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Via Opera Pia, 13 16145 Genova, Italy http://www.dibris.unige.it/
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Abstract

Droughts strongly affect the environment and human activities with long-term and
far-reaching impacts that will increase in the next decades under global changes.
Thus, we need an in-depth understanding of drought processes and their robust mod-
elling to cope with drought risk. For hydrologists, recurring challenges include pre-
dicting the impacts of precipitation (P) deficits in the form of soil moisture, stream-
flow (Q), or groundwater deficits. Water stored in catchments and evapotranspiration
(ET) regulate drought evolution, that is the propagation of P deficits through the hy-
drological cycle and the subsequent recovery. Yet, analyses explicitly considering
the joint contribution of storage and ET to drought evolution across different hydro-
climatic regimes are rare. Furthermore, many hydrological models poorly simulate
Q during droughts, but previous studies have rarely assessed model performances
during droughts in multi-variable and spatially-distributed evaluations. This PhD
thesis aimed to answer two main research questions: (i) do storage changes and
ET affect drought evolution across climates and landscapes?; (ii) does a distributed
hydrological model properly represent Q, ET, and storage during droughts? I per-
formed a large-sample data-based analysis of Q, ET, and changes in the subsurface
storage (in soil and groundwater) over the period 2010-2019 for 102 Italian catch-
ments to answer the first question. To address the second question, I evaluated Q,
ET, and storage simulations from the process-based distributed hydrological model
Continuum over the Po river basin (northern Italy) during recent droughts, includ-
ing the severe 2022 event. From the large-sample data-based analysis, I found that
annual subsurface storage changes represented on average 11% of annual P across
the study catchments, and mostly buffered Q deficits during drought years and their
recovery. ET, instead, both buffered and aggravated Q deficits, and it had a decou-
pled response to P. These results revealed the prominent role of subsurface storage
in driving the evolution of annual droughts. From model evaluation, I showed worse
model performances in simulating Q for severe than for moderate droughts (mean
KGE across the 38 study sub-catchments = 0.55±0.25 during moderate droughts and
0.18±0.69 in 2022) and I linked them to a degraded simulation of ET, rather than
storage, especially in the human-affected croplands (mean r = -0.03 and nRMSE



= 1.8 across the croplands in 2022). By calibrating the model during a moderate
drought, I showed similar model performances during the severe event (mean KGE =
0.18±0.63), which further point to specific human-water processes during this event.
Therefore, I delineated possible ways forward for model improvement during severe
droughts, such as an enhanced consideration of human interference, especially in ET.
The findings of the thesis provided a consistent picture of the different role ET and
storage have in drought evolution and in our modelling capabilities, coherently with
recent literature, also on multi-year droughts. Moreover, these results emphasized
the need for a holistic approach across the hydrological cycle for process under-
standing and model evaluation during droughts, with the ultimate goal of improving
drought modelling for water resources management, disaster risk reduction, and cli-
mate change impact assessments.
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Chapter 1

Introduction

1.1 Drought risk

Drought is ‘a sustained period of below-normal water availability’ [1] and is a recurring phe-
nomenon all over the world. Much of Europe is currently facing a severe drought caused by a
persistent lack of precipitation since winter 2021 and a summer heatwave, with the 7% of Europe
in warning conditions for low soil water content and 17% in alert conditions due to vegetation
stress in August 2022 [2]. Key droughts with severe hydrological implications over recent years
were the European summer droughts in 2003 [3], 2015 [4], and 2018 [5, 6, 7] - which turned into
a multi-year drought in some areas [8, 9, 10] -, the Millennium drought in south-eastern Australia
(ca. 1997-2010, [11]), the Chilean megadrought (2010-2020, [12]), and the 2012-2016 Califor-
nia drought [13]. Severe droughts also occurred in previous centuries, such as the 1930s Dust
Bowl in North America [14] and past events that might even have contributed to the collapse of
civilizations [15].

Droughts originate from a lack of precipitation and/or anomalously high temperatures (meteoro-
logical droughts or snow droughts in snow-dominated regions [16]), and then propagates through
the hydrological cycle to generate soil moisture and hydrological - streamflow and groundwater
- droughts [17] (Figure 1.1). Similarly, the recovery of droughts to normal conditions propagates
through the hydrological cycle [18], according to local conditions [19] and human activities [20].
Local conditions that govern drought evolution (propagation and recovery) across the landscape
include for instance dominant vegetation types, with their different water use strategies during
dry periods [21], morphological and climatic features, that make some catchments more prone
to store water than others, and antecedent catchment conditions [22]. Today, human activities
intensify or induce hydrological drought events too [23] (anthropogenic droughts [24]). Since
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water is essential for ecosystems and human life, drought events can further translate into ecolog-
ical droughts, that negatively affect ecosystems [25], and socio-economic droughts [17], which
impact human society and economy (Figure 1.1).

Figure 1.1: Schematic representation of drought propagation, inspired by [17] and [26]. In capital
letters drought definitions and in gray background main features of each drought type.

Droughts generally have a long duration and a wide spatial extent [27], with long-term and
far-reaching impacts that require regional management and ultimately undermine a sustainable
development [28]. Droughts have direct and indirect impacts on various sectors of economy,
society, and ecosystems [26] (Figure 1.2). Direct impacts of droughts are reduction in agricultural
production [29] and in water supply [30], as well as forest disturbance [31]. Indirect drought
impacts can be, for instance, decreased water quality [32, 33], famine [34], epidemic outbreaks
[35], migrations [36], conflicts [37], gender disparities [38], and mental health deterioration [39].
Moreover, droughts occur with and trigger other natural hazards, like heatwaves and wildfires,
resulting in compound and cascading events [40] and impacts [41]. For these reasons, properly
estimating drought impacts is challenging [42]; yet, [43] reported US$128 billion lost and 1.43
billion people affected by droughts worldwide between 2000 and 2019. This ranked droughts as
the fourth most impactful natural risk in terms of economic losses and the second one in terms
of affected population [43].

Data have shown clear changes in drought characteristics for some regions of the world over the
recent decades, such as an increase in streamflow drought spatial extent across the USA between
1981 and 2018 [44], and an intensification in frequency and duration of meteorological droughts
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Figure 1.2: Images of sectors affected by droughts: (a) agriculture, ‘Climate change and arid
soil’, Italy, 2017; (b) society, ‘Cheers for water recursion’, Iran, 2011; (c) water supply, ‘An-
thropogenic Drought on Cuyamaca Lake’, USA, 2017; and (d) ecosystems, ‘A ghost lake or a
dry snail?’, Italian Alps, summer 2022. Credits: Andrea Carri, Arash Modaresi Rad, Alexandre
Martinez, and Alessandro Ceppi (distributed via imaggeo.egu.eu).

in northern Italy from 1965 to 2017 [45]. Drought hazard could further increase in the near future
due to climate change [46, 47, 48], especially in some areas like the Mediterranean [49]. [50]
for instance predicted an increase in the severity of meteorological droughts over northern Italy
by the end of the century and [51] showed an expected enhancement of drought impacts across
Europe, as a result of climatic and socio-economic projections.

Drought adaptation measures are a pressing challenge today. Like for any natural risk, adaptation
measures can be structural, such as the construction of reservoirs and changes in agricultural
practices, and non-structural, like drought monitoring tools and water supply forecasting systems
for water resources management, and drought risk assessments for policy making. Early warning
systems and risk assessments widely rely on hydrological models, which in turn are built upon
our understanding of physical phenomena. Hence, we need an in-depth understanding of drought
processes to achieve their robust modelling.
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1.2 State-of-the-art

My thesis focuses on the understanding of natural processes occurring during droughts and their
modelling. Over recent years, drought research received growing attention along four main lines
(Figure 1.3): (i) drought characterization or ‘How severe is a drought?’; (ii) drought processes
understanding or ‘How do droughts unfold?’; (iii) drought modelling or ‘How well do we simu-
late droughts?’; and (iv) drought forecasting or ‘What will droughts be like in the future?’.

Figure 1.3: Illustration of main lines in drought research: (a) drought characterization, (b) pro-
cesses understanding, (c) modelling, and (d) forecasting, with their methods and links among
them. In (b) and (c) the main research questions addressed in the thesis are reported.

In the following sections I firstly provided an overview of useful hydrological concepts (Section
1.2.1) and then briefly outlined the state of the art for research lines (i) to (iii) (Sections 1.2.2,
1.2.3, 1.2.4). I did not discuss in detail the research on drought forecasting for impact-based
forecasts (e.g., [52]) and future projections (e.g., [47, 46, 53]) as this was beyond the scope
of the thesis. However, robust hydrological modelling during droughts is essential for drought
forecasting and the findings of my thesis can have implications for it (Section 4.4.1).

1.2.1 Preliminary hydrological concepts

The hydrological cycle is the partitioning of precipitation (P) into evapotranspiration (ET), stream-
flow (or discharge, Q), and changes in the Terrestrial Water Storage (TWSC) in glaciers, snow-
pack, water bodies, soil, and groundwater. At an annual time scale and for particular catchments
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(non-glacierized and unaffected by large water bodies), TWSC are mainly due to changes in the
water content of soil and groundwater, i.e., changes in the subsurface storage (∆S). The wa-
ter balance equation (Equation 1.1) can mathematically represent the hydrological cycle at the
catchment scale:

P = Q+ ET + TWSC (1.1)

Monitoring water balance components across the landscape is challenging, especially with regard
to ET and TWSC. ET is the coupling term between the surface water and energy balances, and
several methods exist for its monitoring, based on the measurement of either water or energy
fluxes [54]. Measurement sites, such as flux towers [55] and lysimeters [56], provide point ET
measurements. Yet, they are sparse, and ET is highly variable in space because of its strong
dependence on land cover and local climate. Today, remote sensing allows large-scale (near)
real-time ET estimates, from remote sensed data (e.g., the Normalized Difference Vegetation
Index [57]), and possibly hydrological or energy models. Land surface modelling in retrospective
analyses (reanalyses) also provide large-scale ET estimates. However, verification of such ET
estimates against point-scale measurements is desirable. Finally, a water balance approach can
provide ET estimates from Equation 1.1 and P, Q, and possibly TWSC data [58, 59]. Similarly,
the different components of TWS can be measured at point-scale, but in-situ data for them are
generally rare and potentially not representative at a catchment scale. A water-balance approach
can also provide estimates of storage changes across catchments [60, 13]. Lastly, integrated
measures of TWS are now available at large scale through remote sensing from the Gravity
Recovery And Climate Experiment (GRACE, Section 4.2.3.2).

Hydrological models are mathematical tools to simulate the hydrological cycle. They can be de-
fined mainly according to their (i) structure (data-driven, conceptual, or physics-based), (ii) spa-
tial distribution (lumped, semi-distributed, or distributed), and (iii) temporal application (event-
based or continuous) [61]. Model complexity increases from data-driven (lumped/event-based)
to physics-based (distributed/continuous) models. Many hydrological models have a conceptual
representation - generally a storage schematization - for physics-based processes and [61] re-
ferred to those as hybrid models. Here I used the term process-based (or -oriented) hydrological
models, I exclusively focused on, to distinguish them from purely data-driven (statistical [62] or
machine learning [63]) models. According to [64], a process-based hydrological model ‘explic-
itly represents and/or incorporates through assimilation approaches the hydrologic state variables
and fluxes that are theoretically observable ... at temporal scales characterizing the underlying
physical processes’. Further classifications and definitions are available for hydrological models,
which are beyond the scope of this brief literature review. Besides, additional modules can be
coupled to hydrological models to simulate processes interacting with the hydrological cycle,
such as vegetation dynamics and tracers transport in ecohydrological models [65]. Hydrologi-
cal models generally require a calibration (or training) phase to select suitable values for model
parameters and an evaluation (or validation or verification) phase to verify the suitability of cal-
ibrated parameters beyond the calibration data. [61] provided a review of common methods
for model calibration and evaluation. The increasing availability of hydrometeorological remote
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sensing-based data has fostered their application in hydrological modelling over recent years, for
calibration [66, 67], evaluation [68], and data assimilation [69]. The integration between remote
sensing and hydrological modelling is of key importance in digital twins of the Earth System
[70] to monitor and forecast hydrological extremes [69].

Today, human activities, such as water abstractions, reservoirs, land use changes, irrigation, and
water transfers, heavily affect the hydrological cycle [71], but properly considering them in large-
sample analyses [72] and hydrological modelling [73, 74] is challenging. Here, I focused mostly
on natural processes occurring during droughts and I discussed possible human interference in
the analyses in Sections 3.4.3, 4.4.2, and 5.2.

1.2.2 Drought identification and characterization

Drought analyses, monitoring, and forecasting require the identification of - past, current, and
future - drought events and their characterization through drought indicators. Because of the
relevance for drought impacts, main drought characteristics are the (i) frequency, i.e., the number
of events in a time span, (ii) duration, i.e., the period from the onset to the termination of an event,
(iii) severity, or magnitude, associated to the water deficit during the event, (iv) intensity, i.e., the
ratio between severity and duration, and (v) spatial extent, i.e., the number of affected catchments
or percentage of affected area over a region [42] (Figure 1.4).

Figure 1.4: Illustration of main drought characteristics.

Drought identification and characterization require long-term hydrometeorological data - ideally
more than 30 year-long [75] -, and a standardized [76] or threshold-level approach [77]. The stan-
dardized approach originated from the definition of the Standardized Precipitation Index (SPI)
by [78]. For any given time step, the SPI is the z-score (or standardized anomaly) of the observed
precipitation with respect to a normally distributed probability density (i.e., with zero mean and
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unit standard deviation) from the long-term P data [78]. Furthermore, SPI time series allow to
define drought events, according to predefined thresholds, and the SPI values within the events
allow to derive their characteristics [78] (Figure 1.4). Various studies proposed indices for each
hydrological flux and state building on the SPI concept, such as the Standardized Precipitation
Evapotranspiration Index [79], the Standardized Streamflow Index [80], the Standardized Soil
Moisture Index [81], and the Standardized Groundwater Index [82]. Reviews of drought indices
are available for instance in [83] for a general overview, and [84] with regard to the link between
indices and impacts. The threshold-level approach relies on the definition of a threshold, gen-
erally corresponding to a fixed percentile of the considered variable, and it identifies a drought
event when the variable is lower than the threshold (trough-under-threshold). The threshold can
be either fixed [77] or variable [85] in time. Drought characteristics descend from the time series
itself, after the identification of drought events (Figure 1.4, with a fixed threshold).

Vast literature proposed new drought indicators to account for relevant hydrological processes in
specific areas, like snowmelt in snow-dominated catchments [86], or combinations of them for
specific applications [87]. A fit-for-all drought indicator cannot exist and its choice should be
region- and purpose-dependent [17, 5].

Drought characterization studies further include trend detection and drivers attribution for past
events [44], also from a climatological standpoint [4].

1.2.3 Drought processes understanding

Over the last decades, literature investigated the mechanisms generating hydrological droughts,
which mainly relate to ET and storage in the catchment [60], and proposed theoretical frame-
works for drought propagation, such as streamflow drought typologies [88, 89]. Process un-
derstanding has generally been carried out through: (i) data-based analyses for experimental
catchments; (ii) large-sample data-based analyses; and (iii) model-based analyses (Figure 1.3b).

Experimental catchments allow us to have long-term data for (most) water balance components
(Section 1.2.1). Thus, data from experimental catchments allow to directly track the propagation
of the drought signal throughout the hydrological cycle. For instance, [3] analysed P, Q, soil
moisture, and ET data from four experimental catchments in Central Europe during the 2003
summer drought. They provided evidence that soil moisture deficits were amplified by an in-
crease in ET, which they called ‘drought paradox’ to underline the somehow counterintuitiveness
of an increased outgoing flux at a time of decreased ingoing flux. [6] examined P, Q, soil mois-
ture, and groundwater levels from a Scottish research catchment throughout the 2018 drought.
They found that subsurface storage supported almost entirely Q during drought and the following
recovery period. However, storage had not completely replenished during the preceding winters
and the two factors - dry antecedent conditions and Q sustainment during drought - resulted
in the strongest storage depletion on record. Therefore, data-based analyses from experimental
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catchments shed light on hydrological processes occurring during droughts.

To synthesize hydrological knowledge across a variety of catchments and scales, analyses across
large samples of catchments - tens to thousands - are warranted today [72]. Existing large-sample
(or multi-catchments or comparative) analyses mostly relied on P and Q data to identify and char-
acterize meteorological and hydrological droughts, and on catchment properties or hydrological
signatures [90] as proxys for other hydrological processes. This stemmed mainly from the dif-
ficulty in collecting water balance datasets for large samples of catchments (Section 1.2.1). For
instance, [22] studied the controls on hydrological drought characteristics in 44 Austrian catch-
ments through long-term P and Q time series, and climatic and physiographic characteristics.
They found that physiographic characteristics related to storage control drought duration, while a
combination of climatic and (storage-related) physiographic characteristics affect drought sever-
ity. A valuable example of multi-variable large-sample analysis is [91] that exploited data from
observations and reanalyses to study the evolution of P, Q, ET, and soil moisture during droughts
over the period 1984 - 2007 for 436 European catchments. They found soil moisture droughts
reduced more strongly and faster Q than ET across the study area, similarly to what [3] showed
at a catchment- and event-scale.

Model-based analyses overcome the poor availability of long-term water balance data at large
scales. [92] provided further evidence of the ‘drought paradox’ during the 2003 summer drought
in the Alps through ecohydrological modelling. However, different hydrological models may re-
sult in different conclusions, as argued from a large-sample and multi-model sensitivity analysis
in [93], and hydrological models may not properly represent drought processes (Section 1.2.4).
Thus, model-based analyses should be used cautiously for process understanding and at least be
adequately backed up by specific validation during droughts.

1.2.4 Drought modelling

Hydrological models have usually been designed to reproduce high flows, rather than low flows
[94]. Furthermore, the transferability of model parameterizations outside the climatic conditions
of the calibration period is often limited [95, 96] and this can hamper model performances during
multi-year droughts for instance [97] (Section 1.2.5). For these reasons, properly simulating
drought conditions can be challenging [98, 97, 99]. However, drought monitoring systems [100]
and risk assessments [101] often use hydrological models to predict droughts in data-scarce or
ungauged areas. Therefore, assessing model robustness during droughts is highly relevant today
and it is the first step toward possible model improvement (see for instance [102] and [103] as an
example of model evaluation and subsequent improvement for multi-year droughts).

Model evaluations during droughts have mostly focused on Q [98, 97, 99], either in a calibration-
evaluation approach [97] or by assessing the simulation of streamflow drought events and their
characteristics [98, 99]. For example, [97] investigated the ability of 6 lumped conceptual hy-
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drological models in reproducing Q during the Millennium drought for 124 catchments in south-
eastern Australia. They calibrated the models on pre-drought conditions and then evaluated
them during the drought, finding that models underperformed in catchments where the multi-year
drought was particularly extreme [11] (Section 1.2.5). [99] instead evaluated the performances of
various catchment-scale and global hydrological models in simulating streamflow drought events
and their characteristics for 8 large catchments all over the world. They showed that catchment-
scale hydrological models, and their ensemble mean, have better performances than global hy-
drological, and single models, in simulating streamflow drought events, even though they have
a generally limited ability in properly simulating their characteristics. [98] quali-quantitatively
evaluated the ability of an ensemble mean of large-scale models in simulating drought propaga-
tion features, streamflow drought typology and characteristics; they argued that model inability
in reproducing drought propagation features and streamflow drought typology can be due to a
poor simulation of processes involved in drought propagation, as ET and storage.

Recent studies explicitly showed that models may misrepresent ET [13, 59] and storage dynam-
ics [102] during droughts. [59] revealed that Earth System Models largely underestimated the
occurrence of positive ET anomalies during droughts between 2003 and 2020 at the global scale,
with 25% of drought months experiencing positive ET anomalies from simulations and 44% from
observations. Furthermore, [102] showed that 5 commonly used lumped conceptual hydrological
models did not properly simulate the decline in storage that emerged from data for the Millen-
nium drought in south-eastern Australia. These findings emphasize the need for multi-variable
evaluations during droughts to explicitly verify model internal consistency.

Increased computational capabilities fostered the use of distributed hydrological models over re-
cent years [64] and remote sensing-based data provide the opportunity to evaluate also simulated
spatial patterns [104, 105]. Yet, spatially-distributed multi-variable model evaluations focusing
on droughts are rare in the literature.

1.2.5 Multi-year droughts

Prolonged streamflow droughts have different hydrometeorological drivers than shorter droughts
[106]. Moreover, multi-year droughts can trigger changes in how catchments respond to precipi-
tation [11], resulting in an exacerbation of streamflow droughts compared to what predicted from
the meteorological droughts and typical P-Q relationships. Shifts in P-Q relationships occurred
in south-eastern Australia during the Millennium drought [11], in Chile during the 2010-2020
megadrought [12], and in California during the 2012-2016 drought [13]. However, there is no
consensus on the causes of these hydrological changes [107] and on what makes some catch-
ments more prone to them [108, 12]. These shifts have serious impacts on modelling capabilities
[97]. A warming climate may lead to more severe and long droughts [9, 10], and also to tran-
sitions from snow- to rainfall-dominated hydrological regimes that foster multi-year streamflow
droughts [109]. Therefore, changes in the hydrological response of catchments during multi-year
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droughts challenge future water security [110]. Analyses of ET and storage during multi-year
droughts are limited, even thought they can provide insights on the mechanisms occurring during
these events and their modelling [13].

1.3 Research questions

From the literature review (Section 1.2), two major gaps emerged in the research on the un-
derstanding of drought processes and their modelling (Figure 1.3). Previous studies revealed
that catchment storage is a key driver in drought evolution (propagation and recovery), using
long-term data from small-sized experimental catchments [6] or storage-related catchment prop-
erties in large-sample analyses [22, 76]. Though, data-based analyses explicitly quantifying ET
and storage contribution to drought evolution across different hydroclimatological regimes are
rare (research gap 1). Moreover, several hydrological models showed declining skills during
droughts in simulating Q [97], ET [13], and storage [102]. Yet, multi-variable evaluations of
spatially-distributed hydrological models have rarely been performed (research gap 2).

Hence, the PhD thesis aimed to answer two main research questions:

(i) do storage changes and ET affect drought evolution across climates and landscapes? (Section
3);

(ii) does a distributed hydrological model properly represent Q, ET, and storage during droughts?
(Section 4).

To answer these questions, I collated ground- and remote sensing-based P, Q, ET, and storage
changes data at a national scale (Section 2), I analyzed this large-sample dataset to unravel how
they vary during droughts and their recovery across different climates and landscape features
(Section 3), and I evaluated the performances of a distributed hydrological model in simulating
Q, ET, and storage dynamics during droughts at a regional scale (Section 4). Furthermore, I par-
ticipated in the analysis of possible hydrological changes during multi-year droughts in European
climates and the identification of potential drivers for them (Section 5).
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Chapter 2

Overview of study area and data1

Italy has an Alpine-to-Mediterranean climate and a complex topography (Section 2.1) that make
it an ideal case study for large-scale analyses, and it experienced several droughts recently (Sec-
tion 2.3). Hence, I used Italy as study area for the data-based large-sample analysis (Section 3)
and its major basin - the Po river basin - for model evaluation (Section 4). Specifically, I selected
102 catchments across Italy and 38 sub-catchments within the Po river basin (Section 2.2.6). A
large-sample hydrometeorological dataset is currently lacking for the region [111], and for this
reason I firstly collected hydrological and meteorological data at Italian scale (Section 2.2).

2.1 Study area

2.1.1 Topography and climate

Italy is characterized by a wide variety of topographic areas and climatic environments that are
reflected in catchment types and hydrometeorological regimes. Topography in Italy varies from
mountainous along the Alps (in the north) to flat and highly urbanized in the lowlands in the
northern regions and then to a predominant steep coastal orography all along the peninsular
coastline (Figure 2.1). Consequently, Italy has few large catchments (with an area greater than
104 km2) located in the northern and central part of the country and many small- and medium-
size steep catchments (drainage areas ranging from 101 to 103 km2) across the country. In the
northern and north-eastern alpine and sub-alpine regions, climate is cold and temperate without
a dry season [112] (Figure 2.2). While it is temperate with a dry season and arid all along the

1Part of this chapter is published as G. Bruno, F. Pignone, F. Silvestro, S. Gabellani, F. Schiavi, N. Rebora, P.
Giordano, M. Falzacappa, Performing Hydrological Monitoring at a National Scale by Exploiting Rain-Gauge and
Radar Networks: The Italian Case, Atmosphere (2021) 12, 771. https://doi.org/10.3390/atmos12060771
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western coast and in the central and southern regions [112] (Figure 2.2), with most of the rainfall
in autumn and winter — a typical Mediterranean climate [113].

Figure 2.1: Elevation of the study area from [114], with locations of (i) flux towers for evapo-
transpiration (ET) validation (Section 3.2.2.1), (ii) closure sections of study catchments for the
large-sample analysis (Section 3) and example catchments for illustration of hydroclimates (Sec-
tion 2.2.6), and (iii) the Po river basin for the model evaluation (Section 4).

2.1.2 Land cover

A variety of natural and human-affected land cover types characterize the study region, with
forests and semi-natural areas mostly along the mountains, and agricultural areas and artificial
surfaces in the lowlands and along the coastline (Figure 2.3). Agricultural areas dominate as land
cover type with around 51% of the Italian territory covered by them according to the Corine Land
Cover 2018 map (https://land.copernicus.eu/paneuropean/corine-landcover/clc2018, last access
on 24 November 2022). Then, forests and semi-natural areas occupy around 42% of the country,
urban areas around 5%, and water bodies around 2%.
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Figure 2.2: Same as Figure 2.1, but for climate from [112].

Figure 2.3: Same as Figure 2.1, but for land cover from the Corine Land Cover 2018 map.
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2.1.3 Soil and geology

According to [115, 116], the most common soil texture across Italy for both the top- (Figure
2.4) and sub-soil (not shown) layers is medium with low-to-medium percentage of clay and
sand, followed by coarse with low percentage of clay and high percentage of sand, and fine with
medium-to-high percentage of clay. For topsoil, medium soil texture accounts for around the
68%, coarse for around the 23%, and fine for around the 9%.

Figure 2.4: Same as Figure 2.1, but for topsoil texture from [115, 116].

Various aquifers characterize the study region basing on the ISPRA hydro-geological complexes
map (http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/complessi-idrogeologici/view8,
last access on 02 August 2021). Igneous and metamorphic rocks are mainly in the northwest-
ern Alps, central and southern areas, and the islands; carbonate rocks in the northeastern Alps,
Apennines, and southeastern region; silicatic sediment rocks in the Apennines; and unconsoli-
dated aquifers in the northern Po plain and along the coastlines (Figure 2.5).

2.2 A hydrometeorological dataset for Italy

In Italy, regional hydrometeorological offices oversee hydrometerological data collection today.
Moreover, the Italian Civil Protection Department (DPC) collects the data at the national scale
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Figure 2.5: Same as Figure 2.1, but for aquifers from the ISPRA hydro-geological complexes
map.

from the different regional offices in near real-time for civil protection purposes and hydromete-
orological monitoring. CIMA Research Foundation, as DPC Competence Center, has access to
its database (hereinafter DPC database). The DPC database was the backbone of the hydromete-
orological dataset I collated.

For the large-sample analysis (Section 3), I blended ground- and remote sensing-based data over
the hydrological years (h.y.) 2010 - 2019. Further, I extended the dataset up to h.y. 2022 for the
Po river basin to include the severe 2022 - ongoing - drought in the model evaluation (Section 4).
Throughout the thesis, I considered hydrological years (from September to August, named after
the August calendar year) rather than calendar years.

In the following I briefly described data availability for the study region, data I used, and an
overview of them.

2.2.1 Precipitation

In Italy, precipitation (P) is monitored by a network of about 4500 gauges and 23 radars today
[117]. Therefore, spatial estimates of P for the region can be derived by spatial interpolation of
gauges data or the merging of gauge- and radar-data, for instance through the Modified Condi-
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tional Merging (MCM) algorithm [117]. I used gridded P data from the DPC database, as well
as the gauge-based BIGBANG dataset [118, 119, 120] for drought identification due to its long-
term availability (Section 3.2.2.1). Basing on DPC data and the MCM interpolation algorithm
[117], mean annual P (2013-2022) varies between less than 600 mm in southern regions and
more than 2500 mm in the northeastern Alps and northwestern Apennines (Figure 2.6).

Figure 2.6: Mean annual P (2013-2022) for Italy according to DPC data and the MCM interpo-
lation algorithm [117].

2.2.2 Streamflow

In Italy, water levels are currently monitored by around 1250 gauges, but updated rating curves
to convert them to streamflow (Q) data are available for only about 600 of them [121] (Fig-
ure 2.7) and long-term Q data for still less. I collated Q data from the DPC database and re-
gional hydrometeorological offices. The DPC database consists of pre-validated Q data from
near real-time water levels, whereas some validated Q time series are available online from re-
gional hydrometeorological offices. Thus, I screened the dataset for possible outliers through
a semi-automated quality checking procedure (Section 3.2.2.1) and linearly interpolated small
gaps before the analyses.
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Figure 2.7: Water level gauges across Italy with (blue dots) and without (red dots) updated rating
curves as of 2016, from [121].

2.2.3 Evapotranspiration

For evapotranspiration (ET), I exploited the remote sensing-based ET dataset from the Land
Surface Analysis of the EUMETSAT Satellite Application Facility (hereafter LSASAF) which
I quality-checked for the study region through an in-situ validation at 12 flux towers (location
in Figures 2.1 to 2.5) and in a multi-dataset comparison (Section 3.2.2.1). According to the
LSASAF product, mean annual ET (2010 - 2022) ranges from less than 200 mm in the Alpine
northern regions and coastal areas in southern regions to more than 500 mm in the northern Po
plain (Figure 2.8).

2.2.4 Terrestrial Water Storage

To have storage data for a variety of small-to-large catchments, I estimated storage changes as
annual residual from the water balance equation (Equation 1.1) for the large-sample analysis,
while in the model evaluation I used monthly Terrestrial Water Storage (TWS) data from remote
sensing-based GRACE products as independent data at a regional scale (Section 4.2.3.2).

In Section 3.4.2, I discussed the robustness of storage estimates from water balance through a
comparison with alternative P and ET datasets, and a correlation analysis with possible morpho-
logical and climatic predictors. Furthermore, I compared monthly estimates of storage changes
from the observed water balance components and GRACE products for the outlet of the Po river
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Figure 2.8: Mean annual ET (2010-2022) for Italy according to the LSASAF product [122, 123].

basin following [124]. I obtained a satisfactory agreement between the two estimates of stor-
age changes with Pearson’s correlation coefficient (r) equal to 0.73 and Root Mean Square Error
(RMSE) equal to 20 mm/month (Figure 2.9).

2.2.5 Meteorological dataset

The Italian official meteorological network currently consists of around 3200 sensors for tem-
perature, 2000 for radiation, 1000 for wind, and 1500 for relative humidity. Here, I used ground-
based data from the DPC database to derive (i) catchment-average temperature for climate char-
acterization of the study catchments in the large-sample analysis (Section 3.2.2.2) and (ii) maps
of the required meteorological variables for the modelling study (Section 4.2.3.1).

2.2.6 Study catchments and their characteristics

As study catchments, I selected 102 Italian catchments for the large-sample analysis and 38
sub-catchments in the Po river basin for the modelling study, according to data availability and
catchment suitability for the analyses (Sections 3.2.1 and 4.2.3.2). For each study catchment I
derived a set of characteristics and hydrological signatures (Section 3.2.2.2).
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Figure 2.9: Comparison between monthly Terrestrial Water Storage Changes (TWSC) from
GRACE data and observed water balance (WB) data for the outlet of the Po river basin. The
gray shading corresponds to uncertainty in GRACE data, following [125, 124].

The study catchments span the variety of climates, land covers, and subsurface properties across
Italy and the Po river basin (Figures 2.2, 2.3, and 2.5). Furthermore, different hydroclimato-
logical regimes and streamflow generating mechanisms characterize the study catchments, for
instance in terms of Asynchronicity Index (ASI) [126], Baseflow Index (BFI), and snow contri-
bution to Q. ASI is a seasonality index with respect to P and ET [126], with 0.36 as the lower
threshold to define a Mediterranean climate, that is a P regime highly seasonal and out-of-phase
with ET. The ASI shows a clear latitudinal pattern across the study catchments (Figure 2.10),
with values < 0.36 in the northern and central-eastern parts of Italy, and values > 0.36 in the
(Mediterranean) southern Po river basin, central-western and southern parts of Italy. The study
catchments also exhibit rather different BFI values (Figure 2.11), and so a varying degree of
baseflow contribution to Q. BFI is the result of geology and climate in the area (Figures 2.5, and
2.10), with low BFI (< 0.4) mostly in Mediterranean areas, medium BFI (0.4 < BFI < 0.8) in
non-Mediterranean areas, and high BFI (> 0.8) for carbonate aquifers. Finally, the mean snow
contribution to Q is rather variable across the study catchments and exceeds 60% for some alpine
catchments [127] (Figure 2.12).

As a consequence, the study catchments show a transition from Mediterranean to Alpine hydro-
climates (Figure 2.13). Mediterranean (or rainfall-dominated) catchments exhibit erratic P and
Q peaks shortly after rainfall events, mostly during autumn and winter, and a dry summer when
ET is the dominant hydrological flux (Figure 2.13a and b). Alpine (or snow-dominated) catch-
ments show an almost year-round P distribution and annual maximum Q in summer, because of
snowmelt and rainfall events, in-phase with ET (Figure 2.13c and d).
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Figure 2.10: Same as Figure 2.1, but for Asynchronicity Index (ASI).

Figure 2.11: Same as Figure 2.2, but for Baseflow Index (BFI).

2.3 Drought characterization

The study region experienced three major droughts during the study period, in 2012, 2017, and
2022 (ongoing), as emerging from [128, 129], reports [130, 131, 132], and indices I computed.
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Figure 2.12: Same as Figure 2.1, but for the mean annual ratio [%] between peak Snow Water
Equivalent and streamflow (Q) as a measure for snow contribution to Q, from [127].

For a brief characterization of drought events over the study area and period, I identified main
drought events for the 38 study sub-catchments in the Po river basin, for which I collected data
up to August 2022. For this purpose, I considered the Standardized Precipitation Index [78]
with a 12-month aggregation period (SPI12) and the Standardized Streamflow Index [80] with a
1-month aggregation period (SSI1). SPI is strictly speaking a meteorological drought indicator,
since it relies on P data only, but it is often used as a hydrological drought indicator with a 12-
month aggregation period, as this time scale allows to detect P deficits long enough to generate
hydrological droughts [133, 134]. On the other hand, SSI is a purely streamflow drought indica-
tor. [76] proposed to correlate the SSI1 and SPI with various aggregation periods to study drought
propagation over a region. This allows to find the most suitable aggregation period to use SPI
as a proxy for streamflow droughts. To compute the indices, I used catchment-average monthly
cumulative P data from the MCM algorithm [117] (Section 2.2.1) over the period January 2002-
August 2022 and monthly mean Q (Section 2.2.2) over the period September 2004-August 2022.
Further, I followed [135, 136] for the selection of the probability distribution to fit the data, and
I used for both indices a loglogistic distribution.

Both SPI12 and SSI1 showed negative values, i.e., drought conditions, in 2012 (mean SPI12 =
-0.56±0.12 and mean SSI1 = -0.31±0.21 across the study sub-catchments), 2017 (mean SPI12
= -0.33±0.11 and mean SSI1 = -0.4±0.19), and 2022 (mean SPI12 = -0.83±0.18 and mean
SSI1 = -1.16±0.21), although some differences emerged among the indices and the three events
(Figures 2.14 and 2.15). In terms of SPI12, the 2012 drought developed at the beginning of the
hydrological year (h.y), and lasted for the whole h.y. for most of the study catchments (Figure
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Figure 2.13: Daily time series and climatology of catchment-average precipitation (P), evapo-
transpiration (ET), and streamflow (Q) for two contrasting example catchments: in (a and b) the
Mediterranan Erro at Cartosio with low contribution of storage to Q, while in (c and d) the Alpine
Dora Baltea at Tavagnasco with high contribution of storage to Q. In (b and d) the thick lines
refer to daily medians and the shading to the interquartile ranges over the study period (2010-
2022).

2.14). The 2017 drought followed an already dry year, affected particularly the eastern part of
the Po river basin, and lasted over the following year in some cases. Finally, the 2022 drought
developed already in 2021 in the western part of the basin, during summer affected most of the
basin, and was the most severe drought over the study period for most sub-catchments. The SSI1
showed higher variability in space and time than the SPI12 (Figure 2.15). However, it revealed
similar patterns to the SPI12 with severe dry spells in 2012, dry conditions throughout the whole
2017 for the eastern parts of the basin, and throughout the 2022 for most sub-catchments.

The differences between the SPI12 and the SSI1 can be due to several factors, such as local pro-
cesses, the aggregation period, and the relatively short standardization period. An in-depth anal-
ysis would be required to identify the most suitable aggregation periods to analyze streamflow
droughts over the study region [76], which was out of the scope of this drought characterization.
Furthermore, longer record length would allow to estimate drought indices more robustly and
for this reason I used alternative data/methods to identify droughts with hydrological impacts in
the following (Sections 3.2.2.3 and 4.2.4.1). However, I concluded that (i) the dataset I collected
and analyzed in the thesis was coherent with literature and reports in depicting droughts with
hydrological impacts over the study period and area, and (ii) the SPI12 could properly detect
them.
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Figure 2.14: Monthly Standardized Precipitation Index with a 12-month aggregation period
(SPI12) for study sub-catchments in the Po river basin (Table I.1) over the period h.y. 2010-
2022. Catchments are ordered west-to-east according to their outlet. Black edges denote major
drought years.
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Figure 2.15: Monthly Standardized Streamflow Index with a 1-month aggregation period (SSI1)
for study sub-catchments in the Po river basin (Table I.1) over the period h.y. 2010-2022. Catch-
ments are ordered west-to-east according to their outlet. Black edges denote major drought years.
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Chapter 3

Disentangling the role of subsurface
storage in the propagation of drought
through the hydrological cycle1

3.1 Introduction

Drought is among the most impactful natural hazards in term of affected people all over the world
[43] and has severe and intertwined impacts on environmental, economical, and social aspects,
such as terrestrial and freshwater ecosystems, agriculture, water supply, human health, and social
stability [137]. Furthermore, drought hazard is expected to increase in frequency, magnitude, and
duration in the near future due to climate change [47, 53, 46].

Drought starts from a deficit in precipitation - P -, possibly in combination with an increase
in temperature (meteorological drought); a meteorological drought then propagates through the
hydrological cycle to generate soil moisture deficits (soil moisture or agricultural drought), as
well as discharge - Q - and groundwater deficits (hydrological drought) [17]. Here we use the
term hydrological drought to refer to discharge deficits. The process leading from meteorological
to hydrological drought, which is known as drought propagation, is governed by local climatic
and topographic features [22], along with human influences [23, 138]. Hydrological drought is
generally attenuated compared to the corresponding meterological drought [88] by land surface
processes, i.e., actual evapotranspiration - ET - and catchment storage. However, prolonged

1This chapter is adapted from G. Bruno, F. Avanzi, S. Gabellani, L. Ferraris, E. Cremonese, M. Galvagno, and C.
Massari, Disentangling the role of subsurface storage in the propagation of drought through the hydrological cycle,
Advances in Water Resources (2022) 104305, https://doi.org/10.1016/j.advwatres.2022.104305
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dry periods can also lead to an intensification of hydrological drought [11, 134, 139, 13, 12,
140, 141]. Also the period required to recover from deficit conditions (drought recovery) may
vary across the different components of the hydrological cycle [18], and it is also affected by
catchment properties [19] and human factors [20, 142]. Thus, quantifying water availability in
each hydrological compartment during and after dry periods still remains challenging because
of several factors involved in drought propagation and recovery, but it is essential to properly
inform water managers.

A growing number of papers studied drought propagation (e.g., [88, 143, 144]) and recovery
(e.g., [145]), as well as the influence of climatic [133] and catchment properties [22, 76, 146,
19, 147] on them. Previous works mostly used the threshold level method [22, 146, 19, 147]
or standardized indices [76, 133] to identify meteorological and hydrological droughts, and to
characterize them in term of drought characteristics (severity and duration). More importantly,
they used catchment properties and hydrological signatures to represent the land surface pro-
cesses involved in drought propagation. For instance, Van Loon and Laaha [22] studied how
various physiographic catchment properties control hydrological drought characteristics for 44
Austrian catchments and they found that catchment storage, represented by the Base Flow In-
dex (BFI), affects hydrological drought duration. Further, [76] analyzed drought propagation for
121 catchments in UK, showing that catchment properties related to storage, such as the BFI,
the percentage of productive aquifer in the catchment, and the soil wetness, control hydrological
drought characteristics, as well as its delay with respect to the meteorological drought.

However, few studies focused on explicitly quantifying each hydrological flux and storage to
provide mechanistic understanding of hydrological processes during drought propagation and
recovery [3, 60, 6]. [3] showed that ET aggravated soil moisture deficits during the 2003 Euro-
pean summer drought across a set of experimental catchments, while [6] found that subsurface
storage sustained Q in an experimental Scottish catchment during the Northern European 2018
drought and the following recovery. Both the processes revealed by [3, 6] lead to a net depletion
of subsurface storage during drought [148], which in turn can lead to a reduction of available
groundwater for human purposes. Thus, we argue here that considering the whole hydrologi-
cal cycle is necessary to better understand the hydrological processes occurring during drought
propagation and recovery, and to quantify water availability in each hydrological compartment
during such periods.

To pursue such an approach, we rely on the water balance model (Equation 3.1) following [60].

P = Q+ ET +∆S (3.1)

Here we define ∆S as the subsurface storage change (hereafter subsurface storage) in the whole
regolith, either in the soil and in the weathered bedrock. Storage changes could also be due
to surface water bodies, snowpack, and glaciers within the catchment. Nonetheless, the annual
time scale and the selection of suitable catchments (non-glacierized and not regulated by lakes,
for instance) allowed us to minimize snow influence and the effects due to glaciers and surface
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water bodies. Therefore, at annual time scale positive annual ∆S values represent an inter-
annual carryover in the subsurface storage, while negative values an inter-annual drawdown.
The assumption that catchments do not show any inter-annual change in subsurface storage may
not hold true [149, 150, 151, 152], due to net intercatchment groundwater flow - that can be part
of ∆S - or catchment properties such as large depth of soil and heavily weathered bedrock, for
which we expect large subsurface storage changes and variability.

Catchment-scale water balance datasets have historically been challenging to collect, especially
for comparative studies across a variety of catchments. Ground-based ET and ∆S (soil mois-
ture and groundwater) data are seldom available and mostly limited to small-sized experimental
catchments, while total terrestrial water storage estimates from GRACE satellites can be used
only for large-sized catchments, due to their coarse spatial resolution [153]. Consequently, sys-
tematic large-sample analyses across a wide range of catchments to quantify ∆S contribution
to the allocation of P through the hydrological cycle [154, 148] and to drought propagation and
recovery are rare, despite few exceptions [91]. In order to fill this gap, here we hypothesized
that blending ground-based and remote-sensed data can provide a consistent, large-scale water
balance dataset across different climates and landscapes.

Thus, in this work we aimed at answering three research questions: (i) how much is the inter-
annual carryover or drawdown in subsurface storage for a large-set of Italian catchments across
different hydroclimatic regimes?, (ii) does this subsurface storage carryover or drawdown affect
drought propagation?, and (iii) do ∆S, ET, and Q recover over similar time scales after a deficit
in P? To answer these questions, we leveraged the dataset we collected to perform a large-sample
analysis of each water balance component for 102 Italian catchments over the period 2010 - 2019
and gain insights into the propagation of meteorological drought through the hydrological cycle
for annual drought events in the considered decade.

3.2 Material and methods

We chose Italy as study region because it presents a broad variety of climatic and topographic
features, as briefly described in [117]. Moreover, it experienced several drought episodes over
the recent years [155, 128, 156], such as the 2012 and 2017 events, and thus it is a suitable study
region for the objectives of the work.

Here, we selected the period from hydrological year (h.y.) 2010 to h.y. 2019 as study period, and
we considered h.y. as the period from September to August [117].
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3.2.1 Study catchments

We collected estimates for each water balance component (Equation 3.1), as well as hydro-
meteorological data and catchment properties for 102 partly-nested catchments across Italy (Fig-
ure 3.1). We carried out catchment delineation using the Shuttle Radar Topographic Mission
(SRTM) Digital Elevation Model (DEM) and we used catchment boundaries from it to derive
catchment-scale hydro-meteorological data and properties (see Section 3.2.2 for details about
each of them). We selected the study catchments according to some criteria to make them suit-
able for the analysis: (i) catchment area greater than 100 km2, as the spatial resolution of the
selected satellite-derived ET product is around 4 km x 5 km (Section 3.2.2); (ii) annual runoff
ratio less than 1.5, as an arbitrarily chosen threshold to guarantee coherence between the P and Q
data, but at the same time to allow for possible import from the subsurface storage; (iii) percent-
age increase in catchment area greater than the 10% between upstream and downstream nested
catchments, to avoid clusters of nested catchments [157] that could bias our general results; (iv)
relative difference between the catchment area we obtained from SRTM DEM and the one pro-
vided by regional hydrometeorological offices - if available - less than 20%, to exclude errors
in our catchment delineation [157]; (v) glacier cover, from the RGIv6.0 glacier outlines [158],
less than 10% of catchment area to avoid glacierized catchments [12] and effects in the drought
propagation owing to glacier contribution to storage [159].

The resulting study catchments (Figure 3.1 and Table B.1) cover different hydro-climatic regimes
- as identified by the aridity index (AI) introduced in Section 3.2.2 -, a steep orographic gradient,
and include medium-to-large size catchments. Energy-limited catchments (AI < 1) are the 24%
of study catchments, while very energy-limited catchments (AI < 0.75) are the 53% of them.
Further, water-limited catchments (AI > 1) are the 17% of study catchments, while very water-
limited catchments (AI > 1.25) are the remaining 6%, these latter mostly in the central and
southern regions of Italy. Catchment elevation has a mean (min/max) value of 1076 (143/2487)
m a.s.l., while the mean (min/max) catchment area is 3631 (105/68619) km2. Moreover, the
study catchments are characterized by different dominant soil type, land cover, and geological
classes (Table B.1).

3.2.2 Data

3.2.2.1 Water balance dataset

To perform a large-sample analysis across different hydroclimatic regimes, we collected data
from multiple sources to close the annual water balance by blending ground-based measurements
and remote sensing. We further collected alternative estimates of P and ET, as detailed in the
following paragraphs and Table 3.1, for a multi-dataset comparison to verify the consistency of
the water balance dataset.
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Figure 3.1: Location of the closure section and properties for the study catchments: (a) arid-
ity index, AI for each catchment; (b) frequency distribution of catchment area; (c) frequency
distribution of catchment mean elevation.

Table 3.1: Overview of the datasets used in the study

Variable Dataset Purpose
T DPC [117] PET estimation
P DPC [117] Water balance analysis
Q DPC [117] Water balance analysis

ET LSASAF (METv2) [122, 123]1 Water balance analysis
P BIGBANGv4.0 [118, 119, 120]2 Multi-dataset comparison and SPI calculation

ET BIGBANGv4.0 [118, 119, 120]3 Multi-dataset comparison
ET FLUXNET2015 [160]4 Multi-dataset comparison
ET GLEAMv3.3a [161] Multi-dataset comparison

Digital Elevation Model STRM DEM Catchment characterization
Glacier outlines RGIv6.0 [158] Catchment characterization

Land cover Corine Land Cover 20185 Catchment characterization
Soil properties European Soil Database Derived data [115, 116] Catchment characterization

Geological properties ISPRA hydro-geological complexes6 Catchment characterization
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We derived daily catchment-average precipitation from ground-based P data from the Italian
regional hydrometeorological offices and the Italian Civil Protection Department (in the follow-
ing, DPC dataset) [117]. Additionally, we used monthly catchment-average P data from the
BIGBANGv4.0 dataset [118, 119, 120]. BIGBANG is a national-scale gridded water balance
model, relying on ground-based P and temperature (T) data and parsimonious formulations. It
provides estimates of each water balance component (precipitation, actual evapotranspiration,
surface flow, change in soil storage, groundwater recharge) along with potential evapotranspira-
tion (PET), at monthly and 1 km resolutions for the Italian territory over the period 1951 - 2019
[118, 119, 120]. We used BIGBANG P data for comparison with P estimates from the DPC
dataset and for the calculation of the Standardized Precipitation Index (Section 3.2.2.3) [78], due
to its long temporal availability.

For discharge, we relied on data from the DPC dataset [117] and the Italian regional hydrom-
eteorological offices. We further applied some quality checks to the Q dataset to identify and
remove possible outliers: (i) a Hampel filter [162], which compares each value with statistics
from a surrounding window, and (ii) a filter similar to the one used in [163], comparing each
value with statistics for that day of the year over the entire series. The first filter allowed us to
detect individual suspicious values, due to temporary malfunctioning in the measurement instru-
mentation for instance, while the second one enabled us to identify consecutive values outside
the climatology for that period of the year, e.g. due to prolonged instrumentation malfunctioning.
Thus, we obtained a quality-checked daily mean Q dataset for 102 catchments across Italy (see
Figure D.1 for ax example of filtered data). We further underline that Q data for some catchments
may be influenced by human activities (e.g., reservoirs and irrigation), but the aim of this study
is a large-sample analysis for which a certain degree of anthropogenic influence can be accepted
[164] (see Section 3.4.2 for further discussion).

We derived ET maps for the study region from the already validated METv2 product by the Land
Surface Analysis of the EUMETSAT Satellite Application Facility (hereafter, LSASAF product)
[122, 123]. The LSASAF product provides sub-daily ET estimates at a spatial resolution of 3.1
km x 3.1 km at the nadir (around 4 km x 5 km over Europe), by resolving the surface energy
balance from satellite-derived data of radiative forcings, land cover, biophysical parameters, and
soil moisture status, along with ancillary meteorological data. Previous works validated it against

1https://landsaf.ipma.pt/en/products/evapotranspiration-energy-flxs/met/
(last access on 24 September 2020)

2https://groupware.sinanet.isprambiente.it/bigbang-data/library/bigbang40/
grids (last access on 27 April 2022)

3https://groupware.sinanet.isprambiente.it/bigbang-data/library/bigbang40/
grids (last access on 27 April 2022)

4https://fluxnet.org/data/fluxnet2015-dataset/ (last access on 20 April 2020)
5https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (last access

on 22 November 2020)
6http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/

complessi-idrogeologici/view (last access on 02 August 2021)
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ground-based flux towers data across Europe [165, 166] and also compared it to the MODIS ET
product [165]. Furthermore, it has been used for agricultural drought monitoring [167] and as
benchmark for ET simulated by hydrological modelling in European regions [149]. To further
verify the reliability of the LSASAF product over the study area and period, we compared ET
data at point level against eddy covariance flux tower ET data from the FLUXNET2015 dataset
[160]. The FLUXNET2015 dataset collects data from flux tower sites across the globe at a half-
hourly time resolution, up to December 2014. For the comparison, we selected the sites with
more than 80% of data over the comparison period. We also compared the LSASAF product at
catchment-scale against two additional gridded ET products, GLEAMv3.3a and the BIGBANG
dataset. GLEAM provides global ET and PET estimates at daily temporal resolution and 0.25°
spatial resolution from a physically-based land-surface model and satellite-based data [161, 168].

We assessed ∆S as annual residual from P, Q, and ET data accumulated over the h.y., according
to Equation 3.1. For comparison, we also derived catchment-scale ∆S estimates using P and ET
from the BIGBANG dataset, and the Q data described above. In Section 3.4.2, we provide a
discussion of uncertainties in the data used to close the annual water balance and therefore in ∆S
assessment. Moreover, we performed a correlation analysis (Pearson correlation coefficients, r
and significance level equal to 0.05) between annual ∆S statistics (mean and standard deviation
over the study period) and catchment properties (Section 3.2.2.2) to test if ∆S variability among
the study catchments can be explained by such factors.

3.2.2.2 Catchment characteristics

To study drought propagation across multiple climatic and morphologic features, we compiled a
set of catchment properties to characterize the study catchments in terms of climatic, topographic,
land use, pedological, and geological properties.

For climate characterization, we firstly evaluated catchment-average PET through the temperature-
based Hamon method [169] and ground-based T data from the DPC dataset [117]. The Hamon
method is based on temperature data only, but we preferred it to alternative formulations con-
sidering also radiation and other meteorological variables in order not to propagate uncertainties
related to the spatial interpolation of sparse data as meteorological data can be at a large scale.
Further, in this study PET was only used for climate characterization of the study catchments and
the drought events, while actual evapotranspiration estimates from the LSASAF product were ex-
ploited to study drought evolution across the water balance components. We indeed used PET
data to derive the aridity index (AI, Equation 3.2 [140]) and so, to characterize the hydro-climatic
regime of each catchment (water-limited if AI < 1 or energy-limited if AI > 1).

AI =
PET

P −∆S
(3.2)

Moreover, we estimated the Asynchronicity Index (ASI) between P and PET [126] (Equations
A.1 to A.7) as a seasonality index and as an indicator of dry catchments. ASI is an information
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theory-based and non-parametric index that quantifies the difference in relative magnitude and
phase between the P and PET signals [126]. ASI varies between 0 and 1, and values greater
than 0.36 represent Mediterranean regions with de-synchronized annual cycles of P and PET,
both in term of relative magnitude and phase shift [126]. We chose this metric instead of other
seasonality indices as it does not require the sinusoidaility assumption for P, which could not
hold true for study catchments in the alpine region [170].

As topographic properties, we computed catchment area, and mean catchment latitude and eleva-
tion from the SRTM DEM. We also estimated the dominant land cover class and the percentage of
urban, crop, shrub, forest, grass, bare soil, and water bodies from the Corine Land Cover 2018.
Additionally, we derived the dominant subsoil and topsoil texture, and the catchment-average
percentage of silt, sand, clay, organic carbon, and gravel from the European Soil Database De-
rived data product [115, 116]. We then retrieved the dominant geological class and the percentage
of carbonate aquifers, as a proxy for karstic systems in the catchment [150], from a national-scale
map of hydro-geological complexes.

Finally, we quantified the BFI and the recession coefficient using [171] which are often used
as indicators for catchment memory and groundwater contribution to the discharge [22, 172],
as well as the discharge sensitivity to storage as the ratio between the standard deviations of
baseflow and hydraulic storage [146]. To derive baseflow, we used the standard method proposed
by [173] for baseflow separation, basing on a three-passes digital recursive filter applied to the
daily Q data. Furthermore, we computed hydraulic storage via recession analysis following [174]
and [151], from daily Q and ET data.

3.2.2.3 Drought propagation analysis

We based our analysis of drought propagation on two steps: (i) drought identification and (ii)
drought characterization, as depicted in Figure 3.2.

Firstly, for each catchment we identified the drought years for the following analysis (drought
identification, Figure 3.2a). For this purpose, we computed the Standardized Precipitation Index
(SPI) [78], based on monthly catchment-average P data over the period 1951 - 2019 from the
BIGBANG P product. SPI is a widely used drought index which only needs long-term (> 30
years) monthly P data and provides the probability of a given P anomaly, as deviation from
the long-term mean [78]. In the SPI calculation, historical monthly P data are accumulated
over different time scales of interest for drought monitoring (usually from 1 to 48 months) and a
parametric statistical distribution is fitted to them; the probabilities obtained from the distribution
are then transformed into a normal distribution with mean equal to 0 and standard deviation equal
to 1 [78]. A drought event is defined as a period with SPI values less than -1 and identified
by the first and the last time steps with consecutive negative values [78]. Here we chose an
accumulation period of 12 months for the SPI calculation (hereafter SPI12), as we focused on
the propagation from meteorological to hydrological drought and SPI12 allows the detection of
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Figure 3.2: Illustration of working steps for drought propagation analysis: 1) calculation of the
monthly Standardized Precipitation Index with an accumulation period of 12 months (SPI12) for
drought identification (a); 2) computation of annual anomalies in precipitation (P), actual evap-
otranspiration (ET), discharge (Q), and subsurface storage (∆S) and quantification of drought
propagation as difference between Q and P anomalies for drought characterization (b).
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long periods of P deficit that could lead to hydrological drought [133, 134, 139]. Following [135],
we hypothesized a number of candidate distributions for the SPI12 calculation and verified the
normality for the resulting values through a Shapiro-Wilk test (p-value < 0.05). Thus, we used
the Gamma distribution as the one from which we obtained the lower Shapiro-Wilk rejection
frequency across the study catchments (Table C.1). We considered hydrological years as drought
years if two criteria were met: (i) SPI12 of the last month of the h.y. following a drought event
as defined above and (ii) negative P annual anomaly, as defined later, according to the P data
from the DPC dataset. The latter criteria allowed us to verify the consistency between the two P
datasets used in the study (i.e., the DPC dataset for the analyses and the BIGBANG dataset for
drought identification).

Secondly, we characterized drought years in terms of drought severity and attenuation or intensi-
fication of the hydrological drought (drought characterization, Figure 3.2b). Thus, we computed
P, Q, ET, and ∆S annual anomalies, as departure from mean annual values. Throughout the
study, we considered P anomaly as a metric for the severity of the meteorological drought, while
Q anomaly for the severity of the hydrological one. Further, we defined a drought propagation
measure, as the difference between Q and P annual anomalies, similarly to [12]. A positive
drought propagation value stands for an attenuation of the hydrological drought compared to the
meteorological, while a negative drought propagation value for an intensification.

3.3 Results

3.3.1 Annual water balance components

Catchment-average mean annual P ranges from 717 mm to 1764 mm and annual P standard
deviation from 60 mm to 353 mm. Their variability across the study area reflects climate and
orography (Figure 3.3a). For instance, some energy-limited catchments at around 44° latitude -
corresponding to catchments along the northern-western coast of Italy in the upper Tuscany re-
gion - are characterized by higher annual P amounts than the surrounding energy-limited catch-
ments, due to the complex orography in that area [170].

Catchment-average mean annual ET spans from 206 mm to 637 mm (Figure 3.3b) and annual
ET standard deviation from 16 mm to 90 mm. ET shows higher mean values and inter-annual
variability in the water-limited central and southern catchments than in the energy-limited north-
ern catchments. On average mean annual ET consists in 41% of P across the study catchments
(17% - 77% of P, as minimum and maximum).

Mean annual Q varies from 74 mm to 1503 mm and annual Q standard deviation from 23 mm to
428 mm (Figure 3.3c). Q has a contrasting behaviour compared to ET, with higher mean annual
values and inter-annual variability in the northern energy-limited catchments. Mean annual Q
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average contribution to P across the study catchments is 48%.

The mean annual ∆S ranges from -534 mm to 747 mm (Figure 3.3d) and annual ∆S standard
deviation from 52 mm to 274 mm. Mean annual ∆S thus is on average (min/max) 11% (-41%
- 50%) of the corresponding P across all catchments (Figure 3.4). Furthermore, the maximum
standard deviation of annual ∆S corresponds to 24% of P, while maximum standard deviations
of annual ET and Q are 20% of P and 23% of P. Thus, ∆S shows a slightly higher variability
than the other water balance components, when compared to P.

The correlation analysis between ∆S statistics over the study period and possible predictors re-
vealed that catchment properties can partly explain the differences in ∆S behaviour across the
study catchments (Table 3.2). Catchment properties showing a significant correlation with mean
annual ∆S can be thought as predictors for the tendency of the catchment to have an inter-
annual subsurface storage carryover or drawdown, whereas the properties showing a significant
correlation with the standard deviation of annual ∆S can be predictors for its inter-annual vari-
ability. While catchment properties show somewhat low correlations with ∆S statistics (-0.35 <
r < 0.59), several correlations are consistent with what expected and with previous works (e.g.,
[149, 150, 151, 152]), as discussed in Section 3.4.1; this increases confidence in our estimates.
For example, catchments with a higher percentage of carbonate aquifers and silty soils, and so
a higher storage capacity, have higher mean annual ∆S (r = 0.23 and r = 0.18, respectively).
Catchments with higher ASI index, and so a marked dry season and a Mediterranean-type cli-
mate, have higher mean annual ∆S (r = 0.28) and higher standard deviation of annual ∆S (r =
0.37). Also, the standard deviation of annual ∆S is negatively correlated with catchment mean
latitude (r = -0.35) and positively correlated with the percentage of forest, silt, and carbonate
aquifers in the catchment (r = 0.33, r = 0.37, and r = 0.59, respectively), along with the recession
coefficient we computed from Q data (r = 0.23, not shown in Table 3.2). This suggests that catch-
ments at a higher latitude have a smaller variability in inter-annual ∆S, while catchments with
a higher percentage of forests and silty soils, a drier climate, a higher percentage of carbonate
aquifers, and a higher groundwater contribution to the discharge have a higher variability of ∆S.

Table 3.2: Pearson correlation coefficients between change in subsurface storage (∆S) statistics
(mean and standard deviation) and catchment properties (mean catchment latitude, mean catch-
ment elevation, catchment area, percentage of shrub in the catchment, percentage of forest in the
catchment, percentage of bare soil in the catchment, percentage of silty soil in the catchment,
percentage of carbonate aquifer in the catchment, Asynchronicity Index). Sources and details
about each property are provided in Section 3.2.2.2. Significant coefficients (p-value < 0.05) are
reported in bold.

Lat Elev Area Shrub Forest Bare Silt Carbonate ASI
mean annual ∆S -0.18 -0.2 -0.12 -0.31 0.13 -0.21 0.18 0.23 0.28
std annual ∆S -0.35 -0.19 -0.3 -0.16 0.33 -0.27 0.37 0.59 0.37
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Figure 3.3: Boxplot of each annual water balance component over the study period for each
catchment (north to south ordered, from the left to the right hand side): (a) precipitation, P;
(b) actual evapotranspiration, ET; (c) change in subsurface storage, ∆S; (d) discharge, Q. Each
boxplot is colour coded according to the catchment aridity index, AI.
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Figure 3.4: Mean annual change in subsurface storage (∆S) for each study catchment.

3.3.2 Water balance response to drought

During the study period, wet and dry years alternated across Italy: h.y. 2012 and 2017 (2013 and
2014) were dry (wet) periods for the whole study area, according to P anomalies (Figure 3.5a).
Several other dry events occurred across the study catchments, but they were geographically
less extensive (e.g., during h.y. 2018, northern catchments experienced negative P anomalies,
while the central and southern ones had positive P anomalies). According to SPI12, 178 years
across 79 catchments were identified as drought years and major drought events in terms of
affected catchments were h.y. 2012 and 2017, in agreement with the literature [155, 128, 156]
and drought reports [130, 131].

Drought years mostly corresponded to dry-warm periods experiencing concurrent P anomalies
and positive PET anomalies (median annual P anomaly equal to -303 mm and median annual
PET anomaly equal to 31 mm, Figure 3.5). During such years, annual anomalies of the four
water balance components showed contrasting behaviours across the study catchments (Figure
3.5). For both the 2012 and 2017 droughts, ET anomalies were positive for catchments located
at latitudes greater than 45° and negative for southern catchments (Figure 3.5b); this spatial pat-
tern could reflect the climate and the dominant land cover type in the catchments, as at latitudes
greater than 45° catchments are energy-limited, non-Mediterranean, and coniferous-dominated
(Table B.1). ∆S and Q anomalies did not show clear distinction between positive and nega-
tive values across different hydro-climatological regions in the study area (Figure 3.5). During
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drought years, ∆S anomalies were generally negative (median annual anomaly -77 mm, Fig-
ure 3.5i) and Q anomalies were generally attenuated compared to P anomalies (median annual
P anomaly equal to -303 mm and Q anomaly equal to -178 mm, Figure 3.5f and Figure 3.5h)
across the study catchments.

Figure 3.5: Annual anomalies for: (a) precipitation, P; (b) actual evapotranspiration, ET; (c)
discharge, Q; (d) change in subsurface storage, ∆S; and (e) potential evapotranspiration, PET
over the study period and catchments. Black edges correspond to drought years. Frequency
distribution of annual (f) P, (g) ET, (h) Q, (i) ∆S, and (j) PET anomalies during drought years.

Focusing on ET, ∆S, and the drought propagation measure, i.e., the difference between Q and P
anomalies, negative ∆S anomalies lead to positive propagation values and thus to an attenuation
of the hydrological drought (greyish dots in Figure 3.6a), while positive ∆S anomalies lead to
negative propagation values and so to an intesification of the hydrological drought (reddish dots
in Figure 3.6a) across the study catchments experiencing drought years over the study period.
On the contrary, positive and negative ET anomalies lead to both an attenuation or an intensifi-
cation of the hydrological drought (Figure 3.6a). Thus, ∆S emerges as the key driver of drought
propagation through the hydrological cycle.

The drought propagation measure showed statistically different (two-sample Kolmogorov-Smirnov
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Figure 3.6: (a) Scatterplot between annual subsurface storage, ∆S and evapotranspiration, ET
anomalies during drought years; dots are coloured according to the propagation measure (dif-
ference between discharge and precipitation anomalies). Catchments attenuating the Q anomaly
have greyish colour, while catchments intensifying the Q anomaly reddish. Frequency distribu-
tions of annual (b) ∆S and (d) ET anomalies for catchments attenuating (grey) and intensifying
the Q anomaly (orange) during drought years.

test, p-value < 0.05) distributions between catchments with contrasting storage-related proper-
ties, namely (i) a positive or negative mean annual ∆S (Figure 3.7a) and (ii) a positive or negative
annual ∆S in the year preceding the drought (Figure 3.7b). Distributions are partly overlapping,
but catchments with a positive mean annual ∆S had a positive median propagation, and so an
attenuation of the hydrological drought, whereas catchments with a negative mean annual ∆S
had a slightly negative median propagation, i.e., an intensification of the hydrological drought.
Similarly, catchments that in the year preceding the drought had a carryover in subsurface stor-
age (∆S > 0) had a higher median propagation than catchments that had a drawdown (∆S < 0).
Both these findings indicate that catchments replenishing the subsurface storage, as long-term
average characteristic or in the year preceding a drought, can attenuate the hydrological drought.

We also investigated the relationship between the tendency of catchments to attenuate or inten-
sify the drought, quantified via the mean propagation measure during drought years, and climatic
and morphological properties of the catchments, such as the ASI and the discharge sensitivity to
storage (see Section 3.2.2.2 for a description of them). A moderate positive linear correlation
was found between mean propagation and ASI (Pearson correlation coefficient, r = 0.43, pvalue
< 0.05, Figure 3.8a), while no significant linear correlation was detected between mean prop-
agation and the discharge sensitivity to storage (Figure 3.8b). Also the non-linear correlation
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between mean propagation and the discharge sensitivity to storage was sowehow low (Spearman
correlation coefficient, ρ = -0.39).

Figure 3.7: Distributions of the propagation measure for: (a) catchments with a positive and
negative mean annual change in subsurface storage, ∆S and (b) for catchments with a positive
and negative ∆S in the year preceding the drought.

3.3.3 Water balance recovery from drought

The average temporal evolution of P, ET, ∆S, and Q across 55 catchments, which experienced
both the 2012 and 2017 droughts, and non-drought conditions in the following h.y., revealed
different features in the recovery from drought events for the different water balance components.
P, Q, and ∆S had a similar timing, both in wet and dry years, while ET was out-of-phase with the
P input (Figure 3.9). Furthermore, the year following a drought event presented an increase in
P, Q, and ∆S values, but still low ET values, even decreasing after the 2012 drought for energy-
limited catchments. So, ∆S sustains Q not only during drought, but also during the following
recovery period. This sustainment is likely more relevant for gaining rivers [175], which are
highly dependent on the groundwater storage.
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Figure 3.8: Scatterplot between: (a) the Asynchronicity Index (ASI) and mean drought propaga-
tion; (b) the discharge (Q) sensitivity to storage (S) and mean drought propagation; (c) the ASI
and Q sensitivity to S for each catchment experiencing drought years during the study period.

3.4 Discussion

In this study we closed the annual water balance for 102 catchments across Italy and 10 hydro-
logical years, and we exploited the dataset to perform a large-sample analysis of the response of
each water balance component to drought across different hydro-climatological regimes.

3.4.1 Main findings

Quantifying catchment-scale water balance is one of the most recurring open questions in hy-
drology to assess surface and subsurface water availability for vegetation, river ecosystems, and
human supply [176]. Despite advancements in measurement techniques over the last decades,
closing the water balance at catchment-scale still remains elusive, mainly because of the paucity
of ∆S and ET data, uncertainties in measurements, and spatial heterogeneity within catchments
[176]. Today, observatories and experimental catchments provide valuable opportunities to as-
sess temporal and spatial scales for which water balance closure is realistic [148], and remote
sensing and hydrological models allow to assess water balance components at large scales, even
in data-scarse regions [177].

Assessing water availability across the hydrological compartments during droughts is increas-
ingly important in a warming climate. A water balance perspective can shed light on drought
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Figure 3.9: Time series of annual (a) precipitation, P, (b) evapotranspiration, ET, (c) change in
subsurface storage, ∆S, and (d) discharge, Q averaged across all catchments that experienced
both the 2012 and 2017 droughts and non-drought conditions in the post-drought years (solid
line, n = 55 catchments), water-limited (dashed line, n = 19 catchments) and energy-limited
(dotted line, n = 36 catchments) catchments in the subset.

propagation through the hydrological cycle [3, 60, 91, 6]. Here, we showed that blending ground-
based and remote-sensed data can provide a consistent water balance dataset, even at a national
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scale, to study drought propagation across different climates and landscapes. In this regard, our
main findings were three.

First, we provided further empirical evidence that ∆S contribution to the annual catchment-scale
water balance can not be neglected [152]. The average contribution of mean annual ∆S to the
long-term water balance is 11% of mean annual P across a large set of temperate catchments
(Figure 3.3), coherently with previous results for the study region from different approaches
(for example [178] obtained annual ∆S values ranging from -19% to 5% of P for a prealpine
Italian catchment through hydrological modelling). We further showed that ∆S contribution can
partly be explained by climate and catchment properties, in agreement with previous studies (e.g.,
[149, 150, 151, 152]). For instance, net intercatchment groundwater flow, which can be part of
∆S, was demonstrated to be more significant in small catchments with productive aquifers, such
as karstified rocks, within the Meuse river basin [149], while catchments with an arid climate
were found to require a longer time to reach a steady state and thus a neglectable contribution
of ∆S in the water balance in a large-sample analysis [152]. We indeed found that mean annual
∆S positively correlates with the percentage of carbonate aquifers in the catchment and the
Asynchronicity Index (ASI) between P and PET (Table 3.2). Moreover, the standard deviation
of ∆S negatively correlates with catchment area and positively correlates with ASI (Table 3.2).
These findings illustrate that catchments with a high percentage of carbonate aquifer and a high
ASI (i.e., with a dry and Mediterranean-like climate) have a high mean annual carryover in the
subsurface storage (or net groundwater export), while catchments characterized by small area
and high ASI have a higher variability in annual ∆S than catchments with large area and low
ASI values.

Second, we found that the subsurface storage is the key driver in drought propagation across
different climates and landscape features, as already revealed for instance by [22, 76, 146] taking
advantange of storage-related catchment properties and by [6] for an experimental small-sized
catchment. Across the study catchments, hydrological drought is characterized by concurrent
negative P anomalies and positive PET anomalies, as shown for low flows in Switzerland by
[179], and generally attenuated compared to the corresponding meteorological drought by land
surface processes (ET and ∆S), in agreement with [88] (Figure 3.5). Further, we showed that
the storage-ET relationship during droughts is highly complex across a wide range of catchment
types (Figure 3.6a), depending on subsurface and vegetation properties [92]. However, we argue
that the storage behaviour, rather than that of ET only, drives the attenuation or intensification
of Q anomalies compared to the P anomalies. In fact, catchments attenuating the hydrolog-
ical drought generally experience concurrent negative ∆S anomalies (median ∆S anomaly =
-112 mm for catchments attenuating the hydrological drought and = 81 mm for catchments in-
tensifying it, Figure 3.6b), while they can experience both positive and negative ET anomalies
(median ∆S anomaly = -27 mm for catchments attenuating the hydrological drought and = 4
mm for catchments intensifying it, Figure 3.6c). We argue that this is due to the different vegeta-
tion types in the catchments, their different ecophysiological properties and response to drought
[180]. Moreover, we found that catchments with contrasting subsurface storage-related proper-
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ties show different behaviours in term of drought propagation (Figure 3.7). This further suggests
that catchments characterized by an inter-annual carryover of subsurface storage (as long-term
mean or in the year preceding the drought) can attenuate the hydrological drought.

In a modelling experiment across the US [146] found intensity and duration of hydrological
droughts to be controlled by climatic properties, as well as the discharge sensitivity to storage,
which they quantified from modelled baseflow and deep storage. Here we found that ASI can be
thought as a predictor for the tendency of a catchment to attenuate or intensify the hydrological
drought, quantified through the mean propagation (Figure 3.8a), while we did not find a signif-
icant correlation between discharge sensitivity to storage and mean propagation (Figure 3.8b).
The difference we found with respect to [146] may be due to the broader variety of discharge
sensitivity to storage values across the catchments analyzed in our study, as a result of the com-
plex interplays among subsurface and climatic properties that determine the discharge sensitivity
to storage of a catchment [151] (Figure 3.8c). Furthermore, the quantification of discharge sen-
sitivity to storage from recession data, as done here, relies on the assumption that catchments
behave as simple first-order nonlinear dynamical systems [174], which unavoidably may lead to
a certain degree of uncertainty across a large-sample of catchments.

Third, we showed that Q recovery from P deficits takes place over similar time scales as ∆S,
while ET has a buffered response (Figure 3.9). Large-scale studies found a higher correlation
between monthly Q and soil moisture - which is part of ∆S - rather than between other pairs
of hydrometeorological variables at a continental and global scale [181, 182], and a delayed re-
sponse of ET to soil moisture deficits across Europe [91]. Vegetation can have a delayed response
to drought [13], because of biochemical and physiological processes [180]. Most of the catch-
ments we considered in the drought recovery analysis is dominated by two land cover types only
(broad-leaved forest and crop), therefore we preferred to focus the analysis on water-limited ver-
sus energy-limited catchments, rather than on the dominant land cover type. However, different
land cover types can be found within the study catchments, due to their generally relatively large
scale. Thus, water-limited catchments can be thought as typical of Mediterranean ecosystems,
while the energy-limited ones of temperate and mountainous ecosystems (Table B.1), which can
have different responses to dry periods because of different water use strategies [180]. We indeed
see a slight difference in ET response to drought between water- and energy-limited catchments:
water-limited catchments have more pronounced ET variations during and after drought year
compared to energy-limited catchments. We further hypothesize that the buffered response of
ET to droughts can have more profound impacts on Q deficits in case of prolonged dry periods,
and not just annual droughts as those analyzed in this work. Some recent studies showed indeed
that ET has a fundamental role in intensifying Q deficits compared to P deficits during multi-year
droughts [13, 141].
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3.4.2 Data uncertainty

In this paper, we based our analyses on data products rather than on hydrological modelling,
as hydrological models can miscapture the water balance during drought [13, 102]. However,
ET direct observation is not feasible at large scale and here we relied on an ET model forced
by remote-sensed data, the LSASAF product (Section 3.2.2). To verify its suitability across the
study region and during drought, we performed a multi-dataset comparison at flux tower- and
catchment-scale (see Section 3.2.2 for a description of the ET products used for comparison).
Monthly root mean square errors (RMSE) between LSASAF and FLUXNET2015 data over the
comparison period (September 2009 - December 2014) are below 30 mm (Figure E.1a) and daily
RMSE for the 2012 drought year below 1.5 mm (Figure E.1c) across the selected flux towers,
in agreement with previous validation exercises in Europe [165]. Monthly catchment-scale ET
data from LSASAF and alternative gridded products are highly correlated, for both the whole
comparison period and drought months identified by the SPI12 (r = 0.88 for both the whole
period and drought months between LSASAF and GLEAM, r = 0.87 for the whole period, and
r = 0.84 for drought months between LSASAF and BIGBANG, Figure E.1b and d). Hence,
ET estimates from the selected remote-sensed product can be considered robust across the study
catchments, over the whole spectrum of climatic conditions in the study period.

Since we assessed ∆S as annual residual from the water balance model (Equation 3.1), ∆S
estimates could reflect uncertainties in P, Q, and ET data [176]. See [176] for a brief review
about sources and magnitude of errors in the assessment of water balance components. Yet,
we obtained comparable results in term of ∆S estimates using alternative P and ET data from
the BIGBANG dataset (r = 0.89, Figure F.1). Moreover, results from the correlation analysis
between ∆S and catchment properties agree with previous literature (Section 3.4.1). Therefore,
our ∆S estimates can be assumed as consistent and our general findings not dataset-dependent.

3.4.3 Future developments

In this work, we gained a consistent picture of the non-negligible annual change in subsurface
storage, the attenuation of hydrological droughts due to subsurface storage depletion, and the
similar time scale of discharge and subsurface storage recovery from drought conditions for 102
Italian catchments, regardless of the catchment and climatic properties. However, some study
limitations pave the way for future research building on these results.

As a trade-off between data availability and variety in the characteristics of the considered catch-
ments, we based our large-sample analysis on a 10-year time span. A longer record length would
be desirable to include in the analysis additional drought events, potentially with different charac-
teristics. Further, it would allow to use alternative methodologies to study drought propagation,
as the threshold level method [88] or a standardized approach [76] through the quantification of
indices for each hydrological compartment, such as the Standardized Precipitation Evapotran-
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spiration Index (SPEI) [79], the Palmer Drought Severity Index (PDSI) [183], the Standardized
Streamflow Index (SSI) [80], the Standardized Soil Moisture Index (SSMI) [81], and the Stan-
dardized Groundwater Index (SGI) [82].

Moreover, we estimated ∆S as annual water balance closure, whereas long-term soil moisture
and groundwater data would allow to directly track storage changes either in the soil and in the
aquifers, and thus to investigate their different role in drought evolution [3], as well as to quantify
the memory effect in groundwater levels [184] and its relationship with drought propagation [82]
in the study region.

Finally, we did not consider anthropogenic activities (e.g., surface- and ground-water abstrac-
tions, reservoir infrastructures, land use changes, and water transfers) that may occur in the
study catchments and may affect their response to drought [23, 142, 20, 138]. [138] showed
that human activities aggravated hydrological drought characteristics compared to natural condi-
tions in 28 human-altered catchments across the world, regardless of the typology and purpose of
these activities. Given the consistent variation observed in hydrological drought charactertistics
due to various human activities [138], we argue that the neglection of possible anthropogenic
disturbances in the study catchments does not affect our findings. However, detailed informa-
tion about human activities in the study catchments would be beneficial to test for instance if
the intensification of the hydrological drought we observed in some catchments can be related to
anthropogenic influences, which was beyond the scope of the present work.

3.5 Conclusions

Hydrological drought is shaped by several factors, including the interaction between meteoro-
logical drought, i.e., precipitation deficits and possibly increases in temperature and potential
evapotranspiration, and land surface processes, e.g., actual evapotranspiration and storage in
the soil and weathered bedrock. Nevertheless, systematic data-based analyses of the response
of each water balance component (precipitation, discharge, evapotranspiration, and subsurface
storage change) to drought across different climates and catchment types are rare. Here, we
revealed that such analyses are feasible blending ground-based and remote-sensed data. Specif-
ically, we showed that long-term mean annual subsurface storage change is on average 11% of
mean annual precipitation across 102 Italian catchments along a steep climatic and topographic
gradient (Figure 3.3). Thus, neglecting subsurface storage change could bias water balance as-
sessments at annual scale. Furthermore, we pointed out that hydrological drought is generally
attenuated compared to meteorological drought (Figure 3.5) and this is mainly due to a net de-
pletion of subsurface storage (Figure 3.6 and 3.7) across a large set of catchments with different
morphological properties and in different hydroclimatic regimes. Finally, we showed that across
the study catchments subsurface storage and discharge have a similar timing in recovery from
precipitation deficit, while evapotranspiration has a buffered response to dry periods (Figure
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3.9). Our results reveal the usefulness of explicitly considering subsurface storage changes to
disentangle hydrological processes during drought and provide opportunities to properly inform
water managers about water availability in the different hydrological compartments during such
periods.
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Chapter 4

Parameter transferability of a distributed
hydrological model to droughts1

4.1 Introduction

Droughts affect all components of hydrological systems as they propagate from precipitation
deficits (meteorological droughts) to streamflow deficits (streamflow droughts [22]). Droughts
have severe and multifaceted impacts on the environment, societies, and economies [26] and
these impacts will likely increase in a warming climate with an increase in the frequency and
severity of streamflow droughts [51]. Therefore, robust modelling of water availability through-
out the whole hydrological cycle during droughts is essential to inform water management, dis-
aster risk reduction, and climate change adaptation strategies.

Distributed process-based hydrological models allow spatial estimates of hydrological fluxes and
states [64], even at large scales and hyper-resolutions (< 1 km [185]). Climate impact assess-
ments [186, 187, 48], drought monitoring [188, 53, 100] and forecasting systems [189, 190, 191],
and drought studies in general [92, 8, 9] widely use these models today. Some studies revealed
poor model performances when simulating streamflow droughts [99] and their generating pro-
cesses [88, 13]. Further, human activities can heavily modify the hydrological cycle [192] and
streamflow droughts in particular [138], but their representation in hydrological models remains
challenging [73].

More broadly, many hydrological models have decreases in streamflow (Q) performance during

1This chapter is adapted from G. Bruno, D. Duethmann, F. Avanzi, L. Alfieri, A. Libertino, and S. Gabellani, Pa-
rameter transferability of a distributed hydrological model to droughts, Hydrol. Earth Syst. Sci. Discuss. [preprint],
2022, https://doi.org/10.5194/hess-2022-416, in review
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climatic conditions that differ from those during the calibration period [193, 194, 96]. Such
issues in the transferability of model parameterizations (hereinafter model transferability) can
pose challenges in simulating correctly Q during droughts [97]. While some studies showed
the ability of distributed process-based hydrological models in reproducing drought conditions
[8], research on model transferability to severe droughts is still limited with specific regard to
distributed hydrological models [195].

Previous studies revealed that decreased model performances in Q simulation during severe
droughts may be related to poor simulation of actual evapotranspiration (ET, [13]) or Terrestrial
Water Storage (TWS, [196, 102]). For instance, [13] showed that a semi-distributed hydrolog-
ical model had statistically significant decreases in Q and ET simulation during the 2012-2016
drought over a Californian river basin, but not in the simulation of subsurface storage; thus,
they argued that the poor representation of ET, and its climate elasticity in particular, drove the
deterioration in Q modelling skills. [102] found that in Australian catchments where common
lumped conceptual models simulated Q poorly during the Millennium drought, the models also
failed in reproducing long-term decline in storage. This indicates that evaluating hydrological
models against multiple hydrological fluxes and states represents a way to analyze causes of poor
model transferability, evaluate model internal consistency and hence move towards more robust
modelling [197]. Especially for distributed models, ET and TWS remote sensing-based products
can be particularly useful for model evaluation [104, 68, 105] as they allow to check also their
spatial representativeness. Nonetheless, assessment of model transferability to severe droughts
using independent and spatially distributed ET and TWS remote sensing-based products is still
rare.

Furthermore, some studies suggested that including dry periods in the calibration improves Q
simulation during droughts [194, 8], but contrasting results were shown when transferring to
severe droughts [13].

To contribute to filling these knowledge gaps, we aimed to answer three research questions: (i) is
the Q simulation performance of a distributed hydrological model sensitive to drought severity?;
(ii) if so, what are the causes for the expected decrease in Q simulation performance during
severe droughts, with regard to ET and TWS?; (iii) does including a moderate drought in the
calibration period improve model transferability to severe droughts?

For this purpose, we analysed the performance of the distributed hydrological model Contin-
uum [198] over the Po river basin in northern Italy during the flood- and drought-rich period
September 2009–August 2022. We calibrated the model against Q data and evaluated the model
capability in reproducing the temporal and spatial variability of Q, ET, and TWS for the whole
river basin and 38 sub-catchments in it during wet years and droughts of varying severity, using
independent ground- and remote sensing-based datasets as benchmarks.
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4.2 Data and methods

4.2.1 Study area

For this study, we selected the Po river basin, as a drought-prone area [199, 129, 200, 2], and
major catchment in Italy regarding drainage area (around 74000 km2) and socio-economic rel-
evance with 27% of Italian population, 35% of agricultural production, and 37% of industrial
production [201].

The Po river basin lies in northern Italy and part of the Swiss Canton Ticino region (Figure 4.1).
The Alps border the basin in the west and north, and the Apennines in the south, while the Po
plain characterize its central part. Consequently, the basin shows a steep orographic gradient and
elevations range from sea level to about 4800 m above sea level [114] (Figure 4.1a).

The climate in the region transitions from alpine and cold, with a bimodal annual precipitation
cycle and peaks in autumn and spring, to temperate with a dry season and most of the precipita-
tion in winter [112, 170] (Figure 4.1b). Snow contribution to streamflow generation is relevant
especially at high elevations in the northern and western part of the catchment, where the mean
annual ratio between peak snow water equivalent and annual streamflow can exceed 60% [127].
Subsequently, streamflow has usually two peaks, one in autumn for heavy rainfall events and one
in spring for rainfall events and snowmelt, and a low-flow period during summer.

As a result of topographic and climatic characteristics, a variety of land cover types character-
ize the basin (Figure 4.1c): transitions between bare soil, grassland, and forests following the
elevational gradient in the mountainous parts, shrubland in the temperate and dry areas in the
southwestern part, and cultivated and urban areas in the central lowlands [202]. In addition to
three major lakes, around 180 multi-purpose reservoirs influence the hydrographic system in the
basin [201]. Further, anthropogenic water withdrawals for irrigation, industrial, and drinking
water uses affect heavily the hydrological cycle in the area. Irrigation accounts the most among
the water uses (60%), responsible for water withdrawals of around 17*109 m3year−1 (i.e., 5% of
mean annual precipitation), with further increases by up to 15% during droughts [201].

4.2.2 Hydrological modelling

The hydrological model Continuum [198] is an open-source continuous grid-based hydrological
model (available at https://github.com/c-hydro). It simulates the main hydrological
processes in a process-oriented but parsimonious way, with only few calibration parameters,
by solving the mass and energy balances [198]. The model can also include optional modules to
simulate lakes, dams, and hydraulic infrastructures, such as point water withdrawals and releases.
We refer the reader to [198] for a description of the model, [203] for specifics on the snow
module, and [204] for specifics on the surface flow routing scheme.
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Figure 4.1: Maps with (a) elevation, (b) climates, (c) land cover types, and (d) location of the
model domain, modelled river network (black line), and study sub-catchments (grey dots and
black edge if calibrated). For data sources please refer to Table H.1.

Here we used six modules (namely, the snow, vegetation, energy balance, soil, groundwater,
and surface water modules) to simulate snow dynamics, vegetation interception, energy fluxes,
evaporation from the canopy layer, ET, soil moisture and groundwater dynamics, the dynamics
of major lakes and dams in the region, and streamflow generation (Figure G.1). In Figure G.1
we provided a scheme of the model configuration, along with model fluxes and states.

In this work, we run Continuum at a 0.009° (around 1 km) spatial resolution and 1 hour temporal
resolution [69] over the hydrological years 2009-2022, with the first year as warm-up period.
Please note that throughout the manuscript we referred to hydrological years, spanning from
August to September, rather than calendar years.

4.2.3 Data

4.2.3.1 Model input data

In this work, we used the model setup and the required datasets, regarding topography, soil
properties, land cover, dams, lakes, and glacier cover, presented in [69]. We summarized the
input data in Table H.1.

Further, the model needs dynamic maps of precipitation (P), air temperature, relative humidity,
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wind speed, and shortwave solar radiation as forcing data. For P we used maps interpolated
from 1377 gauges and radar data from the Italian Civil Protection Department (DPC), computed
with the Modified Conditional Merging algorithm [117]. This product outperformed gauge-only
interpolation [117] and satellite products for hydrological modelling over the study area [69].
For other meteorological variables we used maps interpolated from ground-based data provided
by DPC (see [69] for details).

4.2.3.2 Data for model calibration and evaluation

For model calibration and evaluation, we exploited a set of independent ground- and remote
sensing-based datasets (Table H.1). For Q, we used quality-checked daily mean Q time series for
38 sub-catchments in the Po river basin (Figure 4.1) from DPC and Italian regional hydrometeo-
rological offices [69, 205]. We selected the study sub-catchments according to data availability
(maximum 6 months of missing data). These sub-catchments reflect the variety of topographic,
climatic, and land cover characteristics in the study area (Table I.1).

For ET, we applied the METv2 product by the Land Surface Analysis of the EUMETSAT Satel-
lite Application Facility, in the following LSASAF product [122, 123]. The LSASAF product
provides gridded ET estimates by exploiting data from the Meteosat Second Generation satellite
at a spatial resolution of 3.1 km at the sub-satellite point and at a temporal resolution of 1 hour.
It derives ET estimates from a surface energy model, based on the Soil-Vegetation-Atmosphere-
Transfer scheme described in [122], and remote-sensed data. This product showed reasonable
agreement with alternative gridded ET products and eddy-covariance data over Italy [205]. We
used the LSASAF product as benchmark of simulated ET for both catchment-scale and spatial
patterns analyses.

Finally, we employed TWS data from the Gravity Recovery And Climate Experiment (GRACE)
and GRACE Follow-On (GRACE-FO) missions, henceforth GRACE data. GRACE launch was
in April 2002 and its dismissal in Jun 2017, whereas GRACE-FO is operational since May 2018.
These satellite missions consist of two twin satellites measuring variations in distance between
them and, thus, in the Earth’s gravity field. Consequently, GRACE data provide estimates of
changes in mass over a certain area that mainly correspond to variations in TWS, i.e., in the
groundwater, soil moisture, surface water bodies, snow, and ice storages. As GRACE data,
we used the recently developed mass concentration (MASCON) solution, as it is particularly
suited for hydrological applications compared to the traditional spherical harmonics solution
[206]. MASCON does not require any significant postprocessing, while minimizing errors due
to the leakage of the signal from land to oceans. We processed the latest products of GRACE
MASCONS (release 06) from the Center for Space Research at the University of Texas (CSR)
[207, 208], the NASA Jet Propulsion Laboratory (JPL) [209, 210], and the NASA Geodesy
and Geophysics Research Laboratory (GSFC) [211] at monthly temporal resolution, and spatial
resolutions of 1° for CSR and GSFC products and 0.5° for the JPL product. We regridded, using a
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nearest neighbour approach, the three products to a common grid of 0.5° spatial resolution. Then,
we considered the mean among them to reduce the uncertainties associated with specific GRACE
products [125]. GRACE data provide anomalies regarding the period 2004–2009, therefore we
converted them to anomalies over the study period by subtracting their long-term means [125].
Due to the coarse spatial resolution of GRACE data and the relatively small drainage area for
most of the study sub-catchments (Table I.1), we used GRACE data only for the catchment-scale
analysis and at the outlet section of the basin (drainage area = 72545 km2).

4.2.4 Analyses

4.2.4.1 Experimental design

We performed two calibration experiments to evaluate whether model performances decreased
during droughts of different severity, as expected, and whether including a moderate drought
improved model transferability to severe droughts (Table 4.1). For each calibration experiment,
we evaluated model performances during the whole study period and periods with contrasting
climate.

For each study sub-catchment, we characterized the climatic conditions in terms of annual P
standardized anomalies according to Equation 4.1:

Panom(t) =
P (t)− P

σP

(4.1)

where P is the mean and σP the standard deviation of annual P over the study period. We defined
wet (or dry) years as those years with positive (or negative) annual P standardized anomalies for
most of the study sub-catchments (Figure J.1). Further, we referred to dry years as droughts, and
we defined them as moderate or severe in terms of decreasing annual P standardized anomalies
(Table 4.1).

Table 4.1: Calibration and evaluation periods, and their climatic characteristics in terms of annual
P standardized anomalies across the study sub-catchments (mean ± one standard deviation).

Purpose Climatic conditions Period Annual P standardized anomalies [-]
Calibration experiment 1 ”normal” years 2018-2019 0.34±0.42
Calibration experiment 2 including a moderate drought 2016-2017 -0.85±0.61

Evaluation wet years 2014 and 2020 1.14±0.65 and 1.48±0.34
Evaluation moderate droughts 2012 and 2017 -0.8±0.39 and -0.85±0.61
Evaluation severe drought 2022 -1.68±0.43

We first calibrated the model during the “normal” years 2018 and 2019 which represented aver-
age conditions regarding annual P, and we evaluated model performances in independent periods
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with contrasting climate conditions (Figure 4.2): the wet years 2014 and 2020, the moderate
droughts 2012 and 2017, and the severe drought 2022 (Sections 4.3.2 and 4.3.3). Then, we cali-
brated the model during a moderate drought (Figure 4.2, years 2016 and 2017) and we evaluated
whether this improved model transferability to the severe drought (Section 4.3.4).

Figure 4.2: Monthly observed precipitation (P) and streamflow (Q) during the study period av-
eraged across the study sub-catchments, with sub-periods used for model calibration (hatched
areas) and evaluation (shaded).

4.2.4.2 Model calibration

We deployed a multi-site calibration procedure to calibrate the model against Q data, following
[69] for the calibration approach and the selection of calibration sub-catchments. Therefore,
we used 18 sub-catchments over a 2-year period, with a warm-up period restricted to 6 months
during the calibration runs for computational reasons. We calibrated four model parameters
(Figure G.1): the Curve Number (CN), the field capacity (ct), the infiltration velocity at saturation
(cf ), and a parameter regulating the baseflow from the groundwater storage (ws). CN, ct, and
cf are spatially distributed parameters, while ws is lumped for the whole model domain. We set
the first guess parameters from (i) global maps of soil characteristics [212] and land cover [202]
for CN, ct, and cf , and (ii) expert knowledge for ws. Then we used an iterative parallel search
algorithm to rescale the first guess parameters until the minimization of the cost function, with
convergence set as an improvement < 1% compared to the previous iteration. This allowed to
preserve the spatial patterns from the first guess parameters while minimizing the cost function.
We based the cost function on a sum of Kling-Gupta Efficiency (KGE [213]) on the daily Q of
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each calibration sub-catchment, weighted with the logarithm of the sub-catchment area, to give
more emphasis to the downstream sub-catchments [69]. The KGE is an aggregated measure
of the agreement in timing, magnitude, and variability between simulations and observations,
according to Equation 4.2:

KGE = 1−
√
(r − 1)2 + (β − 1)2 + (γ − 1)2 (4.2)

where r is the Pearson’s correlation coefficient, β is the ratio between simulated and observed
mean as a measure of bias, and γ is the ratio between the simulated and observed coefficient
of variation (KGE ∈ (-∞, 1], optimal value = 1, no-skill threshold over mean flow as predictor
= -0.41 [214]). We used the KGE, instead of other metrics tailored specifically to low-flows
[215], because we intended to evaluate a model for general hydrological applications, such as
climate impact assessments, and not to optimize the low flows at the expense of other streamflow
regimes. We reported the KGE from the two calibration experiments in Table K.1.

4.2.4.3 Model evaluation

We evaluated model performances in reproducing Q, ET, and TWS temporal variability at monthly
time scale which is the temporal resolution of GRACE data. To evaluate model skills for TWS,
we reconstructed the simulated states in model stores, i.e., from the water volumes in the snow,
vegetation, surface water, soil, and groundwater stores (Figure G.1). We then computed the TWS
anomalies from the long-term mean for the simulation period. We used catchment-average ET
and TWS time series for this catchment-scale analysis. Additionally, we evaluated model per-
formances in simulating monthly ET spatial patterns, by computing pixel-wise deviations. Since
hydrological processes in the region are highly seasonal, we evaluated model capability in sim-
ulating seasonality (i.e., monthly mean values), deviations from it (i.e., monthly standardized
anomalies), and long-term changes. We evaluated the model capability in simulating long-term
changes only qualitatively, as we considered the study period too short for trend detection.

We computed the monthly standardized anomalies, zanom as the anomalies relative to the monthly
climatology according to Equation 4.3:

zanom(ti) =
z(ti)− zi

σzi

(4.3)

where z is the value at each time step, zi and σzi are the long-term mean and standard deviation
for month i.

As performance metrics for model evaluation, we used the KGE (Section 4.2.4.2), the Pearson’s
correlation coefficient (r, with r ∈ [-1, 1] and 1 as optimal value), and the normalized Root Mean
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Square Error (nRMSE) with nRMSE ∈ [0, +∞) and 0 as optimal value [216]), according to
Equation 4.4:

nRMSE =

√
1
N

∑N
i=1(Xsim,i −Xobs,i)2

σXobs

(4.4)

where Xsim,i is the simulated variable at time step i, Xobs,i the observed, σXobs
the observed stan-

dard deviation, and N the number of time steps. r is a measure of the agreement in timing, while
nRMSE measures the general agreement between simulations and benchmark. We normalized
the RMSE to allow a fair comparison among sub-catchments/grid cells that may have different
observed ranges. For normalizations, we used the standard deviation rather than the widely used
mean to avoid numerical issues when the mean is close to zero as in the case of TWS.

To identify statistically significant differences across the evaluation periods, we used a two-
sample t-test for the mean across the study sub-catchments (pvalue < 0.01).

4.3 Results

4.3.1 Hydroclimatological conditions during droughts

Three droughts occurred in the region during the study period, namely in 2012, 2017, and 2022 -
ongoing - as depicted by annual P standardized anomalies (Table 4.1 and Figure J.1) and reported
by [199, 129, 200, 2]. Low winter P characterized the three events (Figure 4.3a). However, dura-
tion and severity of low P values differed among the events, with moderate annual P standardized
anomalies in 2012 and 2017, and severe in 2022 (Table 4.1). Furthermore, during the three events
P deficits propagated rather differently through the hydrological cycle (Figure 4.3). For 2012 and
2017, the LSASAF product showed higher-than-usual ET during spring (Figure 4.3b), but lower-
than-usual ET during summer (August ET = 52 mm month−1 in 2012 and 46 mm month−1 in
2017 compared to a climatology of 71±15 mm month−1, with climatology expressed as the mean
± standard deviation of August ET over the study period 2010-2022). On the contrary, the ET
product showed higher-than-usual values during the 2022 drought (Figure 4.3b, July ET = 124
mm month−1 compared to a climatology of 87±18 mm month−1). Further, TWS was within the
climatology in 2012 and 2017, whereas it was already low at the beginning of 2022 (Figure 4.3c,
September TWS anomaly = -92 mm compared to a climatology of -58±37 mm) and during sum-
mer it reached the minimum value over the whole study period (August TWS anomaly = -158
mm compared to a climatology of-54±56 mm, Figure 4.3c). As a result, Q showed moderately
low values throughout 2012 and 2017 (Figure 4.3d, July Q = 18 mm month−1 in 2012 and 25
mm month−1 in 2017, compared to a climatology of 30±13 mm month−1), while it experienced
lower-than-usual values during most of 2022 (July Q = 9 mm month−1).
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Figure 4.3: P (a), ET (b), TWS (c), and Q (d) observed monthly climatology (mean and standard
deviations over 2010-2022) and monthly values during drought years, for the basin outlet.
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4.3.2 Model evaluation for streamflow during droughts of different sever-
ity

Model performances for Q were comparable during wet years, moderate droughts (Figure 4.4a, b,
and d), and the whole study period (Table K.1) for the model calibrated during ”normal” climatic
conditions (Section 4.2.4.2). Across the sub-catchments, mean KGE (± 1 standard deviation) was
equal to 0.59(±0.32) during the wet years, 0.55(±0.25) for moderate droughts, and 0.7(±0.19)
over the whole study period. At the basin outlet, the model represented properly the slight
decline in Q since autumn 2019 (as visualized by the 24-month running means in Figure 4.5a),
Q seasonality (Figure 4.5b), and also Q monthly values during the severe 2022 drought (KGE =
0.82).

Nonetheless, model performances across the study sub-catchments showed a decrease during
the severe 2022 drought (mean KGE = 0.18±0.69, Figure 4.4c and d). Even though the model
preserved some skills over a climatological mean [214], performances were low especially in
the evaluation catchments and in terms of bias with a general overestimation of Q (Figure L.1,
mean β = 1.37±0.75). The other components of KGE (r and γ) did not change significantly
between moderate droughts and the severe drought (Figures M.1 and N.1). In the following we
investigated the simulation of ET and TWS, and the uncertainty in observed data as possible
culprits for Q overestimation during 2022 (Section 4.3.3).

Figure 4.4: KGE values on monthly Q during wet years (a), moderate droughts (b), and the
severe drought (c) for each study sub-catchment, and their distributions as boxplots (d) grouped
by calibration and evaluation sub-catchments (shaded boxplots) for the model calibrated during
”normal” climatic conditions.
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4.3.3 Model evaluation for evapotranspiration and terrestrial water stor-
age

The model generally performed well for ET during the whole study period and moderate droughts,
but not during the severe drought. Integrated over the entire basin, the model simulated properly
both ET monthly values (r = 0.94 and nRMSE = 0.36 over the entire period, Figure 4.5d) and
seasonality (r = 0.99 and nRMSE = 0.18 for monthly mean ET, Figure 4.5e), although it over-
estimated slightly ET during winter and spring, and it simulated an earlier ET peak in summer
(Figure 4.5e). The model performed less well in simulating ET deviations from seasonality, with
r = 0.52 and nRMSE = 0.98 for monthly ET standardized anomalies over the whole study pe-
riod (Figure 4.5f). Furthermore, across the study sub-catchments the simulation of monthly ET
standardized anomalies was skillful during moderate droughts (mean r = 0.81 and mean nRMSE
= 0.68, Figure 4.6a and d), but it deteriorated significantly during the severe drought (mean r
= 0.05 and mean nRMSE = 1.61, Figure 4.6b and e). Performance decreases for monthly ET
standardized anomalies during the severe drought were not uniform throughout the model do-
main (Figure 4.7b and e) and showed a clear pattern with land cover. Model deterioration was
particularly strong for croplands, which are mostly located in the central part of the domain (Fig-
ure 4.1c), with mean r = 0.58 and mean nRMSE = 0.97 across the cells classified as cropland
during moderate droughts, and mean r = -0.03 and mean nRMSE = 1.8 during the severe drought
(Figure 4.7c and f).

Over the entire basin, the model simulated properly the decline in TWS over the recent years
(Figure 4.5g), as well as TWS seasonality (r = 0.91 and nRMSE = 0.41, Figure 4.5h), with the
refilling of storage in autumn and winter, and its depletion in spring and summer. The model
simulated properly the negative storage conditions in autumn 2021 (simulated TWS = -65 mm
and observed TWS = -92 mm in September 2021, Figure 4.5h) and it overestimated slightly
TWS during the depletion (simulated TWS = -100 mm and observed TWS = -158 mm in August
2022).

The observed annual water imbalance (P-Q-ET-TWSC, with TWSC as the annual change in
TWS) did not differ significantly between the moderate 2012 drought and the severe 2022
drought (Figure O.1). Across the study sub-catchments, the observed annual imbalance was
69±234 mm in 2012, 51±202 mm in 2022, and 108±244 mm on average over the study period.
A slightly positive observed imbalance may have contributed to an overestimation in Q simula-
tion for some catchments, but we did not detect any systematic increase in this net imbalance in
2022 to justify the Q overestimation for this year.

4.3.4 Impact of calibration period on model transferability

Including a moderate drought (the 2017 event) in the calibration period did not improve model
skills during the severe drought (2022). Model performance during calibration was similar dur-
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Figure 4.5: Time series of observed (black) and simulated (red) Q (first row), TWS (second
row), and ET (third row) monthly values with 24-month rolling means (first column), monthly
means (second column), and monthly standardized anomalies (third column) for the basin outlet.
Shading in panels (a), (c), (d), (f), (g), and (i) refers to moderate and severe droughts, while
shading in panels (b), (e), and (h) corresponds to ± 1 standard deviation in monthly values.

Figure 4.6: r and nRMSE on monthly ET standardized anomalies over moderate droughts (a and
d) and the severe drought (b and e) for each study sub-catchment, and errors distributions as
boxplots (c and f) grouped by calibration and evaluation sub-catchments (shaded boxplots).
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Figure 4.7: Maps of pixel-wise r and nRMSE on monthly ET standardized anomalies over mod-
erate droughts (a and d) and the severe drought (b and e), and errors distributions as boxplots per
each land cover type (c and f). Water bodies were excluded from the comparison. Model outputs
were rescaled by bilinear interpolation to the resolution of the LSASAF product for comparison.

ing both calibration experiments – with a mean KGE across the calibrated sub-catchments = 0.58
for the “normal” calibration period and a mean KGE = 0.44 for the calibration period including
a moderate drought (Table K.1). Also for the model calibrated during a drought, Q simulation
performances across the study sub-catchments deteriorated significantly during the severe 2022
drought compared to model skills during moderate droughts (mean KGE = 0.5±0.27 during mod-
erate droughts versus 0.18±0.63 during the severe drought, Figure 4.8c). The model calibrated
during a moderate drought showed issues in simulating monthly ET standardized anomalies in
the croplands during the severe drought, with mean r = -0.11 and mean nRMSE = 1.85 during
the severe drought across the cropland model cells (Figure 4.8f and i), similarly to the model
calibrated during ”normal” climatic conditions.

4.4 Discussion

4.4.1 Main findings and implications

We investigated the skills of the distributed and process-based hydrological model Continuum
to simulate Q under a range of climatic conditions, explored possible causes for the decrease in
model performances during a severe drought, by analyzing the simulation performance for ET
and TWS, and evaluated the benefit of including a moderate drought in the calibration.

Over the entire study period, we achieved a satisfactory Q simulation even in the heavily human-
affected Po river basin in Italy (mean KGE = 0.7 across the 38 study sub-catchments, Table K.1),
consistently to [69] who used the same model and study area. Focusing on specific climatic peri-
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Figure 4.8: Summary of model performances for the model calibrated during a drought: KGE
values on monthly Q over moderate droughts (a) and the severe drought (b) for each study
sub-catchment, their distributions as boxplots (c) grouped by calibration and evaluation sub-
catchments (shaded boxplots), maps of r and nRMSE on monthly ET standardized anomalies
over moderate droughts (d and g) and the severe drought (e and h), and errors distributions as
boxplots per each land cover types (f and i).

ods, we found that Continuum represented Q reasonably well during moderate droughts such as
the 2012 and 2017 events (KGE = 0.55±0.25, Figure 3.3b), even in a model setup not specifically
tailored to low flows simulation. During the severe 2022 drought, the model simulated Q still
reliably for the basin outlet (KGE = 0.82), which weighted the most in the calibration proce-
dure (Section 4.2.4.2). However, we found a decrease in model performances across the other
study sub-catchments (KGE = 0.18±0.69, Figure 3.3c), especially in evaluation catchments and
in terms of bias with a general overestimation of Q during the severe 2022 event (Figure L.1).
On the one hand, our results showed the ability of the distributed hydrological model Continuum
in simulating Q during moderate droughts. [195] found indeed that a distributed hydrological
model outperformed lumped and semi-distributed models to simulate Q outside the climatic con-
ditions during the calibration period for two catchments in south-eastern Australia. On the other
hand, we found an overestimation of Q during the severe 2022 drought across the study sub-
catchments that points to room for possible model improvement during severe droughts. A wide
number of studies reported decreases in Q model skills for conceptual models when simulating
prolonged and particularly severe droughts, such as the Millennium Drought in Australia [97]
and the Californian multi-year drought between 2012 and 2016 [13]. The model performances
we detected during a severe event can have relevant implications for operational applications. A
proper representation of Q timing is encouraging for drought monitoring tools for instance, while
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the overestimation of Q could stand for a potential underestimate of the severity of predicted ex-
treme droughts in climate impact assessments.

Potential causes for the overestimation of Q during the severe 2022 drought are (i) an underes-
timation of simulated ET, (ii) an overestimation of simulated TWS contribution to Q, and (iii)
an increased uncertainty in observed data used to force/evaluate the model. We indeed revealed
that model capability in simulating spatial and temporal variability of monthly ET standardized
anomalies decreased significantly during the severe drought compared to moderate droughts,
especially in the human-affected areas with mean r = -0.03 and mean nRMSE = 1.8 across the
croplands in 2022 (Figure 4.7). An overestimation of simulated TWS contribution to Q may have
arisen from an (over-) underestimation of the (initial) final storage conditions. We showed that
over the river basin the model overestimated slightly TWS both at the beginning and end of 2022
(Figure 4.5g), and thus it underestimated slightly its contribution to Q, rather than overestimating
it. An increased uncertainty in observed data may have stemmed either from an overestimation of
P or an underestimation of Q, due to increased uncertainty in the measurements under extremely
low flow conditions [217] for instance. Yet, the uncertainty in observed data did not systemati-
cally increase across the study sub-catchments compared to the moderate 2012 drought (observed
imbalance between ingoing and outgoing fluxes = 69±234 mm in 2012 and 51±202 mm in 2022,
Figure O.1). Therefore, we identified the misrepresentation of ET - and its underestimation in
particular - as the main cause for Q overestimation during the severe drought. Previous studies
showed indeed that a poor ET simulation can hamper Q simulation during severe droughts [13]
and ET has a prominent role particularly during severe and prolonged events [106, 218]. Model
difficulties in representing monthly standardized anomalies in both ET and TWS (Figure 4.5),
compared to seasonality and long-term changes, further agrees with previous literature. [105]
for instance showed that a set of global hydrological and land surface models represented TWS
seasonality and long-term variability well in a tropical basin, but not its deviations from seasonal-
ity. The misrepresentation in ET during the severe drought may have derived from (i) the model
neglection of irrigation, which can have strongly increased water availability for ET during the
exceptionally dry and warm summer 2022 over the study area [2], and (ii) uncertainties in model
structure and parameterization for water-limited ET conditions. This latter cause would be also
in line with the earlier ET suppression we detected in the simulated ET annual cycle compared to
the one from the remote sensing-based ET product (Figure 4.5e). By identifying possible causes
for the decrease in model performances during the severe drought, our results pave the way for
future research to increase model robustness during severe events (Section 4.4.2).

Including a moderate drought (the 2017 event) in the calibration did not lead to an improvement
in Q nor in ET during a severe drought (the 2022 event), with mean KGE = 0.18±0.63 for Q
across the study sub-catchments, and mean r = -0.11 and nRMSE = 1.85 for ET across the crop-
lands during 2022 (Figure 4.8). [8] tested different calibration strategies for an ecohydrological
model for the simulation of the 2018-2019 German drought in an experimental catchment. They
reported an improvement in model performances by including the drought in the calibration pe-
riod, compared to those from an alternative calibration period. These findings partly contrast
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our results and this may be due to several differences between the two studies, such as the ex-
perimental design, study areas, models, and calibration procedures used. However, we see our
findings complementing those by [8], by demonstrating that calibrating during a drought may
not be sufficient to ensure model transferability to a different and more severe drought.

Recent literature revealed that a changing climate may exacerbate the occurrence of severe and
prolonged drought events [9]. Thus, our results further call for comprehensive evaluations of sim-
ulated hydrological fluxes and states, and the testing of alternative strategies to enhance the sim-
ulation of the hydrological cycle during severe droughts, especially for drought studies, drought
monitoring and forecasting systems, and impact assessments of a drying climate.

4.4.2 Future work

Our study area encompassed a variety of climates and land cover types (Figure 4.1), and our study
period included droughts of different severity (Figure 4.3). Nevertheless, our results referred to
a particular model over specific region and drought events, and intercomparison studies over
different areas and droughts would be helpful to generalize our conclusions.

In this work, we showed the usefulness of remote sensing-based products as benchmarks for
distributed simulations of ET and TWS to unravel where they deviate most. However, ET and
TWS retrieval through remote sensing still presents challenges, as we cannot measure ET directly
and we can derive TWS only at large scales. For TWS, we applied the mean of three latest
GRACE products (Section 4.2.3.2) to take into account uncertainties [125]. As ET dataset, we
exploited the LSASAF product, which showed skilful performances over the study region, even
during droughts [205]. However, benchmarking the model against alternative additional datasets
for ET or other variables, such as soil moisture and snow, would be beneficial to assess model
internal consistency during droughts.

Multivariable calibration may be helpful to improve model internal consistency [219, 67], also
during low-flow periods [220] and droughts [8]. [8] for example showed that including tracer
data in the calibration of an ecohydrological model increased model internal consistency during
the 2018-2019 drought in Central Europe. Here we calibrated the model against Q data only
(Section 4.2.4.2). Given the satisfactory performances we achieved for ET during moderate
droughts, we argue that a multi-variable calibration approach will probably not enhance model
transferability to a severe drought significantly. [221] showed that a multi-objective calibration
with Q data aggregated at different time scales improved Q transferability outside the calibration
conditions for a distributed model in a German medium-sized basin. Future work could test
similar multi-objective or multi-metric approaches.

Human interference affects heavily the hydrological cycle in the study area, both in terms of wa-
ter withdrawals and irrigation (Section 4.2.1). Here, Continuum included reservoirs - although
we did not know their regulation -, but not irrigation and water withdrawals, which can be more
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relevant during droughts than during wet periods. By calibrating the model against observed Q
data, model parameterization partly accounts for the effects of human interference. However,
an enhanced representation of human interference could improve hydrological modelling during
severe droughts. For instance, [222] achieved a median 10.6% improvement in low-flows sim-
ulation by including monthly actual abstraction and discharge data in a distributed hydrological
model for 605 English catchments. Further, [223] showed that assimilating vegetation variables
into a land surface model led to an improved simulation of agricultural droughts and [224] pro-
posed effective techniques for estimating irrigation over large areas through satellite data that can
be incorporated into distributed hydrological modelling. Further research should investigate the
benefits of assimilating new data in the representation of the human-affected hydrological cycle
during severe droughts.

4.5 Conclusions

In this work, we comprehensively evaluated model capability in reproducing Q, ET, and TWS
during droughts of different severity for the distributed hydrological model Continuum over
38 sub-catchments of the Po River basin in northern Italy, using ground- and remote sensing-
based datasets as independent benchmarks. Further, we tested the value of calibrating during a
moderate drought as possible strategy to improve model performances during a severe drought.
We found that Continuum represented Q well during moderate droughts (the 2012 and 2017
events) even in this highly human-affected area, but overestimated Q for many of the study sub-
catchments during the severe 2022 drought (Figure 4.4). We hypothesized and tested possible
causes for this overestimation of Q, and we linked it to an underestimation of monthly ET stan-
dardized anomalies in the irrigated croplands during such period (Figure 4.7). Moreover, we
demonstrated that the representation of Q and ET during the severe drought was not sensitive to
the climatic conditions during calibration (Figure 4.8). Thus, we highlighted the need for holis-
tic model evaluations and possibly model developments to enhance the representation of human
and drought processes in distributed hydrological models, with the ultimate goal of increasing
model robustness during severe droughts. This is highly relevant in a changing climate and the
anthropogenic era to predict water availability throughout the hydrological cycle to inform water
management, disaster risk reduction, and climate change adaptation measures.
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Chapter 5

Synthesis

5.1 Main findings in context

The overarching goals of the thesis were to (i) study the role of evapotranspiration (ET) and sub-
surface storage in drought evolution (propagation and recovery) across climates and landscape,
and (ii) evaluate how a process-based distributed hydrological model simulates streamflow (Q),
ET, and Terrestrial Water Storage (TWS) during droughts, in order to better understand and sim-
ulate surface- and ground-water availability during droughts (Section 1.3). Hence, I collected
a hydrometeorological dataset for Italy, as a valuable example of various hydroclimatological
regimes (Section 2.2), I performed a large-sample data-based analysis of water balance compo-
nents during droughts (Section 3), and I evaluated the performances of the Continuum model
[198] in simulating Q, ET, and TWS during recent droughts - including the severe 2022 event -
over the Po river basin in northern Italy (Section 4).

I found that variations in subsurface storage represent a significant fraction of the annual water
balance (mean annual change in subsurface storage 11% of precipitation - P - on average across
the 102 study catchments, Figure 3.3). Moreover, I illustrated how the depletion of subsurface
storage during droughts (Figure 3.6) and its refilling during the recovery (Figure 3.9) generally
sustained Q, regardless of catchment types and climates.

I further showed that Continuum properly simulated moderate droughts (mean KGE on monthly
Q = 0.55±0.25 across the 38 study sub-catchments, Figure 4.4b), while the severe and complex
2022 drought - for human disturbance and concurrent heat wave - challenged it (mean KGE =
0.18±0.69, Figure 4.4c). I found that model deterioration could be linked to an uncertain repre-
sentation of ET anomalies in the human-affected croplands (mean r = -0.03 and mean nRMSE =
1.8 during the severe drought, Figure 4.7) and calibrating during the moderate 2017 drought was
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not sufficient to improve model skills in 2022 (mean KGE = 0.18±0.63, Figure 4.8).

In the thesis, I did not analyze specifically multi-year droughts over the study area, because of
the general paucity of multi-year events during the study period. However, these findings can
provide a consistent picture of the different roles ET and storage have in drought propagation
and its modelling (Figure 5.1), also in the context of multi-year droughts (Section 1.2.5).

Figure 5.1: Illustration of evapotranspiration (ET) and storage contribution to streamflow (Q)
during droughts, from main findings of the thesis and literature (in italic): (a) negative ET
anomalies and enhanced storage contribution to Q attenuate streamflow droughts; (b) positive
ET anomalies lead to model difficulties during severe droughts; (c) positive ET anomalies, and
possibly reduced storage contribution to Q, exacerbate streamflow droughts during multi-year
events. Yellowish to brownish colours refer to increasing severity of streamflow droughts and
model difficulties.

The propagation of P deficits through the hydrological cycle is mainly regulated by ET and water
storage in the catchment [60], and different hydrometeorological drivers can result in drought
events of varying severity and duration [106].

I showed that negative anomalies in subsurface storage and ET characterized the 54% of stream-
flow droughts across Italy between 2010 and 2019, and attenuated them compared to the corre-
sponding meteorological droughts (Figure 5.1a), consistently with typical perceptualization of
streamflow droughts [88]. From model evaluation I revealed that Continuum well represented
these moderate streamflow droughts (Figure 5.1a). Additionally, from remote sensing data I de-
tected that concurrent negative storage anomalies and positive ET anomalies drove the severe
streamflow drought in the Po river basin in 2022, and Continuum had decreased performances
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for this event (Figure 5.1b). [3, 92] found similar features for the severe 2003 European summer
drought, and [59] reported frequent ET enhancement during droughts at the expense of modelling
capabilities.

During multi-year droughts, changes in the hydrological response of catchments to P can occurr,
as documented for Mediterranean areas across the world [11, 12, 13]. Perceptual models for these
shifts in P-Q relationship include a reduced contribution of storage to Q, either via an enhanced
groundwater recharge [12] at the expense of Q generation or a decline in groundwater levels that
feed Q [102], and/or an enhanced ET [13]. In [141] we analyzed data for 210 catchments in
Europe from 1980 to 2015 to test (i) the occurrence of shifts in P-Q relationship during multi-
year droughts across the variety of European climates and (ii) the ET enhancement as a potential
driver for it. We found that shifts in the hydrological response of catchments occurred also during
prolonged dry periods throughout Europe with concurrent positive ET anomalies, especially in
catchments with high root depth and total available water content. This suggests that the deeper
storage can support ET and further aggravate streamflow droughts during multi-year droughts
(Figure 5.1 c). [13] showed similar drought features and poor model capabilities during the
2012-2016 Californian drought (Figure 5.1 b and c).

In summary, negative-to-positive ET anomalies may lead to increased severity of streamflow
droughts (Figure 5.1a and b) and model difficulties in reproducing them (Figure 5.1b and c),
while a reduction in the storage contribution to Q may lead to a further exacerbation of stream-
flow droughts, compared to the corresponding meteorological events (Figure 5.1c).

5.2 Study limitations and ways forward for future research

Some limitations in this thesis provide the opportunity for future research, as discussed in Section
3.4.3 for the large-sample analysis and Section 4.4.2 for the model evaluation. Here I summarized
common limitations and ways forward for both the analyses.

The study catchments used in the thesis cover different hydroclimatological regimes (Section
2.2.6) and previous studies in different regions support most of the findings (Sections 3.4 and
4.4). Yet, extending the analyses to different climates would make the conclusions more general.

I considered a 10-year study period for the large-sample analysis and a 13-year study period for
the model evaluation, mainly because of the difficulty in collecting a long-term water balance
dataset for the study region (Section 2.2). Therefore, I analyzed specific drought events and the
relatively short study period prevented the use of a fully standardized approach [76] for instance
to study drought propagation. A longer study period would allow to generalize these findings
for different drought events and to use alternative methodologies for drought identification and
characterization (Section 1.2.2).

The cryosphere (snow and ice) can store winter precipitation to buffer later hydrological droughts.

68



In the large-sample analysis I did not explicitly consider snow as I used an annual temporal res-
olution to estimate changes in catchment (subsurface) storage, whereas in the modelling study
I simulated snow dynamics through the Continuum snow module [203]. Recent developments
in the S3M cryospheric model [225], which can be fully coupled to Continuum, and IT-SNOW
[127], an Italian-scale snow reanalysis over the last decade based on S3M, in-situ and satellite
data, could allow to explicitly consider the cryosphere. Snow estimates would allow one to de-
rive subsurface storage changes and study drought propagation at a finer temporal resolution, by
considering also the joint contribution of snow and subsurface storage. The coupling of S3M and
Continuum [69] instead would let simulate the glacier dynamics during droughts as well.

Detailed information about human interference on the hydrological cycle is generally lacking for
large samples of catchments [74]. In the large-sample analysis I did not explicitly consider hu-
man interference in the study catchments, by assuming that it possibly intensified the streamflow
droughts I analyzed in line with the findings of [138]. In the modelling study, I partly consid-
ered human disturbance in the model by including reservoirs and calibrating against possible
human-affected Q data. However, detailed information on human activities would be helpful to
determine their influence on streamflow droughts and to properly model it in the study catch-
ments, even in a socio-hydrological framework [226].

Hydrological data are inherently uncertain and so, hydrological models [227]. Throughout the
thesis I used specific P, Q, and ET datasets. Regarding P and Q, I applied some filters on raw
data to identify and remove possible outliers before using them (Section 3.2.2.1). Concerning
ET, I firstly verified the suitability of the remote sensing-based product for the study region,
even during droughts, in a multi-dataset comparison (Figure E.1). However, the use of multiple
products would allow to explicitly quantify the uncertainties.

Finally, follow-up work could investigate ET and storage during multi-year droughts over the
study area, and Continuum modelling skills in simulating them to further test the framework I
proposed from the findings of the thesis and recent literature (Section 5.1).

5.3 Implications and relevance

Several implications can be drawn from the findings of this thesis (Sections 3.4.1 and 4.4.1).

As general outcome of the thesis, I revealed the feasibility of a multivariate approach in studying
hydrological processes and model internal consistency during droughts, by merging traditional
data and products from remote sensing. The dataset I collected was an initial effort for large-
sample hydrology at Italian scale, and in so doing I provided further evidence of the value of
large-sample datasets [72] and multiple data sources, to advance our hydrological understanding
and modelling capabilities at large scales.

From the large-sample data-based analysis, the relevance of subsurface (soil and groundwater)
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storage in annual water balance and in buffering streamflow droughts emerged. The buffering
effect may be prevented in case of low antecedent storage conditions (Figure 3.7) and, of course,
it comes at the expense of groundwater availability. Groundwater is a primary water source for
many human communities and ecosystems, and is currently overexploited in many regions of
the world [228]. Data from remote sensing showed indeed a decline in TWS over the last years
also for the Po river basin (Figure 4.3). Furthermore, I detected room for improvement in the
simulation of TWS by Continuum (Figure 4.3). These findings call for an enhanced consideration
of storage conditions as driver for streamflow droughts, for instance in drought typologies [74,
106], and more broadly, for joint efforts by surface- and ground-water hydrology communities
in analyzing and simulating surface- and ground-water availability during droughts.

From model evaluation, on the one hand, I revealed the ability of Continuum in reproducing most
of drought conditions at a high resolution across the hydrological cycle and the landscape, even
in a heavily human-affected area like the Po river basin. On the other hand, I provided further
evidence of possible model performance decreases for particularly severe and complex droughts,
which pose challenges in properly predicting climate impacts (Section 4.4.1). By identifying
possible causes for this decrease, I also provided possible guidance for scientific model improve-
ment, for example through an enhanced representation of human water uses into hydrological
modelling [229] or the assimilation of satellite-derived irrigation data [224]. This emphasizes the
need for integration between remote sensing and hydrological modelling to make hydrological
models more robust even in heavily human-affected areas and outside the calibration conditions,
as real digital twins of the hydrological cycle [69, 70].

Finally, I discussed that my findings fit consistently with recent pieces of literature on multi-year
drought in a broader context. This should encourage unifying research on annual and multi-
annual droughts, as their intertwined nature and the potential high impacts of prolonged events.

In conclusion, I showed that combining data analyses and model evaluations across catchments is
the prerequisite for robust hydrological modelling to cope with drought risk and climate impacts.
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Appendix A

The Asynchronicity Index (ASI) between precipitation (P) and potential evapotranspiration (PET)
[126] is computed as

ASI =
√

JSobs − JSsim, (A.1)

where JSobs is the observed Jensen-Shannon distance and JSmin is the minimum Jensen-Shannon
distance that can be obtained for the seasonality of P and PET. The Jensen-Shannon distances
(JS) are derived as

JS =

√
1

2
DP +

1

2
DPET (A.2)

where DP is the relative entropy of P and DPET is the relative entropy of PET with reference to
their average, obtained as

DP =
12∑

m=1

Pmlog2
Pm

nm

(A.3)

and

DPET =
12∑

m=1

PETmlog2
PETm

nm

(A.4)

with

Pm =
rm∑12

m=1 rm
(A.5)
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PETm =
km∑12

m=1 km
(A.6)

nm =
1

2
(Pm + PETm) (A.7)

where rm and km are the long-term mean monthly values for P and PET and the calender month
m ∈ [1, 12].
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Appendix B

Table B.1: Catchment properties for the large-sample analysis in Chapter 3: basin and section
name, catchment mean latitude, catchment area in km2, catchment mean elevation in m a.s.l.,
aridity index (AI), dominant land cover type in the catchment, dominant topsoil texture in the
catchment, and dominant geological class in the catchment. Sources and details about each
property are provided in Section 3.2.2.2. Catchments are north to south ordered, according to the
catchment mean latitude.

Basin Section Lat Area Elev AI Land cover Soil texture Geological class
Adige S Michele all Adige 46.71 7299 1970 0.52 Coniferous forest Medium Igneous and metamorphic
Adige Trento 46.64 9709 1935 0.55 Coniferous forest Medium Igneous and metamorphic
Adige Verona 46.58 11029 1828 0.75 Coniferous forest Medium Igneous and metamorphic
Adige Boara Pisani 46.52 12203 1708 0.63 Coniferous forest Medium Unconsolidated

Rabbies S Bernardo Rabbi 46.43 105 2487 0.62 Bare soil Medium Igneous and metamorphic
Avisio Cavalese Masi 46.38 569 2117 0.66 Coniferous forest Medium Unconsolidated
Noce Mezzolombardo 46.37 1349 1870 0.58 Coniferous forest Medium Unconsolidated
Noce Male 46.33 467 2288 0.55 Coniferous forest Medium Unconsolidated
Avisio Lavis 46.3 933 1886 1.02 Coniferous forest Medium Unconsolidated

Cismon Fiera di Primiero 46.25 124 1899 0.47 Coniferous forest Coarse Unconsolidated
Toce Domodossola 46.24 828 1953 0.65 Bare soil Coarse Igneous and metamorphic
Sarca Ragoli 46.16 539 2077 0.86 Coniferous forest Medium Igneous and metamorphic
Adda Lodi 46.16 5584 1542 0.58 Broad-leaved forest Medium Unconsolidated
Toce Candoglia 46.12 1441 1845 0.32 Bare soil Coarse Igneous and metamorphic

Fersina Trento Fersina 46.11 174 1315 0.8 Coniferous forest Coarse Igneous and metamorphic
Brenta Barzizza 46.08 1564 1473 0.35 Coniferous forest Medium Carbonate
Brenta Grigno Ponte Filippini 46.06 616 1457 0.53 Coniferous forest Medium Igneous and metamorphic
Chiese Cimego 46.01 238 2046 0.81 Coniferous forest Medium Igneous and metamorphic
Oglio Capriolo 45.99 1883 1591 0.79 Coniferous forest Medium Unconsolidated
Chiese Ponte dei Tedeschi 45.98 369 1841 0.43 Coniferous forest Medium Unconsolidated
Ticino Vigevano 45.96 7071 1179 0.24 Broad-leaved forest Medium Igneous and metamorphic
Tesina Bolzano Vicentino 45.85 809 1173 0.94 Coniferous forest Medium Carbonate
Ticino Ponte della Liberta 45.85 8018 1018 0.28 Broad-leaved forest Medium Unconsolidated
Chiese Gavardo 45.84 934 1430 0.45 Broad-leaved forest Medium Unconsolidated
Olona Castellanza Olona 45.79 163 607 0.61 Broad-leaved forest Medium Unconsolidated

Lambro Peregallo 45.79 273 654 0.63 Broad-leaved forest Medium Unconsolidated
Dorabaltea Tavagnasco 45.75 3322 2300 0.44 Bare soil Medium Igneous and metamorphic

Bacchiglione Montegalda 45.74 1470 844 0.65 Broad-leaved forest Medium Carbonate
Oglio Marcaria 45.72 5840 979 0.58 Crops Medium Unconsolidated

73



DoraBaltea Verolengo 45.68 3940 2063 0.67 Bare soil Medium Igneous and metamorphic
Agno Ponte Brogliano 45.68 143 849 0.52 Broad-leaved forest Medium Silicatic
Sesia Quinto Vercellese Cervo 45.56 1055 702 0.54 Broad-leaved forest Medium Unconsolidated
Agno Borgofrassine 45.56 526 561 0.77 Broad-leaved forest Medium Unconsolidated
Orco S.Benigno 45.45 733 1982 0.46 Bare soil Medium Igneous and metamorphic
Po Cremona 45.43 50403 1064 0.56 Broad-leaved forest Medium Unconsolidated

SturadiLanzo Lanzo 45.29 578 1992 0.42 Bare soil Coarse, Igneous and metamorphic
Po Ficarolo 45.24 68619 977 0.59 Crops Medium Unconsolidated
Po Casale Monferrato 45.19 13715 1478 0.73 Crops Medium Igneous and metamorphic
Po Spessa 45.13 37500 1085 0.55 Broad-leaved forest Medium Unconsolidated

DoraRiparia Torino 45.1 1416 1768 0.63 Broad-leaved forest Medium Igneous and metamorphic
DoraRiparia Susa Via Mazzini 45.06 652 2273 0.53 Coniferous forest Medium Igneous and metamorphic

Po Torino Murazzi 44.77 5177 1145 0.66 Crops Medium Unconsolidated
Po Carignano 44.69 3785 1364 0.61 Crops Medium Igneous and metamorphic

Trebbia Rivergaro 44.68 890 1060 0.56 Broad-leaved forest Medium Silicatic
Crostolo Cadelbosco 44.65 257 426 0.99 Crops Fine Unconsolidated

Taro S.Secondo 44.63 1488 836 0.56 Broad-leaved forest Medium Unconsolidated
Maira Busca 44.5 580 1895 0.79 Bare soil Medium Igneous and metamorphic

Secchia Pioppa 44.5 1631 774 0.72 Broad-leaved forest Medium Unconsolidated
Erro Cartosio 44.5 199 531 0.65 Broad-leaved forest Medium Igneous and metamorphic

Secchia Ponte Alto 44.44 1420 852 0.74 Broad-leaved forest Medium Unconsolidated
Bormida Piana Crixia 44.38 279 535 1 Broad-leaved forest Medium Igneous and metamorphic
Rossenna Rossenna 44.37 183 940 0.8 Broad-leaved forest Medium Unconsolidated

Tanaro Alba Q.A. 44.35 3437 1281 0.6 Broad-leaved forest Medium Igneous and metamorphic
Panaro Bomporto 44.34 1082 823 0.69 Broad-leaved forest Medium Unconsolidated
Tanaro Farigliano 44.32 1517 1158 0.52 Broad-leaved forest Medium Igneous and metamorphic

Scoltenna Pievepelago 44.2 126 1530 0.38 Broad-leaved forest Medium Silicatic
Reno Vergato 44.17 535 785 0.52 Broad-leaved forest Medium Silicatic
Neva Cisano sul Neva 44.13 128 741 0.69 Broad-leaved forest Medium Carbonate

Serchio Calavorno 44.13 681 919 0.71 Broad-leaved forest Medium Silicatic
Lamone Strada Casale 44.09 200 656 0.85 Broad-leaved forest Medium Silicatic
Serchio Monte S.Quirico 44.09 1254 836 0.5 Broad-leaved forest Medium Silicatic
Serchio Ripafratta 44.07 1401 769 0.48 Broad-leaved forest Medium Silicatic

Uso Santarcangelo 44 112 307 0.96 Crops Medium Silicatic
Arno S. Piero a Ponti 43.97 287 519 0.83 Broad-leaved forest Medium Silicatic
Arno Fornacina 2 ul 43.95 828 563 0.82 Broad-leaved forest Medium Silicatic
Arno Poggio a Caiano 43.94 440 352 0.86 Broad-leaved forest Medium Unconsolidated
Savio S.Carlo 43.92 578 586 0.72 Broad-leaved forest Medium Silicatic

Casentino Subbiano 43.73 750 817 0.72 Broad-leaved forest Medium Silicatic
Arno Ponte di Scandicci 43.67 275 362 1.5 Crops Medium Silicatic
Arno S.Giovanni alla Vena valle 43.58 8601 416 1.06 Broad-leaved forest Medium Silicatic

Tevere SLucia 43.55 937 640 0.86 Broad-leaved forest Medium Silicatic
Aspio Aspio 2 43.54 134 143 1.39 Crops Medium Unconsolidated

Carpina Montone 43.42 133 601 1.19 Broad-leaved forest Medium Silicatic
Arno Incisa Valle 43.41 3414 513 1.05 Broad-leaved forest Medium Silicatic

Tevere Mocaiana 43.39 108 659 1.04 Crops Medium Silicatic
Nestore Trestina 43.35 204 572 1.05 Broad-leaved forest Medium Silicatic
Chiascio Branca 43.32 242 712 0.81 Crops Medium Silicatic
Niccone Migianella 43.27 134 514 1.05 Broad-leaved forest Medium Silicatic
Ombrone Sasso dOmbrone 43.12 2706 425 1.19 Broad-leaved forest Medium Silicatic
Topino Valtopina 43.11 196 745 0.81 Broad-leaved forest Medium Silicatic
Tevere Alviano 43.03 7438 524 1.21 Broad-leaved forest Medium Silicatic
Puglia Collepepe 42.91 162 443 1.25 Crops Medium Silicatic
Nera Ponte Buggianino 42.88 396 1227 1.02 Broad-leaved forest Medium Carbonate

Carcaione Orvieto Scalo 42.83 1306 512 1.07 Broad-leaved forest Medium Unconsolidated
Tevere Cantalupo 42.81 554 550 1.24 Crops Medium Carbonate
Tevere Vallo di Ner 42.79 1238 1126 1.1 Broad-leaved forest Medium Carbonate
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Tevere Ponte Felice 42.75 12896 660 0.95 Broad-leaved forest Medium Silicatic
Tevere Torreorsina 42.75 1467 1080 1.07 Broad-leaved forest Medium Carbonate
Tevere Ripetta 42.64 16595 610 1.01 Broad-leaved forest Medium Silicatic
Nera Serravalle 42.64 429 1160 0.98 Broad-leaved forest Medium Carbonate
Fiora Montalto di Castro 42.61 824 421 1.21 Crops Medium Igneous and metamorphic
Marta Tarquinia 42.41 1070 340 1.59 Crops Coarse Igneous and metamorphic
Velino Terria 42.26 2194 1036 0.65 Broad-leaved forest Medium Carbonate
Turano Rocca Sinibalda 42.08 503 1039 0.92 Broad-leaved forest Medium Silicatic
Aniene Lunghezza 41.93 1201 673 0.92 Broad-leaved forest Medium Carbonate
Aniene Ponte Mammolo 41.92 1494 586 0.7 Broad-leaved forest Medium Igneous and metamorphic

Liri Pontecorvo 41.76 3759 737 0.86 Broad-leaved forest Medium Carbonate
Melfa Atina 41.66 169 1071 0.84 Broad-leaved forest Medium Carbonate

Rapido Cassino 41.57 189 627 0.62 Broad-leaved forest Medium Carbonate
Ofanto San Samuele 40.99 2697 499 1.36 Crops Medium Silicatic

Bradano Ponte Bradano 40.75 2999 429 1.52 Crops Medium Silicatic
Agri Ponte La Marmora 40.37 276 975 0.86 Broad-leaved forest Medium Silicatic
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Appendix C

Table C.1: Shapiro-Wilk rejection frequency for each candidate distribution for monthly SPI12
calculation across the study catchments in Chapter 3.

Gamma Gumbel Logistic Loglogistic Lognormal Normal Weibull
0.62 10.07 20.19 5.31 0.96 12.01 0.87
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Appendix D

Figure D.1: Example of raw and filtered mean daily discharge (Q) data, according to the quality-
check procedure described in Section 3.2.2.1.
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Appendix E

Figure E.1: Multi-dataset evapotranspiration (ET) comparison across the study region: (a)
monthly root mean square error (RMSE) over the whole comparison period and (c) daily RMSE
for the 2012 drought year between ET data from FLUXNET2015 dataset and LSASAF product at
flux tower-scale (site IDs, according to the FLUXNET2015 dataset, are reported); (b) scatterplot
between monthly catchment-average ET from LSASAF and GLEAM datasets over the whole
comparison period (grey) and drought months (red); (d) same as (b) with catchment-average ET
from the BIGBANG dataset on the y axis. Description of datasets is provided in Section 3.2.2.1.
In (b) and (d), Pearson correlation coefficients (r) are reported.
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Appendix F

Figure F.1: Scatterplot between annual change in subsurface storage (∆S) estimates used in in
Chapter 3 and alternative estimates. Alternative ∆S estimates are annual residual from precip-
itation and evapotranspiration data from the BIGBANG dataset, and discharge data collected in
this study (Section 3.2.2.1), according to the water balance equation (Equation 3.1). Pearson
correlation coefficient (r) is reported.
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Appendix G

Figure G.1: Diagram of the hydrological model Continuum [198], with model modules, output,
states, and calibration parameters (in bold).
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Appendix H

Table H.1: Overview of datasets used in Chapter 4.

Variable Dataset Reference Purpose
Digital Elevation Model HDMA [114] Model setup
Hydrological Soil Group HYSOGs250m [230] Model setup

Soil texture ISRIC SoilGrids [231] Model setup
Soil porosity ESACCI Soil Moisture [232] Model setup
Land Cover ESACCI 2018 Land Cover [202] Model setup

Dams DPC and GranD database [233] for GranD database Model setup
Lakes DPC Model setup

Glaciers RGIv6 [158] Model setup
Meteo data DPC [117, 69] Model simulation
Streamflow DPC and regional hydrometeorological offices [69, 205] Model calibration and evaluation

Evapotranspiration LSASAF [122, 123]1 Model evaluation
Terrestrial Water Storage GRACE JPL mascon RL06 [209, 210]2 Model evaluation
Terrestrial Water Storage GRACE CSR mascon RL06 [207, 208]3 Model evaluation
Terrestrial Water Storage GRACE GSFC mascon RL06 [211]4 Model evaluation

1https://landsaf.ipma.pt/en/products/evapotranspiration-energy-flxs/met/
(last access on 06 October 2022)

2https://podaac-tools.jpl.nasa.gov/drive/files/GeodeticsGravity/tellus/L3/
mascon/RL06/JPL/v02/CRI/netcdf (last access on 06 October 2022)

3http://www2.csr.utexas.edu/grace/RL06_mascons.html (last access on 06 October 2022)
4https://earth.gsfc.nasa.gov/geo/data/grace-mascons (last access on 06 October 2022)
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Appendix I

Table I.1: Properties of study sub-catchments in Chapter 4: ID, name, location, drainage area
[km2], mean elevation [m a.s.l.], dominant climate and land cover type. For data sources please
refer to Table H.1. Sub-catchments are ordered west-to-east.

ID Section Basin Lat Lon Area [km2] Elev [m a.s.l.] Climate Land cover
1 Susa Via Mazzini Dora Riparia 45.14 7.05 832 2120 Cold Forest
2 Gaiola Stura di Demonte 44.33 7.42 562 1744 Cold Grass
3 Lanzo Stura di Lanzo 45.27 7.48 580 1767 Cold Grass
4 Busca Maira 44.52 7.48 613 1514 Cold Forest
5 Carignano Po 44.91 7.69 3957 1021 Temperate no dry Forest
6 Torino Murazzi Po 45.07 7.71 5152 971 Temperate no dry Crop
7 Torino Dora Riparia 45.08 7.72 1475 1373 Cold Grass
8 S.Benigno Orco 45.25 7.81 852 1645 Cold Grass
9 Tavagnasco Dora Baltea 45.55 7.82 3297 2124 Alpine Grass

10 Farigliano Tanaro 44.52 7.9 1505 916 Temperate dry Forest
11 Alba Q.A. Tanaro 44.71 8.03 3468 1313 Temperate dry Forest
12 Verolengo Dora Baltea 45.19 8.04 3962 1802 Alpine Grass
13 Domodossola Toce 46.11 8.31 954 1928 Alpine Grass
14 Piana Crixia Bormida 44.48 8.31 249 610 Temperate dry Forest
15 Quinto Vercellese Cervo Sesia 45.38 8.37 840 578 Temperate no dry Forest
16 Candoglia Toce 45.97 8.42 1564 1896 Alpine Grass
17 Cartosio Erro 44.57 8.42 196 544 Temperate dry Forest
18 Palestro Sesia 45.30 8.51 2709 826 Temperate no dry Forest
19 Vigevano Ticino 45.34 8.88 7467 1453 Cold Forest
20 Ponte della Libertà Ticino 45.18 9.15 8378 1383 Cold Forest
21 Valsigiara Trebbia 44.64 9.33 209 959 Cold Forest
22 Spessa Po 45.10 9.35 38626 1094 Temperate no dry Forest
23 Salsominore Aveto 44.63 9.41 186 1060 Cold Forest
24 Lodi Adda 45.32 9.51 6127 1515 Cold Forest
25 Rivergaro Trebbia 44.9 9.58 886 820 Cold Forest
26 Ostia Parmense Taro 44.51 9.84 422 859 Temperate no dry Forest
27 Piacenza Po 45.06 9.71 42090 992 Temperate no dry Forest
28 Capriolo Oglio 45.64 9.92 1921 1347 Cold Forest
29 Cremona Po 45.13 10.00 51163 1214 Temperate no dry Forest
30 S.Secondo Taro 44.92 10.25 1545 645 Temperate no dry Forest
31 Ponte Verdi Parma 44.81 10.25 527 649 Temperate no dry Forest
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32 Marcaria Oglio 45.11 10.53 6085 723 Temperate no dry Crop
33 Cadelbosco Crostolo 44.78 10.58 258 247 Temperate no dry Crop
34 Borgoforte Po 45.04 10.75 63575 954 Temperate no dry Forest
35 Ponte Alto Secchia 44.67 10.9 1174 743 Temperate no dry Forest
36 Pioppa Secchia 44.86 10.97 1330 661 Temperate no dry Forest
37 Ficarolo Po 44.95 11.43 69315 867 Temperate no dry Forest
38 Pontelagoscuro Po 44.89 11.61 72545 832 Temperate no dry Forest
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Appendix J

Figure J.1: Annual P standardized anomalies (Equation 4.1) for each study sub-catchment in
Chapter 4 (ordered west-to-east, from the left to the right end side) over the study period.
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Appendix K

Table K.1: Kling Gupta Efficiency (KGE) [213] for calibration and evaluation periods for each
study sub-catchment in Chapter 4 (Table I.1). KGE1 refers to calibration experiment 1 and KGE2

refers to calibration experiment 2(Section 4.2.4.1).

ID KGE1 KGE1,whole KGE1,wet KGE1,moderate KGE1,severe KGE2 KGE2,whole KGE2,wet KGE2,moderate KGE2,severe

1 - 0.58 0.48 0.43 0.01 - 0.53 0.46 0.49 <0
2 0.52 0.58 0.52 0.31 0.31 0.47 0.55 0.51 0.41 0.17
3 0.47 0.67 0.71 0.47 0.34 <0 0.67 0.76 0.51 0.32
4 - 0.49 0.32 0.69 0.1 - 0.63 0.49 0.59 <0
5 0.85 0.85 0.74 0.48 <0 0.74 0.82 0.88 0.67 0.63
6 0.81 0.86 0.7 0.59 0.11 0.62 0.79 0.85 0.62 0.4
7 - 0.47 0.33 0.08 <0 - 0.58 0.46 0.37 <0
8 - 0.79 0.86 0.84 <0 - 0.76 0.81 0.76 <0
9 0.71 0.74 0.67 0.72 0.65 0.7 0.69 0.63 0.68 0.6

10 0.84 0.81 0.85 0.64 0.43 0.58 0.76 0.84 0.56 0.28
11 0.79 0.89 0.79 0.71 0.07 0.59 0.85 0.81 0.62 0.57
12 - 0.39 0.34 0.29 <0 - 0.45 0.36 0.28 <0
13 - 0.38 0.37 <0 <0 - 0.39 0.38 <0 <0
14 - 0.28 0.29 0.28 <0 - 0.02 0.01 <0 <0
15 - 0.54 0.43 0.2 0.51 - 0.63 0.61 0.71 0.68
16 - 0.55 0.45 0.5 0.19 - 0.57 0.51 0.55 0.26
17 0.55 0.83 0.96 0.9 0.46 0.25 0.7 0.87 0.52 0.39
18 0.74 0.7 0.52 0.84 <0 0.08 0.6 0.44 0.6 ¡0
19 - 0.85 0.79 0.71 0.77 - 0.79 0.73 0.78 0.62
20 - 0.89 0.74 0.75 0.77 - 0.84 0.64 0.76 0.64
21 0.46 0.89 0.91 0.69 0.47 <0 0.82 0.92 0.6 0.27
22 0.87 0.85 0.71 0.76 0.7 0.84 0.89 0.91 0.76 0.64
23 <0 0.4 <0 0.59 <0 0.67 0.35 <0 0.8 0.1
24 - 0.77 0.76 0.32 0.66 - 0.74 0.82 0.06 0.59
25 - 0.78 0.73 0.64 <0 - 0.84 0.77 0.58 0.37
26 0.54 0.94 0.89 0.83 0.82 0.2 0.89 0.88 0.77 0.74
27 - 0.88 0.76 0.72 0.68 - 0.87 0.89 0.76 0.61
28 - 0.44 0.39 0.16 <0 - 0.51 0.49 0.21 <0
29 0.81 0.78 0.68 0.71 0.83 0.78 0.91 0.95 0.76 0.61
30 0.46 0.81 0.86 0.71 0.51 0.25 0.69 0.76 0.36 0.61
31 0.23 0.67 0.76 0.69 0.42 0.44 0.57 0.72 0.46 0.38
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32 - 0.67 0.56 0.46 <0 - 0.63 0.53 0.24 <0
33 - 0.34 <0 <0 <0 - 0.14 <0 <0 <0
34 - 0.81 0.66 0.72 0.85 - 0.88 0.96 0.69 0.67
35 0.67 0.81 0.83 0.43 0.65 0.12 0.67 0.81 0.3 0.46
36 - 0.78 0.87 0.52 0.76 - 0.62 0.74 0.38 0.49
37 - 0.83 0.63 0.74 0.81 - 0.86 0.95 0.65 0.61
38 0.79 0.81 0.58 0.77 0.82 0.71 0.88 0.94 0.64 0.64
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Appendix L

Figure L.1: Values of the bias component (β) of the Kling Gupta Efficiency (KGE [213]) on
monthly Q during (a) wet years, (b) moderate droughts, and (c) the severe drought for each
study sub-catchment in Chapter 4, and (d) their distributions as boxplots grouped by calibration
and evaluation sub-catchments (shaded boxplots), from the model calibrated during ”normal”
climatic conditions (Section 4.2.4.1).
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Appendix M

Figure M.1: Same as L.1, but for the r component of KGE (Equation 4.2).
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Appendix N

Figure N.1: Same as L.1, but for the γ component of KGE (Equation 4.2).
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Appendix O

Figure O.1: Scatterplot between the observed imbalance (P-Q-ET-TWSC) in 2012 and 2022 for
each study sub-catchment (black) and the basin outlet (blue) in Chapter 4. P, Q, ET, and TWSC
are the annual precipitation, streamflow, evapotranspiration, and changes in Terrestrial Water
Storage.
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