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A B S T R A C T

Earth Observation (EO) from satellites has the potential to provide comprehensive, rapid and in-
expensive information about water bodies, integrating in situ measurements. Traditional meth-
ods to retrieve optically active water quality parameters from satellite data are based on semi-
empirical models relying on few bands, which often revealed to be site and season specific. The
use of machine learning (ML) for remotely sensed water quality estimation has spread in recent
years thanks to the advances in algorithm development and computing power. These models al-
low to exploit the wealth of spectral information through more flexible relationships and are less
affected by atmospheric and other background factors. The present study explores the use of Sen-
tinel-2 MultiSpectral Instrument (MSI) Level-1C Top of Atmosphere spectral radiance to derive
water turbidity, through application of machine learning techniques. A dataset of 222 combina-
tion of turbidity measurements, collected in the North Tyrrhenian Sea – Italy from 2015 to 2021,
and values of the 13 spectral bands in the pixel corresponding to the sample location was used.
Two regression techniques were tested and compared: a Stepwise Linear Regression (SLR) and a
Polynomial Kernel Regression. The two models show accurate and similar performance
(R2 = 0.736, RMSE = 2.03 NTU, MAE = 1.39 NTU for the SLR and R2 = 0.725, RMSE = 2.07
NTU, MAE = 1.40 NTU for the Kernel). A band importance analysis revealed the contribution of
the different spectral bands and the main role of the red-edge range. The work shows that it is
possible to reach a good accuracy in turbidity estimation from MSI TOA reflectance using ML
models, fed by the whole spectrum of available bands, although the possible generation of errors
related to atmospheric effect in turbidity estimates was not evaluated. Comparison between tur-
bidity estimates obtained from the models with turbidity data from Copernicus CMEMS dataset
named ‘Mediterranean Sea, Bio-Geo-Chemical, L3, daily observation’ produced consistent re-
sults. Finally, turbidity maps from satellite imagery were produced for the study area, showing
the ability of the models to catch extreme events.

* Corresponding author. UNIGE, Civil, Chemical and Environmental Engineering Department (DICCA), Via Montallegro 1, 16145 Genoa, Italy.
E-mail address: stefania.magri@edu.unige.it (S. Magrì).

https://doi.org/10.1016/j.rsase.2023.100951
Received 5 December 2022; Received in revised form 23 February 2023; Accepted 6 March 2023

https://www.sciencedirect.com/science/journal/23529385
https://www.elsevier.com/locate/rsase
mailto:stefania.magri@edu.unige.it
https://doi.org/10.1016/j.rsase.2023.100951
https://doi.org/10.1016/j.rsase.2023.100951
https://doi.org/10.1016/j.rsase.2023.100951


Remote Sensing Applications: Society and Environment 30 (2023) 100951

2

S. Magrì et al.

1. Introduction
Turbidity is a measure of the amount of light scattered by suspended particles in water, i.e. suspensoids, operationally defined as

the fraction which can be removed by a 0.22 μm (or 0.45 μm) -pore size filter (Kirk, 1985). Suspensoids include plankton and inani-
mate, organic or inorganic, particles. Even though algal blooms can seasonally be observed, in the coastal marine environment high
turbidity events are dominated by suspended sediments: sediment load from rivers runoff, sea bottom resuspension due to wave ac-
tion, shoreline erosion, anthropogenic activities that cause the resuspension or load of fine sediments, such as beach nourishment,
coastal infrastructures, dredging activities. It is widely recognised that the increase of suspended solid concentration can determine
negative environmental effects on the marine ecosystem (Erftemeijer et al., 2012; Wilber and Clark, 2001). In coastal marine systems
at a high level of anthropization, sediments may contain toxic substances: heavy metals, polycyclic aromatic hydrocarbons (PAHs),
tributyltin (TBT), polychlorinated (Garbolino et al., 2014). Sediments thus represent a potential source of contaminants whose resus-
pension and dispersion under different hydrodynamics conditions can contribute to propagate pollution (Lisi et al., 2019; Magrì et al.,
2020). Additionally, as a result of climate change, extreme weather events are expected to occur more frequently, increasing coastal
and soil erosion susceptibility, generating high levels of sediments and turbidity in rivers and coastal waters.

Many marine water quality monitoring programmes of EU legislation require to measure nephelometric turbidity for its signifi-
cant direct and indirect effects on aquatic ecosystems (Zampoukas et al., 2013). However, according to OSPAR (OSPAR Commission,
2008), monitoring activity still lacks coordination and data sharing among the different programmes and the involved institutes. The
accurate, but punctual and sparse, information provided by traditional sampling methods could gain in effectiveness if integrated
with approaches that are able to collect data from wide geographic areas (Zampoukas et al., 2012). Remote sensing from satellites of-
fers observations of the sea surface over large areas in a cost-effective way, as an always increasing amount of data can freely be ac-
cessed through specific websites. Water quality retrieval from satellites has gained recognition as a valid integrative tool for monitor-
ing water bodies with the availability of new imagery from optical multispectral sensors with a higher spatial, spectral, and temporal
resolution, like those of Landsat and Sentinel-2.

Ocean colour is primarily governed by Chlorophyll (Chl-a) and any of its accessory pigments in open sea, while in inland and
coastal waters, the colour is further modulated by the presence of organic and inorganic particles and dissolved matter (Pahlevan et
al., 2020).

Commonly used methods to estimate turbidity from satellite images are based on semi-empirical algorithms relying on water re-
flectance in bands that have shown the highest physical correlation to the parameter, also combined as band ratios. For low concen-
tration of suspended sediments, turbidity is mostly related to water reflectance in the green and red parts of the spectrum. Red re-
flectance is more sensitive than green reflectance in medium-high turbid waters, while for sediment dominated highly turbid waters,
a saturation of the water reflectance in the green and red bands is usually observed, so a NIR band is usually more appropriate
(Doxaran et al., 2002b). A Normalized Difference Turbidity Index (NDTI), defined as (Red - Green)/(Red + Green), is often used to
estimate the turbidity in inland water bodies (Baughman et al., 2015).

Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) spectral data have been successfully applied to retrieve
turbidity and suspended particulate matter (SPM) in coastal and estuarine environments (Doxaran et al., 2002, 2009; Chen et al.,
2007; Miller and McKee, 2004; Petus et al., 2010; Hudson et al., 2017). Numerous studies reported effective ways to utilize medium-
resolution Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager (OLI) and Sentinel-2
MultiSpectral Instrument (MSI) sensors images for inland waters, lagoon, marshes and estuarine coastal waters (Akbar et al., 2014;
Nas et al., 2010; Liu and Wang, 2019; Pereira et al., 2018; Quang et al., 2017; Joshi et al., 2017; Baughman et al., 2015; Bustamante et
al., 2009; Abirhire et al., 2020; Katlane et al., 2020; Caballero et al., 2018).

Despite their good general performance, these types of models are dependent on reflectance ranges and turbidity levels, therefore
their validity and accuracy often reveal to be limited to the domain (Dogliotti et al., 2015) and season (Joshi et al., 2017) over which
they have been developed. This often leads in practice to site-specific models whose coefficients need to be locally adapted for a de-
fined coastal domain (Han et al., 2016). Hence, it is difficult to select one model that will provide accurate turbidity retrieval from
low to high-turbidity waters, limiting the application of studies over large coastal areas.

For this reason, geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR) mod-
els have been proposed in literature (Chu et al., 2018) to take into consideration spatio-temporal variation in model coefficients.

Nechad et al. (2010) proposed a multi conditional single band algorithm for SPM in estuarine coastal environments, based on
red band for medium-low turbidity waters and NIR band in highly turbid waters. The difficulty resides in the selection of the lim-
iting bounds for each model. The algorithm scheme has been applied with robust results to many studies in coastal and estuarine
environments, where the switching thresholds is based on ranges of turbidity/SPM concentration (Feng et al., 2014) or reflectance
values (Dogliotti et al., 2015; Han et al., 2016; Novoa et al., 2017; Caballero et al., 2018).

The automated switching algorithm described in Novoa et al., (2017) constitutes the basis for the turbidity data, expressed in FNU,
obtained from the Sentinel-2 MSI sensor and introduced into Copernicus Marine Service website in May 2021, named ‘Mediterranean
Sea, Bio-Geo-Chemical, L3, daily observation’ (https://data.marine.copernicus.eu/).

An alternative approach to semi-empirical models is provided by nonparametric regression, where no explicit relationship be-
tween reflectance and the parameter of interest is assumed, but the functional form is inferred from the data. Very flexible relations
can be accommodated, responding to the need of a model that can adapt to varying water conditions with smooth transition, and the
wealth of spectral information can be exploited. Ruescas et al. (2018) applied and compared five ML methods to Sentinel-2 MSI and
Sentinel-3 OLCI simulated reflectance data for the retrieval of Colored Dissolved Organic Matter (CDOM), showing that best results
were obtained when all bands from visible to NIR together with band ratios were used as input of non-linear ML models. Similarly, a

https://data.marine.copernicus.eu/
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neural network (NN) model was developed by Chebud et al. (2012) to quantify Chl-a, turbidity and phosphorus from reflectance val-
ues from the seven Landsat TM bands, including SWIR and thermal bands. El Din (2019) showed, through application of Principal
Components Analysis (PCA), that also Coastal Aerosol band provides important information in high turbid waters. Pahlevan et al.
(2020) introduced a Mixture Density Network (MDN) approach for estimations of Chl-a from seven MSI and twelve OLCI bands, that
largely outperforms existing algorithms when applied across different bio-optical regimes in inland and coastal waters. Similarly,
Peterson et al. (2020) applied NN Deep learning (NNs) model fed by seven raw harmonized Landsat-8 and Sentinel-2 (HLS) spectral
bands, from Coastal Aerosol to SWIR-2, supplemented with a series of additional spectral features to add key information based on
standard band ratios method for the estimation of blue-green algae (BGA), Chl-a, fluorescent dissolved organic matter (fDOM), dis-
solved oxygen (DO), specific conductance (SC), and turbidity in inland waters. Application of ML algorithms seems to be promising
for the retrieval of optically active parameters when investigating wide areas or long time series that include different optical water
types and is thus the focus of this study. The present work explores the use of the whole spectrum of Sentinel-2 MSI bands, applying a
Stepwise Linear Regression (SLR) and a Polynomial Kernel Regression, to estimate turbidity in an area on the North Tyrrhenian Sea
that covers the Cinque Terre Marine Protected Area on the east side of the Liguria Sea, until Livorno harbour in Tuscany, based on in
situ data representative of a wide range of turbidity conditions, covering a period from 2015 to 2021.

While physically-based relationships require robust atmospheric correction (AC), which is the process to remove the effect of ab-
sorption and scattering due to the constituent particles of the atmosphere, to obtain Bottom Of Atmosphere (BOA) reflectance, ML al-
gorithms are less affected by the atmospheric and other background factors (Chebud et al., 2012). Inaccurate AC leads to large uncer-
tainties in satellite data products, with effects on quantitative retrieval of optically active water quality parameters (Pahlevan et al.,
2020). As a result, some satellite-based methods for the detection, for instance, of Sea Surface Salinity (Medina-Lopez, 2020) or Harm-
ful Algal Blooms (Binding et al., 2021) rely on Level-1 TOA quantities in order to avoid large uncertainties in Level-2 BOA products in-
troduced by poor AC.

The Atmospheric Correction Intercomparison Exercise, ACIX-Aqua (Pahlevan et al., 2021), examined the performance of eight
state-of-the-art AC methods available for Landsat-8 and Sentinel-2 data processing over lakes, rivers, and coastal waters. The work
highlights that performance of the different methods depends on optical water type, and that best-performer's uncertainties across the
different bands are not uniform. Finally, the work attempted to evaluate how uncertainties in AC impact on Chl-a and SPM retrieval.
The work reveals that despite high improvement in processors available, AC over inland and coastal waters remains one of the major
challenges in aquatic remote sensing.

As no atmospheric parameters, coherent in space and time with the processed images, are available for the present study (Pisanti
et al., 2022) and no in-situ optical data is available to support the choice of an AC algorithm, the 13 Level-1C TOA spectral bands were
chosen to train the predictive models. The study aims at: i) investigating the possible use of TOA and ii) explore the use of the whole
spectrum of available bands to increase the accuracy and flexibility of the models, through application of ML algorithms.

2. Material and methods
2.1. The study area

The research area is located in the North Tyrrhenian Sea – Italy (Fig. 1), covering a coastline of about 100 km, characterized by a
varied shoreline, embracing environments worthy of protection and valuable biodiversity, including Cinque Terre Marine Protected
Area, aquaculture and shellfish farms, the Versilia extensive sandy shoreline with a strong tourist vocation, but also relevant ports
such as Livorno and La Spezia. Two main rivers flow in the area with a significant sediment discharge: Magra River, whose basin cov-
ers an area of about 1700 km2 and separates Liguria and Tuscany regions, with an average flow of about 40 m³/s; Arno River, which

Fig. 1. Study area and distribution of the sampling stations.
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represents the main watercourse in Tuscany and the second largest Apennine river in Italy, with a basin of about 8200 km2 and an es-
timated average annual discharge of approximately 110 m³/s. The coastal environment in this area has been monitored since 2001,
according to the 2000/60/EC Water Framework Directive (WFD), and in 2008 EU Marine Strategy Framework Directive 2008/56/EC
(MSFD) further strengthened the investigation in the area, resulting in 31 monitoring stations located along the coast. Water quality
monitoring includes physical and chemical parameters along the water column and in sediments.

2.2. Turbidity measurements
For the present study, in-situ data collected according to the WFD and MSFD by the Regional Environmental Agencies ARPAL (Lig-

uria Region) and ARPAT (Toscana Region), from April 2015 to December 2021, in the 31 stations located in the area (Fig. 1) were
used. Turbidity was measured using a multi-parameter probe, together with electrical conductivity, temperature, salinity, and pres-
sure of seawater. Turbidity was measured in nephelometric turbidity units (NTU), a measure of the amount of light scattered by parti-
cles at right angles to an incident beam of white light. At each station, turbidity profiles were conducted from the surface to the sea
bottom, by lowering the probe at a rate of 1 m per minute with values recorded every second. To obtain a good representation of sur-
face turbidity that is consistent for each station, the average turbidity at 0.5 m was used. The different monitoring stations have a spe-
cific sampling frequency according to the reference Directive, therefore on-site measurements are not available for all stations on the
same days, but mostly for groups of stations.

Out of 234 day of field campaigns in the area, only 84 had a corresponding satellite overpass, corresponding to 394 co-located
pairs of turbidity records and reflectance, that were further analysed. Available measures include a variety of turbidity conditions
(clean water, algal blooms, river discharge events), with turbidity values ranging from 0.1 to 28.7 NTU. The complete histogram of
measured turbidity data distribution is shown in Fig. 2, highlighting the predominance of low turbidity values. It should be remarked
that higher turbidity conditions often correspond to extreme, or at least intense, meteorological events, not suitable for in situ sam-
pling and indeed associated to high cloudiness, when optical satellite images do not provide useful information.

2.3. Image acquisition and pre-processing
For the present work, the Sentinel-2 MSI optical images have been processed, freely downloaded from Copernicus Open Access

Hub website. Sentinel-2 is composed of two identical satellites 2A and 2B, launched in June 2015 and March 2017, respectively, by
the European Space Agency (ESA). The two satellites, placed on the same orbit but phased at 180°, allow to acquire images about
every 2–5 days at the latitudes of the area of interest. The MultiSpectral Instrument mounted on Sentinel-2 covers 13 spectral bands
from visible to short-wave infrared wavelengths, from 10 to 60 m spatial resolution, and orbit swath widths of up to 290 km (ESA
website). Image stacks of 13 bands are generated in spatial tiles, ortho-images in WGS84/UTM projection, each one covering an area
of approximately 100x100 Km.

For the study, tile T32TNP was used, which covers the entire study area with a single image stack. An example of the T32TNP tile
is presented in Fig. 3 (October 8th, 2020), using a True Colour Image (TCI) built from the bands B02 (Blue), B03 (Green) and B04
(Red).

Since March 2018, the Sentinel-2 processing pipeline produces both Level-1C TOA and Level-2A BOA products, the latter includ-
ing atmospheric correction performed by the specific image processor Sen2Cor. However, AC over inland and coastal waters requires
the use of methods specifically designed for the purpose, that should be selected according to the optical water type (Pahlevan et al.,

Fig. 2. Histogram of measured turbidity data distribution in NTU.



Remote Sensing Applications: Society and Environment 30 (2023) 100951

5

S. Magrì et al.

Fig. 3. An example of a True Colour Image of the study area (tile T32TNP) obtained from
Level-1C Sentinel-2 MSI products (October 8th, 2020). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)

2021). To avoid uncertainties in BOA products introduced by application of an AC method without availability of water surface radio-
metric data to evaluate the performance of the AC model, Level-1C TOA product was considered. The possible generation of errors re-
lated to atmospheric effect in turbidity estimates was not evaluated.

Eighty-four satellite images from April 2015 to December 2021 were analysed. Temporal resolution is indeed related to the
weather conditions during the image acquisition, and cloud coverage masking must be applied to filter data and avoid wrong inter-
pretation of the reflectance. A preventive check, to eliminate from the training set the data probably affected by the presence of
clouds, which behave as outliers, can be performed by specific pixel classifiers. In practice two types of cloud cover are defined: a
dense and almost completely opaque (dense cloud) and a light, semi-transparent cloud (cirrus cloud). The most difficult to manage
are cirrus, because they can alter the data without being clearly confirmed by visual inspection. The Sentinel L1C product contains
rough pixel classification maps for both phenomena. However, there are several reliable tools available in literature which are the re-
sult of deep statistical analysis of large amounts of data, capable of classifying pixels in a multispectral image according to their type
(water, soil, clouds, snow, etc.). A comprehensive review of many cloud masking algorithms for Sentinel-2 MSI images can be found
in Skakun et al. (2022). The so-called s2cloudless algorithm (Zupanc, 2017) was chosen, which allows to get a precise cloud coverage
masking for MSI images, obtained on the basis of supervised learning conducted by the authors on thousands of tiles in different oper-
ating conditions. The statistical model is based on the Gradient Boosting technique and relies on a widely used Python package such
as LightGBM (Ke et al., 2017). No cloud shadow masking was applied. An example of the obtained contour map of cloud masked pix-
els, with a threshold of 50% probability, is shown in Fig. 4, overlaid with an original TCI image. The depicted contours also include
the coastline, derived from openly available cartography, and the delimitation of the valid part of the image, due to the possible cut of
the orbit inside the tile itself.

The threshold of 50% on cloud probability was used for the selection of valid reflectance data. The set of the 13 L1C TOA spectral
bands, in all non-masked pixels corresponding to the coordinates of the sampling stations, were then used as predictors in the regres-
sion modelling.

Fig. 5 shows the boxplot of the 222 set of spectral bands values resulting after cleaning operations and representing the final pre-
dictors. The value dispersion is larger in the visible bands (B2, B3, B4), and in band B1, affected by Coastal Aerosol.

2.4. A machine learning based approach
As discussed, the use of ML techniques allows evaluating nonlinear relationships between multi-band images and in-situ turbidity

measurements. Its function-free structure results in a better approach for handling complex problems without prior knowledge
(Ruescas et al., 2018).

When it comes to a complex parameter such as turbidity, in coastal regions, where the effects of organic/inorganic material be-
come more intricate, the use of non-parametric regression algorithms can be more appropriate.

Use of ML for remotely sensed optically active water quality parameters estimation has spread in recent years thanks to the ad-
vances in algorithm development, computing power, sensor systems, and higher spatial resolution data availability (Peterson et al.,
2018). Among the literature, Neural Network (NN)-based approaches to retrieve turbidity have gained popularity (Chebud et al.,
2012; Hafeez et al., 2019; Peterson et al., 2020) due to their robust ability to capture complex statistical trends typical of water qual-
ity remote sensing data. However, the use deep learning is still limited by the high computational costs and the amount of training
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Fig. 4. Cloud masking by s2cloudless algorithm.

Fig. 5. Boxplot of the values of the 13 spectral bands for the 222 pixels used as predictors for turbidity estimates.

samples required to adequately calibrate the numerous parameters (Sagan et al., 2020). In the present work, two different generalized
linear models, a Stepwise Linear Regression and a polynomial Kernel Regression, are proposed, characterized by a simple model
structure, good generalization, global optimal solution, especially suitable for non-linear and high dimension problems.

2.5. Model implementation
In the present study, all 13 MSI bands, from L1C (TOA) Sentinel-2A/B imagery, were selected as predictive variables. After cloud

mask application, a database of 222 turbidity measurements across different bio-optical regimes, ranging from 0.1 NTU to 28.7 NTU,
was used to train and validate the model. Turbidity values are not normally distributed, with a median of 2.0 NTU and a mean of 3.4
NTU.

The problem of finding the model with the right complexity is referred to as model selection and the definition of the possible
choices during the training process as hyperparameter tuning. The possible complexity of the model derives from the nature and num-
ber of training data. A SLR and a Kernel regression model were tested and compared.

A Leave-One-Out Cross Validation (LOOCV) procedure, a special case of K-fold cross-validation, has been used throughout the
study to assess the prediction performance in an objective way (Efron, 1982). Thus, the learning algorithm is applied once for each in-
stance, using all other instances as a training set and using the selected instance as a single-item test set.
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To determine the strength of the relationships, the coefficient of determination (R2) was used, while root mean squared error
(RMSE) and the mean absolute error (MAE) were used to determine model accuracy. The Normalized Root Mean Square Error
(NRMSE) and the symmetrically normalized root square error (HH) proposed by Hanna and Heinold (1985) were also calculated, ap-
plied per class of values, as these indexes have shown to provide a more reliable information than RMSE about the accuracy of the re-
sults of numerical models (Mentaschi, 2013).

The error indicator HH proposed by Hanna and Henold is defined as the RMSE divided by the absolute value of the mean of the
product of the observations and modelled values:

HH =



N
i=1


xi − yi

2

N
i=1

yixi

Finally, a comparison among turbidity estimates obtained from the developed models, data from Copernicus CMEMS dataset named
‘Mediterranean Sea, Bio-Geo-Chemical, L3, daily observation’, extracted for the days of the surveys in the pixel corresponding to the
sampling location, and in-situ measurements was conducted.

2.5.1. Kernel method
Kernel methods provide a principled approach to nonparametric learning. The Kernel method is based on the so-called “kernel

trick”, that is, given a kernel function K (x, x’), symmetric and positive definite, we will implicitly have a nonlinear function ɸ(x) map-
ping the input vector x from the input space X to a new dot product space F, also called feature space, that can potentially be infinite
dimensional. By using the feature map ɸ, we can classify our data by a linear model in the feature space, while the model is no longer
linear in the original input space. The advantage of using such a kernel as a similarity measure is that it allows us to construct algo-
rithms in dot product spaces.

The hyperparameters of the model are tuned by minimising the loss over the available training samples; the considered loss func-
tion is the squared loss. To ensure that the minimization problem is well defined we must add a regularisation term controlled by an-
other hyperparameter (Meanti et al., 2022).

Polynomial kernel was used (Eq. (1)), where the degree of the polynomial d is a hyperparameter to be tuned.

K (x, x’) =
(
x

T
x’ + c

)d
where d ∈ N and c ≥ 0 Eq.1

The polynomial kernel of degree d thus computes a dot product in the space spanned by all monomials up to degree d in the input co-
ordinates. More details on Kernel methods can be found in Hofmann et al. (2008).

2.5.2. Stepwise Linear Regression method
Stepwise linear regression (SLR) is a method of fitting linear regression models to data in which the choice of the predictive vari-

ables is carried out by an automatic procedure (James et al., 2013), relying on the incremental selection of a subset of all possible fea-
tures, often enlarged by the use of a feature engineering step. The selection is performed one-by-one aiming to maximize a score func-
tion. A typical score is the adjusted R2, which is an attempt to account for the fact that R2 monotonically increases when extra ex-
planatory variables are added to the model.

The main approaches for this procedure are: forward (starting from an empty subset and always adding new features to the
model), backward (starting from the full initial set and sequentially removing useless features), or bidirectional (combining both
types).

Apart from some criticism about the intrinsic sub-optimality of this kind of strategy (Smith, 2018), SLR coupled with knowledge-
based feature engineering is a widely adopted practical way to build up simple regression models in order to highlight the most im-
portant features and combinations able to explain the variability of the target observations.

In this study, the training of the SLR model was performed by the following steps.
● augmenting the feature set including all interaction and quadratic terms
● adding the features to the model one at a time, looking for the one maximizing the adjusted R2 after the least-square fitting
● checking for termination when adjusted R2 does not improve further (or a maximum number of features has been reached)
● removing from the final subset all features showing poor significance, measured by the pValue <0.05
● estimating performance of the model by LOOCV, using the predicted residual error sum of squares (PRESS) as a summary

measure of the goodness of fit.
Similar results could be achieved with other sparsity-based methods like LASSO, Elastic Net or Ridge Regression (Hastie et al.,

2015), however, training of these models requires a careful hyperparameter setting procedure and a copious training set.
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3. Results and discussion
3.1. Turbidity model calibration

Both tested methods showed good agreement of the estimated satellite-derived surface turbidity with measured one. A 3-degree
polynomial Kernel showed the best cross-validated fitting with measured data, with R2 = 0.725, RMSE = 2.07 NTU and
MAE = 1.40 NTU.

A SLR with 13 predictors, extracted from a pool of 104 predictors generated by feature engineering, including the original 13
bands and all interaction and quadratic terms, shows slightly better performances (R2 = 0.736, RMSE = 2.03 NTU, MAE = 1.39
NTU).

Fig. 6 shows the two scatter plots depicting cross-validated turbidity (NTU) estimations vs. in situ measured values for the Kernel
method (left image) and SLR (right image).

The Normalized Root Mean Square Error (NRMSE) and the symmetrically normalized root square error (HH) were calculated for
the different ranges of the observed values, as shown in Table 1.

It is possible to notice that the two indexes for both methods give similar results: the Kernel method provides an average NRMSE
value of 0.40 and an HH index of 0.43, while the SRL method provides an average NRMSE of 0.39 and a HH index of 0.42, with higher
relative error for the lowest values of turbidity.

Fig. 7 shows the histogram of residuals in the same order. Most residuals have values in ± 2 NTU as expected, while only a few
exceed this range. We noticed that samples with high residuals are nearly the same for both methods, indicating a possible problem in
other stages of the data processing chain.

Fig. 6. Predicted vs Measured scatterplots of regression methods.

Table 1
Normalized Root Mean Square Error (NRMSE) and the symmetrically normalized root square error (HH) for different ranges of turbidity values, for the Kernel and
Stepwise regression methods.

Turbidity range (NTU) # data NRMSE Kernel NRMSE SLR HH Kernel HH SLR

0–2 114 1.26 1.25 1.07 1.06
2–5 70 0.44 0.41 0.46 0.44
5–10 23 0.41 0.40 0.45 0.46
>10 15 0.27 0.27 0.30 0.29

Fig. 7. Histogram of residuals of regression methods.
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As these kinds of models are highly influenced by the training data, the availability of more data, especially in the less represented
class (medium turbidity), is expected to improve the model accuracy.

3.2. Spectral bands’ importance
A permutation analysis was conducted to estimate the relative importance of each band for the proposed predictive models: after

random re-orderings (shuffling) of the predictive variable the test statistics is recalculated (Anderson and Robinson, 2001). The statis-
tic used is the MAE and the number of runs used to achieve stable feature rankings was 30. Fig. 8 shows the increase in MAE after
shuffling each of the bands: the higher the MAE value when a particular band is shuffled, the more weight it has in the model. Bands
in the red-edge part of the spectrum (705–783 nm) caused a higher MAE when shuffled compared with the other bands, followed by
the 865 nm (B8A) and the 665 nm (B4) bands. Bands mostly affected by atmospheric effects (Coastal-Aerosol B01, Water Vapour B09,
and Cirrus B10) provide a smaller but not neglectable contribution to turbidity prediction. In general, the plot highlights the impor-
tance of widening the range of bands used for turbidity estimates.

3.3. Turbidity maps
The two models have been applied on a pixel-by-pixel basis to produce full turbidity maps of the area. An example is shown in Fig.

9 (October 8th, 2020, the same date as in Fig. 3). Such dense maps allow a direct inspection of possible high turbidity areas.
The two maps are produced at 60 m resolution, that is 1830x1830 pixels large. Higher spatial resolution could be provided resam-

pling MSI data to a given level of detail, up to the maximum available spatial resolution of 10 m.
In the maps, a smooth transition from clear water to the turbidity peak at the mouth of river Arno is clearly visible. It is possible to

see how clouds are detected and identified.
Finally, Fig. 10 shows the difference between results obtained from the two methods. In red, the areas where the SLR provides

higher values than the Kernel method, while in blue where Kernel model estimates higher values. It is possible to derive that the dif-
ference between the obtained values ranges from about −2 NTU up to +3 NTU, which is in clear agreement with the results previ-
ously discussed. In particular, Kernel method tends to over-estimate to unity low values in open sea, while SLR produces higher peaks
at river mouths.

Fig. 8. Bands' importance for the proposed predictive models represented in terms of increase of MAE obtained by permutation test.

Fig. 9. Dense turbidity map in NTU obtained by the Kernel model (left image) and SLR model (right image).
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Fig. 10. Difference of turbidity values in NTU obtained by the two models.

Finally, the turbidity value of Copernicus product in the pixel corresponding to the location of the turbidity sample was extracted
for the days of the surveys and compared to both the in-situ value and the estimates from the two models. Since the Copernicus prod-
uct is available since January 2020, the comparison covered the period 2020–2021, including 75 turbidity values, ranging from 0.1 to
28.7 NTU. The comparison produced consistent results (Table 2).

4. Conclusions
Satellite Remote Sensing provides observations over large areas, enabling to extend the punctual information of sampling cam-

paigns to a synoptic view. Semi-empirical polynomial algorithms have been widely used in the open ocean or inland waters. These re-
lationships require less training data, but usually have a limited performance, spatially and temporally. ML algorithms have proved
the ability to capture complex statistical trends, however, the complexity of the algorithms must consider the problem of overfitting
due to the corresponding increment of parameters to be tuned, with sometimes inadequate training samples.

In the present work, two different generalized linear models, a Stepwise Linear Regression and a polynomial Kernel, were trained
and validated with the available dataset of 222 combinations of turbidity measurements and TOA spectral data from Sentinel-2A/B
MSI in the North Tyrrhenian Sea.

The considered area presents a wide variety of turbidity contributions and conditions, ranging from clear water (0.1 NTU) espe-
cially within the Cinque Terre Marine Protected area, to high turbidity (28.7 NTU) particularly related to sediment loads carried from
rivers.

Surface turbidity derived from satellite had good agreement with measures for both proposed models (R2 = 0.725, MAE = 1.40
NTU for the Kernel method, R2 = 0.736, MAE = 1.39 NTU for the SLR method). That means that it is possible to predict reliable
nephelometric turbidity values starting from satellite images, using the proposed methodologies. The Normalized Root Mean Square
Error (NRMSE) and the symmetrically normalized root square error (HH) were also calculated and showed good results (average
NRMSE value of 0.40 and an HH index of 0.43 for the Kernel method, average NRMSE of 0.39 and a HH index of 0.42 for the SRL
method). Also, the consistency of results of the comparison between estimates obtained from the two proposed models with turbidity
data from Copernicus CMEMS dataset named ‘Mediterranean Sea, Bio-Geo-Chemical, L3, daily observation’ confirms robustness of
obtained turbidity estimates.

Samples with high residuals are nearly the same for both methods, in particular for medium values of turbidity, thus indicating a
possible problem in other stages of the data processing chain, starting from the dataset construction itself. The daily, rather than
hourly, synchronism of the in situ and satellite measurements can lead to significant differences between the turbidity values ob-
served by the two instruments, especially during phenomena associated with an increase in suspended solids with high hydrodynam-
ics, such as river runoff.

Table 2
Linear correlation coefficient or coefficient of determination (R2) between in-situ measured turbidity (or ground truth - GT) in NTU, turbidity estimated from SLR
and Kernel models in NTU and turbidity in FNU from the CMEMS ‘Mediterranean Sea, Bio-Geo-Chemical’ dataset.

GT (NTU) SLR (NTU) KERNEL (NTU) CMEMS (FNU)

GT (NTU) 1 0.885 0.868 0.852
SLR (NTU) 1 0.978 0.925
KERNEL (NTU) 1 0.946
CMEMS (FNU) 1
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The use of samples collected by different operators (Liguria and Tuscany Environmental Agencies) helped achieve a more repre-
sentative set for training, but, on the other hand, the lack of previous intercalibration increases the error related to the accuracy of the
reference in situ data. Despite this, the model showed a good capability to generalise with respect to the used instruments, thus it is
expected that new available data could be easily integrated for further calibration.

Finally, the total accuracy of the model is affected by other factors, such as probe calibration and maintenance, noise from satellite
sensors and sun-glint which has higher effects in May, June and July.

The results confirm that it is possible to reach a good accuracy in turbidity estimation from satellite TOA reflectance using ML
techniques. Bands ranking obtained through permutation test confirmed that all bands contribute to the model prediction and that
ML techniques enhance the exploitation of all spectral information.

The two models have been applied on a pixel-by-pixel basis to produce quantitative turbidity maps from satellite imagery with dif-
ferent turbidity conditions, showing promising results on the flexibility of the models to operate in the entire tile area, and in different
turbidity conditions than the specific training ones. The accuracy of results outside the range of the training dataset will be evaluated
as more in situ data will be available. The applicability of the calibrated algorithms in other areas of the North Tyrrhenian Sea will be
tested in the future, comparing results of the models with in-situ turbidity data, to evaluate whether these algorithms can be applied
in close geographical sites, with supposedly similar hydrography and environments, without the need for region-specific calibration.

The potential of the model will be exploited by reconstructing historical series of turbidity in the study area to derive statistical
analysis, such as seasonal or annual climatology, etc. Such results can be of crucial interest for authorities in charge of water quality
monitoring, such as the Regional and National Agencies for the Environmental Protection, who will benefit from EO to integrate in
situ measurements and to gather knowledge of the sea environment, and, in cascade, decision makers, such as the authorities in
charge of spatial planning (e.g. for identifying areas suitable for aquaculture, for which turbidity levels represent a critical indicator).

The possibility to create historical series of turbidity, complementing existing measurements if available, can support the analysis
of the relation between increase and persistence in turbidity and hydro-meteorological variables, adding important knowledge of nat-
ural seasonal turbidity fluctuations in the area. Reconstructed turbidity levels from satellite images can further lead to the identifica-
tion of natural turbidity levels to be used within the Environmental Impact Assessment (EIA, Directive, 2014/52/UE) for projects that
require it. Our understanding of turbidity events can be valuable in the management of the sea water quality, allowing to investigate
and early detect water quality deterioration.
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