); Hodo et al. (2016) while improving systems security using NN.

Therefore, due to the vast scope of application of ML on the edge including its possible
use in energy, healthcare, security, and resource allocation, the main purpose of this chapter
was to deploy a fully featured ML package on the edge to expand its services to the field of
IoT.

6.4 Porting Techniques and Tools

The fundamental task of this project is the porting of the Rulex from 64 bit to 32-bit platforms.
In the case of Windows, the Visual Studio environment to accomplish this task, however,
in the case of Raspbian 32-bits and Ubuntu 64-bits, CMake (Clemencic and Mato (2012);
Fober et al. (2018)) was employed to compile the external and internal dependencies and
port Rulex.

In Figure 6.1, a tree-based file structure is shown, which presents a set of libraries or
dependencies that exist in a porting process. The header files contain functions that are called
in Cpp files. These header files may depend on other header files, however, Cpp files cannot
call a function unless the corresponding header file is included. The Cpp files generate their
output files which produce an overall output binary file. A binary file contains a compiled or
encrypted version of the functions found in a header file. Consequently, binary files could
depend on other binary files, where in general, the final target is an executable. Rulex on

Fig. 6.1 Dependencies file structure (Daher et al. (2020a).
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the Raspberry Pi can operate in Standalone mode or Client/Server mode. In the latter case,
a WIN32 system is used as a client, where the Rulex GUI is running, and the Raspberry
Pi functions as a server or ML engine. A Secure Shell (SSH) connection (Allen (2003))
is used in case the connection is over a public or private network. After connecting to the
Rulex Engine on the Raspberry Pi, remote development was used to debug the code so it can
operate on both WIN32 as well as Linux 32 Bit/ 64 Bit such that it runs without any manual
modification.

In the process of testing, the software runs showed that some of the original C/Cpp
variables from the WIN64 version are not compatible with 32 Bit systems. Therefore, it was
necessary to make the source redundant concerning this issue. So, the flow of the code was
diverted to a path or snippet specific to the running OS, which is implemented using Macros.
For example, a Macro such as _WIN32 was used to detect a WIN32 OS and _WIN64 for
detecting WIN64. Also, to detect ARM, the __arm__ Macro was executed.

Rulex GUI source code was debugged through the SSH connection where a PC acts
as the Client, and the Raspberry Pi forming the ML Server. In the Client/Server setup, a
Docker-based PostgreSQL container (Bellavista and Zanni (2017)) is placed as the common
storage point between the Client and server nodes.

Fig. 6.2 Rulex processing blocks: consisting of (a) excel1 which imports data, (b) dataman1
for viewing and data mining, (c) split1 for splitting dataset, (d) lm1 which performs the
machine learning algorithm, (e) app1 to apply the model, and finally (f) confmatrix1 and (g)
featrank1 which visually display results (Daher et al. (2020a)).
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6.5 Forecast Results

To verify the effectiveness of the proposed solution, after porting Rulex to WIN32 as a Client,
and Raspberry Pi as an application server, we tested Rulex on multiple datasets from five
diverse applications having a different number of samples and with varying dimensions.
Additionally, we’ve tested the accuracy of the Image-to-TS pre-processing Algorithm on a
gender classification dataset.

6.5.1 Radar Classification

The Urban Classification dataset was recorded by a short-range 24 GHz radar, based on
the Infineon BGT24MTR11 RF transceiver (Infineonradar (2022)), and particularly, the
Distance2Go development kit by Infineon (Infineon (2022)).

For ML forecasts, four classes were considered: One for Humans and three vehicle
classes. Namely, Car, Truck, and Motorcycle where the dataset contains 120 records. In
Daher et al. (2020b), a multiclass tree-based classification technique was implemented to
improve the prediction accuracy using this dataset.

The radar data has been recorded using another separate system dedicated to FE. This
standalone system is composed of three parts. Firstly, A 24 GHz radar, a second Raspberry
PI 3B+, and a PC running MATLAB. This second Raspberry PI was employed to connect
the MATLAB station to the radar board. The Raspberry PI collects the data from the radar,
and then it sends it to MATLAB running on a PC where FE is applied (Rizik et al. (2019,
2021)). Below is a list of the features extracted using the radar measurements:

1. R: The spread in the range-FFT spectrum caused by the target.

2. R1: Variance of the range-FFT spectrum.

3. R2: Standard deviation of the range-FFT spectrum.

4. R3: Average of the range-FFT spectrum.

5. V: The spread in the Doppler-FFT spectrum caused by the target movement.

6. V1: Variance of the Doppler-FFT spectrum.

7. V2: Standard deviation of the Doppler-FFT spectrum.

8. V3: Average of the Doppler-FFT spectrum.
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9. RCS: Radar Cross-Section, that gives a measure for the reflectivity of the target.

10. Vest: The estimated speed of the target.

After extracting features using the second system, the first Client/Server setup which consists
of Rulex running on a Raspberry PI is used for ML predictions. An example of a workflow
in Rulex GUI running on the Raspberry is presented in Figure 6.2, where there are data
processing blocks followed by an LLM, and finally a confusion matrix. Moreover, a block
that splits data for training and testing is shown, where the ratio is 65% for training and 35%
for testing.

Figures 6.3 and 6.4 show the training and testing accuracies using LLM. In Figure 6.3,
Cars and Humans are classified with a rate of 100%. As for Motorcycles and Trucks, they
are 84.2% and 89.5% respectively. Figure 6.4 shows the testing accuracies where Cars are
detected with a rate of 73.3%, Humans at 100%, Trucks at 72.7%, and Motorcycles were
recognized with a rate of 90.9%.

6.5.2 Human Activity Detection using Smartphones

The Activity dataset from Anguita et al. (2013) consists of features that have been recorded
using the Accelerometer and Gyroscope that are included in a Smartphone. The dataset is
pre-processed such that it can be directly applied in Rulex since the features are composed of

Fig. 6.3 Radar training forecast (Daher et al. (2020a)).
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Fig. 6.4 Radar testing forecast (Daher et al. (2020a)).

basic statistical operations based on the measurements. These consist of the mean, Standard
Deviation (STD), variance, and others. The activity performed by a subject is divided into
six classes: Laying, Standing, Sitting, Walking, Walking Upstairs, and Walking Downstairs.

A subset of the original dataset was used which is reduced to 7530 samples and 560
features, excluding the subject field which identifies the person or test subject specifically.
When this field is included, the accuracy is increased considerably, however, it does not
consider that the Smartphone can be carried by different people. This has been done to test
the robustness of the ML forecasts and investigate the effectiveness of the present experiment.
Furthermore, the dataset labels are distributed equally as shown in the histogram from Figure
6.5.

Fig. 6.5 Low class skewness for the Human Activity Detection dataset.
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The ML forecasts for the Smartphone Activity Detection dataset are provided in Table
6.1, wherein the Rulex Software, three basic ML Algorithms are implemented: LLM, KNN,
and SVM. All tests have been applied in a Client/Server arrangement with the Rulex Engine
running on the Raspberry Pi. As shown in Table 6.1, high testing accuracy was reached
in every forecast, where most notably, in the case where SVM is applied, a near-perfect
accuracy is achieved.

Table 6.1 Forecast accuracy for the Smartphone Activity Detection application.

Human Activity Detection

Algorithm LLM KNN SVM

Laying 100% 100% 100%
Standing 86.8% 94.4% 98.4%
Sitting 88.48% 91.86% 97.63%
Walking 94.74% 100% 100%
Walking Upstairs 89.89% 99.47% 100%
Walking Downstairs 100% 100% 100%

6.5.3 Brainwave Mental State Classification

In Anguita et al. (2013), EEG recordings were used to predict the mental state of a subject
through ML techniques. In this chapter, the features from the concerned dataset are used
in multiple forecasts to classify the mental into three given classes: Relaxed, Neural, and
Concentrating states. Multiple Algorithms have been implemented consisting of the three
basic ML Algorithms: SVM, NN and KNN, where SVM achieved the best performance.
Figure 6.6 presents a plot of one frequency-based feature value vs. class labels, where this
feature exhibits a lower value for one of the labels.

Additionally, Figure 6.7 presents the same plot for another mean-based feature from the
dataset, where results show that this feature has varying levels for each of the three classes.
This illustrates the influence on every feature on each of the labels.

In this chapter, we applied forecasts using Rulex running on the Raspberry Pi and in a
Client/Server setup. Regarding the dataset, a total of 2480 samples and 988 features were
employed for both training and testing in a 70/30 split. The accuracies for each forecast are
presented in Table 6.2.

As shown, LLM, KNN, SVM have high testing accuracies thus demonstrating the
robustness of the experiment, where the most accurate forecasts were achieved using SVM
with an overall accuracy of 95.47%.
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Fig. 6.6 Distribution of frequency-based feature values vs. class labels.

Fig. 6.7 Distribution of mean-based feature value vs. class labels.

Table 6.2 Mental State Classification with Rulex.

Human Activity Detection

Algorithm LLM KNN SVM

Relaxed 92.77% 94.78% 96.39%
Neutral 76.02% 83.74% 89.84%
Concentrating 97.19% 100% 99.60%
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Table 6.3 Power consumption for Mental State Classification for HP laptop.

Mental State Classification with Rulex Power consumption

Station LLM SVM

Time taken 0.022 sec./Task 0.018 sec./Task
Energy (4 Watts) 1.5 J./Task 8.37 J./Task

Table 6.4 Power consumption for Mental State Classification for Raspberry Pi.

Mental State Classification with Rulex Power consumption

Station LLM SVM

Time taken 0.37 sec./Task 0.08 sec./Task
Energy (4 Watts) 1.08 J./Task 0.48 J./Task

In addition to applying forecasts on the edge for this dataset, we’ve studied the power
consumption of the Raspberry Pi board by recording the elapsed time and estimating the
power consumption, while comparing it with the energy consumed by an HP Laptop. The
results can be viewed in Tables 6.3 and 6.4, whereas shown for LLM and SVM, the Raspberry
Pi achieves more time but less energy to perform the same task.

6.5.4 Vehicle Activity Recognition

A dataset for Activity Recognition of Dumpers in earth-moving sites is presented in Axelsson
and Wass (2019). It utilizes data taken from Smartphone sensors such as Gyroscopes and
Accelerometers to record signals (while the Dumper is working) for FE. An illustration of
the data collection phase is presented in Figure 6.8, with the Smartphone installed inside the
Dumper for taking measurements.

The pre-processed dataset was used to classify the state of the vehicle, whether a Dumper
is in one of six states, namely: idle, driving, loading, dumping, engine-off, and unknown.
Figure 6.9 illustrates the dispersal of the labels in the dataset where there is clear skewness
in the class distribution. A subset of around 216,000 samples having just 8 features were
used as a data source to apply ML training and testing with a 70/30 split. Forecasts were
applied through Rulex running on the Raspberry Pi in a Client/Server arrangement using the
KNN Algorithm. The testing accuracy in confusion matrix format is presented in Figure
6.10, where the overall forecast accuracy using KNN on the Edge is 95.27%. Furthermore,
with regards to power consumption, as employed in the previous dataset, the time elapsed
to perform an ML task is recorded to estimate the consumed energy. In the case of the HP
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Fig. 6.8 Taking sensor measurements using Smartphones to classify the state of a Dumper in
an earth-moving site (Axelsson and Wass (2019)).

laptop which consumes around 70 W, as shown in Table 6.3, the time taken for KNN is 11.82
min and the energy is 49.63 KJ. As for the Raspberry Pi, where the power is 4 W, the time
taken is 142.4 min and the energy consumed is 34.18 KJ.

6.5.5 Gender Classification

Gender classification can be useful for performing studies if implemented in an automated
manner. In Karimi et al. (2016), gender detection using names, countries, and facial images
is discussed where authors found that the accuracy is strongly dependent on the country,
meaning that ethnicity can play a role in prediction accuracy.

Classification of Gender that is based on forward-facing images is reported in Yang et al.
(2006), where a minimum error rate of 2.85% is achieved. A Classifier implemented using
SVM that detects gender with a minimum error of 3.4% is presented by Moghaddam and
Yang (2000), where mug-shot images are used for training and testing.

In practice, when implementing gender classification, facial images can be misaligned in
contrast to some forward-facing datasets that are seldom used in the literature. Therefore,
authors in Eidinger et al. (2014) apply the dropout technique and SVM to tackle this issue
and classify age and gender under “in the wild ” conditions.
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Fig. 6.9 High class skewness for the Vehicle Activity Recognition dataset.

Fig. 6.10 Testing Accuracy for Vehicle Activity Recognition using KNN.
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In this chapter, we’ve implemented a novel Algorithm that converts facial images from
various ethnicities, poses, zoom levels, and ages into Time-series that are generated using
a radial scanning-based approach Izbicki (2011). Moreover, a Sobel filter Bora (2017)
is used to detect the edges of an image and with the 360° radial scan, the distance from
the center (which is also determined in Algorithm 5.1) till every visibly detected pixel is
calculated. statistical functions of this distance for every degree in the scan are computed,
before generating a Time-series for every function. Finally, the TS are grouped to form a
dataset that is used in an ML forecast.

Image-to-Time Series using Statistical Radial Scanning and Sobel Filters

Image Classification usually requires specialized ML Algorithms such as CNN which are
used for applications like object detection and face recognition Levi and Hassner (2015).
Most applications using CNNs are dependent on the color of an image and its distribution.

Algorithm 5.1 Extracting center points from sobel filter output
Require: image dataset
Ensure: arrays sx, sy, centerx,centery

1: for i in all images do
2: sobel = sobel(current image)
3: sx[i], sy[i] = shape of sobel
4: for positions of all horizontal points: do
5: sumx = sum of points where (pixel > threshold)l
6: if sumx > 0 then
7: meanx = meanx + position
8: countx++
9: end if

10: end for
11: centerx[i] = meanx/countx
12: for positions of all vertical points: do
13: sumy = sum of points where (pixel > threshold)
14: if sumy > 0 then
15: meany = meany + position
16: county++
17: end if
18: end for
19: centery[i] = meany/county
20: end for
21: Return sx, sy, centerx, centery
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Although, some applications may not be so much reliant on color but rather the shape or
contour of an image.

With a different approach, we developed a novel Algorithm aimed to perform FE for
these types of applications. Specifically, it has been designed to reduce the execution time,
requiring less processing power compared to CNN which demands sufficient resources
Albawi et al. (2017)Furthermore, using this approach it is possible to apply the created
Time-series to any ML Algorithm thus increasing the number of possible setups.

Firstly, as shown in the pseudo-code reported in Algorithm 1, a Sobel filter extracts the
edges of each input image before determining the center points of Sobel output. Initially, for
every horizontal level, the sum of pixels having brightness greater than a predefined threshold

Algorithm 5.2 Statistical radial scanning of images
Require: image dataset and arrays sx, sy, centerx, centery
Ensure: pre-processed dataset

1: for i in all images do
2: for every angle in Sobel(0 - 90o) do
3: if 2nd iteration in loop or more then
4: Rotate by 90o

5: end if
6: if y ⪇ 45o then
7: ratio = y/45
8: end if
9: if y ≥ 45o then

10: ratio = 45 / (90.01 - y)
11: end if
12: for k = centery[i]; k ⪇ sy[i]; k = k + 1 do
13: for j = centerx[i]; j ⪇ sx[i]; j = j + 1 do
14: if k ≥ (j * ratio) * 0.9 and k ⪇ (j * ratio) * 1.1 then
15: if sobel (j, k) ≥ threshold then
16: D⇐

√
( j− centerx[i])2+

√
( j− centery[ j])2

17: end if
18: end if
19: end for
20: end for
21: Add mean, median, STD, variance, maximum, and minimum
22: of D and Ang to a Times-series
23: end for
24: end for
25: task: Interpolate all twelve Time-series such that every unit (record) is expanded till

the max length before grouping them into a dataset to apply ML forecasts.
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is computed. Then, for each horizontal level, the mean (meanx) of the positions where the
threshold was exceeded is computed. The value meanx corresponds to centrex, which is the
center of filtered image. The same steps are followed to extract centery which is the vertical
center of the same image.

In summary, Algorithm 5.1 calculates the vertical and horizontal means for every level
to determine the image center’s coordinates. Subsequently, As shown in Algorithm 5.2,
radial scanning is performed on the Sobel filter’s output. In Algorithm 5.2, the outer loop
is used to scan the entire 360° around the center with coordinates (centerx, centery), and in
case a pixel is brighter than a Threshold, the distance from the center is calculated, where
statistical functions (mean, median, STD, variance, maximum, and minimum) are computed
for the distances of every angle. Therefore, multiple corresponding Time-series are generated,
however, with different lengths for each record. Finally, these TS are interpolated (To make
each set of Time-series equal, and to have the same number of features for every record)
and grouped in one file to form a dataset applicable for ML predictions. The pseudo-code
from Algorithms 5.1 and 5.2 has been implemented in the Python programming language to
perform the Image-to-TS pre-processing before performing ML forecasts on the Edge using
Rulex.

Gender Classification Experimental Results

To test the novel image pre-processing algorithm described in the previous section, we
considered a gender image classification dataset taken from [41]. It consists of two classes:
Male and Female. The images are random where no specific angle is adopted as a reference,
but rather the images of both classes have been taken from various inconsistent conditions in
terms of angle, dimensions, zoom level, and background (cfr. Figure 6.11).

Also, some of the photos contain part of the body of the subject. Furthermore, the people
in the photos have very wide ranges of age, ranging from youthful to elderly, as well as
belonging to different ethnicities while taking different poses. This is demonstrated in Figure
6.11, where an example of six random female subjects is shown.

The dataset consists of 2700 female photos and 2720 male photos. These photos were pre-
processed using the novel algorithm developed in this chapter to generate the corresponding
dataset that consists of sets of Time-series.

The generated dataset has been used for ML forecasts using Rulex on the Raspberry Pi.
KNN and SVM were used to perform training and testing with an 80/20 split, where the
results for the forecasts performed on the Edge are presented in Table 6.5.
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Fig. 6.11 Six random images of women with varying ages, ethnicities, image background,
dimensions, poses, and zoom level taken from the dataset found in Izbicki (2011).

In Yang et al. (2006), the images used for gender classification were composed of people
belonging to a single ethnicity using that are all forward-facing to the camera. A minimum
error rate of 2.84% (accuracy of 97.16%) was achieved using SVM. Another case where
SVM is used is reported in Moghaddam and Yang (2000), where low-resolution forward-
facing images are used to reach an error rate of 3.4% (96.% accuracy). However, mug-shots
or forward-facing photos may not be available in real-time practical situations, therefore,
authors in Eidinger et al. (2014) address this issue and attempt to determine the age and
gender of random inconsistent images where the highest gender classification accuracy is
88.4%, (which is significantly lower than the publications where forward-facing photos were
used) taken as the best from numerous forecasts.

As shown in Table 6.5, the Image-to-TS conversion algorithm is capable of pre-processing
random images (Where color is not an issue) and can be applied to various ML Algorithms
to achieve high gender detection accuracy. Consequently, it can compete with previously
published techniques that rely on impractical (consistent) mug-shot images for classification.
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Table 6.5 Forecast accuracy for Gender Image Classification.

Gender Detection with Rulex

Station KNN SVM

Female 98.72% 95.60%
Male 94.24% 88.29%

6.6 Chapter Conclusion

In this thesis, we refer to the porting of Rulex, a ML software that natively runs on WIN64,
on the Raspberry Pi, for Edge Computing applications. We also reported the results obtained
in different application domains, namely with five unrelated datasets, which we used to test
the performance of our implementation in real IoT environments.

The main result obtained is that Rulex now operates in a Client/Server setup with the
interface being operated on a PC as a WIN32 application, with the ML algorithms being run
on the Raspberry Pi ARM 32-Bit microcontroller. The overall accuracy for the urban dataset
was 84.2% and 99.3% for the Activity Detection dataset. The Brainwave dataset resulted with
an accuracy of 95.47% using Rulex, and the Vehical Activity recognition dataset was forecast
with an overall accuracy of 95.27% using KNN. Finally, inc case of the gender dataset where
an Image-to-TS conversion was performed, where this approach led an accuracy of 97%.

As regards the performance obtainable through this implementation, first we considered
a dataset related to the classification of pedestrians and vehicles using a high-frequency
radar: An ML workflow was implemented on our platform and good results were achieved.
However, as such dataset is relatively small, we considered four additional datasets from
diverse application fields. Three pre-processed datasets having a larger number of samples
and with low and high dimensionality and varying skewness were adopted. The pre-processed
datasets include a Human activity Recognition dataset using Smartphones, a vehicle Activity
Detection dataset, and an EEG Classification dataset related to mental state.

Furthermore, a novel pre-processing Algorithm was developed and implemented in
Python, that converts images into TS to pre-process a gender detection dataset that contains
inconsistent facial images in terms of the background and dimensions of the image itself and
the age, ethnicity, and pose of the subject. Also, the accuracy achieved for gender classifica-
tion is considerably competitive with the literature, where the competition is dominated by
mug-shot and forward-facing images. Moreover, in every forecast, the training and testing
were performed using Rulex on the Edge, where in general, each experiment achieved high
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classification accuracy through the Client/Server interface. Also, the power consumption was
investigated by comparing the Raspberry Pi as an edge computing node with an HP laptop,
where for the same ML algorithm and dataset, the Raspberry Pi consumes less energy.



Chapter 7

CACAO-X: Contour Assisted Convolutional
Neural Networks with Global Image
Explainability and Edge Computing Classification

7.1 Chapter Abstract

Image classification and interpretability is a basic procedure in modern AI systems as well
as being employed in the fields of security, instrumentation, and image classification. XAI
also plays a crucial role in providing ML techniques with a white-box output that allows
the practitioner to follow or interpret the rules. Therefore, we present CACAO-X which
is a framework for ML forecasts that utilizes an algorithm which converts images into TS
and employs CNN, LSTM, and MLP on the original images and converted data in a mixed
input approach achieving accurate forecasts on multiple applications. Furthermore, Shapley
values are employed on the proposed ML models to extract the local explainable features of
such images. These features are again used with the same conversion algorithm to generate
time-series and application specific landmarks using LLM to determine the explainable rules.
In addition to being generated automatically, explicative labeling is adopted in the dataset
which gives insight to the operator as to which landmarks, positions and angles contribute
to the classification of each record. The system is robust as it achieves benchmark results
in the gender classification application while remaining competitive in all others where it is
used as a reference model for global image explainability. Additionally, the ML inference for
every application is performed according to the edge-computing paradigm, by deploying the
models on a limited resources Raspberry Pi platform through SSH access. Moreover, a novel
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callback function has been developed which is able to stop the training of the CACAO-NET
model at a stable state based on the level of oscillation around the most recent mean accuracy.

7.2 Introduction

Image classification is used in various applications ranging from security, clinical decision
support systems, and object recognition where AI techniques aid to generalize and provide
accurate performance in the identification process. Moreover, to perform training and
inference many options are available. Usually, a practitioner will use one of many AI
algorithms to achieve his goals where the most used by far is NN and more specifically
CNN (Li et al. (2021)). CNN aims to extract features automatically and has a wide range
of operations wherein the literature CNN proved to achieve benchmark results in multiple
classification applications where it does not require any application specific or hand-crafted
features. Additionally, due to the wide range of successful existing architectures, some
practitioners may choose to implement transfer learning, which consists of using a model that
has been trained on an unrelated dataset. Data science specialists rely on these architectures
by using a pre-trained model and fine-tuning the layers near the output by swapping the final
fully-connected layers and freezing the remaining layers (Weiss et al. (2016)). However, the
reported architectures (Dhillon and Verma (2020)) are usually overly complex and are much
larger then conventional NN and transfer learning is application-sensitive, in a sense that it is
related to the domains of the pre-trained dataset and not the target dataset. Therefore, if the
pre-trained model does not perform well on another dataset, the practitioner may choose to
implement another approach. Consequently, in this perspective, to overcome these problems
we propose a Contour Assisted CNN with Image explainability, or expressed as CACAO-X,
which uses a fixed structure applicable in diverse application and with minor tuning. This
is obtained through the combination of the automated feature generation using CNN and
the extracted TS which provide general shape information that assists to improve the overall
performance.

This thesis introduces a mixed Data NN architecture which can be used in general-purpose
image classification. The model is implemented so that it is robust and can achieve accurate
ML classification in a practical workflow. The main input is a set of Red-Green-Blue (RGB)
or grayscale images which are used to derive a set of TS based on the Sobel output of each
image. In order to demonstrate the generality of this framework, training and testing were
done on a PC using six datasets and the same NN architecture or by applying inference in an
edge computing setup on the Raspberry Pi (Vujović and Maksimović (2014)).
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Furthermore, the local explainable features are extracted from the two inputs—the image
and its TS representation—after the model has been trained. This is done to give insight to
which pixels contribute to each classification. Also, the local explainers are used alongside
application specific landmark measurements in an automatically generated and annotated
dataset to be applied using an XAI algorithm (Gunning et al. (2019)) to present global
explainability of image-based classification models.

The rest of this project is organized as follows: Sections 2 conducts the literature review
regarding various ML techniques and works which utilize similar datasets; section 3 presents
the fundamental blocks and the CACAO-X framework including the global explainability
part as well as an image classifier we named CACAO-Net which is used for general-purpose
image classification. Section 4 describes the six diverse datasets used in the project which
are different enough to prove the general nature of the provided approach. Also, section 5
provides and methodology used in the implementation and section 6 presents the experimental
results and comparison, and finally, section 7 concludes the paper.

7.3 Chapter Related Work

In this section, we will present works from the literature which implement AI models
for the same application domains provided in this chapter. Most works either implement
transfer learning or derive application specific features which are limited to that application.
Therefore, a motivation for the purpose of CACAO-X is outlined at the end of this section to
clarify the advantages and generality of the framework.

7.3.1 Transfer Learning

In Deepak and Ameer (2019), authors implement transfer learning using GoogLeNet on
a Three-Class brain tumor dataset while using a k-fold setup with five folders. This setup
includes the addition of a SVM at the output of the GoogLeNet which was included in the
training. This setup achieves benchmark accuracy using this approach; however, it does not
report the accuracy using a greater number of classes.

Skin Cancer classification using CNN is discussed in Brinker et al. (2018) where transfer
learning is compared with a from-scratch setup. They conclude that CNN achieves the best
performance when it is pre-trained by means of another larger dataset before optimizing the
parameters of the final layers which are tuned to the target application. Authors in Kadhim
and Abed (2019) implement multiple transfer learning setups using AlexNet (Lu et al. (2019)),
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VGG19 (Carvalho et al. (2017)), GoogLeNet (Tang et al. (2017)) and Resnet50 (Mukti and
Biswas (2019)) for satellite image classification, where they conclude that Resnet50 achieves
the best performance on the three different datasets. Even so, the CACAO-Net model
presented in this project outperforms transfer learning approaches in multiple cases and
remains competitive in others, as will be presented in section 6.

7.3.2 Application-specific features in ML

In Lu et al. (2014) binary weather classification is performed using application specific as
well as label-specific feature which not only limit the model to that application but also to
each class. The features extracted from this image dataset include sky and shadow detection
for the Sunny Cloudy classes. Also in Roser and Moosmann (2008), histogram-based features
are extracted from a three-class weather dataset for driver assistance. The vector which is
used as input for an SVM classifier is composed of features related to brightness, contrast,
sharpness, saturation...etc. Although these features are not application specific, however, they
may not be applied in most applications wherein these features are irrelevant and the overall
ambience of the image does not contribute to correct classification such as the case of object
detection in contrast to weather classification datasets and others.

Authors in Zhang et al. (2016) use multiple kernel learning algorithm for multi-class
weather classification using category-specific dictionary learning. The features used in this
work include sky, shadow, rain, streak, snowflake, dark channel, contrast, and saturation. For
example, the sky is detected by cropping out the remaining landscape and the shadow is
detected using a shadow detection tool first implemented in Sajjad et al. (2019).

Fig. 7.1 The CNN architecture used in CACAO-NET Model1 1 and 2.
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7.3.3 Conventional ML

In Sajjad et al. (2019), CNN is used for multi-grade brain tumor classification where the
authors implement data augmentation to train the model. They provide experimental results
for both original and augmented data where the data augmentation on the training data
improved the inference. In Das et al. (2019) CNN is again used for brain tumor classification
using a three-class dataset after pre-processing the images. Authors in Abiwinanda et al.
(2019), implement a CNN which does not rely on segmentation but rather a direct approach,
whereas reported, competes with complex region-based segmentation methods using the
same data source. Although the three preceding models (Das et al. (2019); Sajjad et al.
(2019); Zhang et al. (2016)) perform well, they remain application specific and therefore
cannot translate to other applications without any heavy structural modifications of the CNN
model.

In Hekler et al. (2019), a hybrid multiclass skin cancer detection method is presented
that combines Resnet50 with human intelligence to achieve superior classification results.
In this work, data was down-sampled and augmented appropriately to avoid any skewness
in the class labels. The model achieves accurate results for both binary and multiclass
cases, however as shown in section 6, it is possible to achieve better results without human
intelligence while using a fairly general model.

7.3.4 Explainable AI for image classification

In Stieler et al. (2021), a domain-specific XAI approach is used to explain the classification
of skin cancer images using the LIME tool, and the ABCD-rule which is an approach used by
dermatologists for systematic diagnosis of skin cancer lesions. The work consists of drawing
a final scatter plot as a visual aid for local explainability. Authors in Vermeire et al. (2022)
present a counterfactual XAI approach where the segment of each instance is cropped out in
order to infer to which part of an image contributed to its classification or misclassification
to a particular class.

In Pintelas et al. (2020) the authors presents an XAI framework for global image explain-
ability relying on CNN models as the reference for the rule extraction. They chose brain
tumor data as a case study for their experiments where they manage to produce questions
and answers that summarize the conditions that are followed by CNN for classification. They
provide both specific and humanistic sentences to state the portability of the framework.
Regarding global explainability, the addressed work only includes the tumor’s size, sum and
correlation scores and does not provide any position information regarding the complete
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analysis. Also, this approach may only be applicable to abstract images such as tumors or
patterns and cannot be translated to objects or subjects in conceptual domains.

7.3.5 CNN Basics

CNNs are usually used in image classification and automated FE where the network is
composed of convolution and max-pooling layers. The convolutional layer convolves its input
with a filter before down-sampling through a max-pooling layer to reach better generalization
and faster convergence. This process is repeated to reduce the size of one or more dimensions
and increase others knowing that the final CNN output is applied to a fully-connected layer
which is coupled to a standard NN.

An illustration of the used CNN as applied is shown in Figure 7.1 where the actual
dimensions are provided. Also, the convolution details can be viewed in (1) where I is the
input, K is a filter, and m x n represents the filter’s dimensions.

F(i,j) = (I ⊛K)(i,j) = ∑∑(i+m,j+n)k(m,n) (7.1)

Each output from each of the stacked convolutional layers is applied to a Relu activation
function which is shown in (2):

Relui,j = max(0,F(i,j)) (7.2)

The equation for each max-pooling layer succeeding a Relu function can be found below:

yi,j = maxh,w
i, j=1Relui,j (7.3)

Fig. 7.2 Basic LSTM sequence as used in CACAO-NET model 2.
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7.3.6 Long Short-Term Memory Networks

LSTM networks are used to build Recurrent Neural Networks (RNN) to deal with sequences
or TS and are used in this present work alongside CNN models to generalize the architecture
and to give two flavors, namely, Model 1 and Model 2. An abstract depiction of an RNN is
displayed in Fig. 2, where each blue block can be decomposed as an LSTM block as shown
in Fig. 3.

An LSTM cell takes a current input xt and the precious information at-1. Every cell has a
state ct from (5), which behaves as a memory that retains past information. c∼t from (4) is a
candidate generated by the LSTM cell that may replace ct, where Wc

a and Wc
x are the weights

used to generate the candidate cell. ct can be computed using at-1 and ct-1 as shown in (6):

c∼t = tanh(Wc
aat-1 + Wc

xxt) (7.4)

ct = ft ⊗ ct-1 + ut ⊗ c∼t (7.5)

at = ot ⊗ tanh(ct) (7.6)

Furthermore, the forget, update, and output gates of each cell may be generated using
equations(7-9).

ft =σ (W f
aat-1 + W f

x xt) (7.7)

ut = σ (Wu
aat-1 + Wu

xxt) (7.8)

ot = σ (Wo
aat-1 + Wo

xxt) (7.9)

7.3.7 Motivation for CACAO-X

ML models are usually used for domain-specific tasks where they are tuned to achieve
the highest accuracy possible. ML practitioners are resorting to transfer learning to meet
their goals in terms of accuracy while saving design time. Although, this approach does
not usually achieve the desired performance since the pre-trained model (even after tuning)
may not fit to the target application. Furthermore, in terms of image explainability, most
works implement local interpretability while not providing general human understandable
statements. Regarding global explainability, the statements are mostly abstract and do not
provide detailed information, and yet, there still is a lack of a unified model which if mildly
tuned can have enough generality and perform competitively in most image classification
scenarios while providing an explainer for its predictions. As a whole, the model proposed in
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Fig. 7.3 Basic LSTM block used in CACAO-NET model 2.

this project is able achieve such generality and performance while the collective framework
introduces the concept of global image explainability (Using the CACAO-Net model). To
the best of our knowledge this is the first semi-domain-specific XAI model with human
understandable rules that can perform these tasks, where explicative labeling is introduced to
interpret the global conditions behind image classification. Although this approach is not
completely domain-independent and mainly due to the landmark features, it still remains an
impressive step towards true global image explainability with understandable features.

7.4 CACAO-X Framework

In the ML forecasts performed using CACAO-Net, the first set consists of the raw RGB
images which correspond to the class labels. The second type of input consists of sets of
TS which are the pre-processed versions of the same images. These contain the statistical
contour or edge information of the 3D data in 1D format.

Algorithm (7.1) which was first introduced by Daher et al. (2021) is used to achieve this
task. The algorithm is split into three main parts which is displayed in Figure 7.4, whereas
shown, each image is passed through a Sobel filter to generate a pencil drawing of the same
image before applying Algorithm (1) which is implemented using lower level C C-Code
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that accessed by Python using the Ctypes module (Ctypes (2023)) for optimal performance,
the TS generated in C-Code are applied during the inference per image on a Raspberry
Pi to accurately assess the performance, deployment and portability of the CACAO-Net
classification model. These tasks may be summarized as follows:

1. The first task is to apply a Sobel filter (Edress et al. (2021)) on each image and to
extract the centroid having coordinates (centerx and centery). After applying the filter,
supposing the filtered image has a dimension of sx*sx. The employed centerx variable
may be computed as shown in the following expressions:

For x ≤ sx: [ Hitx = Σsx
x=1 Mask(Sobel[x,:] ⪈ γ) ]

if Hitx ⪈ 0→ sumx += x, countx += 1

centerx = sumx/countx

(7.10)

Algorithm 7.1 Statistical radial scanning of images
Require: image dataset and arrays sx, sy, centerx, centery
Ensure: pre-processed dataset
1: for i in all images do
2: for every angle in Sobel(0 - 90o) do
3: if 2nd iteration in loop or more then
4: Rotate by 90o

5: end if
6: if y ⪇ 45o then
7: ratio = y/45
8: end if
9: if y ≥ 45o then
10: ratio = 45 / (90.01 - y)
11: end if
12: for k = centery[i]; k ⪇ sy[i]; k = k + 1 do
13: for j = centerx[i]; j ⪇ sx[i]; j = j + 1 do
14: if k ≥ (j * ratio) * 0.9 and k ⪇ (j * ratio) * 1.1 then
15: if sobel (j, k) ≥ threshold then
16: D⇐

√
( j− centerx[i])2+

√
( j− centery[ j])2

17: lineA = ((centerx, centery), (centerx, sx))
18: lineB = ((centerx, centery), (j, k))
19: L1 = lineA[1,1] - lineA[0,1]
20: L2 = lineA[1,0] - lineA[0,0]
21: slope1=L1/L2
22: L3 = lineB [1,1] - lineB [0,1]
23: L4 = lineB [1,0] - lineB [0,0]
24: slope2 = L3/L4
25: angle = atan((slope2-slope1)/(1+(slope2*slope1)))
26: Append angle to Ang
27: end if
28: end if
29: end for
30: end for
31: Add mean, median, STD, variance, maximum, and minimum
32: of D and Ang to a Times-series
33: end for
34: end for
35: task: Interpolate all twelve Time-series such that every unit (record) is expanded till the max length before grouping them into a

dataset to apply ML forecasts.
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Fig. 7.4 ML Inference workflow for the CACAO-Net classifier on the Raspberry Pi.

As for centery, it can consequently be extracted using the techniques as shown in (11):

For y ≤ sy: [ Hity = Σ
sy
y=1 Mask(Sobel[:,y] ⪈ γ) ]

if Hity ⪈ 0→ sumy += y, county += 1

centery = sumy/county

(7.11)

2. Secondly, a radial scan (Izbicki (2011)) is applied from the centroid with coordinates
(centerx, centery) obtained in step 1 to convert the Sobel output into six TS which are
related to six statistical functions (Standard Deviation, Mean, Variance, Maximum,
Minimum, and Median).

3. After extracting the TS for all records, since for each record the length of TS may
not be consistent, therefore, each set is interpolated till the maximum length of all
TS to end up with a dataset that has the same number of features for every record.
However, the Angle array Ang is introduced in addition to the Distance variable D in
this work to improve the explainability in the following sections. Moreover, the angle
related features expressed in the variable Ang are not utilized in the NN classification
architecture proposed since the D vector can provide enough information for accurate
image classification. The process of interpolation may be implemented through the
proposed Python command using the OpenCV library (OpenCV (2023)):
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Fig. 7.5 The Hybrid CACAO-Net (Model 1) mixed-data Neural Network for image classifi-
cation. Algorithm (7.1) which is used for pre-processing was implemented offline before
applying inference on the edge.

Ts = np.array(cv2.resize(Ts, (1, maximum_length))).flatten() (7.12)

Where the TS "Ts" is resized till the maximum length available using the OpenCV
library before being converted into a Numpy array (Numpy (2023)) which is conse-
quently turned into a 1D object using the flatten command.

The CACAO-Net model 1 that has been adopted is presented in Figure 7.5, whereas
illustrated, the image data is used as input to a CNN which feeds a Multi-Layer Perceptron
(MLP) block. In parallel, the extracted TS is processed through another MLP (Yu et al.
(2019)) before fusing the two sub-networks followed with a second MLP to apply ML
classification. Furthermore, the pre-processing title Algorithm (1) which generates a TS
(Daher et al. (2022)) is applied in real-time during the inference stage which is performed on
a Raspberry Pi remotely. A more complete description of CACAO-Net models architecture
is provided in 7.1 where the size of every layer in the model is extracted as found in Keras
(Ramasubramanian and Singh (2019)).
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Additionally, experiments using specialized XAI techniques have been performed using
the model to interpret and extract which of the physical parameters of an image led to accurate
classification. One way to implement local explainability is through Shapley values (Merrick
and Taly (2019)), where the marginal contribution MC of each feature fi is estimated based on
the weighted average of each combination and additions of all features, as shown in Equation
(13-15):

SHAPfi = w1.MCfi,(fi) +w2.MCfi,(fi,fi+1) +w3.MCfi,(fi,fi+1,fi+2) + ... (7.13)

Table 7.1 Layer hierarchy of the
CACAO-NET model 1: The sum-
mary for a Z-class dataset.

Layer Shape Filters

Proposed model
MLP-1
DENSE 1186
DENSE 1220
DENSE 800
DENSE 600
DENSE 400

CNN & MLP-2
CONV2D (112x112)x3 (3x3)x32
MAX-Pool (4x4)x32
CONV2D (27x27)x32 (3x3)x64
MAX-Pool (3x3)x64
CONV2D (8x8)x64 (3x3)x64
MAX-Pool (2x2)x64
DENSE 576
DENSE 600
DENSE 300
DENSE 100
DENSE 50

MLP-3
DENSE 450
DENSE 300
DENSE 50
DENSE 20
DENSE Z
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Fig. 7.6 CACAO-X XAI framework using CACAO-NET model 2.

Where: MCfi,fi,... = Prediction+fi + Prediction-fi (7.14)

wi = i -
(

F
i

)
(7.15)

These Shapley values correspond to local XAI, where the pixels that correspond to the
correct classification for each single input images are generated visually to give insight to the
practitioner to which human understandable features contributed to the classification. On the
other hand, global explainability which is the topic of this chapter deals with giving human
understandable rules and conditions that contribute to the classification of each class for the
entire dataset. The same principle is applied for RGB images by computing the Shapley
values of each pixel and visually displaying the image while highlighting the pixels which
locally contributed to the target classification of that instance. An example of the Shapley
output on one image can be viewed in Figure 7.1. As presented in Figure 7.1, in the original
image to the left is applied to the explainer which is based on a mixed-data NN. The image
at the center provides the pixels which classify this subject as a female.

In addition to the Shap-values-based TS which include angle and distance information
from each centroid, application specific landmarks may be used to add measurement to the
XAI model. Therefore, for the gender classification dataset, the facial landmarks which were
located using the Python Face Recognition library (Geitgey (2020)) are illustrated in Figure
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Fig. 7.7 The Hybrid CACAO-Net (Model 2) mixed-data Neural Network for image classifi-
cation. Algorithm (7.1) which is used for pre-processing was implemented offline before
applying inference on the edge.

7.8 to the right, where the facial landmarks for each subject are clearly shown in the form of
red dots.

Consequently, using the coordinates of the extracted landmarks, the distance measure-
ments between the combinations of each landmark pairs are computed and stored as features
to be used for XAI implementation. Algorithm (7.2) explains how these features heat can be
extracted in a systematic pseudocode.

The final experiment deals with image explainability and relies on the Shapley heat-map
as well as the Ang and D variables as inputs where data labeling is crucial for interpretability,
therefore, the labeling of the landmark distances, angles and the TS data are meticulously
annotated to clarify why each class was classified or misclassified. Therefore, for the XAI
Algorithm, the Logic Learning Machine (LLM) was adopted to perform the analysis using
the Rulex machine learning package (Muselli (2012)) which has explainability as its prime
feature. Algorithm (7.1) and the LLM engine are operating as C/Cpp vectors for maximal
and parallel performance.

The LLM algorithm relies on switching neural networks and shadow clustering (Muselli
and Ferrari (2009)) to derive explainable rules related to a particular dataset. In a brief
description, explainability is achieved by a mapping positive Boolean function f : 0, 1n

� 0,
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Algorithm 7.2 Facial Landmark FE
Require: Landmark coordinates
Ensure: Combinational distance features

1: for all landmarks in every photo do
2: for k in landmark array do
3: for j in landmark array do
4: Append Euclidean distance((xk, yk ),(xj,yj))
5: to Features[n] where n is the number of landmarks
6: end for
7: end for
8: n++
9: end for

10: Return Features

1 with input xi , i = 1, . . . , d, to approximate an unknown function g. The methodology
consists of determining if Bi ∈ Xi to find g’, which approximates g on X where:

for every set B ∈ B’, where
d

∏
i=1

Bi: Bi ∈ B’i, i = 1,...,d (7.16)

Consider Ql1n ⊂ {0,1}n contains n bits having exactly łvalues 1 (7.17)

Using φ , X is mapped into the strings of Ql1n , so that φ )(x) ̸= φ (x’) only if x ∈ B2 and x’

∈ B1, such that B1 ⊂ B and B2 ⊂ B. Then the positive Boolean function is selected such that
f(φ (x)) = g’(x) for every x ∈ X.

Furthermore, to allow for better explainability with LLM, explicative labeling is added
to the automated dataset which is created using Algorithm (7.1). Consequently, annotating
the measurement range, statistical operation, and its value for both angles and distances can
be highly informative to an operator who is experimenting with XAI. Therefore, in addition
to the angle and distance quantities, also an explicative label is added to the landmark pair
distances through iterating over the Python data structure which contains the feature values.
Also, the second portion of the pseudo-code explicatively outlines the angle or distance of
each feature along with statistical quantities. Algorithm (7.3) describes how to annotate the
features in the dataset used for ML explainability where the first part consists of a first set of
two embedded loops which describes each landmark pairs used to measure the Euclidean
distances as measured in Algorithm (7.2). Also, the second portion of the pseudo-code
explicatively outlines Algorithm 3.1 which was first introduced by Daher et al. (2021) that is
used to achieve this task.
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Fig. 7.8 The Shap-values of three subjects of images taken from the gender classification
dataset, with the original image being placed to the left and the local explainable pixels at the
center. To the right, application-specific landmarks of each subject using the Python Face
Recognition Library are illustrated.
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Algorithm 7.3 Explicative feature labels for time-series
Require: One of the twelve Timeseries generated using Algorithm (1)
Ensure: Statistical time-series feature labels
1: for every coordinate1 and key1 in landmarks do
2: Count1++
3: for every coordinate2 and key2 in landmarks do
4: Count2++
5: if (Count2 ≥ Count1 and key1 == key2) or key2 ≥ key1 then
6: Append key1, count1, “Static”, key2, count2 to Label1
7: Append key1, count1, “Static”, key2, count2 to Label2
8: Append Label1, Label2 to Labels
9: end if
10: end for
11: end for
12: for Type in D and Ang time-series do
13: for i in time-series do
14: if i ≤ len(time-series) then
15: Tvalue =”0-90”
16: else if i ≤ len(time-series)/2 then
17: Tvalue =”90-180”
18: else if i ≤ 3.len(time-series)/4 then
19: Tvalue =”180-270”
20: else if i ≥ 3.len(time-series)/4 then
21: Tvalue =”270-360”
22: end if
23: if modulo(i,6) == 0 then
24: Statvalue =” Variance”
25: Len = i/(len(time-series)/360)
26: else if modulo(i,5) == 0 then
27: Statvalue =” Min”
28: else if modulo(i,4) == 0 then
29: Statvalue =” Max”
30: else if modulo(i,3) == 0 then
31: Statvalue =” Median”
32: else if modulo(i,2) == 0 then
33: Statvalue =” STD”
34: else
35: Statvalue =” Mean”
36: end if
37: end for
38: end for
39: Append Type, Statvalue, Len, TValue to Desc
40: ReturnLabels, Desc

In order to fully understand and interpret image classification in an explainable way, XAI
may be implemented on image forecasting models, such as Keras (Ramasubramanian and
Singh (2019)), to find out which physical parts of instances of a class led to correct classifi-
cation. Therefore, we have applied the Python Library for XAI namely SHAP (Lundberg
(2018)) to extract the pixels for each image which contribute to the classification and apply
Algorithm 7.1 in its complete version on each of the so-called heat maps. After applying the
contour-based Image-to-TS conversion algorithm both angle and distance statistical patterns
are used as features for an upcoming forecast using LLM running on Rulex (Muselli (2012)).
Therefore, to supply LLM with useful information to implement XAI for global interpretation,
Algorithm (7.3) is used to label each feature in a clear description. Additionally, since the
gender classification dataset is employed as a reference for explainability, the landmark-based
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Table 7.2 Layer hierarchy of the
CACAO-NET model 2: The sum-
mary for a Z-class dataset.

Layer Shape Filters

Proposed model
LSTM
LSTM 1237
LSTM 100
LSTM 80
DENSE 40

CNN & MLP-2
CONV2D (112x112)x3 (3x3)x32
MAX-Pool (4x4)x32
CONV2D (27x27)x32 (3x3)x64
MAX-Pool (3x3)x64
CONV2D (8x8)x64 (3x3)x64
MAX-Pool (2x2)x64
DENSE 576
DENSE 600
DENSE 300
DENSE 100
DENSE 50

MLP-3
DENSE 90
DENSE 300
DENSE 50
DENSE 20
DENSE Z

features computed using Algorithm (7.2) are used along with the interpolated TS as features
for the LLM. Furthermore, Algorithm (7.3) in its first part provides explicative labeling for
these landmark positions. Consequently, Figure 7.6, presents an overall illustration of the
CACAO-X framework for global explainability using the gender detection application. As
shown, this setup utilizes CACAO-Net model 2, as shown in 7.7, which relies on an LSTM
rather than an MLP coupled to the TS input (Although an MLP could be used) and a complete
dissection of this architecture can be viewed in Table 7.2.
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7.5 Datasets

To assess the effectiveness of the CACAO-X framework for image classification, five diverse
datasets were adopted to evaluate the robustness of the proposed model. Therefore, the same
architecture was used for each dataset while non-structure-related parameters like batch
size, learning rate, epoch count, and decay that were mildly tuned (Mainly due to different
numbers of classes and numbers of records). The training for every dataset was performed
on an MSI laptop whereas the testing was applied on Raspberry Pi Boards remotely. In an
upcoming section, various ML works which rely on similar datasets are discussed and later
compared.

7.5.1 Gender classification dataset

A subset of the dataset found in Gupta (2011) is used which consists of 5400 images grouped
according to gender. Both male and female images consist of randomly collected shots with
varying ethnicities, ages, poses, zoom levels, and background. We have implemented ML
classification on this dataset previously in Daher et al. (2021) using the described Image-to-
TS algorithm, where an overall accuracy of 96.5% was achieved. Therefore, with the attempt
to expand the scope of operation and robustness of this algorithm we have implemented two
hybrid models in Fig. 5 and Fig. 6 to improve existing accuracy and explore other application
fields.

7.5.2 Satellite images dataset

This remote sensing dataset provided in Reda (2021) images grouped into 4 classes: Cloudy,
Desert, Green area, and Water area. This dataset is also used as a data source for ML
classification using the proposed model. In this chapter a total of 1525 images were used in
ML operations.

7.5.3 Skin Cancer dataset

In Fanconi (2020), a skin cancer dataset (with 3290 samples) is presented which is divided
into Malignant and Benign classes. Due to the nature of the images, being differentiable by
color, contour detection on its own as discussed in Daher et al. (2021) cannot be effective in
achieving high classification accuracy. Consequently, the addition of raw 3-D RGB data can
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add color information to the contour-based shape information while spinning up the described
hybrid CACAO-Net) architecture, with the goal of diagnosing skin images accurately.

7.5.4 Weather images dataset

The dataset in Parteek (2020) consists of images of weather images distributed over 4 classes:
Cloudy, Rain, Shine, and Sunrise. It consists of 300 cloudy, 215 rain, 253 shine, and 357
sunrise images.

7.5.5 Shadow dataset

The dataset in Mohanna et al. (2022), CNN is used to discriminate between single human
targets and shadowed targets in a binary approach using a low-cost radar as a sensor while
relying on various Mobile-Net architectures as the classifier. The dataset consists of 1200
samples equally split between two classes wherein each subset of the records, the distance
between the targets and the sensor varies.

7.6 Methodology using oscillation-based early-stopping

In order to achieve the highest validation accuracy while avoiding overfitting and insuring
the stability of the ML model, a novel callback function based on STD-based early-stopping
has been developed. Algorithm (7.4) demonstrates the method for early-stopping where
the five previous validation accuracies are stored in a queue where their standard deviation
including the last accuracy is compared with a threshold to stop training at a stable state.
Concerning the thresholds, they are application specific and can be set experimentally by
running training a few times and easily noticing the ranges of the validation metrics before
setting the threshold parameters. Although, the task is simple it can be sometimes an
iterative process, however, much simpler and more straightforward than ML parameter
tuning. Furthermore, the algorithm has a safety mechanism wherein case the target accuracy
is not reached, it will update the validation threshold by a less stringent value.

Regarding the data splitting, two arrangements were employed to validate the CACAO-
Net classifier. The consists of a K-folder setups with k = 5 and in a Train/Validate split
where the early function was used to stop the training for each run. Additionally, a three-
set arrangement was also used to train the classifier while stopping at a state based on
the validation performance before applying the inference for a third set on a Raspberry Pi
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Algorithm 7.4 STD-Based Early-Stopping Call-back Function

Require: Validation accuracy, β1, β2, QueueSize, γ , Ep1, Ep2, Start
Ensure: Stable validation accuracy

1: for i in every epoch do
2: if i ≥ Start then
3: Append val-acc[i] to QUEUE
4: end if
5: if size(QUEUE) ≥ QueueSize then
6: Delete(QUEUE, 0)
7: end if
8: if Val-acc[i] ≥ β1 then
9: if STD(QUEUE) ≤ γ then

10: if i ≥ Ep1 then
11: STOP training
12: end if
13: end if
14: end if
15: if Val-acc[i] ≥ β2 then
16: if STD(QUEUE) ≤ γ then
17: if i ≥ Ep2 then
18: STOP training
19: end if
20: end if
21: end if
22: end for

board. For all classification experiments the inference was performed on two Raspberry Pi’s
remotely using a condensed Tensorflow Lite (TF-Lite) model.

The hyper-parameters of the CACAO-Net models were tuned based on the K-fold
validation accuracy metric by setting the Learning rate, weight decay, batch size, and the
number of epochs. A relatively short amount of time was dedicated for this phase where the
very mild tuning was applied to reach the desired results mainly due to the robustness of the
CACAO-Net model. The actual values or the parameters are shown in Table 3.

7.7 Experimental results

The final goal of this work is to achieve competitive results in all five datasets having five
diverse application domains. High accuracies were achieved in the preliminary forecasts,
such as 98.4% for the gender detection dataset, and 96.8% for the skin cancer dataset. As for
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the satellite imaging dataset an accuracy of 97.39% was attained and overall accuracies of
99.4% and 91.1% for the shadowed targets and weather classification dataset, respectively.
Additionally, a novel early-stopping function has been implemented which tracks the current
validation accuracy and the N previous ones, while computing the STD of the set along
with checking if the current value surpasses a predefined threshold (which is updated as the
number epochs are increases) to insure performance and stability. Moreover, XAI was used
to interpret the image-based gender detection dataset while using multiple Python libraries
for the task, where results show good correlation as to which physical parts of the image
determines gender.

7.7.1 Forecast results

A K-fold setup (with five folds) was adopted by relying five datasets where the implementation
is being conducted on an MSI laptop while the inference for the unseen data is applied using
TF-Lite and on two Raspberry Pi platforms. This has been performed on all five datasets to
evaluate the robustness of the CACAO-X framework. In every experiment, a three-way split
was applied, as described in Table 7.3, for remote inference on the Raspberry Pi.

Table 7.3 Summary of CACAO-Net ML classification hyper-parameters.

Dataset Learning rate Batch size Decay Train/Validate/Test Epochs

Gender 5e-4 500 5e-6 0.72/0.18/0.10 100
Satellite 5e-4 30 5e-6 0.72/0.18/0.10 200
Shadow 5e-4 30 5e-6 0.81/0.09/0.15 100
Skin Cancer 5e-4 300 5e-6 0.76/0.14/0.10 100
Weather 1e-4 50 1e-6 0.66/0.29/0.05 100

Table 7.4 Summary of CACAO-Net ML classification results on the edge.

Validation Inference Time/Task Time/Task Time/Task
Dataset MSI RP4 RP4 (FE) RP4 (Inf) RP3 (Inf)

(Acc) (Acc) (msec.) (msec.) (msec.)

Gender 98.40 ± 0.5 % 98.15 % 52.54 14.66 139.4
Satellite 97.28 ± 0.5 % 94.08 % 104.02 9.20 145.7
Shadow 99.41 ± 1.1 % 98.89 % 109.57 8.72 144.9
Skin Cancer 96.84 ± 0.38 % 95.50 % 124.72 9.24 155.8
Weather 91.20 ± 2.0 % 92.86 % 117.32 9.45 129.7
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The first inference setup consists of a Raspberry Pi 3B accessed remotely where the
TS FE using Algorithm (7.1) has been implemented offline and in Python, therefore only
the inference time/task has been recorded. Secondly, a Raspberry Pi 4B with 4GB of
Random Access Memory (RAM) was used with the same Image-to-TS conversion which is
implemented per image and in real-time. In this setup, the low-level C version of the code
is compiled as a shared Linux ".SO" library for proven deployment on limited resources
devices.

Accuracyij =
T Pij +T Nij

T Pij +T Nij +FPij +FNij
(7.18)

Accuracyi(avg) =
1
N

Σ
N
j=1α j

T Pij +T Nij

T Pij +T Nij +FPij +FNij
(7.19)

AccuracySTD
2 =

1
K.N

Σ
K
i=1Σ

N
j=1(Accuracyij - Accuracyi(avg))2 (7.20)

A summary of the experimental results can be viewed in Table 7.4, where it shows
the validation and testing accuracies for every dataset, where CACAO-Net achieves robust
performance on the edge in terms of accuracy, reliability regarding new data, as well as being
light-weight with good performance metrics. Moreover, the functions used to determine

Fig. 7.9 Gender classification accuracy and loss curves.
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Fig. 7.10 Skin cancer classification accuracy and loss curves.

Fig. 7.11 Shadow classification accuracy and loss curves.
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Fig. 7.12 Satellite classification accuracy and loss curves.

Fig. 7.13 Weather classification accuracy and loss curves.
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the values in Table 4 are shown in equations (18-20). As shown in the equations TP is the
true-positive rate, TN is the true-negative rate, FP is the false-positive rate, and FN is the
false-negative rate. K represents the number of forecasts performed and N corresponds to
the number of class labels. Finally, α represents the weight for each class label from its
particular dataset.

Moreover, the accuracy and loss curves can be viewed in 7.9-7.13 where the performance
is robust in terms of settling stability for all five datasets where for each the upper curve
represents the Train/Validate accuracy and the lower curve corresponding to the loss. In these
results, the early stopping callback function, discussed in Section 5, is responsible for the
halting of the training at the desired target validation accuracy which based on its most recent
stable (Low deviation) mean. Additionally, the inference confusion matrices are provided in
Figure 7.14, where the results summary shows good performance in five experiments, where
through visual inspection, it is shown that the FP’s and FN’s are kept to a tolerable minimum
as shown in the heat-map representations.

7.7.2 CACAO-NET comparisons

In Yang et al. (2006), forward-facing images of people of the same ethnicity were used. In
this setup a maximum accuracy of 97.16% was achieved using a SVM. Also, SVM was
also used in Moghaddam and Yang (2000), where the dataset contains low-resolution and
forward-facing images where an accuracy 96.6% was attained. In Eidinger et al. (2014)
authors attempt to detect gender using inconsistent images and in their experiments, the
highest classification accuracy reached is 88.4%. In contrast to being a setup used exclusively
for gender classification, CACAO-Net outperforms the literature in both averaged validation
and testing forecasts while being able to transition to other application fields and remains
competent. Regarding the shadowed targets dataset, CACAO-Net outperforms the ML
workflows applied in Mohanna et al. (2022) by a maximum of 17.9% and a minimum 7.2%
where the algorithm presented in this project was not exclusively developed for any particular
application.

Regarding weather classification, in Zhang et al. (2016) a multiclass dataset of weather
images is presented for four classes where an accuracy of 71.4% is achieved. A maximum
overall accuracy of 94.8% is achieved in Roser and Moosmann (2008) for a three-class
dataset, however, a single forecast was performed without averaging multiple runs, therefore,
the results may have overfit to that particular split. A binary weather classification setup with
application-specific features is discussed in Lu et al. (2014) where an averaged accuracy of
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Fig. 7.14 Confusion matrices from the inference performed using TF-Lite on the Raspberry
Pi for all five datasets: (a) Weather dataset. (b) Satellite images dataset. (c) gender dataset.
(d) Skin cancer dataset. (e) Shadowed target dataset.
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53.1% is achieved. Regarding the skin cancer classification in Hekler et al. (2019) it is carried
out using CNN while relying on a questionnaire of instance selection where the methods
used achieve a maximum accuracy of 83%.

Satellite classification of forest/non-forest images is discussed in Cihlar (2000) where the
overall accuracy using SVM varies between 92.1% and 98.9% having an average of 96.3%.
In fact, CACAO-Net achieves a much smaller range based on the STD field as shown in
Table 4.

As shown in Table 4, for the Raspberry Pi 3B+, the average time taken for each inference
task is shown where the FE is implemented offline. As for the Raspberry Pi 4B (4GB), the
FE is implemented on the blind just before the inference, and therefore, the average times
taken for both inference and FE are displayed. Consequently, due to more recent versions of
TF-Lite on the Raspberry Pi 4B and due to its more advanced architecture, an improvement
of 11x to 15x is visible regarding the inference time taken per task. Additionally, even after
adding the FE to the inference process, since Algorithm 3.1 is compiled in low-level C-Code,
the Raspberry Pi 4B’s overall performance remains superior to its predecessor.

Consequently, due to the nature of the CACAO-Net model and its flexibility, the accuracy
compares well with the literature where similar datasets are used in addition to being portable
to apply edge inference while relying on Algorithm (7.4) to deploy a stable ML model after
training has halted.

7.7.3 CACAO-Net more reliable comparisons with classic ML models

In section 6.1 multiple comparisons with other works from the literature are discussed in
addition to providing performance metrics such as accuracy, inference speed on the edge,
and the FE time-taken per task while relying on TF-Lite models for classification. Regarding
the comparisons, most of the examples relate only to accuracy and its deviation by applying
multiple forecasts in various splits to prove the robustness of CACAO-Net model 1. However
to further validate the performance of the CACAO-X framework, additional comparisons
using the exact same datasets and splitting content with classic ML models is presented while
relying on more reliable metrics.

In regards to the comparison seven tuned AI algorithms taken from the Python Pycaret
Automated ML (AutoML) library (Pycaret (2023)) were used, namely:

1. Naive Bayes (NB) which is a probabilistic ML model that relies on the Bayes theorem.

2. Logistic Regression (LR) is a statistical method that finds a relationship between
dependent and independent features.
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3. K-Nearest Neighbor (KNN) is a ML algorithms which attempts to create boundaries
by grouping records and assigning them appropriately to a certain class label by means
of iteration.

4. Multi-Layer Perceptron (MLP) is a very simple or shallow NN which is the basis for
the CNN and LSTM networks discussed in Section 3.

5. Decision Trees (DT) is an AI algorithm that splits the dataset iteratively in order to
isolate all points that correspond to every class label.

6. Random Forest (RF) uses forests or groups of DTs to achieve very accurate perfor-
mance by means of running multiple DTs and reaching a final decision by means of a
voting scheme.

7. Adaboost (Ada) is a weighted AutoML algorithm which relies on meta-learning to
optimize its training based on the performance criteria.

Pycaret is a significant automated AI library which provides tuned ML models capable of
competing with published works, since it uses AutoML techniques to reach good performance
in all of the described metrics in this thesis.

Regarding the metrics which are employed, other than accuracy, precision, recall and
specificity are used to assess the performance of ML model where precision evaluates
how precise the classification of a class is from a pool of samples assigned to that label
by prediction. Recall on the other hand evaluates from the actual labels of each sample,
how probable it is to reach a correct classification. Additionally, specificity is evaluated by
dividing the number of TN results by the total number of negatives. Equations (21 - 23)
present the expressions for precision, recall and specificity respectively:

Precisionij =
T Pij

T Pij +FPij
(7.21)

Recallij =
T Pij

T Pij +FNij
(7.22)

Specificityij =
T Nij

T Nij +FPij
(7.23)

The averages of accuracy, precision and recall taken from a series of forecasts in terms of
each ith forecast can be written as follows:

Percisioni(avg) =
1
N

Σ
N
j=1α j

T Pij

T Pij +FPij
(7.24)
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Recalli(avg) =
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(7.25)

Specificityi(avg) =
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N

Σ
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j=1α j

T Nij

T Nij +FPij
(7.26)

The standard deviations of this series of forecasts may be computed using equations (27
and 29):
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j=1(Precisionij - Precisioni(avg))2 (7.27)

RecallSTD
2 =

1
K.N

Σ
K
i=1Σ

N
j=1(Recallij - Recalli(avg))2 (7.28)

SpecificitySTD
2 =

1
K.N

Σ
K
i=1Σ

N
j=1(Specificityij - Specificityi(avg))2 (7.29)

In some datasets the precision and recall may provide with conflicting results mainly
due to skewness in the dataset and may be the cause of a non-robust model or improper
tuning or data splitting. Therefore, there exists metrics that combine these two fundamental
measurements in order to provide a more general and fair assessment of the ML workflow.
These consist of the F1-score and the Mathews Correlation Coefficient (MCC), as shown in
equations(30-31):

F1-scoreij =
2.Precisionij.Recallij

Precisionij +Recallij
(7.30)

MCCij =
T Pij.T Nij−T Pij.T Nij

(T Pij +FPij).(T Pij +FNij).(T Nij +FPij).(T Nij +FNij)
(7.31)

The averages for the F1-score and the MCC taken from a series of forecasts in terms of
every ith forecast can be written as follows:

F1-scorei(avg) =
1
N

Σ
N
j=1α j

2.Precisionij.Recallij

Precisionij +Recallij
(7.32)

MCCi(avg) =
1
N

Σ
N
j=1α j

T Pij.T Nij−T Pij.T Nij

(T Pij +FPij).(T Pij +FNij).(T Nij +FPij).(T Nij +FNij)
(7.33)

F1-scoreSTD
2 =

1
K.N

Σ
K
i=1Σ

N
j=1(F1-scoreij - F1-scorei(avg))2 (7.34)
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MCCSTD
2 =

1
K.N

Σ
K
i=1Σ

N
j=1(MCCij - MCCi(avg))2 (7.35)

To further determine the performance reliability of our ML model another metric may also be
used which is balanced accuracy that signifies the average of the precision and the specificity
where it may be employed using the following equations:

Balanced-accij =
Precisionij +Speci f icityij

2
(7.36)

Balanced-acci(avg) =
1
N

Σ
N
j=1α j

Precisionij +Speci f icityij

2
(7.37)

Balanced-accSTD
2 =

1
K.N

Σ
K
i=1Σ

N
j=1(Balanced-accij - Balanced-acci(avg))2 (7.38)

Dataset metrics discussion

Regarding the classification comparisons with the traditional classifiers and using the same
data source used in every split, CACAO-Net was able to outperform each ML model in
virtually every metric (Excluding one dataset) related to accuracy, precision, recall, F1-score,
MCC and Balanced accuracy proving the advantage of fusing both image and TS data in
the training and classification stages. Although some models came close to reaching the
performance of the CACAO-Net model 1 classifier in four datasets, when applied on other
data sources, the CACAO-Net had better stability and robustness that validate its portability
onto various unrelated domains.

the results for the extensive set of automated forecasts conducted can be inspected in
Tables 7.5-7.9 for a comparison between CACAO-Net model 1 and the seven AI models
which were tuned using Pycaret (Pycaret (2023)) whereas mentioned the CACAO-Net multi
input approach outperforms its AutoML competition in every metric 97% of the time (in
terms of metric means).

Regarding the gender, weather, satellite and skin cancer data sources, CACAO-Net
outperforms the tuned ML models in every metric to sufficiently prove it portability onto
various ML domains, however, in case of the shadowed target dataset, LR achieves a
100% validation score in every metric overcoming CACAO-Net and the application-specific
ML model from Mohanna et al. (2022), which was also surpassed Ada, RF, KNN and
DT, solidifying Pycaret as a reliable choice for the metrics comparison mainly due to
outperforming a subset of the published results mentioned in this thesis. Nevertheless,
CACAO-Net outperforms LR in every other domain substantially which demonstrates its
generality.
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Table 7.5 CACAO-Net gender classification testing results with comparisons
using tuned ML models.

Algorithm Accuracy Precision Recall F1-score MCC Balanced-acc

CACAO-mean 98.40 % 98.40 % 98.40 % 98.40 % 96.80 % 98.39 %
CACAO-STD ±0.5 % ±0.5 % ±0.5 % ±0.5 % ±1.0% ±0.5%

LR 93.14 % 93.14 % 93.15 % 93.146 % 86.83 % 93.17 %
Ada 85.04 % 85.09 % 85.04 % 85.04 % 70.12 % 85.08 %
RF 95.80 % 95.82 % 95.80 % 95.80 % 91.61 % 95.82 %
KNN 81.66 % 81.73 % 81.66 % 81.66 % 63.38 % 81.70 %
MLP 48.46 % 23.87 % 48.46 % 31.64 % 00.00 % 00.50 %
DT 91.50 % 94.87 % 91.62 % 91.5’ % 83.11 % 91.57 %
NB 67.52 % 67.55 % 67.52 % 67.53 % 35.03 % 67.52 %

Table 7.6 CACAO-Net Shadowed targets images classification testing results
with comparisons using tuned ML models.

Algorithm Accuracy Precision Recall F1-score MCC Balanced-acc

CACAO-mean 99.41 % 99.42 % 99.41 % 99.41 % 98.83 % 99.38 %
CACAO-STD ±0.4 % ±0.5 % ±0.5 % ±0.5 % ±1.0 % ±0.5%

LR 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
Ada 96.57 % 96.57 % 95.57 % 95.57 % 93.14 % 95.58 %
RF 96.57 % 96.69 % 96.57 % 96.57 % 93.25 % 96.64 %
KNN 96.08 % 96.24 % 96.08 % 96.08 % 92.32 % 96.16 %
MLP 51.47 % 26.49 % 51.47 % 34.98 % 00.00 % 00.50 %
DT 95.10 % 95.16 % 95.10 % 95.10 % 90.25 % 95.04 %
NB 55.88 % 55.88 % 55.88 % 50.13 % 13.28 % 54.89 %

7.7.4 CACAO explainability results

Algorithm (7.1) was used to convert all images into TS in terms of statistical measurements
of the distances (without Angles) to be applied in the CACAO-Net. The full version of
Algorithm 3.1 on the other hand is employed to provide explication labeling based on
the Shapley features (which were extracted from the Python SHAP library) and landmark
distribution through Algorithms (7.2) and (7.31), respectively. This is clearly demonstrated
in Figure 7.8. A sample of the global image explainability results as performed using LLM
running in Rulex using the said explicative labels as shown in Tables 7.10 and 7.11.
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Table 7.7 CACAO-Net Satellite images classification testing results with com-
parisons using tuned ML models.

Algorithm Accuracy Precision Recall F1-score MCC Balanced-acc

CACAO-mean 97.28 % 97.32 % 97.28 % 97.28 % 96.34 % 97.43 %
CACAO-STD ±0.5 % ±0.5 % ±0.5 % ±0.5 % ±0.7 % ±0.5%

LR 72.63 % 76.55 % 72.63 % 72.47 % 65.06 % 73.91 %
Ada 55.11 % 47.15 % 55.11 % 45.31 % 46.63 % 58.08 %
RF 91.61 % 91.67 % 91.61 % 91.60% 88.69 % 91.44 %
KNN 90.88 % 91.25 % 90.88 % 90.89 % 878.81 % 91.76 %
MLP 73.36 % 82.43 % 73.36 % 69.13 % 68.62 75.65 %
DT 86.13% 88.32 % 86.13 % 86.16 % 81.33 % 86.00 %
NB 79.93 % 81.46 % 79.93 % 79.39 % 73.90 % 81.07 %

Table 7.8 CACAO-Net Skin cancer images classification testing results with
comparisons using tuned ML models.

Algorithm Accuracy Precision Recall F1-score MCC Balanced-acc

CACAO-mean 96.84 % 96.85 % 96.84 % 96.84 % 93.68 % 96.83 %
CACAO-STD ±0.4 % ±0.4 % ±0.4 % ±0.4 % ±0.8 % ±0.4%

LR 92.13 % 92.17 % 92.13 % 92.13 % 84.30 % 92.14 %
Ada 93.52 % 93.52 % 93.52 % 93.52 % 87.04 % 93.52 %
RF 94.54 % 94.46 % 94.54 % 94.54 % 89.09 % 94.54 %
KNN 92.59 % 93.17 % 92.59 % 92.57 % 85.77 % 92.65 %
MLP 56.76 % 74.72 % 56.76 % 46.82 % 25.18 % 56.56 %
DT 89.07 % 89.09 % 89.07 % 89.07 % 78.16 % 89.06 %
NB 73.52 % 75.54 % 73.52 % 73.03 % 49.09 % 73.64 %

In Table 7.10, a subset of 8 conditions taken from a single rule are shown which contribute
to correct classification as a Female photo. Rule 1.1 (Condition 1.1) relates to the distance
between the chin at the 4th position till the 5th position on the left eye, wherein case the
measurement is greater than a defined threshold infers to correct detection. Rules 1.2 and 1.3
present the same concept where the landmarks distances relate to the left eyebrow, left eye
and bottom lip using the same principle.

Rules 1.4 and 1.8 in Table 7.10, correspond to the same set of conditions, however, they
correspond to TS statistical distances. In rule 1.4, the minimum distance of hits in the Sobel
filter is greater than 52 for 112x112 image at an angle of 183 degrees infers the image is that
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Table 7.9 CACAO-Net Weather images classification testing results with com-
parisons using tuned ML models.

Algorithm Accuracy Precision Recall F1-score MCC Balanced-acc

CACAO-mean 91.20 % 91.42 % 91.20 % 91.20 % 88.16 % 90.73 %
CACAO-STD ±2.0 % ±2.0 % ±2.0 % ±2.0 % ±2.6 % ±1.9%

LR 81.04 % 81.69 % 81.04 % 81.01 % 74.49 % 79.26 %
Ada 72.04 % 77.86 % 72.04 % 73.11 % 63.67 % 70.51 %
RF 83.41 % 83.75 % 83.41 % 83.51 % 77.61 % 82.94 %
KNN 74.41 % 79.48 % 74.41 % 75.14 % 66.78 % 74.07 %
MLP 80.94 % 82.13 % 80.09 % 79.54 % 73.49 % 77.15 %
DT 69.19 % 70.61 % 69.19 % 69.73 % 58.44 % 67.13 %
NB 73.46 % 73.44 % 74.46% 73.1 % 64.17 % 72.64 %

Table 7.10 A sample of image explainability results taken for a single rule
having a set of conditions as performed using LLM running in Rulex relating
to the Female class.

Rule # Rules for classification as a Female

1.1 ’chin4-S-left-eye5’ ≥ 8.3
1.2 ’left-eyebrow5-S-left-eye5’ ≥ 37.1
1.3 ’bottom-lip5-S-bottom-lip9’ ≥ 0.5
1.4 27.44 ≤ ’TS-STD-est-43-R-0-90’ ≤ 49.32
1.5 ’TS-min-est-183-R-180-270’ ≥ 52.64
1.6 38.4 ≤ ’TS-min-est-193-R-180-270’ ≤ 55.93
1.7 ’Ang-STD-est-6-R-0-90’ ≥ -45.55
1.8 -83.82≤ ’Ang-var-est-46-R-0-90’ ≤ -68.72

of a Female. In Rule 1.8, in case the variance of the angel of hits at an angle of 46 varies
between -83.82 and -68.72 means that the photo is more likely to be for a Female.

In Table 7.11, a subset of 3 sets conditions belonging to 3 rules are presented. Rule 1.1
(Condition 1.1) infers that in case the distance from the 5th position on the chin till the 6th

position on the top lip is greater than 44.48 the photo is more likely to be that of a man. From
rule 3.2, we can conclude that in case the mean distance at an angel of 76 degree that lies
between the centroid till each hit is less than 10.53 means that the current photo is that of a
male.
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Table 7.11 A sample of image explainability results taken for three rules having
three sets of conditions as performed using LLM running in Rulex relating to
the Male class.

Rule # Rules for classification as a Male

1.1 ’chin5-S-top-lip6’ ≥ 44.48
1.2 ’bottom-lip3-S-bottom-lip8’ ≥ 13.38
1.3 ’Ang-STD-est-156-R-90-180’ ≤ -29.54
1.4 ’Ang-max-est-246-R-180-270’ ≤ -51.27
2.1 ’chin11-S-bottom-lip12’ ≥ 6.04
2.2 27.83 < ’chin13-S-left-eye2’ ≥ 47.1
3.1 124.23 ≤ ’TS-median-est-316-R-270-360’ ≤ 185.8
3.2 ’TS-MEAN-est-76-R-0-90’ ≤ 10.53

Fig. 7.15 Feature ranking for both Female (0) and Male (1) classes of the gender classification
dataset in absolute format.

Figure 7.15 presents the absolute feature ranking of the LLM used as the explainability
engine within the CACAO-X framework. The most prominent metric corresponding to the
first feature in this figure which relates to distance between the 5th position of the chin and
the 5th position of the top lip which we may conclude for the first time in the literature
corresponds to the most contributing factor for gender classification when facial landmarks
are taken into account.
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Fig. 7.16 Feature ranking for the Female (0) class from the gender classification dataset.

Fig. 7.17 Feature ranking for the Male (1) class from the gender classification dataset.

In Figures 7.16 and 7.17, it is shown that the top feature from Fig. 14 play a more
prominent role in the classification Females than Males since Fig. 15 is mainly concerned
with the Female class and Fig. 16 deal with the Male class. The same concept may also
be applied to all of the remaining features when comparing the absolute ranking with the
label-sensitive ranking as discussed.
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7.8 Chapter Conclusion

This thesis presents a unified model for global image expandability and general-purpose
image inference having a real-world FE approach for deployment on resource-constrained
devices. The explainability is implemented with the use landmark-detectable applications
and polar TS information which provides explicative conditions through which a novel
XAI architecture is employed. This model is implemented using the described methods
which are derived by extracting features from the Shapley output and finally performing
the explainability stage using LLM. Actually, the presented CACAO-X framework is robust
enough that it can be implemented for traditional ML classification with little tuning of the
hyperparameters where CACAO-Net takes an image and its TS transform as input. Moreover,
the CACAO-X Image-to-TS conversion algorithm was used during ML Classification in a
low-level C implementation which was applied on the Raspberry Pi 4B before inference in
real-time. Forecast results prove that after applying various ML experiments from diverse
datasets the CACAO-Net achieved high accuracy in most applications while remaining
increasingly competitive in each prediction presented. K-Fold cross-validation was applied
on an MSI laptop which used the validation part of a Train/Validate/Test split. Then, the
remaining testing data is used to perform inference remotely on the Raspberry Pi through a TF-
Lite classifier where high accuracy was achieved and the overall inference Time/Task with FE
included validates the portability and deployment of the CACAO-Net Classifier. The proposed
function ensures that the training halts at a stable and that all results show competitive
performance in terms accuracy as well as inference time on the edge. Additionally, CACAO-
Net was compared with standard ML models from the Pycaret AutoML library and using
the same data split content, where CACAO-Net model 1 outperformed its competition in
virtually all five datasets and in 97% of recorded performance metrics.

After applying K-fold validation on all five datasets, the gender dataset was forecast with
an accuracy of 98.4% and tested with an accuracy of 91.5% with an impressive inference time
on the Raspberry Pi 4 with the pre-processing being taken into account of the Satellite dataset
resulted with an average accuracy of 97.31% and a testing accuracy of 94.1%. Regarding the
Shadows dataset, the average accuracy was an impressive 99.41% and the testing accuracy
reached 98.9%. Regarding the skin cancer and weather datasets, the averaged accuracies
were 96.8% and 91.21% respectively, and for the testing, 95.5% and 91.9% respectively. In
every case the inference on the Raspberry Pi (with FE included) outperformed the Raspberry
Pi 3 without the real-time FE.
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Regarding the K-fold setups, the validation and loss curves for training as controlled by
Algorithm 7.4 stopped at stable state based on the oscillation around the most recent mean
either on the first of second set of thresholds or until the final epoch.

When comparing CACAO-X with Pycaret, CACAO-Net outperformed the AutoML li-
brary, which produces tuned models that outperform published works substantially. CACAO-
Net outperformed Pycaret in every metric 97% of the time in accuracy, precision, recall,
F1-score, MCC, and balanced accuracy. In case of the shadow dataset, Pycaret outperformed
the original source in accuracy with a range ranging between 8.5% and 18.5% demonstrating
the reliability of comparing CACAO-Net with this Python library.

Although, CACAO-X does not contribute to true general-purpose image explainability
which at this point still abstract in the literature and since global image-explainability requires
proper alignment and landmark detection, this thesis remains the first to introduce a semi-
domain-specific XAI model with human understandable rules since it utilizes explicative
labeling to interpret the global conditions behind image classification.



Chapter 8

VAMPIRE: Vectorized Automated ML
Pre-processing and Post-processing Algorithms
for the Internet of Things

8.1 Chapter Abstract

ML techniques aim to mimic the human ability to automatically learn how to perform tasks
through training examples. They have proven capable of tasks such as prediction, learning
and adaptation based on experience and can be used in virtually any scientific application,
ranging from biomedical, robotic, to business decision applications, and others. However,
the lack of domain knowledge for a particular application can make FE ineffective or even
unattainable. Furthermore, even in the presence of pre-processed datasets, the iterative
process of optimizing ML parameters, which do not translate from one domain to another,
maybe difficult for inexperienced practitioners. To address these issues, we present in
this thesis a Vectorized Automated ML Pre-processing and Post-processing Framework,
approximately named (VAMPIRE), which implements FE algorithms capable of converting
large TS recordings into datasets. Also, it introduces a new concept, the Activation Engine,
which is attached to the output of a MLP and extracts the optimal threshold to apply binary
classification. Moreover, a tree-based algorithm is used to achieve multiclass classification
using the Activation Engine. Furthermore, the IoT gives rise to new applications such as
remote sensing and communications, so consequently applying ML to improve operation
accuracy, latency, and reliability is beneficial in such systems. Therefore, all classifications
in this project were performed on the edge in order to reach high accuracy with limited
resources. Moreover, forecasts were applied on three unrelated biomedical datasets, and on
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two other pre-processed urban and activity detection datasets. Features were extracted when
required, and training and testing were performed on the Raspberry Pi remotely, where high
accuracy and inference speed were achieved in every experiment. Additionally, the board
remained competitive in terms of power consumption when compared with a laptop which
was optimized using a Graphical Processing Unit (GPU).

8.2 Introduction

ML has become a key technique that is used in many modern applications in many fields,
such as business, engineering, and healthcare. It is considered a form of AI, and because it
possesses the ability to learn, adapt, and remember, it proved superior to classical hard-coded
programming methods, which are application-specific in nature. Many ML algorithms can
make predictions in multiple fields while generalizing and have a relatively high accuracy
regarding a specific application. However, a ML process requires a workflow that usually
consists of data collection, FE, setting parameters, and applying the forecast on both training
and test-sets. This process is iterative and, relying upon the application, some phases may
require more tuning than others, depending on whether accuracy is reduced due to high bias
or high variance.

ML algorithms usually require that the practitioner possesses domain knowledge in the
field associated with the dataset that he is using, and most notably when FE is required. FE is
the process of conversion of data into a better format to use in ML setups. However, currently,
many pre-processed datasets are available, where ML algorithm can be applied directly to
the data without any domain knowledge. This can be the case in many medical, physical,
and business applications.

However, even after acquiring pre-processed data, the ML algorithm hyper-parameters
still need to be tuned to optimize forecast accuracy. Moreover, this parameter tuning process
can require a notable effort and sufficient experience in ML in general, and even ML domain
experience in that specific application. This is dominantly the case, since hyper-parameter
tuning setups does not translate well from one domain to another.

In this thesis, we present VAMPIRE, a vectorized automated ML pre-processing and post-
processing framework. It consists of novel pre-processing and post-processing algorithms
that we developed in the Python programming language. The first facilitates the FE phase in
case the user is dealing with TS data, where the algorithm can be applied to fully annotated
and semi-annotated datasets. Furthermore, a post-processing algorithm has been developed
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that implements Activation Engines, which are applied to the outputs of a MLP and extracts
the optimal threshold relevant to the test-set based on training accuracy.

The VAMPIRE framework achieves robust performance, since it can be applied to multiple
types of TS for FE and can be implemented to all applications performed using MLP through
the Activation Engine concept. Also, the main computational blocks have been implemented
using Python Numpy vectors to considerably increase the speed of FE, dataset generation,
and post-processing substantially. Moreover, a subset of the extracted features from the TS
has been applied using the Rulex software in an edge computing arrangement. Rulex (Muselli
(2005)) is a general-purpose ML platform that operates through a GUI; It can operate in a
client/server setup where the ML forecasts are applied on the general-purpose Raspberry Pi
IoT device (Daher et al. (2021)). Rulex applies Switching NN (Muselli (2005)) and Positive
Boolean Function Reconstruction (Muselli and Ferrari (2009)) to implement XAI which
provide a white-box learning approach to ML.

Multiple classification forecasts were applied using various datasets taken from vari-
ous fields in a mesh setup, where some datasets were pre-processed using the algorithms
developed in this thesis, and others were already pre-processed using different techniques.
Also, for the forecasts, Rulex was applied to a subset of the applications, while MLP with
and without the new post-processing block was applied to the remaining datasets. Addi-
tionally, some forecasts were performed using just one of the ML setups. Also for four
of the used datasets, a comparison with the literature is outlined and discussed since there
exists viable related work suitable for comparison. Moreover, a complete description is
provided in the experimental part of this project. All ML training and testing were applied
in an edge computing setup with limited resources by applying training and testing outside
a cloud server. Therefore, ML workflows were either applied using Rulex running on the
Raspberry Pi and in a Client/Server arrangement, or by running a MLP remotely on the
Raspberry Pi with VAMPIRE’s Activation Engine placed at its output. However, since the
Activation Engine is a basic binary classification block, a multi-class tree-based technique
which was developed in Daher et al. (2020b) was incorporated into the VAMPIRE Framework
to implement multi-class classification. Furthermore, the inference time of the framework
was compared to other edge setups and so was its power consumption with a laptop having
an onboard GPU.

This chapter is organized as follows: Section 2 reviews the literature while discussing
various automated ML techniques, related pre-processing and post-processing algorithms,
and introduces the Rulex (Muselli (2012)) and Raspberry Pi (Daher et al. (2021)) platforms
used in this project. The new VAMPIRE pre-processing algorithms are presented in detail
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in section 3 and VAMPIRE’s Activation Engine block is described in section 4. Section 5
presents the data sources used for FE and classification to test the VAMPIRE framework’s
robustness. All experimental results achieved using the data sources and the performance
comparisons are provided in section 6. Also, we draw a conclusion in section 7, and finally
an appendix explaining version two of the pre-processing algorithm in detail concludes the
chapter.

8.3 Chapter Related Work

FE or pre-processing is used to convert raw data into a more convenient format to apply vari-
ous ML algorithms. On the other hand, post-processing is the act of applying an optimization
block at the output of a ML workflow to improve accuracy.

8.3.1 Feature Extraction and pre-processing of TS

A certain dataset in its available format may not be directly applicable to a ML algorithm.
Therefore, FE is usually applied to TS data, and most notably biomedical datasets.

In Fister et al. (2018) authors propose a Nature-Inspired Differential-Evolution for feature
selection which was applied as a pre-processing method using the LR algorithm. The
algorithm selects features based on the accuracy threshold applied taken from the output of
LR.

A web platform for biomedical TS pre-processing (Jovic et al. (2017)) was applied
to ECG signals for cases of myocardial ischemia, atrial fibrillation, and congestive heart
failure. Biomedical signals are usually noisy and so filtering is an important issue in TS
pre-processing. In Venkatesan et al. (2018) an ECG signal is pre-processed using an adaptive
filter to remove noise before applying discrete wavelet transform to extract features for
classification using SVM. In Kalayci and Ozdamar (1995) authors describe the process of
applying wavelet transform to extract features from an EEG signal for classification using
MLP.

In Khalid et al. (2014) authors review FE and feature selection in ML techniques. They
describe how FE is used to reduce the dimensionality of a dataset through the transformation
of the feature space, and also discuss how feature selection reduces the dimensionality as it
points out the subset of features that possess the most significant effect on forecast accuracy.
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A FE Python pre-processing Library based on nature-inspired optimization algorithms
has been developed in Karakatič (2020). The EvoPreprocess library is compatible with the
ML Scikit-Learn Library and performs well compared to other frameworks.

A TS is a waveform that corresponds to physical, biological, or business data, that changes
over time and is found in various ML applications. In Wang et al. (2013), a Bag-of-Words
representation for biomedical TS is presented. The methods presented treat the TS as text
documents and extract segments as words. In that paper, the Bag-of-Word’s methods were
applied on two ECG datasets taken from Moody and Mark (2001) and an EEG dataset from
Goldberger et al. (2000). An ensemble learning approach is also applied to biomedical
datasets in Jin and Dong (2016) which use the Chinese cardiovascular disease database
(Zhang et al. (2010)). Shortfuse is presented in Fiterau et al. (2017), which is a biomedical
TS FE method that implements LSTM to outperform competing models by 3%, in terms of
accuracy.

In the case of biomedical applications, ECG, EEG, and PPG are the most common
measurements. ECG consists of measuring the electrical activity of the heart, PPG consists
of the measurement of blood pressure and heart rate using light emitting diode, and an EEG
provides the electrical signals taken from the scalp and usually have a much wider frequency
spectrum than ECG and PPG signals. These three signal categories are used in this thesis as
data sources for FE using the VAMPIRE framework.

8.3.2 Automated ML and post-processing

A ML workflow includes also a hyper-parameter tuning, such as setting class-weights and
feature-weights, which are used as parameters in a loss function to optimize classification
accuracy regarding the training set. In some applications, expert knowledge may not be
available to tune the ML parameters, and so, automated ML techniques and software packages
have been developed to facilitate the process of implementing forecasts. However, this can be
a time-consuming process and requires much more processing power compared to classical
workflows that are performed by experts in the field.

Post-processing is the process of applying a cognitive block at the output of a ML
algorithm such as MLP or LR. This is applied for each sample and may consist of applying
multiple ML forecasts in parallel before combining all the outputs to optimize the overall
accuracy.

In Rasp and Lerch (2018) authors apply ensemble learning using MLP on weather
forecasts in different configurations. Ensemble learning is a technique that applies multiple
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ML forecasts in parallel and on the same dataset. Then, the outputs are brought together, and
an optimal output is selected using a voting scheme.

Guidelines are provided by authors in Tanwani et al. (2009) to select the best ML scheme
in the case of biomedical application. They have performed forecasts on 31 datasets and
applied various ML algorithms to select the best configuration.

Another approach to ML automation is Meta-learning, which consists of iterating not
just parameter tuning but also ML algorithms in the quest for optimization. This can be
perceived as an optimization problem per algorithm and a collective optimization problem
which attempts to iterate between different ML techniques. According to this approach, the
Auto-WEKA package (Thornton et al. (2013)) has been presented as a modification of the
original WEKA workbench (Hall et al. (2009)), conceived as a toolset for data analysis and
predictive modeling. Auto-WEKA applies Bayesian optimization to automatically select the
algorithm to be used, along with its tuned parameters. It is a tool dedicated to non-experts to
apply ML forecasts and to achieve good performance. In Feurer et al. (2020) authors present
the AUTO-SKLEARN framework which is a Python implementation based on the Scikit-
Learn Library. The framework applies ensemble learning at the output of a Meta-learning
configuration to automate parameter tuning while choosing the most suitable ML algorithm.

A situation where expert knowledge is not always available is presented in Zhang et al.
(2020) which consists of the prediction of the performance of a tunnel boring machine. So, a
Bayesian optimization scheme is applied for hyper-parameter tuning and algorithm selection,
and a neural architecture search for MLP optimization.

In Guo et al. (2017) authors claim that modern MLP is poorly calibrated since increasing
the depth improves accuracy, however, may affect the calibration negatively. Furthermore, a
domain-specific ML framework dedicated to predicting the properties of inorganic materials
has been presented in Ward et al. (2016).

8.3.3 Platforms used on the edge

IoT encompasses many fields of application which demand the monitoring and management
of power, bandwidth, and reliability. For example, authors in Al-Khafajiy et al. (2018)
propose an IoT framework for resource management with the goal of optimal task offloading,
where the framework is intended for healthcare systems. Power consumption during ML
forecasts on edge is a critical issue due to the limited power availability for IoT nodes.
Therefore, power consumption optimization on the edge using ML is investigated in Cecilia
et al. (2020); Lapegna et al. (2021); Novac et al. (2021). Also, in Kanawaday and Sane
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Fig. 8.1 ML forecasts applied using Rulex software over the public network in a client/server
setup.

(2017) ML is applied on TS data from IoT sensors in order to predict failure in a slitting
machine. Additionally, in Canedo and Skjellum (2016); Hodo et al. (2016) MLPs are used to
improve security in IoT networks.

Therefore, with the vast scope of ML applications in IoT along with the existing benefits
of ML solutions, we’ve developed the present framework to perform ML pre-processing and
prediction using limited resources. Consequently, the hardware platform chosen in this thesis
is the multi-purpose and widely popular Raspberry Pi (Vujović and Maksimović (2014)).
The Raspberry Pi is used as an edge computing node where the act of storing and making a
cognitive decision on a local node rather than making computation and exchanging big data
with a cloud server (Zhang et al. (2018)).

The Raspberry Pi is ideal for edge computing applications since it possesses adequate
processing power and is able to manage enough data for most ML applications. As for the
software part, The ML platform used is Rulex (Muselli (2012)) which is a ML package
directed towards non-domain-experts and which has been ported to the Raspberry Pi as
reported in Daher et al. (2021). The user does not need to write any code to carry on ML
forecasts thanks to an easy-to-use GUI. It allows to easily manipulate the data, apply one
among many ML algorithms, and visualize the output. Following this approach, a subset
of the forecasts applied in this project were performed using Rulex in an edge computing
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environment. The Client/Server arrangement that has been implemented with Rulex is
presented in Figure 8.1, whereas shown, the Rulex engine runs on the Raspberry Pi and
is operated remotely while relying on a database server as a common storage point. Also,
forecasts were performed using VAMPIRE’s post-processing algorithm, where an SSH
connection (Cecilia et al. (2020)) across the public network was established through the
interface of the VSCode editor (without a third-party database), which was used for remote
development.

In case of using Rulex as classifier, the client consists of an HP laptop with an Intel
code-i7 1.8 GHz processor having 16GB of RAM running Windows 10 and without a GPU.
The AI server is a Raspberry Pi 3B+ model with an ARM Cortex-A53 1.4GHz processor
and running Raspbian as its operating system. The database used is a PostgreSQL 12 docker
deployed server operated through a dedicated ODBC driver while running on Azure Cloud.
The Client consists of a graphical interface developed in Python 2.7, and the AI Engine is
written in C/Cpp vectors for optimal performance. The connection between client and server
is an encrypted SSH connection over the public or private network. In case of operating
VAMPIRE remotely, again, an SSH connection locally or through the local or public network
is applied where the code is written in Python 3.8 and the ML models and post-processing are
developed using Tensorflow and Numpy libraries respectively. As for the dataset generation
and FE algorithms, they are also written in the Python 3.8 Numpy library and are performed
outside the Raspberry Pi on an MSI laptop with an Intel 7-10750H Central Processing Unit
(CPU) 2.60GHz processor with 16GB of RAM and a 6GB 2060 Nvidia GPU and on the
same HP laptop used as a client. Consequently, the datasets were generated simultaneously
on both computers with roughly the same time and efficiency.

8.3.4 Motivation for ML edge computing frameworks and automated
dataset generation

Applying ML on edge devices and under performance constraints requires the development
of light data processing programs which are not much of a burden under limited resources.
However, specification restrictions are not the only issue faced in edge paradigms. Usually,
training takes place on a remote cloud server (Murshed et al. (2021)) and so are the online
training updates due to continuously changing data from the real world. The former demands
bandwidth resources while compute-heavy ML tasks can cause the edge node to lag which
results in undesired downtime. Consequently, both of these issues are common design goals
in an industrial ML system deploy-able on the edge.
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Therefore in Sudharsan et al. (2020a) Edge2Train is presented, which is a an edge
computing setup that allows for online training on the edge with automatic dataset generation
capability. The framework uses an instrumentation feedback system which monitors changes
in the real world in order to update and validate the model through training on the edge. Even
so, this arrangement does not attempt to tune the parameters of ML model but rather takes
them as inputs from an external application. Furthermore, currently this setup only deals
with binary classification applications. Also in Sudharsan et al. (2020b) authors implement
a pipeline that executes CNN on edge devices. The pipeline aims to reduce the size and
structure of the network and the volume of data such that they can be deployed on a unit
with limited resources, while preserving accuracy. However, this method trains the model
outside an edge node before deployment and does not include FE which is missing from the
framework.

For final or industrial implementation of edge-based AI systems, one fundamental charac-
teristic is automated feature generation regardless if training is applied in one shot or whether
online updates are applied. TS forecasting setups on the other hand usually include FE in
order to reduce the dimensionality of data and since it may improve prediction accuracy.
Therefore, automating this process is desirable considering the large amounts of data that can
be collected by biomedical edge devices and from multiple patients. Authors in Meisenbacher
et al. (2022) review the automation of TS ML processes which encompass: Pre-processing,
feature engineering, hyperparameter optimization, model selection and ensembling. They
reveal that the majority of publications only cover three out of the five pipelines mentioned.
Also, based on their report, ensembling and parameter optimization are not suitable to be
applied on the edge due to high computation requirements and since multiple complete
training runs are required twice for each block. EEG automated FE is reported in Martone
et al. (2019) where a GUI named Training Builder was developed which generates a dataset
automatically based on predefined computations and relies on a windowing technique to
split an unbounded TS into smaller finite sets. However, the length of sets and the overlap
times needs to be defined manually. Consequently, a practitioner may need to experiment
with these time values since they affect the forecast accuracy which limits the automation
attribute.

The VAMPIRE framework described in this thesis avoids hyperparameter tuning and
AutoML which are increasingly compute-expensive but relies on a post-processing block
that can run to a finite number of times where the runtime is adjustable for a loss in accuracy,
where this loss is usually very small or improbable. Furthermore, the framework adds a
multiclass classification feature using the tree-based method which is described in section
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Fig. 8.2 Workflow of the VAMPIRE framework with various setups.

6. As for the automated dataset generation part of the VAMPIRE framework, the process is
completely automated since in the case of dealing with streams of data, the algorithm will set
a variable length for each finite set which in continuously checked and updated without any
predefined parameters and variables. The FE algorithms provided in this framework may
be implemented in an online learning approach due to their automated nature since they do
not require parameters from an operator or from any additional programs. Also, the same
statement can be declared regarding the post-processing technique which is adopted.

8.4 Novel VAMPIRE pre-processing algorithms

The thesis presents a new FE method which takes a TS as an input, and can automatically
generate a dataset in Comma Seperated Values (CSV) format that can be processed by any
ML algorithm. This process is automated and may only require the user to apply some
filtering technique to the input signal to reduce noise. Furthermore, the key computational
blocks in the code were implemented using Python Numpy to increase processing speed by a
considerable factor.

The pre-processing algorithm is applied in two arrangements. The first operates directly
by applying multiple algorithms in case the signals are annotated by experts in the field. The
second version has been developed to deal with poorly annotated datasets.

Preliminary operations consist in subdividing the whole TS in portions, each one with start
and end clearly defined, and to annotate each portion according to a classification provided by
an expert in the field. A semi-annotated dataset consists of a TS that is classified over a longer
period of time, meaning larger portion size, and may be classified by non-domain-experts
with limited accuracy, such as a patient annotating her or his own state. The VAMPIRE pre-
processing algorithms are implemented in two setups, being capable of extracting datasets
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Fig. 8.3 A waveform used for FE after being converted to the D-Domain. This is the result
of applying the FE method describes in section 3, which correlates between time-varying
signals and their frequency response.

without any excessive intervention by the ML practitioner. An illustration of the overall
workflow of the VAMPIRE framework is provided in Figure 8.2, where the shaded areas
represent to parts where the VAMPIRE framework algorithms are being implemented.

In case of TS data, the VAMPIRE pre-processing algorithm converts the recordings into
datasets, which can be applied to a MLP with a post-processing block (or any other ML
setup). Furthermore, a MLP with an Activation Engine at the output may be applied to any
pre-processed datasets.

8.4.1 VAMPIRE pre-processing algorithm: VAMPIRE FE1

The novel FE algorithm VAMPIRE FE1 applies FFT (Takahashi (2019)) to every record in
the waveform recordings and stores frequency response information. The FFT input and the
output signal are normalized on a scale of 0-N where N is maximum value of the normalized
signal. Then, the frequencies from the FFT, and the voltages from the original signal are
correlated and multiplied, to form the novel V.Hz curve, which is a new unit of representation
proposed in this thesis, where for every biomedical signal the curve is extracted and plotted
versus the time axis as shown in Figure 8.3 The process of generating the curve presented
in Figure 8.3, is illustrated in Figure 8.4. As shown, the voltages from the original TS
are correlated with the maximum frequency value taken from the FFT output, in order to
generate the V.Hz waveform. Algorithm (8.1) presents the coding steps needed to convert a
time-varying voltage into the D-Domain in order to further process the signal and extract
features. It consists of taking FFT of signal x and normalizing its voltages to the same range,
and then multiplying each maximum frequency with the identified voltage to convert x into
the V.Hz Domain, which we will refer to as the D-Domain for simplicity.
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Fig. 8.4 (a) The original TS from the recording with normalized voltages. (b) The FFT output
for the TS in (a). (c) After extracting the maximum frequency from (b) related to a particular
voltage in (a), the normalized voltages and frequencies are multiplied generating the curve in
(c).

After extracting the signal in the D-Domain which is a V.Hz curve, the spikes from this
signal are detected and two variables a1 and b1 are computed. The a1 variable represents
the time that is taken from the first zero-crossing of the V.Hz signal till the peak of the same
signal. Variable b1 represents the time taken from the peak till the second crossing. Their
difference Diff1 and their summation Sum1 are computed. mean, STD, variance, median,
range, maximum and minimum values are derived for a1, b1, Sum1, and Diff1, and are saved
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Fig. 8.5 (a) Base variable a1 and b1 used to derive the first set features. (b) Variable a2 and
b2 used to derive second set of features. These variables are used to derive the features used
in ML training, by implementing basic statistical operations.

Algorithm 8.1 Algorithm that converts a time-varying voltage signals into the D-Domain
Require: Waveform x indexed by i
Ensure: VHz which is the D-Domain representation of x

1: α1⇐ lower threshold
2: α1⇐ upper threshold
3: x⇐ input wave f orm
4: x⇐ normalize(x)
5: for i for every waveform in x from the dataset do
6: FFT ⇐ frequency response(x[i])
7: FFT ⇐ normalize(FFT )
8: V Hz⇐ empty array of size(x[i])
9: for j ≤ size(x[i]) do

10: temp⇐ x[i, j]
11: for k ≤ size(FFT ) do
12: if FFT [k]≥ α1∗ temp then
13: if FFT [k]≤ α2∗ temp then
14: Freq.insert(k)
15: end if
16: end if
17: end for
18: if size(Freq)≥ 0 then
19: max⇐max(Freq)
20: V Hz[i]⇐ max∗ x[i, j]
21: Freq⇐ 0
22: end if
23: end for
24: end for
25: Return V Hz
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Algorithm 8.2 Algorithm that extracts static base variables from the D-Domain signals
Require: D-Domain signals and VHzcross indexes
Ensure: Arrayss a1, b1, Sum1, Diff1, IntegVHz, PeakVhz used for FE

for every s crossings in VHz do
V Hza⇐V Hz[s]
while k ≤ size(VHzcross) do

for j from VHzcross[s,k]⇒ VHzcross[s,k+1] do
if V Hza[ j] == peak then

ipeak[s].insert(j)
end if

end for
peak⇐ max(VHza[VHzcross[s,k]:VHzcross[s,k+1]])
PeakVHz[s].insert(peak)
Area⇐ integral(VHza[VHzcross[s,k]:VHzcross[s,k+1]])
IntegVHz[s].insert(Area)
k=k+2

end while
while d ≤ size(VHzcross) do

a1[s].insert(ipeak[s,d/2] - VHzcross[s,d])
b1[s].insert(VHzcross[s,d+1] - ipeak[s,d/2])
Diff1[s].insert(tail(b1[s])-tail(a1[s]))
Sum1[s].insert(VHzcross[s,d+1] - VHzcross[s,d])
d = d + 2

end while
end for
Return a1, b1, Sum1, Di f f 1, IntegV Hz, PeakV Hz

as features for that record. Variables a1 and b1 are presented in Figure 8.5(a). Also, for every
spike, the peak, as well as the area or integral values can be used to generate the same set
of feature. Algorithm (8.2) describes the procedure that is used to extract a1, b1, Sum1,
and Diff1 by detecting the peak of each spike along with the zero-crossing pairs needed to
calculate the base variables along with the peak and area values. The algorithm requires as
input the V.Hz waveform along with the indexes determining the start and end of each spike.

Another class of variables is based on variables a2 and b2 presented in Figure 8.5 (b),
which consist of the of sets of the averaged triangular function from zero-crossings to the
maximum of the spike. Also, corresponding values for Sum2 and Diff2 are computed.
Afterwards, statistical function of arrays a2, b2, Sum2, and Diff2 are computed, where again,
they consist of the range, mean, variance, STD, median, maximum, and minimum values.
Algorithm (8.3) outlines the process used to append all measurements taken for every spike
to arrays relating to the reported base variables, where it takes the D-Domain representation
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Algorithm 8.3 Algorithm that extracts dynamic base variables from the D-Domain signals
Require: D-Domain signals and VHzcross indexes
Ensure: Base arrays a2, b2, Sum2, Diff2 used for FE

1: for every s crossings in VHz do
2: V Hza⇐V Hz[s]
3: for w till size(VHzcross) with step-size = 2 do
4: h⇐ w/2
5: v0⇐ VHzcross[s,w]
6: v1⇐ VHzcross[s,w+1]
7: for n from vo till ipeak[s,h] do
8: index1⇐ index(VHza[n])
9: difference1⇐ (ipeak[s,h] - index1)

10: a2[s,h].insert(difference1)
11: end for
12: for n1 from ipeak[s,h] till v1 do
13: index2⇐ index(VHza[n1])
14: difference2⇐ (index2 - ipeak[s,h])
15: b2[s,h].insert(difference2)
16: Sum2[s,h].insert(difference1+difference2)
17: Diff2[s,h].insert(absolute(difference1-difference2))
18: end for
19: end for
20: end for
21: Return a2, b2, Sum2, Di f f 2

and the spike crossings as input, in order to generate the feature arrays that in turn are used
to build the dataset in CSV format.

8.4.2 VAMPIRE pre-processing algorithm: VAMPIRE FE2

The goal of the second version of the pre-processing algorithm VAMPIRE FE2 is to extract
features from a semi-annotated dataset as in the case of the dataset. It allows to detect the
status of TS in real-time, in case the classes are distributed over long periods of time such as
the case in some biomedical applications. The classes in the PPG dataset are taken over an
hour and are not period-specific such is the case with the ECG and EEG datasets. So, we
could take a fixed period length distributed over an hour and classify the periods with their
overall hourly class. However, a different approach is adopted, consisting in the detection of
the uniformity of the positively rectified signal and to sense a re-occurrence in the voltages or
peaks. This is performed while determining the window size that is continuously updated. So,
child records that are encompassed by a parent record are assigned, but with different window
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Fig. 8.6 ECG Waveform before and after passing through the novel moving average algorithm,
which generates a more defined signal where it is easier to extract features in the case of a
semi-annotated data source.

Algorithm 8.4 Modified moving average
Require: Waveform x
Ensure: avgs which is the moving average results from input x

1: avgs⇐ x
2: step⇐ step size
3: j⇐ step
4: while j ≤ size(x) do
5: k⇐ j
6: while k ≥ j − step do
7: avgs[ j]⇐ avgs[ j] + avgs[k−1]
8: k−−
9: end while

10: avgs[ j]⇐ avgs[ j]/step
11: j++
12: end while
13: Return avgs

sizes which are equal to the number of the child record’s zero-crossing pairs (corresponding
to the rectified signal). Therefore, to correctly rectify the input signal, a novel moving average
algorithm has been developed which defines the TS signal as it can be easily detected as
shown in Algorithm (8.4).
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Algorithm 8.5 VAMPIRE pre-processing algorithm for semi-annotated data
Require: Signal x
Ensure: Crosspx

1: β1⇐ starting window
2: β2⇐ last window
3: for every M portions of x do
4: Add N-to-P and P-to-N crossing index pairs of x to Cross
5: for j in Cross do
6: Patt[j]⇐ max(x[Cross[2j],Cross[2j+1]])
7: end for
8: for Window from β1 till β2 do
9: for k in Window till end of Patt do

10: Mean[k]⇐Mean(Patt[k] + . . . + Patt[k – Window + 1])
11: if STD(Mean[k]) ≤ Threshold then
12: Set Window
13: Break
14: end if
15: end for
16: end for
17: while i with every index in Cross do
18: if Last index in Cross – i ≥Window*2 then
19: Crosspx.insert(crossing pairs from Cross)
20: i = i + Window*2
21: end if
22: end while
23: Shift x by M
24: end for
25: Return Crosspx

Figure 8.3 presents two example signals: The upper signal is the raw ECG signal which
is difficult to process as it is. The novel moving average algorithm was applied to the signal
while updating the voltages with the average of the current mean and the n-1 previous means
with a window of width n. In case a signal crosses zero the averaged output will remain in its
vicinity for a longer time, thus allowing for zero-crossing detection more easily. Algorithm
(8.4) describes the code used to implement this algorithm whereas presented returns the
mean-based moving average. Figure 8.3, presents all the zero-crossings of an ECG signal
after it has passed through Algorithm (8.4): the red dots represent zero crossings with positive
slope and the blue dots represent zero crossings with negative slope.

The pre-processing algorithm presented provides a novel technique to generate a wave-
form from both frequency-dominant and voltage-dominant signals, such as EEG and ECG
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signals respectively. This output waveform exists in the new D-Domain where for every
record in the used dataset the bounds of each record is clearly defined. However, the general-
ized version of the algorithm, which can be applied to poorly annotated datasets provides
novel methods that expand the scope of operation into a wider range of applications. This
technique is presented in Algorithm (8.5) whereas demonstrated the waveform is subdivided
into M portions whose window size is based on the maximum voltage of each Negative-to-
Positive (N-to-P) and Positive-to-Negative (P-to-N) crossing pairs. The moving means of
multiple maximum voltages are collected before calculating their STD which is compared to
a predefined Threshold in order to set the current Window size. this Window size is continu-
ously refreshed in order to subdivide the waveform x using Crosspx in real-time. Appendix
A at the end of this thesis presents practical details of the code execution of Algorithm (8.5),
by posting data taken directly from the Python interpreter to further explain the operation
used to pre-process a TS, in case it is not meticulously annotated.

8.5 VAMPIRE post-processing algorithms - Activation En-
gines

In this thesis, in addition to the pre-processing algorithms presented, we further propose
a new post-processing technique we name the Activation Engine. It consists of applying
an optimal thresholding technique at the output of a classification algorithm, aimed to
significantly improve prediction accuracy. It is simple, yet capable of improving the accuracy
without requiring too much effort on hyper-parameter tuning. This approach can lead to more
accurate classification results, using a single ML setup, and without resorting to automated
techniques which demand processing power, are time-consuming, and are challenging to
implement. Additionally, the Activation Engine was implemented using Numpy vectors to
allow for efficient post-processing on the edge.

The Activation Engine has been developed to improve the testing accuracy of a MLP
with a binary Softmax output. Algorithm (8.6) determines the Ref variable which presents
the factor between the occurrence for the two classes in the training set. Algorithm (8.7)
may run the For Loop (Bordered in bold) from Algorithm (8.6) twice since there might be
two activation functions at the output.

In this case, the algorithm swaps the first and second Softmax outputs for each iteration.
Finally, in case there are two Activation Engines, the cluster that has the highest accuracy
will be voted based on overall training accuracy and is then applied to the testing data.
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Fig. 8.7 Algorithm 8.6: VAMPIRE Activation Engine.

Furthermore, since there are two activation functions, there should be two possible clusters
per function. So, there can be four values from two pairs that have to be considered for
voting.

After determining values for array Th, the best version of the two thresholds arrays is
extracted from the training data, and two indices are computed which point to the better
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Fig. 8.8 Algorithm 8.7: Combining two Activation Engines.

version of the thresholds. Finally, the best threshold version is applied on the testing date
resulting in improved prediction accuracy.

Algorithm (8.6) and Algorithm (8.7) as shown in Figure 8.7 and 8 respectively, describe
the steps and iterations taken to perform the binary classification versions of the Activation
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Engine. Moreover, a tree-based technique is used to perform multi-class classification using
this approach. However, it is important to point out that since an output of two Softmax

functions are used, the variable Th is a 2x2 matrix since it has two possible values for every
Softmax threshold.

The FE algorithms presented have been developed in order to convert TS of various
characteristics and notations into datasets directly applicable to various ML setups, and
without resorting to any advanced and stressful pre-processing techniques, which are in
terms difficult for inexperienced practitioners. Furthermore, since beginners in ML might
find parameter tuning unreachable, the post-processing algorithm presented: The Activation

Engine, may be used along with a MLP in order to optimize forecast performance without
turning to automated ML methods, such as meta-learning or ensemble learning, which require
considerable processing power and are time-consuming in nature.

The complexity of the Activation Engine can be expressed as shown in Equation 1 where
the factor 2 corresponds to the 2x2 matrix representing the two possible threshold pairs of
each Softmax activation function. Also the factor 4 corresponds the counting of True and
False values of each binary classification for the two cases of that threshold. the factor 6
represents he extraction of the indices and the evaluation of the True and False for the optimal
threshold extraction. T1 and T2 represent the sizes of the training set and test-set respectively.
Consequently, N corresponds to the value 100 found in Algorithm (8.6) and Algorithm (8.7)
from Figure 8.7 and 8.8 which sets the resolution for the threshold used by the Activation

Engine inference. Additionally, C corresponds to the number of class labels used in the
dataset which is included since the post-processing algorithm uses a tree-based approach to
achieve multi-class classification. Although, setting C=2 implies that the tree-based method
is not used and so Equation 1 is valid also for binary classification:

Complexity = ∑
0<=i<C−1

(1− i
C
).(2.(N.4.T 1+2.T 1)+2.6.T 1+2.6.T 2) (8.1)

Furthermore ,f N.T1 is large enough, which represents the product of the training set size
and threshold precision, Equation 1 can be approximated in terms of Equation 2:

Complexity = ∑
0<=i<C−1

(1− i
C
).8.N.T 1 (8.2)
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8.6 Data sources

In order to test the performance of the VAMPIRE Framework, five data sources taken from five
unrelated applications were adopted to perform forecasts using its pre-processing algorithms
and Activation Engines. Three biomedical TS datasets (Related to ECG, EEG, and PPG data)
were used to implement VAMPIRE FE1 and FE2. Therefore, the biomedical datasets along
with the pre-processed datasets were employed to test Rulex and the Activation Engine on
data that was pre-processed using VAMPIRE FE1 and FE2 and using different FE techniques
from the literature. All tests were performed through a general-purpose laptop as a client and
the Raspberry Pi as an AI applications server.

8.6.1 ECG dataset

For the ECG application, the database used is the MIT-BIH arrhythmia database, (Goldberger
et al. (2000); Moody and Mark (2001)). It consists of 48 30 min ECG recordings which
pair with 48 annotation files that contain the classification of each sample. Therefore, the
VAMPIRE FE1 was used which deals with fully annotated datasets. In this dataset, there are
20 arrhythmia classes, however, we have chosen to consider five that have enough samples
for feasible ML training and testing. Also, we have applied multiple forecasts for the three
most dominant classes and with four most dominant classes to demonstrate that the algorithm
is more accurate in case a larger number of samples is available. Therefore, a collective
subset of 35989 samples was used in the forecasts having 73 features.

8.6.2 EEG dataset

The EEG recordings were taken from the CHB-MIT scalp EEG database (Goldberger et al.
(2000)) which consists of records from pediatric subjects with intractable seizures. Moreover,
in accordance with the previous section, VAMPIRE FE1 was implemented to generate the
features. The dataset analyzed in this work contains records from 22 subjects, sampled at a
rate of 256 samples per second with 16-bit resolution. Most files contain 23, 24, or 26 EEG
signals. As a whole, a random subset from all patient was used with 17978 records having
180 features for the train/test split.



8.7 Experimental results 131

8.6.3 PPG dataset

The PPG data was taken from part of the predicting cognitive fatigue with Photoplethysmog-
raphy project (Finean and Dillon (2021)) and is taken from the Kaggle dataset repository
(Finean (2021)). The recordings consist of participants taking a 22 hour-shifts of gaming.
These are used to classify the Stanford Sleepiness Scale (1-7). However, due to the ambiguity
of the data, since it is a self-assessment and not a clinical diagnosis, we have split the classes
into two class groups True and False, which signify Sleepy or Not Sleepy. Furthermore, the
classification is taken over long periods of time, so, in order to classify the gamer’s fatigue
level in real-time, VAMPIRE FE2 was employed. Two gamers records were chosen for the
present ML workflow with a total of 31355 instances with 64 features.

8.6.4 Radar dataset

The radar dataset from Rizik et al. (2019) consists of features extracted from a double FFT
applied to radar measurements. These include statistical quantities of this signal such as
mean, STD, variance, range, and others.

There are four classes, where there is one for Humans and three others for Vehicles.
A MLP with an Activation Engine at its output with K-Folder cross-validation splits was
implemented, which achieves high forecast accuracy. This dataset consists of 120 records
equally split over its labels having 10 features.

8.6.5 Activity dataset

The activity detection dataset from Anguita et al. (2021) consists of features taken from the
accelerometer and gyroscope embedded in a smartphone. These include statistical quantities
of this signal such as mean, STD, variance, and others. Six classes describe the activity
performed by a subject such as Laying, Standing, Sitting, Walking, Walking Upstairs, and
Walking Downstairs. This dataset consists of 561 pre-processed features including a user
field while containing 7352 samples.

8.7 Experimental results

All related experimental results will be presented in detail in this section. The biomedical
TS described in the previous section were used to test VAMPIRE framework’s performance
where the recordings were pre-processed to generate corresponding datasets, and were either
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applied using Rulex in a Client/Server arrangement on the Raspberry Pi, or by remotely
employing a MLP with an Activation Engine on the same board. In case of the EEG and
PPG datasets, both of VAMPIRE’s pre-processing algorithms and Activation Engines were
employed, in addition to applying the EEG and ECG datasets using Rulex on the Raspberry
Pi.

Concerning the pre-processed datasets, both the activity detection and radar classification
datasets were implemented with a MLP having an Activation Engine at its output. Further-
more, the activity detection dataset was applied using Rulex on the edge. In every case where
ML was applied on the edge using Rulex running on the Raspberry Pi, holdout validation
was applied while implementing a K-folder setup for the EEG, PPG, and radar forecasts.
Additionally, the power consumption and inference time will be evaluated by comparing with
the performance of other ML setups.

8.7.1 Results for ECG forecasts

In the case of the ECG application, we used 73 Features for the generated dataset, which
were extracted using VAMPIRE FE1 from the MIT BIH arrhythmia database. The features
consist of the mean, variance, STD, median, minimum, and a maximum of the variables a1,
b1, Sum1, Diff1, the integral of the spike, the area of the spikes, and the same statistical
functions for the sets of a2, b2, Sum2, and Diff2 as presented in Figure 8.5.

We have applied ML algorithms DT, and SVM in their default format using the Rulex
ML platform running on the Raspberry Pi in a client/server setup (Hajdarevic et al. (2014)).
Three arrangements were adopted with 3, 4, and 5 classes which take the more dominant
classes in the dataset into consideration. Just five classes have been used in the simulations
which are the forward-slash / which represents a Paced Beat, N for Normal, L and R which
are the left and right bundle branch respectively, and V which means Premature Ventricular
Contraction.

VAMPIRE FE1 requires a large TS dataset as input, mainly since it transforms the input
data from one domain to another, which is then used for training and testing. However, we
were still able to achieve highly accurate forecasts using classical ML algorithms.

Figures 8.9(a) and 8.9(b) represent the accuraies for the training and testing using DT
respectively, however, due to the lack of samples in classes A and V, the accuracy is less than
for the other classes in the testing. In the case of 5 classes, the accuracies for DT and SVM
in testing are 95.55% and 96.24% respectively.
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Table 8.1 Five classes for ECG clas-
sification using Rulex on the edge.

Classes: / L N R V

SVM: 99.57% 94.61% 98.80% 96.88% 89.11%
Decision Trees: 98.19% 93.82% 97.10% 95.12% 89.98%

ECG Classification using Rulex running
on the Raspberry Pi with 5 classes

Table 8.2 Four classes for ECG clas-
sification using Rulex on the edge.

Classes: / L N R

SVM: 99.24% 94.77% 98.93% 97.14%
Decision Trees: 99.24% 94.45% 97.20% 96.40%

ECG Classification using Rulex running
on the Raspberry Pi with 4 classes

In Figures 8.9(c) and 8.9(d) the accuracies for both training and testing using DT with 4
classes is presented, respectively. DT and SVM perform more accurately in the case of 4
classes. class V which has the worst performance has been omitted. The overall accuracies
in the case of DT and SVM testing are 96.60% and 97.62% respectively.

Figures 8.9(e) and 8.9(f) present the training and testing forecast accuracy for SVM using
a 3-class arrangement. For all algorithms using the same datasets, the performance improved
in terms of accuracy as the fewer dominant classes were omitted. This is due to the lack
of samples where the algorithm does not generate enough information in the features for
accurate prediction. The overall accuracies in the case of 3 classes for DT and SVM are
97.99% and 98.73% respectively.

In all the forecasts, the data which were used for prediction were taken from the files
which are dominated by the targeted classes. For instance, if there are files that predict
classes F or S in a large enough number, these files were omitted to focus on the targeted
classes without adding any excessive data. So, even classes containing labels such as N

which represent a normal beat and exist in almost all files, the samples are only taken from
the files which are rich in the target classes.
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Table 8.3 Three classes for ECG clas-
sification using Rulex on the edge.

Classes: / L N

SVM: 99.86% 99.82% 95.93%
Decision Trees: 99.57% 98.73% 95.80%

ECG Classification using Rulex running
on the Raspberry Pi with 3 classes

This methodology proved to be fair since it generates very good results consistently as
the number of classes varied. This is also valid for various ML algorithms. A complete set of
results for forecast accuracy using the described FE method is presented in Tables 1, 2, and 3.

In Ahamed et al. (2020) and ensemble learning approach was applied to the same ECG
dataset which is used in this project and another much smaller data source with the aim of
improving prediction accuracy. The system described is not fully automated since it requires
careful tuning while it relies on grid-search to tune an SVM from the ensemble. The best
accuracy achieved was realized by an MLP which is 98.06% while the overall ensemble
accuracy was recorded at 97.78%. However, the best accuracy was taken without considering
additional forecasts in a K-folder setup which provides more reliable and unbiased results.
In Sree et al. (2021) a ML framework dedicated to ECG classification is presented which
partly used the dataset used in this project found in Moody and Mark (2001). Even though an
overall accuracy of 98.2% was achieved, this is due to the addition of synthetic data which
might have caused the ML model to over-fit to the test-set. Furthermore, when using real
world testing data, the accuracy dropped to 81% using Random Forest and with a two-second
window 85% using a five-second window for a four-class forecast.

8.7.2 Results for EEG forecasts with VAMPIRE FE1 and Rulex

In the second forecast case, we have applied VAMPIRE FE1 on TS related to epileptic
seizure Detection using EEG measurements, which are taken from subjects with intractable
seizures. Forecasts were applied using Rulex ML software running on the Raspberry Pi
in an edge computing setup. However, unlike the previous set of ECG Features, the total
number of features for the EEG applications was multiplied by three, since brainwaves are
frequency-dominant signals unlike voltage-dominant signals occurring in ECG waveforms.
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Fig. 8.9 Training and testing accuracies for ECG forecasts:(a) and (b) DT training and testing
accuracy with 5 classes respectively. (c) and (d) DT training and testing accuracy with 4
classes respectively. (e) and (f) SVM training and testing accuracy with 3 classes respectively.

So, the EEG recording was split into three frequency bands using digital band-pass filters
and the same number of features was generated for each frequency band.
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Table 8.4 EEG forecast using Rulex
on the edge.

Classes: Non-Seizure Seizure

LLM: 85.087% 85.992%
SVM: 88.289% 81.493%
DT: 84.355% 84.05%

EEG Classification using Rulex running
on the Raspberry Pi

The forecast accuracies using the Rulex implementation are presented in Table 4, where
SVM, DT, and LLM algorithms were applied to the extracted features which provide accurate
results across all the adopted algorithms.

8.7.3 EEG forecasts with VAMPIRE FE1 and Activation Engines

As for the prediction results on the EEG data using VAMPIRE’s Activation Engine on the
Raspberry Pi, a Tensorflow implementation of a MLP was built using Keras. It consists of
a MLP trained using back-propagation. The MLP has an input layer with 219 inputs and
a Rectified Linear Unit (Relu) activation function. The is proceeded by four hidden layers
alternating between Sigmoid and Relu until it reaches 2 Softmax functions for a binary output.
The corresponding transfer functions for the Sigmoid, Relu, and Softmax functions can be
found in Equations 3 - 5:

Sigmoid(x) =
1

1+ e−x (8.3)

Relu(x) = max(0,1) (8.4)

So f tmax(xi) =
e−xi

∑
k
j=1 ex j

(8.5)

The training using Tensorflow was run for 60 epochs with a K-folder split with K =
5. As for the proposed MLP with Activation Engines, the overall testing accuracy was
85.32% with the 2 output classes being predicted with accuracies of 87.58% and 83.07%.
In Qureshi et al. (2021) forecasts were applied partly on the same EEG dataset used in
this project using classical ML algorithms and fuzzy-based techniques where an accuracy
of 85.6% was achieved using a deep CNN (which is computationally expensive) and 90%
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using Sparse Extreme Learning Machine (Bai et al. (2014)). However, the authors use
a subset of five patients from the CHB-MIT dataset whereas in this project a completely
random subset from all patients is used which helps to avoid over-fitting and allows for more
reliable generalization, while remaining competitive. Furthermore, the MLP was tested after
removing the Activation Engines and relying on a one-vs-all approach where the new method
outperforms the classical technique by 3% which has an overall accuracy of 82.2%.

8.7.4 PPG forecasts with VAMPIRE FE2 and Activation Engines

Regarding the Sleepiness PPG recording dataset, we considered two subjects out of the
existing five, specifically gamers 1 and 3. The 7 sleepiness classes were grouped into
parent classes by equally distributing them into Sleepy and Not Sleepy. So, in this binary
classification arrangement, we have made forecasts using the Python Tensorflow library
through a MLP. Also, as in the EEG application, the Activation Engine technique was applied
at the output of the MLP to improve testing performance.

VAMPIRE FE2 described in Algorithm (8.5) was used to extract the features from the
PPG dataset, considering that the TS is patient-annotated with no expert medical assessment
present. Moreover, the Activation Engine described in Algorithm (8.6) and Algorithm (8.7)
from Figures 8.7 and 8.8 was applied at the output of a MLP to further improve accuracy on
the edge.

The MLP implemented using Keras has an input layer with 63 inputs and a Relu activation
function. The is proceeded by three hidden layers having a Relu as an activation function
and has two Softmax binary outputs. We have used the above MLP arrangement with hidden
layers having a size 70, and the algorithm was run for 20 epochs using Tensorflow.

For gamer 3, after 5 epochs, the testing accuracy as reported by the Activation Engines

with a k-folfer setup having K = 5 was 89.23% and 79.77% for Sleepy and Not Sleepy classes,
respectively. As for the overall accuracy, it was equal to 83.59% in general.

As for gamers 1 and 3 combined, after 5 epochs, the testing accuracy as reported by the
Activation Engine arrangement with a K-folder setup having k = 5 was 85.43% and 76.76%
for Sleepy and Not Sleepy classes, respectively. As for the overall accuracy, it was equal to
78.46% in general. Additionally, the MLP was tested with no Activation Engines as its output
where the performance degraded without the post-processing block having an unbalanced
output testing accuracy of 90.93% and 38.58% for the two classes.



8.7 Experimental results 138

8.7.5 Urban classification using Activation Engines

A multi-class dataset for urban classification via radar was used to test the Activation Engine

setup in Python in the case of four available classes. These are Humans, Cars, Trucks, and
Motorcycles.

The tree-based structure used in Algorithm (8.8) which is shown in Figure 8.10, works
similarly to the one-vs-one method for multi-class classification except that it combines child
classes into parent classes, and once a child class is reached, its accuracy is multiplied with
the prediction accuracies of the parent classes. With this technique, each forecast accuracy at
a given level should be multiplied by the accuracy of their preceding parent forecasts.

This tree as presented in Algorithm (8.8) from Figure 8.10, applies four forecasts using
MLP with the Activation Engines method described in Algorithm (8.6) and Algorithm (8.7)
from Figures 8.7 and 8.8. The MLP consists of four Relu layers and one Softmax output layer.
After running the algorithms in K-folder arrangement with K = 15, the following results were
obtained in Table 5 where they were compared with results from the literature where the
dataset was first tested. Although the previous results don’t use K-folders to generate reliable

Fig. 8.10 Algorithm 8.8: Applying tree-based structure to perform classification on urban
dataset.
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results in terms of test-set-variability, VAMPIRE was able to achieve an overall classification
accuracy with an 8.8% improvement over previous techniques.

In the results from VAMPIRE, the Motorcycles detection accuracy shown is multiplied
by that of Vehicles. Also, the accuracy for Cars and Trucks classes was multiplied with the

Fig. 8.11 Algorithm 8.9: Applying tree-based structure to perform classification on the
human activity detection dataset.

Table 8.5 Radar classification accu-
racy of pedestrians and vehicles us-
ing VAMPIRE on the edge with com-
parisons.

Algorithms: Classic MLP VAMPIRE Rizik et al. (2019) Rizik et al. (2021)

K-folds: Yes Yes No No
Humans: 94.78% 93.60% 100% 100%
Vehicles: - 99.40% 80% 82.24%
Motorcycles: 41.6% 99.40% 83.33% 75%
Cars & Trucks: - 94.85% 80% 88.89%
Cars: 97.22% 83.23% 75% 80%
Trucks: 22.71% 93.75% 83.33% 100%

Urban classification using Activation
Engines.
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Table 8.6 Human activity forecasts
using Rulex and VAMPIRE on the
edge.

Algorithm: LLM KNN SVM Bulbul et al. (2018) Classic MLP VAMPIRE

User field: No No No Yes No No
Laying: 100% 100% 100% 100% 89.11% 100%
Standing: 86.80% 94.40% 98.40% 96% 93.82% 99.81%
Sitting: 88.48% 91.86% 97.63% 97% 99.92% 99.81%
Walking: 94.74% 100% 100% 99% 98.57% 100%
Walking Upstairs: 89.89% 99.47% 100% 100% 99.36% 100%
Walking Downstairs: 82.93% 100% 100% 99% 89.01% 100%

Human activity classification using
Rulex.

Vehicles class accuracy, in addition to being multiplied with the accuracy of the combined
Cars-Trucks parent class. Also, after removing the post-processing block and applying the
MLP model using a one-vs-all approach, the performance degraded with the classic MLP
which highlights the significance of the Activation Engine applied at the output.

8.7.6 Human activity classification using Activation Engines

A multi-class dataset for human activity detection using smartphone sensors was used which
has six classes that were also predicted using the same approach. As a first step, the classes
were allocated to two parent groups, Sitting, Laying, and Standing as the first, and the three
classes related to Walking in the other. Moreover, these two classes were applied using a
ML algorithm, and were subsequently split into sub-classes following the same procedure as
in the radar classification application, and are similarly presented in Figure 8.11 Again, as
pointed out in the previous application, each accuracy achieved through a child forecast is
multiplied with the preceding parent class accuracy. Forecasts were performed using a MLP
with of four Relu layers and two Softmax outputs functions having two Activation Engines

connected at the MLP output. Furthermore, the human activity detection dataset was applied
on the edge using Rulex with multiple ML algorithms where the accuracies for LLM, KNN,
SVM and VAMPIRE are provided in Table 6. Moreover, the MLP was tested in a one-vs-all
setup without an Activation Engines (with K equal to 5) to validate its effectiveness in tuning
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Table 8.7 Inference and specifica-
tions using VAMPIRE and other IoT
setups on the edge.

Board Cores Frequency RAM GPU ML setup Inference/Task
(msec.)

Rasp-Pi 3B+: 4 1.4GHz 1GB NO PPG 3.1
Rasp-Pi 3B+: 4 1.4GHz 1GB NO EEG 6.1
Rasp-Pi 3B+: 4 1.4GHz 1GB NO Activity 25
MacBook: 4 2.7GHz 8GB NO AlexNet 29
Jetson TX2: 6 2GHz 8GB YES AlexNet 13.5
FogNode: 4 3.2GHz 32GB NO AlexNet 27
Rasp-Pi (Zhang et al. (2018)): 4 0.9GHz 1GB NO SqueezeNet 2080

Inference time for IoT boards.

the model. Moreover, the forecasts applied in Anguita et al. (2013) are included in Table 6 to
compare the accuracies achieved in every case.

In Bulbul et al. (2018), a KNN ensemble classifier with 30 instances was used to classify
human activity using the same dataset where an overall accuracy of 98.6% was achieved. This
accuracy is substantially less than that achieved using both SVM in the Rulex client/server
forecast, and when using a MLP with a VAMPIRE Activation Engine edge setup, as shown in
Table 6. In the original dataset, a user field was included which identifies the person who
is holding the smartphone. However, in this experiment the field was removed for more
generality where VAMPIRE outperforms the literature with a lesser degree of information.

8.7.7 Latency and power consumption on the edge

To evaluate the performance of VAMPIRE on the Raspberry Pi and to ensure its efficiency
in addition to providing accurate predictions, a comparison has been made with a laptop
(using the same data sources) and other edge setups described in the literature. Therefore,
in Zhang et al. (2018), various ML libraries have been tested on multiple IoT modules
including the Raspberry Pi. Consequently, Training was applied outside the edge node and
inference was performed on each board. Table 7 presents a comparison between VAMPIRE

on the Raspberry Pi and the additional setups. As shown, VAMPIRE’s optimized Activation

Engine post-processing block outperforms the other setups presented in the literature where
the inference/task is presented along with the specifications of all hardware platforms.
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Table 8.8 Power consumption com-
parison between Raspberry Pi 3B+
and a MSI laptop using VAMPIRE’s
Activation Engine

Platform Dataset Kfolds GPU DC Power AC Power inference/Task
(Wh) (Wh) (msec.)

Rasp-Pi: Activity 1 NO 1.28 1.63 25
Rasp-Pi : EEG 5 NO 7.1 10.43 6.1
Rasp-PI: PPG 5 NO 0.76 1.06 0.1
MSI-PC: Activity 1 NO - 3.2 3.1
MSI-PC: EEG 5 NO - 13.78 1.4
MSI-PC: PPG 5 NO - 5.2 1.5
MSI-PC: Activity 1 Yes - 0.92 4
MSI-PC: EEG 5 Yes - 8.38 0.24
MSI-PC: PPG 5 Yes - 2.29 0.2

Power consumption of the Raspberry Pi
and MSI laptop running VAMPIRE.

Furthermore, in Yazici et al. (2018) authors present performance measurements taken from the
Raspberry Pi on various classification and regression datasets using different ML classifiers.
During the classifications, the inference time on the board depends on the dataset where
these inferences are compared with those applied on a PC. the ratio between the Raspberry
Pi’s inference divided by the PCs inference varies between 175 and 306 depending on the
dataset. However, using VAMPIRE on the Raspberry pi, this ratio varies only between 2 and
8 without a GPU, and between 6.25 and 25.4 with a GPU, as shown in Table 8. Additionally,
the Raspberry pi’s performance using VAMPIRE is compared with that of the MSI laptop
(described in section 2.3) where the same datasets were used for the comparison in terms
of power consumption (For training and testing combined) and inference time. Also, when
using the laptop two forecasts were applied per dataset where the first was performed without
including the onboard GPU and the second where a GPU was used to optimize the latency
and power consumption. Table 8 illustrates the results for the EEG, activity detection and
PPG datasets using VAMPIRE. As illustrated, when running training and inference, the
Raspberry Pi outperformed the case with the laptop running without GPU optimization by
3-4 orders of magnitude regarding the energy consumption. Moreover, the board remains
competitive with the PC even when it is optimized using the 2060 Nvidia GPU which is
designed to increase the power and decrease the overall energy in ML workflows.
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8.8 Chapter Conclusion

To summarize, this thesis presents the VAMPIRE framework, which implements novel pre-
processing algorithms and introduces Activation Engines that can extract features from
any TS data and can be applied to any other type of application, through the Activation

Engine concept. The pre-processing algorithms consist of converting time-varying signals
into the proposed D-Domain, which is a V.Hz co-representation the original signal and its
FFT. The novel waveform is used to derive statistical information obtained from the shape
of the rectified TS. Furthermore, the pre-processing can be applied in two modes: either
using an annotated TS where a classification exists for every event in the signal, or when
the TS is poorly annotated where the classification is taken for a large span of time. In
the second case, an adaptive algorithm was implemented to detect an event in real-time by
continuously classifying the current segment of a TS before producing the V.Hz waveform
and extracting statistical features. Also, the thesis introduces the Activation Engine which is
a post-processing block which improves testing accuracy by optimizing the classification
threshold at the output of an MLP based on the training performance. The Activation Engine

achieves high testing accuracy by relying on an optimal threshold extraction method that is
based on the training accuracy by employing a pair of Activation Engines and relying on
a clustering approach. Additionally, VAMPIRE’s core pre-processing and post-processing
operations were implemented in Python Numpy vectors in order to the improve performance
considerably. Also, every ML forecast was carried out in an IoT setting, either using Rulex
running on the Raspberry Pi and in a client/server setup, or by performing forecasts using
a MLP with an Activation Engine running on the Raspberry Pi remotely through an SSH
tunnel.

In regards to the pre-processing algorithms developed in this thesis, experiments were
carried out by generating three datasets from biomedical TS automatically before applying
ML forecasts. The forecasts were performed on these datasets in an edge computing setup
where our results confirm that high accuracy was achieved in every experiment. Furthermore,
in the cases of the EEG and PPG datasets, in addition to VAMPIRE FE1 and VAMPIRE FE2,
Activation Engines were employed. In these two cases, the novel post-processing method
led to better testing accuracy than in training due to the influence of the threshold clustering
technique of Algorithms 4.6.1 and 4.6.2. Also, the forecast accuracy for the two already
pre-processed datasets is significantly higher than the accuracies achieved in the original
publications. This is the case, again, thanks to the addition of Activation Engines at the
Softmax outputs of the MLP.
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FE was performed on biomedical TS such as ECG, EEG, and PPG signals where a dataset
can be generated in an automated manner and the operator only needs to remove noise and
offset from the input signal, before applying ML algorithms on the Raspberry Pi. Also, two
pre-processed datasets related to urban classification and human activity detection were also
used to perform ML forecasts on the edge.

For the ECG dataset, after applying VAMPIRE FE1 on the recordings, the resulting dataset
being generated automatically, a series of six forecasts were performed. when predicting for
five labels, the SVM accuracy was 96.2% and the DT accuracy was 95.6%. when predicting
four classes, the accuracy metrics were 96.6% and 97.6% for DT and SVM respectively.
Naturally, in case of three classes, higher accuracies of 98% and 98.7% were achieved for
DT and SVM respectively.

When forecasting the EEG dataset using Rulex, accuracies approaching 85% and 86%
were reached using LLM, SVM and DT. However, when applying VAMPIRE FE1 and the
Activation Engine on the EEG data, an overall accuracy was reached of around 85.21%.

Regarding the PPG dataset, where VAMPIRE FE2 and the Activation Engine were
employed, for a single gamer an accuracy of 83.6% was achieved and for two gamers, an
accuracy of 78.5% was reached where the fatigue can be detected in real-time in contrast
to the original dataset which provided measurements spanning a relatively long time when
labeled.

As for the urban and activity detection dataset, very competitive accuracies were achieved
with the aid of the tree-based classification method in parallel with the Activation Engine

where competitive accuracies were reached when compared with the source datasets substan-
tially.

When comparing power consumption between the Raspberry Pi 4B+ for the PPG, EEG
and Activity dataset when inference was applied using VAMPIRE, inference times of 3.1
ms/task, 6.1 ms/task, and 25 ms/task outperformed a MacBook, Jetson TX2 and an additional
cited Raspberry Pi considerable mainly due to using a classic MLP on the Raspberry 3b+
along with vectorizing the Activation Engine which to lightweight ML model.

Furthermore, the framework’s accuracy, latency and power consumption on the Raspberry
Pi was also evaluated where the Activation Engine outperforms most previously published
results in terms of inference speed and accuracy. Moreover, regarding the power consumption
of the Raspberry Pi, a comparison with a PC was employed where the board consumes less
energy than the laptop in case the GPU is not included in the training and remains competitive
in comparison with the GPU being used to optimize the ML workflow. In the end, accurate
results across all experiments prove that VAMPIRE is easy to implement and demonstrate



8.8 Chapter Conclusion 145

the robustness of the framework by competing with different techniques from the literature
(Which are compute-expensive in most cases) while maintaining generality and so it can be
used virtually in any ML application.



Part III

Conclusion



Chapter 9

Summary and Conclusions

The following chapter presents a summary of the projects undertaken in this thesis by
describing the contents and results of each project individually before making a general
statement and providing a general and detailed outcome of the collective effort.

9.1 Project 1: Summary and Conclusions

In this thesis which stresses on ML on the Edge for lightweight operation, efficiency and
high-performance, is outlined by multiple software contributions in AI on the Edge and in ML
in general. Primarily, the task consisted of the porting of the Rulex Software on the Raspberry
Pi IoT board. This was realized by compiling every internal and external dependency in
Raspbian 32-Bits running on the portable board which itself is a challenging and stressful task.
Post-porting, Rulex was tested on multiple datasets with varying depth and dimensionality
where a tree-based classification algorithm was developed. Additionally, an Image-to-TS
conversion algorithm was used to classify gender with a very good accuracy while scanning
random images with varying conditions in terms of the subject and background environment.

Regarding the tree-based method for improved ML performance, the proposed method
was applied on the urban dataset where after a series of forecasts: Humans were classified with
an accuracy of 100% and vehicles with an accuracy 96.67%. The final vehicles subclasses
forecast accuracies are 90.63% for Motorcycles and 77.34% for the Cars and Trucks classes.
Overall, by employing LLM running in Rulex and on the Raspberry Pi, an accuracy is 86.32%
was reached that outperforms the results reached in Rizik et al. (2021) by 1.3% mainly due
to the robustness tree-based technique.

The overall accuracy for the urban dataset using the traditional One-VS-All method in
Rulex was 84.2%, and an accuracy 99.3% was achieved for the human activity detection
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application. As for the brainwave dataset the overall accuracy was 95.47%. Regarding the
vehicle activity recognition dataset, the overall accuracy was 95.27% using KNN running in
Rulex.

The results provided in this project infer that general-purpose commercial ML software
may be deployed on limited-performance IoT nodes while preserving accuracy and efficiency.

9.2 Project 2: Summary and Conclusions

The thesis includes the CACAO-X framework which consists primarily of two CACAO-Net
models 1 and 2 which are CNN/MLP and CNN/MLP/LSTM hybrids respectively. These
models take two inputs: regular images and their TS equivalent using a modified version
of the algorithm mentioned in section 7.1. This setup is used alongside landmark and local
explainable information to achieve global image explainability with the aid of Rulex and
explicative labeling (which is also introduced). Moreover, TF-Lite models are used to deploy
the CACAO-Net onto the Raspberry Pi where high accuracy was reached for multiple image
datasets while keeping the power consumption substantially low.

After applying a K-fold setup on all five datasets, the gender dataset forecast accuracy
was 98.4% and the testing accuracy was 91.5% having a competitive inference time on the
Raspberry Pi 4 while applying the pre-processing in real-time. Regarding the Satellite dataset,
an average accuracy of 97.31% was reached with a testing accuracy of 94.1%. As for the
Shadow dataset, the average accuracy reached 99.41% and the testing accuracy was 98.9%.
Regarding the skin cancer and weather datasets, the averaged accuracies were 96.8% and
91.21% respectively, and for the testing accuracies, they were 95.5% and 91.9% respectively.
In every case the inference on the Raspberry Pi 4, which included the FE during inference,
outperformed the Raspberry Pi 3 (without the real-time FE).

Regarding the K-fold setups, the validation and loss curves for training as monitored
by Algorithm 7.4 halted the training when the oscillation around the most recent mean was
below two predefined thresholds, either on the first or second point, or until the final epoch.

When comparing CACAO-X with the Pycaret library, Cacao-Net Model 1 outperformed
the Pycaret, which in terms tunes various ML models which actually outperform published
works substantially. However CACAO-Net beat Pycaret 97% of the time in accuracy,
precision, recall, F1-score, MCC, and balanced accuracy. However, regarding the shadow
dataset, Pycaret outperformed the original source in terms of accuracy ranging from 8.5%
and 18.5% proving that it is an accepted and reliable comparison with the Cacao-Net.
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This project presents results which prove that lightweight and general-purpose ML
architecture can be used as reference models for global image explainability while achieving
competitive accuracy and efficiency on edge devices.

9.3 Project 3: Summary and Conclusions

The thesis also introduced the VAMPIRE framework which is a set lightweight pre-processing
and post-processing algorithms capable of achieving high accuracy efficiently on the Rasp-
berry Pi. Mainly it includes two versions of the pre-processing algorithm which convert
biomedical TS into much smaller datasets in an automated setup. As for the post-processing
part, Activation Engines were introduced which are applied in pairs and detect the optimal
classification threshold on the test-set based on training behavior. Even though this approach
is being applied to binary data, the tree-based approach discussed in this thesis was used to
classify multiclass datasets very accurately using the Activation engine. Furthermore, this
post-processing method may be used to avoid extensive hyperparameter tuning due to the
addition of this novel concept.

After training ECG dataset, when applying VAMPIRE FE1 on the recordings, using the
dataset which was generated automatically, multiple forecasts were performed. when training
for five labels, SVM reached an accuracy of 96.2% and for DT an accuracy of 95.6%. As for
four classes, the accuracies were 96.6% and 97.6% for DT and SVM respectively. In case of
three classes, the accuracies achieved were 98% and 98.7% for DT and SVM respectively.

After training using the EEG dataset using Rulex, accuracies approaching 85% and 86%
were reached using LLM, SVM and DT. However, after employing VAMPIRE FE1 and the
Activation Engine on the same data, an overall accuracy was reached of around 85.21% for
the EEG application.

Concerning the PPG dataset, where VAMPIRE FE2 and the Activation Engine were
applied, when using data for a single gamer an accuracy of 83.6% was achieved. For two
gamers, an accuracy of 78.5% was reached where the fatigue can be classified in real-
time using the dataset generate whereas when using the original dataset, the classification
corresponded for a long time per label.

Regarding the urban and activity detection datasets, high-performance was achieved
after employing the tree-based classification method in addition to using the Activation

Engine where competitive accuracies were reached when compared with the source forecasts
substantially.
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When comparing power consumption between the Raspberry Pi 4B+ for the PPG, EEG
and Activity detection datasets when applied VAMPIRE, inference times of 3.1 ms/task,
6.1 ms/task, and 25 ms/task outperformed a MacBook, Jetson TX2 and an additional cited
Raspberry Pi substantially. This is the case because the classic MLP used on the Raspberry
3B+ was lightweight in addition to using Numpy vectors to implement the Activation Engine.

The results outlined in this project confirm that simple ML workflows can be automated
by users with little experience in ML, while achieving high accuracy and efficiency when
compared with works in the literature discussing ML on the edge.

9.4 Final Statements

The overall theme of this dissertation has been the implementation of ML on the edge with a
general application perspective while dealing with edge computing issues such as efficiency,
meaning inference and power consumption. Also, the topic of global image explainability
was touched upon by providing an efficient model for the task by providing the reader
with human understandable statements in the field of gender classification. Moreover, the
vectorized automation of ML workflow was presented which contains multiple pre-processing
and post-processing techniques.

Specifically, the thesis was split into three main projects or topics:

1. Classic ML on the Edge and Tree-based Multi-class Classification:

This project included the porting of a commercial software: Rulex, onto a portable
IoT board which is accessed remotely to perform both ML training and inference
while maintaining power consumption and latency efficiently. It also introduced for
the first time a tree-based multi-class classification algorithm where all the possible
configurations were exhausted till the end, to find the logical reasoning for grouping
and splitting exhibits the best fit for improving the performance metrics.

2. Flexible Neural Networks and Explainability:

This project introduced a new NN architecture which was composed of a CNN, with
three MLPs where one MLP could be replaced with an LSTM. The variable block
was used to deal with TS, mainly since this architecture performs the classification of
images and their TS equivalent for robust and high-performance inference. Also, this
ML model was used in a much larger architecture which contains additional extracted
information and two established XAI methods to attain the global explainability of
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images classified in terms of gender. The project reveals for the first time the actual
measurements and angles that assist computers in recognizing gender.

3. The AI Pre-processing and Post-processing Framework:

The VAMPIRE Framework which is the final project in this thesis brings three new
concepts into discussion. The first being the D-Domain representation of TS which
fuses both time and frequency domain measurements into a single data stream where
VAMPIRE FE1 may be implemented which is nothing but a set of statistical expressions
that describe the waveform. Secondly, the VAMPIRE FE2 algorithm is introduced
which deals with poorly annotated data and their pre-processing such that they can
be employed in real-time classification. Finally, the Activation Engine when applied
with the tree-based method from the first project, which is a Numpy-optimized post-
processing algorithm that provides shallow NN, which do not perform well on abstract
data, to outperform more advanced models while allowing its implementation for
training and testing with impressive and efficient performance.

In the end, the projects and publications that have been discussed possess high-performance
a low power consumption where various novel techniques have been noted in the field of
Artificial Intelligence.
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Appendix A

Explaining VAMPIRE FE2 in Detail

A.1 Further Explaining the VAMPIRE FE2 Algorithm by
Example

This appendix aims to provide a step-by-step application of Algorithm (8.5) from VAMPIRE

FE2 in order to clarify the pseudo-code by supplying real data taken from the Python
interpreter and to clear up any ambiguity. Initially, in the array below, we can find all the
zero-crossings of an input signal. To determine the crossings, the minimum local maxima
and the maximum local minima are used as reference points to detect crossings rather than
zero. The name of the array from Algorithm (8.5) to be computed is Cross.

Cross:

[ 100, 169, 201, 269, 293, 335, 361, 379, 405, 484, 506, 576, 604, 682, 708, 777, 811,

880, 909, 990, 1022, 1081, 1116, 1182, 1211, 1279, 1309, 1373, 1402, 1475, 1503, 1570,

1600, 1683, 1705, 1779, 1809, 1884, 1914, . . . ]

As shown in Cross for every Cross[i]:

Cross [0] = 100 Cross [2] = 201
Cross [1] = 169 Cross [3] = 269 . . .

In the array Cross, Cross[i] represents a Negative-to-Positive crossing (N-to-P) if the
index is zero or is an even number, and Cross[i] represents a Positive-to-Negative crossing
(P-to-N) if the index i is odd. For every pair of crossings, the maximum voltage should be
computed. The array Patt is used for storing the maximum value in the signal between every
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N-to-P and P-to-N pair. Patt [] represents the maximum voltage between every crossing
pairs:

Patt:

[57.878, 64.533, 64.724, 3.538, 42.306, 45.081, 51.199, 49.983, 42.531, 48.166, 28.105,

39.79, 53.489, 62.38, 61.229, 54.553, 60.818, 56.603, 54.73, 51.671, 57.029, 66.834,

65.955, 32.123, 34.94, 30.187, 55.639, 43.408, 49.639, 62.696, 59.278, 64.183, 48.3,

65.897, 142.026, 72.131, 511.249, 338.739, 367.466,10.085, 101.134, 105.386, 47.537,

28.63, 52.903, 43.38]

Consequently, after computing the maximum voltages between crosses in the Patt []

array, the window-size of every beat or repeating series of crossings needs to be determined.
In order to do this, we can rely on the mean for every possible window size. The array Mean

[] below contains all the computed means:

Mean:

[0.0, 0.0, 0.0, 47.668, 43.775, 38.912, 35.531, 47.142, 47.198, 47.97, 42.196, 39.648,

42.388, 45.941, 54.222, 57.913, 59.745, 58.301, 56.676, 55.956, 55.008, 57.566, 60.372,

55.485, 49.963, 40.801, 38.222, 41.044, 44.718, 52.846, 53.755, 58.949, 58.614, 59.414,

80.102, 82.089, 197.826, 266.036 . . . ]

For example:

For Window = 4

Mean [3] = Mean of: Patt [3], Patt [3-1], Patt [3-2], Patt [3-3]

Mean [3] = Mean of: Patt [3], Patt [2], Patt [1], Patt [0]

Mean [3] = (57.878 + 64.533 + 64.724 + 3.538)/ (4 = Window Size)

Mean [3] = 47.668

Therefore, after computing the mean for some window size, as in Algorithm 4.5, the
standard deviation is computed and if STD is higher than a certain Threshold, the Window

variable is incremented by one. This will go on recursively until the correct Window size is
determined. It should also be pointed out that multiples of a correct window-size hold and
may incorrectly detect Window. In case Window = 3, Windows of sizes 2, 4, and 5 will give
a higher STD for Mean [], which implies that this is an incorrect Window.

For example:

Mean (Window size of 3) = Mean (Window size of 3*N) (A.1)
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If we choose for Window a starting point of 4, instead of starting at 2, and the correct
Window is 3, Window may be detected as 6. This is true since the mean of array Mean []

with Window size 3 is almost equal to the array Mean [] of Window size 3*N. A description
of this is presented in Equation (A1).

After detecting Corss and Window for that series, Crosspx is generated from the collection
of Cross pairs of size 2*Window. Algorithm 4.5 demonstrated how to collect the first and
last crossings from Cross into Crosspx of size Window*2. The Crosspx [] array is used to
transform the signal into the D-Domain which in terms is used to extract the features for ML
classification.

Crosspx:

[100, 379, 405, 777, 811, 1182, 1211, 1570, 1600, 1978, 2012, 2329, 2365, 2726, 2761,

3097, 3137, 3508, 3541, 3853, 3886,...]



Appendix B

Tutorial for Running Low-level C-Code
through the Ctypes Python Interface for
TS Extraction

B.1 C-Code structure used in compilation

This appendix provides a detailed description on how to low-level C-Code through Python
using the Ctypes module, where this section relates to the low-level part to be compiled to
consequently generate a shared library file. This has been discussed within chapters 5 and 6
where the Rulex software has been ported by means of compiling C/Cpp code using the basic
procedure discussed in chapter 7. Therefore, since the code in the former chapter has been
compiled/ported from scratch, in this appendix, a detailed recipe will be outlined describing
step-by-step the procedure for running code remotely on a Linux system (Raspberry Pi)
through a high-level programming language (Python).

Firstly, the decorator DLLIMPORT should be declared. This addition instructs the
compiler to when the shared library file will be exported the required functions (which are to
be called by Python) and when to import them into the running program:

#if BUILDING_DLL

#define DLLIMPORT __declspec(dllexport)

#else

#define DLLIMPORT __declspec(dllimport)

#endif
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Consequently, DLLIMPORT is used before initializing each function required by Ctypes.
In this Appendix, we will assume the following function "Image_to_TS_Engine" which
converts an image into a TS equivalent using Algorithm 7.1 which has been compiled to run
on the Raspberry Pi 4. An example of this function setup is outlined below:

DLLIMPORT struct tsStruct Image_to_TS_Engine(struct imStruct image);

Additionally, every variable which is used as input or output of this function should also
be preceded by the same decorator in order to have the function "Image_to_TS_Engine"
operational within the Python environment. The input is a 112x112 Sobel-filtered image
which is implemented as a structure imStruct, and the output is another structure of six TS
representing each statistical function as described in Algorithm 7.1. the C language format
of these variables is shown here:

DLLIMPORT typedef struct imStruct imStruct;

DLLIMPORT typedef struct tsStruct tsStruct;

typedef struct imStruct {

int im[112][112];

} imStruct;

typedef struct tsStruct {

float ts[6][360];

} tsStruct;

Moreover, in the case of generating of a windows library ".DLL" file rather than a Linux
".SO" file in case of testing purposes, the following source code should be included in the
main file as recommended by some C/Cpp IDE’s:
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BOOL WINAPI DllMain(HINSTANCE hinstDLL,DWORD fdwReason,LPVOID lpvReserved)

{

switch(fdwReason)

{

case DLL_PROCESS_ATTACH:

{

break;

}

case DLL_PROCESS_DETACH:

{

break;

}

case DLL_THREAD_ATTACH:

{

break;

}

case DLL_THREAD_DETACH:

{

break;

}

}

return TRUE;

}

B.2 Python C-Class Variables and the Ctypes interface

Furthermore, the two C structures which are compiled in C should be re-declared with
the same dimensions inside the Python part and need to be properly interfaced for optimal
performance. Since inefficiently converting the 2D C structure as a Numpy arrays may render
the act of generating the shared library useless or at the very least much slower than properly
interfacing a classed C function through the Ctypes module.
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Therefore, imStruct and tsStruct have to be initialized inside Python primarily using the
same dimensions in the form of Ctypes structures class as shown in the Python code below:

class imStruct(ctypes.Structure):

_fields_ = [("im", (ctypes.c_int32 * 112)*112)]

class tsStruct(ctypes.Structure):

_fields_ = [("ts", (ctypes.c_float * 360 )*6)]

After compiling the C-Code, a shared library file is generated which is in our case named
"Clibrary.so". Using the Ctypes pre-installed package, the compiled version of the func-
tions may be accessed using the "CDLL" module which in terms is employed to call the
"Image_to_TS_Engine" function through the described Ctypes classes, where the inputs and
outputs are to be initialized. The required commands to be used are shown here:

Clibrary = ctypes.CDLL("./Clibrary.so")

Clibrary.Image_to_TS_Engine.restype = tsStruct

ts_s = tsStruct()

im_s = imStruct()

After properly setting the return type using the restype command, the Python variables used
to store the inputs and outputs of the C function are initialized. However, to convert the C
structures into Python Numpy arrays (Which is the best choice for performance in Python),
the simple approach is to set each value in each 2D array by index using for loops. Although
this approach may be valid, however, it drastically degrades the performance since Python
for loop or considerably slow and the process of using C functions wouldn’t be as beneficial.

To address this issue, the "Numpy ctypeslib" sub-module has been employed for the
conversion from "Numpy to C" in case of the input image, and from "C to Numpy" in case
of the TS return type. The source which was used to perform the Image-to-TS conversion is
show here:

im_s.im = np.ctypeslib.as_ctypes(input_sobel_image.astype(np.int32))

ts_s =Clibrary.Image_to_TS_Engine(im_s)

ts_ = np.ctypeslib.as_array(ts_s.ts)
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The code previously described in this appendix is applied per image in the inference stage on
the IoT board (Raspberry Pi 4) as a deployment setup. However, in the training phase in order
to generate a dataset, the TSs are generated for all images in each dataset. Consequently,
depending on each image, its corresponding TS may vary when compared to other samples,
therefore, interpolation should be applied after having generated the dataset such data all
the smaller TS are resized using the OpenCV library till the maximum length available after
conversion. The efficient source code for this conversion may be observed as follows:

max = len(ts[0])

for i in range(len(ts)):

if max < len(ts[i]):

max = len(ts[i])

ts__ = np.zeros((len(x), max))

for i in range(len(ts)):

ts__[i] =np.array(cv2.resize(ts[i], (1,max))).flatten()

ts__ =np.array(cv2.resize(ts__, (1,max))).flatten()

xsamples = np.arange(0,len(ts__)+1,max)
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