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Abstract: In the climate change scenario the world is facing, extreme weather events can lead to
increasingly serious disasters. To improve managing the consequent risks, there is a pressing need
to have real-time systems that provide accurate monitoring and possibly forecasting which could
help to warn people in the affected areas ahead of time and save them from hazards. The oblique
earth-space links (OELs) have been used recently as a method for real-time rainfall detection. This
technique poses two main issues related to its indirect nature. The first one is the classification
of rainy and non-rainy periods. The second one is the determination of the attenuation baseline,
which is an essential reference for estimating rainfall intensity along the link. This work focuses
mainly on the first issue. Data referring to eighteen rain events were used and have been collected by
analyzing a satellite-to-earth link quality and employing a tipping bucket rain gauge (TBRG) properly
positioned, used as reference. It reports a comparison among the results obtained by applying
four different machine learning (ML) classifiers, namely the support vector machine (SVM), neural
network (NN), random forest (RF), and decision tree (DT). Various data arrangements were explored,
using a preprocessed version of the TBRG data, and extracting two different sets of characteristics
from the microwave link data, containing 6 or 12 different features, respectively. The achieved results
demonstrate that the NN classifier has outperformed the other classifiers.

Keywords: satellite microwave links; oblique earth-space links; machine learning; smart rainfall system

1. Introduction

Ever-increasing extreme weather events expose people and their assets to serious
dangers. The absence of real-time information about the areal distributions of rainstorms
at spatial scales that are in the order of the urban catchments and small basins causes
environmental protection agencies not to know exactly where and how extreme rainfall
will hit. Emergency phase management and flood risk require this crucial information for
the short-term forecasting that constitutes the basic component of the decision support
system. Developing a system for rainfall now-casting with a low cost and high temporal
and spatial resolution by leveraging the latest technologies would lead to enhancing the
prediction capabilities and efficiency of many infrastructures and environmental protection
tools such as transport safety and flood warning systems. The traditional rainfall detection
system consists of spaceborne remote sensing [1], weather radars [2], and rain gauges [3].
Recently, researchers have started leveraging the available radio spectrum sources to
measure precipitation. The latest technique to predict precipitation takes advantage of
existing commercial microwave links (CML). In [4], the authors presented a system that
relied on a cellular network. The system provided reliable measurements for surface
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rainfall and, finally, they compared the estimated rainfall intensity of the proposed system
with the measurements that came from the gauge. Horizontal microwave links (HML)
have been utilized recently in many applications such as regional rainfall monitoring [5]
and rain intensity inversion [6,7]. HMLs have the ability to monitor precipitation in
urban areas [8] and they have formed an important part that supplements the present
measurement method. Measuring precipitation can be performed using oblique earth-
space links (OELs) [9]. In [10], authors used OELs to retrieve the rain intensity in Paris.
A system for real-time rainfall estimation based on the measurements of the carrier to
the ratio in the broadband satellite networks and artificial neural networks was proposed
by [11]. Since OEL passes through the whole troposphere, there are more complicated
factors that affect OEL compared to HML. Different atmospheric features such as turbulence,
cloud, and gasses lead to two crucial issues in OELs. The first is the recognition of rainy
and non-rainy periods rejecting variations in the signal intensity due to other factors,
and the second is the determination of the signal baseline, i.e., the power level received
with clear skies, from whose value it is possible to calculate the amount of attenuation
induced by the presence of rain [12]. The importance of the second issue comes from
the fact that determining the baseline is crucial for getting the attenuation produced
by rainfall. The authors of [13] proposed a method for estimating the baseline based
on the minimal attenuation values. Such a method does not require the classification
of the rainy and non-rainy periods. The interpolation for the signal before and after
precipitation has been used to obtain the attenuation baseline for the rainy periods in
many works [14,15]. The slow Kalman tracker provides the last dry baseline and it is
used as an initial reference for baseline determination [16]. Many researchers have utilized
machine learning techniques to solve the first issue, and those techniques outperformed
the traditional ones. A method for identifying the rainy period depending on a metric
related to the receiver bit error rate parameter which is provided by satellite receivers has
been implemented by Adirosi et al. [17]. An approach for identifying whether a given
period is rainy or not using long short-term memory (LSTM) architecture has been proposed
by [18]. They first extracted the features from the received signals and then trained an LSTM
network to detect whether the period is rainy or not. Artificial neural networks (ANN) have
also been used to recognize the rainy and non-rainy periods by [10,19] and convolutional
neural networks (CNN) by [20]. The classification of rainy and non-rainy periods has
been performed using Markov switching models [21] and by analyzing the signal in
the frequency domain by applying Fourier transformations on a rolling window [22].
Deciding whether a given period is rainy or not can be defined as a binary classification
problem. Different classifiers have been used in previous works for the classification of
rainy conditions from microwave links [10,13,18,23], such as SVM and LSTM classifiers.
In this work, four shallow machine learning algorithms have been proposed and compared
to find out the most suitable one for classifying rainy and non-rainy observations from
satellite down-links signals. The goal is to identify an effective classifier being also energy
efficient to be deployed in a low-power and low-cost embedded device supplied by a
battery. The four algorithms are an ANN with one hidden layer, a kernel-support vector
machine (K-SVM), a decision tree (DT), and a random forest (RF). The performances of
the classifiers have been compared by evaluating three metrics: specificity indicating the
capability of classifying non-rainy samples, recall measuring the correctness in predicting
the rainy samples, and F1-score averaging the precision (ratio between true rainy and
classified as rainy samples) and the recall.

The remainder of the paper is organized as follows: Section 2 presents the dataset and
its processing, Section 3 describes the algorithms and the metrics computed to evaluate the
performance, Section 4 reports the results and discussion, and conclusions are drawn in
Section 5.
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2. Problem Definition

This section describes the dataset employed in this work, the events selected from the
datasets used to train and test the classifiers, and the features extracted from the raw data.

2.1. Data Collection

The OEL data that has been used in this work have been collected from the smart
rainfall system (SRS) which is a network of microwave sensors for satellite down-links
developed by the University of Genoa and Artys, Darts Engineering Srl, Genoa, Italy [24].
The analysis is focused on measurements performed by an SRS sensor installed on the
roof of the University of Genoa—DITEN department, characterized by an offset antenna
with a parabolic reflector with a diameter of 85 cm, and aligned towards the Turksat 42° E
Constellation. The azimuth and elevation angles of the dish with respect to the sun are
137.09◦ and 29.2048◦, respectively. The sensor was programmed to receive the signal in the
upper Ku band (11.7∼12.75 GHz) with vertical polarization [25]. A universal low noise
block (LNB), placed on the arm of the parabolic dish, converts the microwave signals from
the Ku-band to the L-band. The LNB interface circuit provides the power supply and
the 22 kHz tone to select the proper sub-band (10.75 to 11.7 GHz and 11.7 to 12.75 GHz)
and polarization. The RF signal, after filtering and amplification, is sent to a detector that
converts the power over a 45 dB range into a voltage using logarithmic amplifiers. The LNB
interface board consists of a microcontroller that also performs the signals analog-to-digital
conversion (ADC) with 10-bit resolution. The microcontroller samples the RF signals
64 times per minute; at the end of each minute, a UDP packet including the input RF
power measurement and some information is sent to a central server for further processing.
The block diagram of the system is reported in Figure 2 of [26], while the SRS sensing board
is shown in Figure 3 [26].

The ground data used as a reference for actual rainfall occurrence were obtained by
a dynamically calibrated TBRG manufactured by CAE S.p.A.—San Lazzaro di Savena,
Italy—and installed at the Hydraulic Laboratory of the University of Genova—DICCA
department [25]. Figure 1 shows a cartographic overview of the position of the dish and
the reference rain gauge (TBRG) where the blue circle on the map is the location of the SRS
dish, and the red circle is the location of the TBRG.

Figure 1. The location of the SRS dish at the University of Genova—DITEN department (blue circle,
Lat: 44.4031; Lon: 8.9587; Altitude 70 m.a.s.l.) and TBRG at the Hydraulic Laboratory of the University
of Genova—DICCA department (red circle, Lat: 44.3998; Lon: 8.9636; Altitude 45 m.a.s.l.). The blue
line represents the ground projection of the path from the dish toward the Turksat 42° E constellation,
chosen for this research.
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The choice of the instrument providing reference measurement was made considering
the high level of accuracy of the DICCA’s TBRG, since it has been corrected from the
systematic mechanical errors reaching class A performance (according to EN 17277:2019
recommendations) and constantly monitored by the WMO Lead Centre “B. Castelli” on
Precipitation Intensity laboratory. Figure 4 in [25] provides the percentage relative error
as a function of the rainfall intensity. The error is in the range ±3% for all the rainfall
measurements. Furthermore, its location (Figure 1) is below the SRS microwave down-
link considered in this study, at a distance of approximately 500 m from the dish, and is
therefore suitable for providing a reasonable indication of the rainfall conditions occurring
in the monitored territory. To improve the reference dataset quality, the inter-tip time
correction method described by Colli et al. [27] was applied. This processing technique
is able to provide more accurate one-minute rainfall measurements, with respect to the
coarse method yet very common in operational practice, i.e., the counting of the number
of tips performed by the TBRG mechanical sensor over a specified measurement update
interval. Such a number is usually associated with a rainfall volume, given the TBRG
sensitivity and calibration parameters. The datasets for both the SRS dishes and the TBRG
contain measurements collected from April 2017 to April 2019 and are publicly available
(https://github.com/cosmiclabunige/Rainfall_Prediction_18_days (accessed on 18 January
2023)). Each day contains 1440 observations, i.e., one for each minute. Figure 2 provides
an example of a daily signal collected by the SRS system and the reference measured by
TBRG: in blue the SRS signal, in green the TBRG measure indicating the intensity of rainfall
in each minute, in red the SRS observations in which a rainfall happened.

Figure 2. Example of one day signal collected by the SRS system with the TBRG reference. The his-
togram in green represents the measurement of the TBRG in mm/h. The dots represent the readings
from the SRS system: they are marked in blue when the TBRG output is zero, and they are marked in
red otherwise.

2.2. Event Selection

Deciding whether a given observation is rainy or not has been performed using a
thresholding criterion on the TBRG measures for the corresponding sample. The threshold
has been set to 0.1 mm/min. In this way, it is possible to label the dataset: a sample that
presents a TBRG measure lower than the threshold is labeled as not-rain, while if the
TBRG presents a value greater or equal to 0.1 mm/min the sample is labeled as rain. This
threshold has been selected for consistency with the sensing capabilities of common tipping
bucket type rain gauges which in general have a minimum sensitivity that is higher or
equal to 0.1 mm [28]. We considered as interesting events for our research the days during
which the rain occurred with maximum intensity in one minute greater than 15 mm/h or a
cumulative in the whole day off at least 50 mm. Table 1 shows the details of the 18 events
that have been considered in this work in terms of maximum rainfall intensity Max(RI)

https://github.com/cosmiclabunige/Rainfall_Prediction_18_days
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[mm], total rainfall accumulation Htot [mm/h] in 60 min, and the number of rainy minutes
in each day. It is worth noting that the events are in general strongly unbalanced, having
a number of minutes with rainfall much lower than non-rainy observations, except for
event 10.

Table 1. Selection of rainfall events and overall quantities as measured by the DICCA TBRG.

Event ID Date Max TBRG
[mm] Htot [mm/h] Minutes of

Rainfall

1 3 May 2017 83.9 15.2 106

2 6 May 2017 30.8 24.4 319

3 11 July 2017 218 22.4 61

4 22 July 2017 111.3 32.4 99

5 9 September 2017 146.8 52.1 328

6 18 September 2017 111.4 19.4 262

7 4 November 2017 65.9 9.2 73

8 5 November 2017 139.5 47.4 386

9 25 November 2017 43.4 21.0 342

10 10 December 2017 12.7 17.6 393

11 11 December 2017 62.9 65.0 1081

12 25 December 2017 54.5 7.1 61

13 26 December 2017 26.7 15.1 259

14 27 December 2017 58.7 42.9 481

15 1 January 2018 50.5 32.4 369

16 27 January 2018 24.9 19.4 295

17 14 August 2018 121.7 35.5 151

18 4 April 2018 220.4 38.5 346

2.3. Description of the Feature Set

Similarly to a recent work proposed in the literature [12], 12 statistical features with
a fixed time window were extracted from the SRS signal, in addition to the class label
that represents whether the given moment is rainy or not, derived from TBRG data. This
creates the dataset for this work. Table 2 shows the description of the dataset features
with their corresponding time window. After computing the features and in order to
reduce the amount of time needed for the training phase [29], the Min-Max Scaler has been
implemented on the features to fall within the range [0, 1] with the following formula:

xnormalized =
x − xmin

xmax − xmin
(1)

where xmax represents the maximum value of the feature and xmin represents the minimum
value of the feature.
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Table 2. Description of the extracted statistical features from the satellite-to-earth microwave signal.

Symbol Time Window with Respect to
the Given Moment Feature

x1 30 min before Average

x2 30 min before Standard Deviation

x3 30 min before Maximum

x4 30 min before Minimum

x5 30 min before Skewness

x6 30 min before Kurtosis

x7 30 min before Local Trend

x8 30 min before Information Entropy

x9 30 min before Ratio of Singular Values

x10 30 min before Ratio of High Frequency
Energy to Low

x11 none Probability higher than
Standard Deviation

x12 none Probability higher
than Average

3. Methodology

The methodology followed for training and testing was inspired by a leave-one-
out approach [30]: one day among the 18 selected has been chosen for testing and the
remaining 17 for training; iteratively, all 18 days have been tested in this way. For each of
the 18 problems defined so far, each having a total of 24,480 data for training, the training
dataset has been balanced by taking all the rainy data and extracting randomly the same
number of non-rainy data. A total of 20% of the training data was used as the validation
set for the tuning of the hyperparameters of the four algorithms. This was performed
using the grid search technique [31] applied to possible pools of candidates, seeking the
configuration that led to the best accuracy on the validation set.

3.1. Machine Learning Algorithms with Hyper-Parameters Selection

The definitions of the classifiers utilized in the work are reported below with the
list of hyperparameters tuned during the training phase. The choices of the algorithms
and their hyperparameters have been made in the perspective of the future deployment
of the classification algorithms on a device with limited computational resources and
powered by an energy harvester (e.g., a solar panel). In fact, to keep operating costs,
i.e., both data transfer and energy consumption, to a minimum, a real-time monitoring
system with sensors distributed across the territory requires that the classification be
performed next to the sensors (on the edge). In this way, the sending of data to the server
of the operations center takes place only when precipitation events occur. Consequently,
the algorithms have to be compliant with the hardware constraints of the devices; moreover,
the computational cost was measured as the inference time and the energy consumption
must be as low as possible. In addition, it is worth considering, as regards the ML algorithm
itself, e.g., artificial neural networks, that the greater the complexity of the classifier (higher
number of parameters), the higher the risk of overfitting the training set. Hence, in that case,
the classifier will perfectly predict the data belonging to the training set but misclassify the
new data, featuring low generalization performance. It was therefore our aim to restrain
the complexity of the algorithms considered.
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3.1.1. Decision Tree

DT is a machine learning technique where the data is divided constantly according to
a certain parameter. The tree has two types of entities which are leaves and decision nodes.
The leaves represent the output and the decision nodes represent the split location [32].
The hyperparameters pool considered during the training procedure of DT is as follows:

• Maximum depth of the tree, max_depth = [4, 8, None] where None means no limit.
• Minimum number of samples to split a node, min_samples_split = [2, 5, 10].
• Number of samples to consider a node as a leaf, min_samples_lea f = [1, 5, 10].

3.1.2. K-SVM

SVM is a machine learning technique whose output is a hyperplane in M dimensional
space where M represents the number of features. The output hyperplane is the best hyper-
plane that can separate the data points according to their classes [33]. The hyperparameters
pool considered during the training procedure of SVM is as follows:

• The Kernel used is RBF.
• Standard deviation of the RBF kernels, Gamma = [10i, f or i in range(−4, 4)].
• L2 Regularizer, Lambda = [10i, f or i in range(−4, 4)].

3.1.3. Artificial Neural Network

ANNs are designed in a way that simulates the human brain and how it processes
and analyzes information. ANNs are able to solve problems that are difficult for both
humans and statistical methods. With more data fed to ANNs, the ANNs can give much
better results. The selected architecture for this work was the multilayer perceptron, while
the Adam optimizer, which implements a version of the gradient descent algorithm [34],
has been used for its training. The hyperparameters pool considered during the training
procedure of ANN is as follows:

• Number of neurons, N = [50, 100, 200, 300].
• L2 Regularizer Lambda = [10i, f or i in range(−4, 4)].

3.1.4. Random Forest

RF is a set of a large number of independent decision trees that works in a way where
each individual tree outputs a class prediction and the final class prediction of the RF is
taken as a vote for the most predicted class by the individual trees. The hyperparameters
pool considered during the training procedure of Random Forest is as follows:

• Number of trees, num_trees = [50, 75, 100].
• Maximum depth of the tree, max_depth = [4, 8, None] where None means no limit.
• Minimum number of samples to split a node, min_samples_split = [2, 5, 10].
• Number of samples to consider a node as a leaf, min_samples_lea f = [1, 5, 10].
• Percentage of random training data to create a tree, max_samples = 50%.

3.2. Performance Metrics

Three metrics have been computed to assess the performance of the classifiers. Since
the 18 tested datasets are highly unbalanced, the accuracy has not been computed because it
would have been a biased metric and thus not represented a fair indicator of the classifiers’
goodness. For ease of use, the following notations are used: true positives (TP) are rain
minutes correctly classified, false positives (FP) are non-rain minutes incorrectly classified
as rain, true negatives (TN) are non-rain minutes correctly classified, false negatives (FN) are
rain minutes incorrectly classified as non-rain. The three metrics are listed in the following:

1. Specificity is the ratio between the TN and all the negatives, indicating how good a
classifier is in predicting non-rainy observations.

Speci f icity =
TN

TN + FP
(2)
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2. Recall is the measure of our model correctly identifying TP. Thus, for all the samples
that actually are rainy, recall tells us how many of them the classifier has correctly
identified as rainy samples.

Recall =
TP

TP + FN
(3)

3. F1-score represents the Harmonic mean of the precision and recall. The precision is
the ratio between the TP and all the positives. For our problem statement, that would
be the measure of samples that the classifier has correctly identified as rainy samples
out of all the samples that have been predicted as rainy by the classifier.

F1-Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

4. Results and Discussion

In this section, Table 3 provides the classification results obtained for using the whole
set of 12 features. The considered algorithms are, in order, the DT, KSVM (KS in the Tables),
NN, and RF. The results are described in terms of the specificity, recall, and F1-Score using
the improved TBRG as a reference and after applying the leave-one-out approach where in
each round one day was selected for testing and the remaining ones were used for training.
The last two rows of the table represent the average and the standard deviations of the
metrics on the 18 days. Table 4 reports similar results, obtained in this case using the
reduced set of six features (from x1 to x6).

Table 3. Classification results by algorithms using 12 features.

ID Specificity Recall F1-Score

DT KS NN RF DT KS NN RF DT KS NN RF

1 0.87 0.90 0.89 0.92 0.84 0.72 0.97 1.0 0.49 0.48 0.58 0.67
2 0.91 0.92 0.89 0.94 0.70 0.76 1.0 0.91 0.70 0.75 0.84 0.86
3 0.97 0.95 0.92 0.90 1.0 0.77 0.97 1.0 0.73 0.54 0.51 0.49
4 0.89 0.51 0.89 0.90 1.0 1.0 0.96 1.0 0.49 0.18 0.46 0.51
5 0.96 0.67 0.52 0.87 0.40 0.78 1.0 0.80 0.52 0.54 0.56 0.71
6 0.77 0.80 0.79 0.77 0.93 0.86 1.0 0.98 0.63 0.63 0.69 0.66
7 0.86 0.83 0.64 0.82 0.29 0.85 1.0 0.88 0.15 0.34 0.23 0.33
8 0.87 0.82 0.72 0.85 0.62 0.76 0.92 0.69 0.63 0.68 0.69 0.66
9 0.75 0.70 0.66 0.76 0.60 0.47 0.89 0.75 0.50 0.39 0.60 0.60

10 0.99 0.68 0.98 1.0 0.19 0.28 0.57 0.29 0.31 0.26 0.70 0.45
11 0.77 0.74 0.65 0.69 0.61 0.52 0.82 0.77 0.73 0.65 0.85 0.82
12 0.96 0.92 0.97 0.97 0.84 0.90 0.85 0.89 0.63 0.48 0.68 0.70
13 0.80 0.70 0.69 0.71 0.73 0.82 0.92 0.90 0.54 0.51 0.55 0.55
14 0.89 0.81 0.87 0.86 0.77 0.75 0.93 0.93 0.77 0.70 0.84 0.84
15 0.97 0.29 0.97 0.98 0.14 0.75 0.93 0.76 0.23 0.40 0.93 0.84
16 0.85 0.29 0.80 0.89 0.71 1.0 0.99 0.94 0.62 0.43 0.72 0.79
17 0.77 0.00 0.81 0.83 0.99 1.0 1.0 1.0 0.51 0.19 0.56 0.59
18 0.88 0.80 0.82 0.99 0.50 0.70 0.81 0.48 0.54 0.60 0.69 0.63

Avg 0.87 0.69 0.80 0.87 0.66 0.76 0.92 0.83 0.54 0.49 0.65 0.65
Std 0.08 0.26 0.13 0.09 0.27 0.19 0.11 0.19 0.17 0.17 0.17 0.15
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Table 4. Classification results by algorithms using 6 features.

ID Specificity Recall F1-Score

DT KS NN RF DT KS NN RF DT KS NN RF

1 0.87 0.82 0.85 0.89 0.93 0.86 0.98 0.99 0.52 0.42 0.51 0.59
2 0.87 0.84 0.92 0.88 0.83 0.79 0.94 0.86 0.73 0.67 0.84 0.76
3 0.88 0.86 0.87 0.92 0.93 10.0 10.0 10.0 0.42 0.40 0.41 0.52
4 0.84 0.84 0.88 0.87 10.0 10.0 10.0 10.0 0.39 0.39 0.46 0.45
5 0.68 0.64 0.71 0.69 0.85 0.84 0.99 0.96 0.58 0.55 0.67 0.65
6 0.79 0.80 0.78 0.78 0.80 0.77 10.0 0.89 0.59 0.58 0.67 0.62
7 0.79 0.78 0.75 0.76 10.0 0.95 10.0 10.0 0.34 0.32 0.30 0.31
8 0.79 0.75 0.76 0.80 0.75 0.76 0.90 0.77 0.65 0.63 0.71 0.67
9 0.69 0.69 0.67 0.69 0.61 0.54 0.78 0.63 0.47 0.43 0.56 0.48

10 0.95 0.92 0.91 0.93 0.56 0.65 0.63 0.59 0.66 0.70 0.68 0.67
11 0.73 0.66 0.63 0.64 0.61 0.68 0.81 0.72 0.72 0.76 0.84 0.78
12 0.97 0.96 0.97 0.97 0.74 0.90 0.87 0.92 0.61 0.67 0.70 0.74
13 0.73 0.65 0.65 0.66 0.82 0.82 0.92 0.90 0.53 0.47 0.52 0.52
14 0.88 0.81 0.85 0.88 0.79 0.88 0.95 0.92 0.78 0.78 0.85 0.85
15 0.96 0.86 0.96 0.97 0.85 0.72 0.99 0.93 0.87 0.68 0.95 0.92
16 0.88 0.84 0.80 0.83 0.66 0.76 0.99 0.87 0.62 0.65 0.72 0.70
17 0.69 0.61 0.79 0.75 0.99 10.0 10.0 10.0 0.43 0.38 0.53 0.49
18 0.84 0.83 0.80 0.86 0.50 0.57 0.77 0.63 0.51 0.55 0.65 0.62

Avg 0.82 0.79 0.81 0.82 0.79 0.80 0.92 0.87 0.58 0.56 0.64 0.63
Std 0.09 0.10 0.10 0.10 0.15 0.14 0.11 0.14 0.14 0.14 0.11 0.15

Figure 3 presents the boxplots of the metrics shown in Tables 3 and 4. The lower and
upper parts of the boxes delimit the first and third quartiles, while the whiskers mark the
variability outside the quartiles. A red diamond symbol represents the average value of
each metric, while blue horizontal lines represent the median values, respectively.
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Figure 3. Cont.
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Figure 3. For each classification algorithm (from left to right DT, KS, NN, RF) trained with 12 features
(top: (a)) and 6 features (bottom: (b)) a triplet of boxplots is shown, reporting the specificity (Spe),
recall (Rec), and F1-score (F1) metrics, respectively. (a) Boxplot of the metrics using 12 Features.
(b) Boxplot of the metrics using 6 Features.

By looking at the classification performance reported in Table 3 and in the associated
Figure 3a, we can notice that NN and RF present the best trade-off among the three metrics.
NN outperforms RF in the recall metric, meaning that it is better at classifying rainy
observations, while RF achieves a higher specificity, i.e., it classifies the non-rainy data
more accurately. DT has the highest specificity but the lowest recall, thus it is not suitable for
the classification of rainfall. Observing the F1-Score results, which represent the harmonic
mean for precision and recall, it is noticeable that the RF and NN classifiers perform better
than the DT and KSVM classifiers. An important comment should be raised, explaining
that if the rain gauge detects rainfall, it is a sufficient condition for a rain occurrence over
the SRS link, while the opposite is not true (i.e., if the rain gauge does not detect rainfall,
it can occur elsewhere over the link, due to its extension). Consequently, the specificity
metric, which gains lower levels, is less meaningful than the recall one, which actually
presents very good values. Moreover, it is worth noting that adopting a subset of features
(i.e., six features in this work), NN and RF still present the best trade-off with respect to the
other classifiers.

In particular, the average recall of NN is equal to the one obtained by using all
12 features, but the variability of the results is slightly higher. Meaning a small increase
in the misclassification rate of rainy observations. On the other hand, the variability of
NN specificity is smaller, with an average value of 1% better than by adopting 12 features.
The specificity of RF decreases when using six features, while the recall increases. In general,
reducing the number of features and maintaining a reasonable quality of the results, is very
important within the machine learning approach, leading in fact to less complex models
with short processing time and smaller storage capacity needs. This allows for reducing
response time, which is a very crucial aspect of rainfall monitoring systems, in particular
from the perspective of the implementation of such algorithms according to the edge
computing paradigm. Based on the classification results so far obtained, we can identify
the NN as the best classifier since it outperformed the DT, KSVM, and RF classifiers.

Figures 4 and 5 report an example of the classification of two days of observations,
i.e., day 11 and day 17 in Table 1, respectively. In Figure 4, the red dots, representing a
misclassification of rain conditions, correspond to a low intensity of rain measured by the
TBRG. On the other hand, the more intense rainy observations are well-classified by the
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NN. The purple dots point out a misclassification in non-rainy observations. As mentioned
above, specificity could be not that accurate since the rain gauge is not close to the SRS.
Indeed, the misclassified observations occurring around 12:00 seem to be related to a rain
event that has not been detected by the TBRG.
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Figure 4. Day 11 classified by NN trained with 12 features (a) and with 6 features (b). The blue
dots refer to not-rainy observations correctly classified, the purple ones are not-rainy observations
classified as rain, the green ones are rainy observations correctly classified, and the red dots represent
rainy observations classified as not rain. The cyan bars represent the TBRG measurements different
from 0 mm/h, i.e., associated with the rain observations. (a) Day 11 Neural Network 12 Features.
(b) Day 11 Neural Network 6 Features.
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Figure 5. Day 17 classified by NN trained with 12 features (a) and with 6 features (b). The blue
dots refer to not-rainy observations correctly classified, the purple ones are not-rainy observations
classified as rain, the green ones are rainy observations correctly classified, and the red dots represent
rainy observations classified as not rain. The cyan bars represent the TBRG measurements different
from 0 mm/h, i.e., associated with the rain observations. (a) Day 17 Neural Network 12 Features.
(b) Day 17 Neural Network 6 Features.

In Figure 5, the NN classified correctly all the rain observations, thus having a recall
of 100%. On the contrary, it misclassifies some non-rainy observations. It is worth noting
that most of these points occur near the rain observations. Probably some of them refer to a
rain condition not measured by the TBRG.

5. Conclusions

In this work, four different machine learning-based classification techniques were
applied to classify rainy and non-rainy periods on different events using a rain intensity
threshold of 0.1 mm/min. The features for the dataset have been extracted from the
data obtained from a smart rainfall system (SRS) installation, with a dish diameter of
85 cm pointed to the Turksat 42° E constellation. Reference rain measurements from an
improved TBRG have been used to obtain the class label for this work. Eighteen days
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of observations were collected in a dataset, using iteratively one day for testing and the
remaining seventeen for the training of four algorithms. From the SRS signals, 12 features
were extracted, and a reduced subset (i.e., 6 features) for the sake of comparison has
been selected. The results show that the best trade-off evaluated on the 18 days in terms
of specificity, recall, and F1-score, is achieved by the neural network classifier for both
the feature sets. This work paves the way for developing a fully automatic real-time
rainfall monitoring system, with a dense population of sensors deployed over the territory,
where the rain discrimination algorithm is hosted at the edge, by devices with constrained
resources, both on the computational and the energy requirements point of view. In this
way, it will be possible to reduce the data transfer to the server on the cloud, as well as
the cost of the service, to the essentials, just when rainfall occurs. Further developments
will concern the deployment of the classification algorithm on an embedded device for the
continuous monitoring of precipitations. Moreover, for continuous rainfall monitoring and
because of the seasonality of the data, it will be necessary to fine-tune the classifier online
after a period of observations.
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