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ABSTRACT 

The increasing demand on quality assurance and ever more stringent regulations in 

food and pharmaceutical fields are promoting the need for analytical techniques 

enabling to provide reliable and accurate results. However, traditional analytical 

methods are labor-intensive, time-consuming, expensive and they usually require 

skilled personnel for performing the analysis. For these reasons, in the last decades, 

quality control protocols based on the employment of spectroscopic methods have 

been developed for many different application fields, including pharmaceutical and 

food ones. Vibrational spectroscopic techniques can be an adequate alternative for 

acquiring both chemical and physical information related to homogenous and 

heterogenous matrices of interest. Moreover, the significant development of powerful 

data-driven methodologies allowed to develop algorithms for the optimal extraction 

and processing of the complex spectroscopic signals allowing to apply combined 

approaches for quantitative and qualitative purposes.    

 The present Doctoral Thesis has been focused on the development of ad-hoc 

analytical strategies based on the application of spectroscopic techniques coupled 

with multivariate data analysis approaches for providing alternative analytical 

protocols for quality control in food and pharmaceutical sectors. 

Regarding applications in food sector, excitation-emission Fluorescence 

Spectroscopy, Near Infrared Spectroscopy (NIRS) and NIR Hyperspectral Imaging 

(HSI) have been tested for solving analytical issues of independent case-studies. 

Unsupervised approaches based on Principal Component Analysis (PCA) and Parallel 

Factor Analysis (PARAFAC) have been applied on fluorescence data for 

characterizing green tea samples, while quantitative predictive approaches as Partial 

Least Squares regression have been used to correlate NIR spectra with quality 

parameters of extra-virgin olive oil samples. HSI was applied to study dynamic 

chemical processes which occur during cheese ripening with the aim to map chemical 

and sensory changes over time.  
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The rapid technical progress in terms of spectroscopic instrumentations has led to 

have more flexible portable systems suitable for performing measurements directly in 

the field or in a manufacturing plant. Within this scenario, NIR spectroscopy proved to 

be one of the most powerful Process Analytical Technologies (PAT) for monitoring and 

controlling complex manufacturing processes. In this thesis, two applications based 

on the implementation of miniaturized NIR sensors have been performed for the real-

time powder blending monitoring of pharmaceutical and food formulation, respectively. 

The main challenges in blending monitoring are related to the assessment of the 

homogeneity of multicomponent formulations, which is crucial to ensure the safety and 

effectiveness of a solid pharmaceutical formulation or the quality of a food product. In 

the third chapter of this thesis, tailor made qualitative chemometric strategies for 

obtaining a global understanding of blending processes and to optimize the endpoint 

detection are presented.  
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RIASSUNTO 

Il maggior interesse da parte dei consumatori rispetto al controllo qualità di un prodotto 

finito e l’entrata in vigore di normative sempre più stringenti, nei settori alimentare e 

farmaceutico, hanno spinto la ricerca verso lo sviluppo di tecniche analitiche che 

consentano di fornire risultati affidabili e accurati. Tuttavia, i metodi analitici tradizionali 

sono laboriosi, dispendiosi in termini di tempo, costosi e di solito richiedono personale 

qualificato per eseguire le analisi. Per questi motivi, negli ultimi decenni, sono stati 

sviluppati protocolli di controllo qualità basati sull'impiego di metodi spettroscopici in 

diversi campi di applicazione, inclusi quelli farmaceutico ed alimentare. Le tecniche 

spettroscopiche vibrazionali possono essere un'alternativa adeguata per 

l'acquisizione di informazioni sia chimiche che fisiche relative a matrici di interesse 

siano esse omogenee o eterogenee. Inoltre, il significativo sviluppo di strategie 

multivariate di analisi dei dati  ha permesso di sviluppare algoritmi per l'estrazione e 

l'elaborazione dell’informazione spettrale consentendo di calcolare modelli predittivi 

qualitativi e quantitativi. 

La presente tesi di dottorato è stata incentrata sullo sviluppo di strategie analitiche ad-

hoc basate sull'applicazione di tecniche spettroscopiche accoppiate con approcci di 

analisi di dati multivariati per fornire protocolli analitici alternativi per il controllo di 

qualità nei settori alimentare e farmaceutico. 

Per quanto riguarda le applicazioni nel settore alimentare, la spettroscopia di 

fluorescenza ad emissione di eccitazione, la spettroscopia nel vicino infrarosso (NIRS) 

e l'imaging iperspettrale NIR (HSI) sono state testate su casi studio indipendenti. 

Approcci esplorativi  basati sull'analisi delle componenti principali (PCA) e sull'Analisi 

Fattoriale Parallela (PARAFAC) sono stati applicati su dati di fluorescenza per 

caratterizzare campioni di tè verde, mentre approcci predittivi quantitativi come la 

regressione dei minimi quadrati parziali sono stati utilizzati per correlare gli spettri NIR 

con i parametri di qualità di campioni di olio extra- vergine di oliva. L'Imaging 

Iperspettrale è stato invece applicato per studiare i processi biochimici che si 

verificano durante la maturazione del formaggio con l'obiettivo di mappare i 

cambiamenti chimici e sensoriali nel tempo. 
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Il rapido progresso tecnico in termini di strumentazioni spettroscopiche ha portato ad 

avere sistemi portatili più flessibili adatti ad effettuare misure direttamente sul campo 

o in un impianto produttivo. All'interno di questo scenario, la spettroscopia NIR si è 

rivelata una delle tecnologie analitiche di processo (PAT) più potenti per il 

monitoraggio e il controllo di processi di produzione complessi. In questa tesi, si 

riportano due diverse applicazioni basate sull'implementazione di sensori NIR 

miniaturizzati per il monitoraggio in tempo reale della miscelazione di polveri 

rispettivamente di formulazioni farmaceutiche e alimentari. Le principali sfide nel 

monitoraggio della miscelazione sono legate alla valutazione dell'omogeneità di 

formulazioni complesse; l’uniformità della formulazione è infatti fondamentale per 

garantire la sicurezza e l'efficacia di una formulazione farmaceutica solida o la qualità 

di un prodotto alimentare. Nel terzo capitolo di questa tesi, vengono presentate 

strategie chemiometriche qualitative su misura per incrementare la conoscenza di un 

processo di miscelazione su scala industriale al fine di ottimizzare il rilevamento del 

punto finale della miscelazione.  
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 PREFACE 

In the last decades, the interest in rapid, non-destructive, and accurate analytical 

methods for quality control in food and pharmaceutical fields has been continuously 

increasing. In the literature, many studies demonstrated the suitability of vibrational 

spectroscopic techniques in measuring physicochemical properties of samples in a 

fast way and without requiring time-consuming sample preparation. To solve the 

emerging challenges in agrifood and pharmaceutical sectors, during my PhD, I tested 

two vibrational spectroscopic methods: Excitation-Emission fluorescence 

spectroscopy and Near Infrared (NIR) spectroscopy; this latter has been investigated 

using FT-NIR benchtop instruments, miniaturized NIR sensors and hyperspectral 

imaging systems. The significant volume of data generated by these techniques 

require the application of chemometric strategies to extract the useful information for 

the calculation of qualitative and quantitative models. The main goal of my thesis was 

to develop ad-hoc chemometric strategies for modeling complex spectroscopic signals 

with the aim to define innovative analytical protocols for challenging applications in 

food and pharmaceutical fields.  

 

The thesis is organized in four chapters, one for each spectroscopic technique 

tested, and a final chapter which includes the overall conclusion for a 

comprehensive evaluation of the scientific impacts of the research work 

performed during my PhD. 

  

Chapter 1 provides an overview of Excitation-Emission Fluorescence 

spectroscopy with a focus on the chemometric approaches applied for 

processing three-way Excitation- Emission matrices (EEMs). The two 

paragraphs of this chapter report two independent case-studies in which Parallel 
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Factor Analysis (PARAFAC) has been applied on fluorescence data for 

developing solutions for agrifood and biomedical fields, respectively.  

 

Chapter 2 is related to Near Infrared Spectroscopy for the analysis of food 

products with a focus on the application of traditional benchtop instrumentation. 

In more detail, Partial Least Square (PLS) regression models have been 

developed for correlating the NIR spectra of Extra Virgin Olive Oils (EVOO) with 

key quality parameters in order to statistically compare the analytical 

performance of quartz cuvettes with disposable glass vials. In the second 

paragraph, an innovative approach, based on the application of Aquaphotomics, 

has been developed to investigate changes in water molecular structure during 

the storage of rice germ samples.  

 

Chapter 3 illustrates the potential of the online implementation of Process 

Analytical Technology (PAT) systems, based on NIR sensors, for the online 

monitoring of complex manufacturing processes in food and pharmaceutical 

fields, such as powder blending. Multivariate Statistical Process Control (MSPC) 

models have been developed for outlining a strategy to process NIR signals 

acquired along the mixing of a zootechnical formulation, with the aim to optimize 

the endpoint detection. During my internship at the University of Barcelona, I had 

the possibility to test on a real industrial case-study different unsupervised 

qualitative approaches for the monitoring of a blending process. In more detail, I 

focused on the development of chemometric approaches based on the 

application of Multivariate Curve Resolution – Alternating Least Squares (MCR-

ALS) for studying the evolution of low dosage formulations during mixing. The 

second paragraph shows a critical comparison of different multivariate strategies, 

including the Moving Block F-test, MSPC based on PCA and MCR-ALS.  

 

Chapter 4 is dedicated to Hyperspectral Imaging (HSI). The higher quality 

standards and the growing awareness of customers in the food sector led to find 

more advanced analytical techniques for the chemical-physical characterization 

of food products. HSI allows the analyst to obtain both spectral and spatial 
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information from a non-destructive analysis of the sample. In this way, it is 

possible to map and follow dynamic processes which occur in complex food 

matrices over time. In this chapter, an innovative analytical approach, based on 

hyperspectral imaging in the near-infrared region (HSI-NIR) and multivariate 

pattern recognition, to study and monitor the extent – spatial and temporal – of 

biochemical phenomena responsible for cheese ripening is reported.  

Chapter 5 shows the main conclusions resulting from the present work. At the 

end of this chapter the list of publications and details about other activities such 

as the conference participations and the courses attended during the three years 

have been reported.  
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CHAPTER 1: FLUORESCENCE SPECTROSCOPY 

Fluorescence spectroscopy deals with excitation and emission in molecules. The 

absorption of light by electrons, that occupy specific orbital in a population of 

molecules, can elevate one electron to an upper vacant orbital having higher energy; 

in this way excited states are produced. While the absorbance is only related to the 

transition from ground state to excited state, the fluorescence involves the relaxation 

from excited to ground state. Only a certain number of molecules (generically called 

fluorophores) that usually present aromatic rings, conjugated double bonds or other 

similar rigid structures, can emit energy in the form of fluorescence returning to the 

ground state [1]. 

When the radiation is absorbed by the molecule, an electron is elevated from the 

ground singlet states, S0, to an excited singlet state, S1 and the molecule is transferred 

to an electronically excited state. After excitation, the molecule will undergo a rapid 

internal conversion to the lowest vibrational level of the excited electronic state prior 

to emission. Finally, fluorescence emission occurs when the molecule returns to the 

more stable ground state S0; the fluorescent radiation is emitted at a wavelength which 

depends on the difference in energy between the two electronic states [2].   

Using ultraviolet or visible light it is possible to promote the fluorophore of interest to 

one of several vibrational levels for the given electronically excited level. This means 

that absorption and fluorescence emission can occur over a broad range of 

wavelengths, describing the detailed fluorescence characteristics of molecules. 

Therefore, it follows that an emission spectrum is measured as the radiation emitted 

across a broad wavelength range upon excitation at a selected wavelength. Similarly, 

the excitation spectrum can be measured by fixing the emission at one fixed 

wavelength while exciting the molecule over a wavelength range. When measuring 

several emission spectra over a range of shifting excitation wavelengths, it’s possible 

to obtain an excitation emission matrix (EEM). EEMs consist of three order arrays 

(sample × excitation wavelength × emission wavelength) that require proper multi way 

method to extract the useful information. This enables determination of the number of 
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fluorophores in the multicomponent system and the extraction of their excitation and 

emission spectra. One of the most applied chemometric multi-way methods for 

handling fluorescence data is PARAFAC (PARAllel FACtor analysis) [3]. This method 

allows to decompose the EEM into trilinear terms and a residual array in according to 

the number of fluorophores detected in the samples. When data are accurately 

modeled, the obtained parameters of the model can be further used for calculation of 

the relative concentration of fluorophores in samples. PARAFAC minimizes the sum 

of squares of the residual 𝑒𝑖𝑗𝑘 using a least squares algorithm, as shown in the 

following equation: 

 

𝑥𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑓 𝑏𝑗𝑓 𝑐𝑘𝑓 + 𝑒𝑖𝑗𝑘 

𝐹

𝑓=1
      i=1,2,…,I; j=1,2,…,J; k=1,2,…,K 

 

where 𝑥𝑖𝑗𝑘  is the original fluorescence data matrix for sample i, excitation wavelength 

j (mode 2) and emission wavelength k (mode 3) and 𝑒𝑖𝑗𝑘 is the residual matrix which 

represents the variance not explained by the model. In this way, from the original three-

way fluorescence data array, it’s possible to obtain a set of sample scores aif, loadings 

for the excitation mode bif, and loadings for the emission mode ckf for each 

component f. A robust procedure to validate a PARAFAC model is through the 

application of the split half analysis [4], which divides the initial data set into two halves 

and calculating two independent PARAFAC models. Since the solution of PARAFAC 

has to be unique, if the correct number of components has been selected, both models 

will provide the same result. Moreover, in order to determine the proper number of 

components of a PARAFAC model, it’s also possible to calculate the core consistency 

[5] and the percentage of explained variance. If the model is completely trilinear the 

core consistency will be equal to 100%. 

In recent years, combined approaches of excitation-emission fluorescence 

spectroscopy coupled with PARAFAC have gained wide acceptance in different 

sectors as in chemical, agri-food, pharmaceutical, environmental, and clinical one.  
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In this project, the potential advantages in terms of sensitivity and specificity of the 

present method have been tested for developing ad-hoc solutions for two different 

case studies.  

In the first paragraph of this chapter, an alternative analytical approach for the 

chemical characterization of green tea (GT) samples in according to geographical 

origins has been proposed. The application of excitation–emission fluorescence 

spectroscopy coupled with multivariate data analysis algorithms as Principal 

Component Analysis (PCA) [6] and Partial Least Squares Class-Modelling (PLS-CM) 

[7] allowed to recognize and classify properly Japanese and Chinese green tea 

samples. However, in order to provide a meaningful chemical explanation about these 

differences, PARAFAC has been applied showing a clearer correlation between the 

geographical origins of the samples and the content of antioxidant compounds, 

especially catechins.    

In the second paragraph, a challenging biomedical application of this analytical 

approach has been reported. Prostate cancer is the second most widespread 

malignant tumor in the male population and based on the latest scientific evidence, it 

is of current interest to have rapid and accurate analytical methods for early screening 

of prostate cancer directly by urine analysis, in order to provide reliable results while 

improving patient compliance. Thanks to the collaboration with the University of Pisa, 

(Urology Department), it was possible to analyze a total of 69 urine samples (46 

samples from patients with histologically proven prostate cancer and 23 from healthy 

donors) using a Perkin-Elmer LS55B luminescence spectrometer. The application of 

PARAFAC allowed resolution of the spectral profiles corresponding to single 

fluorophores and their relative concentration estimation, which were then fed to 

discriminant classifiers that allowed to develop a first attempt of healthy/cancer 

discrimination model. This analytical approach can contribute in defining a simple and 

non-invasive protocol for prostate cancer detection as a screening tool able to support 

traditional diagnostic methods.  
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1.1 AN ALTERNATIVE ANALYTICAL APPROACH FOR THE 

CHARACTERIZATION OF GREEN TEA BASED ON 

EXCITATION-EMISSION FLUORESCENCE 

SPECTROSCOPY AND PARALLEL FACTOR ANALYSIS 

(PARAFAC)  

 

Scientific Background and aim of the work   

Tea is an aromatic beverage made from the leaves of Camellia sinensis, a plant native 

to Southeast Asia, cultivated and consumed by humans for thousands of years. Due 

to its attractive aroma and taste and its effect on reducing lifestyle-related diseases, 

tea is the most consumed beverage in the world. Green tea (GT) is made from 

unfermented leaves of Camellia sinensis and contains a high concentration of 

polyphenols, which are powerful antioxidants. The potential health benefits of GT, 

especially related to its antioxidant properties, have led to an increase of its 

consumption in the last decades. The principal compounds of GT having biological 

effects have been identified as catechins and xanthines [8]. Catechins show a strong 

antioxidant activity and exert antiinflammatory, antiarhtritic, antiangiogenic, 

neuroprotective, anticancer, antiobesity, antiatherosclerotic, anti-diabetic, 

antibacterial, antiviral and antidental caries effects. Xanthines are responsible for the 

stimulating effects; caffeine (CF) is a central nervous system and cardiac stimulant 

and has a diuretic effect, while theobromine (TB), which is present in lower amounts, 

has also a diuretic effect [8], [9], [10], [11], [12], [13]. Among the most abundant 

catechins in GT there are (+)-catechin, ((+)C), (-)-epicatechin (EC), (-)-

epigallocatechin (EGC), (-)-epicatechingallate (ECG), (-)-epigallocatechin gallate 

(EGCG) [14]. 

The composition of GT can be influenced by several parameters associated with 

growth conditions, such as genetic strain, season, climatic conditions, soil profile, 

growth altitude, horticultural practices, plucking season, shade growth, and with the 

region in which tea has been cultivated. The other factors that can influence the profile 
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of bioactive compounds are manufacturing process (withering, steaming/pan-firing, 

rolling, oxidation/fermentation and drying) and storage [15,16]. Besides this huge 

variability, the price of tea greatly varies according to its geographical origin. Hence, 

the recognition of the origin of GT is crucial to protect the interests of both consumers 

and sellers [17,18]. Several analytical methods have been proposed together with 

chemometric techniques in order to characterize the geographical origins and/or 

varieties of teas [19], [20], [21], [22].However, most of these methods require 

expensive equipment and involve tedious sample preparation in order to discriminate 

GT samples from different geographical origins; as an example, Ye et al. [21] extracted 

the volatile organic components from the dried tea leaves by headspace solid-phase 

microextraction procedure, followed by GC–MS analysis. 

In a previous paper coauthored by a colleague from the research group with whom we 

collaborate [17], cyclodextrin-modified micellar electrokinetic chromatography (CyD-

MEKC) was employed to simultaneously analyse the most represented catechins and 

methylxanthines in 92 GT samples of different geographical origin, and the 

comparison of the obtained data showed that Japanese commercial GT products 

contained a general lower level of catechins than Chinese GTs. The contents of 

catechins and methylxanthines were thus used as chemical descriptors and potential 

indicators of the geographical origin. Considering this previous work as a starting point 

for further investigations, in the present study an alternative analytical approach was 

applied for identifying the differences in terms of active compounds content in GT 

samples from different geographical origin. In order to reach this aim, 63 GT samples 

were analysed by fluorescence spectroscopy: 29 samples from Japan and 34 from 

China. The main reason of the choice of these two countries was the interest of the 

consumers in the comparison of Japanese and Chinese GTs in terms of active 

compounds content. As a matter of facts, Chinese GT tends to cost consumers much 

less than Japanese GT, for the massive prevalence of Chinese GT and thus the 

necessity of maintaining low prices by Chinese producers, and for the lack of space 

for the production of GT in Japan. Moreover, one of the main differences in GT 

processing between Chinese and Japanese producers is the way deactivation of 

enzymes is performed. Chinese GT is usually dry heated in order to deactivate 

oxidases, whereas in the case of Japanese GT steaming is employed. Besides, 
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Japanese GT is usually shade grown [16]. Hence, we deemed it worthwhile to 

compare the GTs from these two countries in order to understand if the higher price 

of Japanese teas can be supported or not by the fact that it is a more prized tea for its 

higher antioxidant capacity. 

In more detail, the innovative analytical approach presented is based on the 

combination of excitation–emission fluorescence spectroscopy and chemometric tools 

to extract useful information from a huge amount of data. The chemometric approach 

is a fundamental part of the interpretation of fluorescence spectral data of agro-food 

products due to the presence of many fluorophores, since the fluorescence of a 

sample consists of a number of overlapping signals not easily understandable without 

a proper data processing. Accordingly, to these principles, three-dimensional 

fluorescence spectra were elaborated through PCA [5] after unfolding the data into 

matrices and through Parallel Factor Analysis (PARAFAC) [4] on three-way data as 

display methods. Moreover, SELECT [18] technique was applied for variable selection, 

in order to individuate the variables with the highest classification power, i.e. the most 

informative emission bands in discriminating between Japanese and Chinese GTs.  

Finally, the content of catechins and methylxanthines was determined in a subset of 

24 GT samples by the previously developed chiral CyD-MEKC method in order to 

obtain complementary information on the geographical origin of GT samples and to 

confirm what observed in the previous work [17], i.e. that the amount of all the 

considered compounds was higher for Chinese GTs, with the exception of ECG. A 

Partial Least Squares Class-Modelling (PLS-CM) [7] was carried out on this subset of 

samples to develop a predictive model able to classify new GT samples according to 

the geographical origin using the CyD-MEKC data. 
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Experimental plan: sampling, chemical and spectroscopic analysis  

The reference standards of (+)C, EC, EGC, ECG, EGCG, CF, TB, as well as boric 

acid, 86.1% phosphoric acid, sodium dodecyl sulphate (SDS), (2-hydroxypropyl)-β-

cyclodextrin (HPβCyD, degree of substitution 0.6), were purchased from Sigma-

Aldrich (St. Louis, MO, USA). The standard stock solutions (1 mg mL−1) of (+)C, EC, 

EGC, ECG, EGCG, CF, TB and of the internal standard syringic acid were prepared 

in a mixture of methanol/water in 15:85 ratio %v/v. Working standard solutions were 

obtained by dilution with water in a vial to 500 μL for achieving the desired final 

concentration values of the compounds. 

A set of 63 GT samples of different varieties and from different geographical origins 

(29 from Japan and 34 from China) was selected for the study and analysis. In order 

to assure a good degree of representativity of the samples, the main sources of 

variability for GTs were considered, i.e. for Japanese GTs the different varieties, 

including Bancha, Gyokuro, Matcha, Sencha, Matcha Tsuru types, while for Chinese 

GTs the different zones (the ten provinces of Hunan, Fujian, Zhejiang, Anhui, Yunnan, 

Guandong, Jiangsu, Hubei, Shandong, Guanxi). Moreover, each geographical group 

included samples stored in different conditions and coming from different 

manufacturing processes.  The commercial GT samples were collected locally in 

specialized stores located in the cities of Florence and Genoa (Italy). A subset of 24 

samples randomly selected including different types of Japanese GT and different 

zones of Chinese GT has been analyzed using the CyD-MEKC method for the 

quantitation of catechins and methylxanthines (Table 1). 

 

 

Table 1:  GT samples analysed by the CyD-MEKC method: content of catechins and 

methylxanthinesa 

Sample IDb Categoryc EC ECG EGC CF ECGC (+)C TB 

J1 1 8.64 16.07 6.03 13.08 12.08 0.14 0.05 

J2 1 6.82 16.24 4.35 15.13 11.6 0.25 0.09 

J3 1 7.02 13.81 7.96 16.79 14.71 0.27 0.23 

J6 1 8.94 14.44 7.71 9.95 11.46 0.33 0.93 

J8 1 6.93 15.33 8.23 14.64 16.21 0.15 0.21 

J9 1 0.76 1.22 0.89 6.1 2.2 0.22 0.24 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/epicatechin
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/epigallocatechin
https://www.sciencedirect.com/topics/chemistry/gallate
https://www.sciencedirect.com/topics/chemistry/theobromine
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/boric-acid
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/boric-acid
https://www.sciencedirect.com/topics/chemistry/phosphoric-acid
https://www.sciencedirect.com/topics/chemistry/sodium-dodecyl-sulfate
https://www.sciencedirect.com/topics/chemistry/syringic-acid
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/catechin
https://www.sciencedirect.com/topics/chemistry/methylxanthine
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J12 1 0.79 1.23 0.99 5.9 2.08 0.16 0.29 

J13 1 0.38 1.21 1.35 8.13 3.09 0.23 0.22 

J17 1 1.92 5.01 2.09 5.39 4.08 0.08 0.04 

J23 1 7.1 14.13 5.64 16.95 12.11 0.17 0.15 

J24 1 6.97 46.4 4.32 14.98 11.51 0.25 0.12 

J29 1 7.05 14.67 5.28 14.36 12.02 0.22 0.13 

C1 2 6.09 10.46 14.66 11.72 14.32 1.39 3.17 

C2 2 5.77 4.29 23.12 23.38 18.38 1.53 1.46 

C4 2 4.71 6.65 21.37 15.49 12.42 0.24 1.68 

C6 2 15.86 10.61 38.93 35.95 27 3.24 2.42 

C7 2 7.66 6.29 8.44 21.82 12.68 0 0.92 

C8 2 6.47 14.88 32.69 20.84 19.93 0.63 2.28 

C10 2 7.03 6.65 23.57 32.26 30.89 1.55 3.07 

C12 2 5.8 8.05 6.32 19.69 12.15 0 0.64 

C13 2 5.03 7.12 7.49 19.37 13.3 0.39 1.16 

C14 2 4.52 5.39 7.64 18.54 14.77 0.44 1.59 

C16 2 10.19 8 23.28 27.24 20.88 1.84 2.01 

C22 2 4.87 3.45 14.44 16.27 11.34 0.3 0.32 
 

 

a The data are expressed as the average content in mg g−1, dry basis (mean of two determinations). 
b Sample code. 
c Category 1: Japanese GT samples; category 2: Chinese GT samples. 

 

 

The CyD-MEKC method used for the determination of the compounds was derived 

from the previous study [22]. The analyses were carried out using a 3DCE instrument 

from Agilent Technologies (Waldbronn, Germany) controlled by the software 3DCE 

ChemStation (Agilent Technologies) for both acquisition and data management. 

Fused-silica capillaries (Unifibre, Settimo Milanese, Italy) of 33.0 total length, 8.5 cm 

effective length and 50 μm inner diameter were used. The detection was carried out 

by using the on-line DAD detector and the detection wavelength was 200 nm. Voltage 

and temperature were set at 15 kV and 25 °C, respectively. The background 

electrolyte was made by 25 mM borate-phosphate buffer pH 2.50 with the addition of 

90 mM sodium dodecyl sulphate and 25 mM HPβCyD. Total analysis time was about 

8 min. Calibration was performed by the internal standard method, using syringic acid 

as internal standard. The method had been previously validated in terms of selectivity, 

linearity, repeatability, accuracy and sensitivity, showing adequate performances for 

the analysis of catechins and methylxanthines in GT, with LOQ values ranging from 

0.05 to 0.7 μg mL−1 [22]. Further information on the CE method and procedure may 

https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0075
https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0075
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be found in mentioned Ref.[22]. The EEM fluorescence measurements were 

performed directly on GT extracts at room temperature on a Perkin-Elmer 

LS55B luminescence spectrometer (Waltham, MA, USA). The excitation-emission 

matrices of the GT infusions were recorded using the standard cell holder and a 10 mm 

quartz SUPRASIL® cell with cell volume of 3.5 mL by PerkinElmer. The excitation 

spectra were recorded between 200 nm and 290 nm each 5 nm (19 recorded points), 

whereas the emission wavelengths ranged from 295 nm to 800 nm each 0.5 nm (1011 

recorded points). The excitation and the emission monochromator slits were set to 

10 nm. The FL WinLab software (PerkinElmer) was used to register the fluorescent 

signals. 

 

Chemometric approach purposed  

In this project, the data processing strategy applied for handling the EEM data, 

included three different steps:  

a) Data Exploration: Unsupervised exploratory techniques such as PCA and PARAFAC 

have been applied to obtain a global understanding of the system.  

b) Variable selection: SELECT has been applied for identifying the most significant 

spectroscopic variables for characterizing the samples. 

c) Class modeling: PLS-CM has been used for developing a predictive model for 

classifying properly GT samples in according to the geographical origin. 

a) Data Exploration 

PCA [4] is the most used tool in exploratory data analysis and it uses an orthogonal 

transformation to convert a set of correlated variables into a set of uncorrelated 

variables called principal components. This approach makes it possible to visualize in 

a comprehensive way the dataset starting from a two-dimensional data matrix. 

According to the specific nature of EEM data, organized in a three-dimensional data 

array, for performing PCA a step of unfolding of the matrix is requested, while with the 

PARAFAC algorithm it is possible to directly model n-way data. In the case of three-

way data, like the EEM data, PARAFAC decomposes a data array X with dimension 

I × J × K into three loading matrices A, B and C, being their columns ai, bj and 

https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0075
https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0080
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ck respectively (see the PARAFAC description in the Introduction of Chapter 1). The 

trilinear PARAFAC model is expressed as follows:(1)xijk=∑f=1
Faifbjfckf i=1,2,…,I; 

j=1,2,…,J;k=1,2,…,K where xijk is the element in the position i, j, k of the three-way 

array X; F is the number of factors; aif, bjf and ckf are the elements of the 

matrices A (I × F), B (J × F) and C (K × F), respectively; eijk represents the generic 

element of the residual array E (I × J × K). The PARAFAC model is found by 

minimizing the sum of squares of the residuals. 

The excitation-emission fluorescence matrices obtained for several samples can be 

arranged into a three-way array and the PARAFAC decomposition can be applied for 

the analysis of fluorescent data. In this case, X contains the fluorescence intensity at 

the k-th excitation wavelength and j-th emission wavelength recorded for the i-th 

sample. Therefore, the vectors ai, bj and ck are the sample, emission and excitation 

profiles of the f-th fluorophore, respectively. The similarity between the trilinear 

PARAFAC model and the physical model for fluorescence can be found in Ref. [23]. 

The core consistency diagnostic (CORCONDIA) developed by Bro and Kiers [5] is an 

index that measures the degree of trilinearity of the experimental data array. A trilinear 

model has a value of CORCONDIA index close to 100%. 

If the fluorescence data are trilinear and the appropriate number of factors has been 

chosen to fit the model, the PARAFAC decomposition provides unique profile 

estimations, and the achievement of the true underlying excitation and emission 

spectra for every fluorophore is ensured [3]. PARAFAC has been widely used due to 

this highly attractive uniqueness property [23], which could be used for the unequivocal 

identification of compounds. 

 

b) Variable selection  

The selection of the informative variables was performed by means of SELECT [24], 

a feature selection technique based on the stepwise decorrelation of the variables, 

which is implemented in the chemometric V-Parvus software [25]. This technique 

generates a set of decorrelated variables ordered according to their Fisher weights. At 

each step, SELECT searches for the variable with the largest classification weight. 

https://www.sciencedirect.com/topics/chemistry/fluorescence-intensity
https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0095
https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0100
https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0085
https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0110
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This variable is selected and decorrelated from the other variables; then the algorithm 

is repeated until a fixed number of variables is selected, or the Fisher weight is lower 

than a specific cut-off value. SELECT presents an interesting characteristic: the 

fraction of the residual variance of the predictors after the orthogonalization can be 

used to select intervals of predictors with better classification performance. 

 

c) Class modeling 

PLS-CM [7] is a supervised method of classification between two categories (or 

classes), in our case Japanese or Chinese GT. It is a version of Partial Least Squares 

(PLS) algorithm with a binary response that makes it possible to model the probability 

distribution of the samples for each class and then performs a hypothesis test 

evaluating the α probability of type I error and the β probability of type II error. Class-

model sensitivity (proportion of the samples of the class that are correctly assigned) 

and specificity (proportion of samples correctly rejected) are (1-α)·100 and (1-β)·100, 

respectively. The risk curve is the plot of β error versus α error probabilities. Data 

analysis was performed in the MATLAB environment [26], thanks to tailor made 

algorithms developed and implemented by the Authors. For the data processing, PCA, 

PARAFAC and PLS-CM algorithms were applied, in order to extract the significant 

information embodied within data. For performing variable selection, the SELECT 

method was applied thanks to its implementation in the software V-Parvus [25]. 

Research outcomes 

The CyD-MEKC method previously described [22] was applied to the analysis of a 

subset of 24 GT samples in order to confirm our previous observations [17] and to lay 

the basis for the EEM data processing. By applying the CyD-MEKC method, the 

samples were characterized by means of n = 7 variables, namely (+)C, EC, EGC, 

ECG, EGCG, CF and TB (mg g−1, dry basis), obtaining a data matrix having 24 rows 

(samples) and 7 columns (variables), shown in Table 1. This data set was submitted 

to chemometric modeling starting from PCA as a display method and then applying 

the PLS-CM algorithm for class modeling purposes. 

https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0115
https://www.sciencedirect.com/topics/chemistry/alpha
https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0120
https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#bib0110
https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#tbl0005
https://www.sciencedirect.com/topics/chemistry/chemometrics
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Firstly, PCA was performed on the data matrix to enhance the presence of structures 

inside the samples and to understand the correlation between the variables. Fig. 

1 shows the loading (a) and the score (b) plots of the catechins ((+)C, EC, EGC, ECG, 

EGCG), CF and TB autoscaled data in the plane of the 2 first Principal Components, 

that explain the 86% of the total variance. From the loading plot it was possible to point 

out that the variable EGCG is the most important factor in PC1, followed by CF and 

EGC. All loadings are positive so that the samples with highest scores on PC1 have 

greater value in all the variables. On the contrary, loadings of PC2 have different sign: 

ECG has the highest positive loading and TB has the highest negative. Along PC1, 

the scores of the Japanese GT samples in relation to the scores of the Chinese GT 

samples are lower, indicating that in general Chinese GT samples were characterized 

by a higher content in the active compounds. This observation is in full agreement with 

what reported in our previous study [17]. 

 

 

Figure 1:PCA (on the left) score plot and (on the right) loading plot of catechins and methylxanthines 
data 

 

 

In order to build the PLS-CM model, it is necessary to build a dummy vector containing 

the information about class membership; for this reason, a binary response was 

https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#fig0005
https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#fig0005
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constructed considering the values 1 and 2 for the Japanese and Chinese GT, 

respectively (Table 1). The number of PLS latent variables that minimized the root 

mean square error in cross-validation (RMSECV) obtained by leave one out procedure 

was 3, and they explained the 81.68% of response with 90.05% of predictors variance. 

Fig. 2 shows the distribution of PLS fitted values for the Japanese and Chinese GT 

samples. Both classes have normal distribution with mean values 1.09 and 1.91 and 

Standard Deviation values 0.09 and 0.27, respectively. 

 

 

Figure 2: Normal distribution fitted for Japanese GT samples (in blue, on the left) and Chinese GT 
samples (in red, on the right). 

 

In order to decide if an unknown sample belongs to one or another class, a threshold 

value, tv, between 1 (GT from Japan) and 2 (GT from China) must be established. If 

the value estimated by PLS is higher than tv the sample is classified to belong to class 

2 (China), while for estimated values lower than tv the sample is classified to belong 

to class 1 (Japan). A model for one class (e.g. “GT Japanese”), is in fact the 

acceptation region for the null hypothesis H0: the sample belongs to “Japanese GT” 

class. Therefore, the evaluation of the quality of a class model is given by its sensitivity 

and specificity. Both parameters have been evaluated in cross-validation, being 

98.70% and 98.68%, respectively.  
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Fig. 3 shows two typical excitation-emission spectra of one Japanese (J1) and one 

Chinese GT sample (C1). 

 

 

Figure 3: A typical excitation-emission spectra of (a) a Japanese (J1) and (b) a Chinese (C1) GT 
sample. 

 

In order to assess the experimental variability and the repeatability in preparing the 

tea infusions, the analysis of two GT samples of different geographical origin (one from 

Japan and one from China) were replicated 3 times at a distance of time (one week). 

PC1, which explains 97.8% of the total variance, clearly separates the 2 GT samples; 

on the contrary, the difference among the 3 replicates of the same sample is along 

PC2, which explains only 1.4% of the variance (data not shown).  

 

a) Data Exploration: PCA results  

Two bands of the emission spectra were removed, namely from 295 to 350 nm and 

from 700 to 800 nm, due to the lack of information typical of these two areas (Fig. 3). 

The range between 350–700 nm was retained and used for data elaboration. A data 

matrix of dimension 63 × 13,300 was built, where each row corresponded to the 

emission spectrum (700 wavelengths) obtained at each of the 19 excitation 

wavelengths for all the 63 GT samples measured. PCA was performed as 
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unsupervised pattern recognition technique on this ‘unfolded’ matrix after the data had 

been mean-centered. Fig. 4 shows the score plot on the plane PC1-PC4. It is possible 

to notice a discrimination between Japanese and Chinese GT samples along PC1, the 

direction explaining the 74.3% of the total variance, even if a certain overlap is present 

and the complete separation between the classes is not obtained. In the PC1-PC4 plot 

it can be also clearly noticed that Matcha GT samples, considered one of the Japan’s 

rarest and most precious GT variety, are grouped in a cluster in the orthogonal space 

at negative scores on PC1. 

 

 

Figure 4: PCA score plot on the PC1-PC4 plane for the fluorescence data. Matcha samples are 
indicated in green in the plot 

 

Looking at the loading profile on PC1 (Fig. 5), it is possible to notice the bands more 

informative along PC1 and thus useful for separating between Japanese and Chinese 

GTs, namely 410–450 nm and 500–600 nm. The first band (410–450 nm) shows 

positive loadings on PC1 and this suggests that it is related to active compounds 

content in GT from China; on the contrary the broad band (500–600 nm) has negative 

loadings, therefore it seems linked to chemical compounds characterizing the 

Japanese GTs. 

https://www.sciencedirect.com/science/article/pii/S0731708518314055?casa_token=Gn0mIXwe5DcAAAAA:lwlZ4ZWgrCjWvk7AWy5sBBehTJtyj5BPhtKc8Jz8A6ZCrDgVIFE2cBtcpPh_NO-nGKlVTW9z#fig0025
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a) Data exploration: PARAFAC results 

The EEM data recorded for the 63 samples analyzed were arranged into a three-way 

data array where the excitation wavelengths between 200 nm and 290 nm and the 

emission wavelengths between 295 nm and 800 nm were considered. Therefore, the 

dimension of this array was 63 × 1011 × 19 (where 63 are the samples, 1011 the 

emission wavelengths and 19 the excitation wavelengths). The PARAFAC 

decomposition of this array, without any constraint, required two factors (CORCONDIA 

of 100%, explained variance of 98.6%). The plot of the loadings of the mode of the 

samples (first mode, Fig. 6a) is similar to the PCA score plot (Fig. 4) and it shows a 

rather clear discrimination between Chinese and Japanese GTs. The plot of the 

loadings of the mode of the emission (second mode, Fig. 6b) shows the emission 

spectra for two fluorophores, one with maximum around 420 nm and the other one 

with maxima at 500–550 nm. As can be seen in these plots, PARAFAC enabled to 

differentiate the infusions of GT according to the geographical origin (Chinese and 

Japanese). Moreover, due to the trilinearity of the data, it can be concluded that the 

two groups of fluorophores found with the PARAFAC model are the same in all the GT 

samples. 

Figure 5: Loading profile on PC1. 
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b) Variable selection: SELECT outcomes 

SELECT was applied as a variable selection technique in order to individuate the 

variables with the highest classification power, i.e. the most informative emission 

bands in discriminating between Japanese and Chinese GT samples. SELECT was 

applied on the unfolded data matrix of dimension 63 × 13,300 where each row 

corresponded to the emission spectrum obtained for each excitation wavelength of 

each GT sample measured; the frequency histogram of the selections (Figure 7) 

showed as the most selected variables the two bands 415–450 nm and 495–550 nm. 

 

 

 

a b Factor 1

Factor 2

 

Figure 6:PARAFAC results: a. loading plot of the mode of the samples (first mode); explained variance 98.6% 
(F1 = 96.0% and F2 = 2.6%); b.the loading plot of the emission mode (second mode) 
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It is worthwhile to notice that the variables chosen by SELECT corresponded to the 

two bands highlighted by PARAFAC in the second mode, namely the emission spectra 

of two fluorophores. These outcomes are also in agreement with the profile of the 

loading on PC1, that highlights the presence of two important bands, the first positive 

at 410–450 nm and the second negative over 500 nm. Combining this information, it 

was possible to assume that the first emission band (410–450 nm) is due to a 

fluorophore characterizing the Chinese GT samples and that the broad band at 500–

550 nm is related to the presence of compounds most abundant in the Japanese GT 

samples. The band at 410–450 nm probably corresponds to fluorescence emission of 

catechins, which are more abundant in Chinese samples. The band at 500–550 nm is 

probably attributable to carotenoids, that are recognized to be in particularly high 

quantities in Japanese tea, especially in Matcha, which contains 4 times more 

carotene than carrots and nine times more than spinach [27]. The infuses of GT 

prepared for the analysis were noticed to be slight yellow-green color due to pigments 

such as chlorophylls and carotenoids; the quantities of pigment extracted in hot water 

are related to the concentrations of the pigments in teas [28]. These observations 

agreed with the findings of Ref. [29], where the emission spectra of various organic 

compounds which are known to be endogenous component of plant leaves were 

measured, evidencing that catechins possess a fluorescence maximum near 440 nm 

and that β-carotene exhibits fluorescence emission with a maximum near 530 nm. 

 

Figure 1.2.9: Variables selected by 

SELECT: frequency histogram. 
Figure 7: frequency histogram of the selections performed by 

SELECT 
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Conclusion and scientific impacts 

The aim of the present study was to evaluate the possibility of using EEM fluorescence 

spectroscopy as a rapid analytical method for analyzing and characterizing GT 

samples, distinguishing between different geographical origins (China or Japan). The 

experimental data, given their complex and multivariate nature, were elaborated with 

chemometric techniques with the aim of extracting the useful information contained 

therein. PCA was applied, as a display technique, on the “unfolded data” and 

PARAFAC was performed on three-dimensional arrays. The PCA results were 

visualized by means of the score plot related to PC1 and PC4, which explained 76.8% 

of the total variance making it possible to distinguish Chinese and Japanese samples. 

The separation between the two geographical origins was mainly along PC1. Using 

PARAFAC, it was possible to perform the decomposition of the three-way excitation-

emission matrix: the information on the first mode was similar to that observed by 

applying PCA to the matrix after unfolding and it demonstrated that fluorescence 

spectroscopy is a promising and fast analytical method to characterize GT samples 

on the basis of their geographical origin. PARAFAC on the second mode also 

highlighted the emission spectra of two fluorophores, one with a maximum around 

420 nm and the other with a maximum at 500–550 nm. These bands correspond to 

the variables with the highest loadings on PC1 and also correspond to the variables 

selected by the SELECT algorithm, that are those with the highest discriminating 

power between Japanese and Chinese GT samples. The band around 420 nm was 

assumed to correspond to the fluorescence emission of catechins, which are more 

abundant in the Chinese samples, and the band around 500–550 nm was attributed 

to carotenoids. Moreover, the CyD-MEKC method was applied for the analysis of a 

subset of 24 GT samples confirming that catechins are more abundant in Chinese 

samples. In addition, the PLS-CM classification model built with these data made it 

possible to distinguish Japanese from Chinese GT samples with a sensitivity and 

specificity of 98.70% and 98.68%, respectively. 
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1.2 PROSTATE CANCER DETECTION BY EXCITATION-

EMISSION FLUORESCENCE SPECTROSCOPY OF URIN 

COUPLED WITH CHEMOMETRICS 

 

Scientific background and aim of the work 

Prostate cancer is the second most widespread malignant tumour in the male 

population, after lung cancer, accounting for 1,276,106 new cases and causing 

358,989 deaths in 2018 only. In Italy, it is the first cause of cancer death in males older 

than 60 years with more than 40,000 new cases per year and 18.5% of total cancers 

[30]. 

Early diagnosis of prostate cancer is often difficult in men over 60 years due to 

concomitant benign prostate hyperplasia which induces raised Prostate Specific 

Antigen (PSA) levels and improved prostate volume; the enlargement of the gland 

itself may not be indicative of the presence of a tumour but could also be due to a 

benign physiological proliferation.  

The protocol for the prostate cancer diagnosis is preliminarily based on the urological 

examination, and the determination of PSA blood levels. Prostate biopsy is the only 

method able to confirm the presence of cancer cells in the prostate tissue, whilst 

multiparametric magnetic resonance investigation may be of some help for the non-

invasive diagnosis of prostate cancer with a diagnostic accuracy of about 75%. 

Nevertheless, the lack of specificity of the PSA dosage and the prospect of preventing 

invasive and sometimes unnecessary prostate biopsies suggest the need of novel 

biomarkers or other non-invasive methods for the diagnosis of prostate cancer.   

Based on the latest scientific evidence, it is of current interest to have rapid and 

accurate analytical methods for early screening of prostate cancer directly by urine 

analysis, in order to provide reliable results while improving patient compliance. For 

this purpose, non-destructive fingerprint spectroscopic methods, such as 

Fluorescence Spectroscopy, have proved to be extremely efficient for the analysis of 

biological fluids including urine, blood or plasma, in the clinical context [31].   
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In 2010, Masilamani et al. [32] showed the results of a novel study in which the native 

or intrinsic fluorescence of urine was used to aid the diagnosis of several types of 

cancer. In their study fluorescence emission spectra and Stokes shift spectra of the 

first voided urine samples were acquired for 100 healthy controls and those of 50 

cancer patients of different aetiology. They concluded that flavoproteins and 

porphyrins released into urine can act as generic biomarkers of cancer with a 

specificity of 92%, a sensitivity of 76%, and an overall accuracy of 86.7%. A weak 

point of that study was that authors performed the statistical analysis to discriminate 

diseased patients from healthy patients using only seven a priori selected descriptors 

(ratios of intensity peaks) without considering, and benefiting from, the whole spectral 

information embodied into the fluorescence spectra. 

In 2013, a study conducted by Zvarik et al. [33] dealt with assessing the differences in 

terms of metabolites, which can be detected by excitation-emission fluorescence, in 

urine samples of patients affected by ovarian cancer compared to healthy volunteers. 

They observed changes in the spectral profiles that were interpreted as reduction of 

pyridoxic acid content, whereas blue-fluorescing pteridines became dominant in urine 

samples of cancer patients with respect to healthy donors. Thus pteridines, which are 

related to cellular metabolism, could be suitable candidates for neoplasia-associated 

fluorescent markers in human urine. The observed changes in intrinsic fluorescence 

were studied by plotting as images (intensity represented by colour coding) the three-

dimensional fluorescence excitation-emission landscapes, where the characteristic 

circular patterns, highlighting high emission, were used to identify wavelength regions 

which could be attributes to specific fluorophores. Also in this case, a chemometrics 

approach to extract the information from the whole excitation-emission landscapes for 

all samples (i.e. the raw measured complex analytical data) was not attempted. 

In the same year, Rajasekaran et al. [34], studied native fluorescence characteristics 

of human urine samples using excitation–emission matrices (EEMs) over a range of 

excitation and emission wavelengths in order to discriminate patients with cancer from 

normal subjects. A total of 80 urine samples from normal subjects and 90 from 

pathologically confirmed cancerous patients were collected and analysed. EEMs were 

acquired in the following ranges, 250–450 nm for excitation and 270–750 nm for 

emission. However, only the spectra corresponding to fluorescence emission at 405 
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nm have been considered both for visual spectral comparison and to perform the 

discriminant analysis of normal form cancerous subjects. In more detail, stepwise 

multiple linear discriminant analysis was performed by the authors considering 19 ratio 

variables calculated using fluorescence intensities at emission wavelengths which 

represent characteristic spectral features of different groups of subjects, at 405 nm 

excitation. 

The aim of the present study was to investigate excitation-emission Fluorescence 

Spectroscopy, as a rapid and accurate analytical method for the early screening of 

prostate cancer directly through urine analysis in order to provide reliable results while 

improving patient compliance.  

An element of novelty of this study consists in processing the whole EEM landscapes 

with a suitable multiway analysis method, i.e., parallel factor analysis (PARAFAC) 

which allows resolution of the spectral profiles corresponding to single fluorophores 

and their relative concentration estimation. Indeed, the resolved profiles could be 

associated to chemical compounds (metabolites) that were recognised to have a role 

in oncological pathologies in literature. Thus, could be suggested as potential markers 

of prostatic oncological pathologies and subject to further investigation. 

 

Experimental Plan: Sampling and Spectroscopic analysis 

69 urine samples, provided by the Center of Urology University Hospital Cisanello of 

Pisa (Italy), were analysed; the samples belong to the following categories:  

- 46 samples of patients whose prostate biopsy and subsequent histological 

examination have diagnosed a malignant prostate cancer. 

- 23 control samples (healthy donors). 

Urine samples were taken with a sterile procedure after pathological diagnosis of 

prostate cancer and before any kind of medical and/or surgical treatment. Urine 

samples were immediately frozen at - 80°C until analysis and stored according to 

hospital protocol; then, the samples were transported to the analytical laboratory in 

homologated packaging with inside dry ice pellets at -80 ºC and they were stored in a 

special cold room at -80 ºC.  
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Before being analysed, the samples were kept for 17 hours in the refrigerator (3 to 5 

ºC) and for 1 hour in the thermostat rooms of the laboratory at a temperature of 20 ºC; 

since the samples in many cases had sediment, they were centrifuged for 30 minutes 

at 3000 rpm. Some urine samples were analysed in replicate to assess the 

repeatability of the method, and therefore the final number of EEM spectra that have 

been processed were 68 from cancer patients and 29 from healthy donors. 

The EEM fluorescence measurements were performed on centrifugated urine 

samples at room temperature on a Perkin-Elmer LS55B luminescence spectrometer 

(Waltham, MA, USA). The excitation- emission matrices (EEMs) of the urine were 

recorded using the standard cell holder in a 10 mm quartz SUPRASIL® cell with cell 

volume of 3.5 mL by PerkinElmer. The excitation spectra were recorded between 250 

nm and 530 nm each 5 nm (29 recorded points), whereas the emission wavelengths 

ranged from 270 nm to 650 nm each 0.5 nm (761 points). The excitation and the 

emission monochromator slits were set to 10 nm. The FL WinLab software 

(PerkinElmer) was used to register the fluorescent signals. 

 

Chemometric approach purposed  

The acquired EEM landscapes were arranged in a three-way data array of dimensions 

97 (human urine samples) x 761 (emission wavelengths) x 29 (excitation 

wavelengths). The data were split into a calibration (70%, i.e. 69 samples) and a 

validation (30%, i.e. 28 samples) sets, by using the Kennard Stone Duplex algorithm 

[6] distinct per category in order to keep the same percentage of calibration and 

validation samples for each class (proportional splitting).  
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Parallel Factor Analysis (PARAFAC)  

According to the specific nature of EEM data, organised in a three-way data array 

(sample × λ emission × λ excitation), Parallel Factor Analysis algorithm [3], was 

applied to model directly the n-way data [5]. 

𝑥𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑓𝑏𝑗𝑓𝑐𝑘𝑓
𝐹
𝑓=1 +  𝑒𝑖𝑗𝑘                          i = 1,2, ..., I; j = 1,2, ..., J; k = 1,2, ..., K 

 

EEM data were first pre-processed in order to minimise the non-relevant instrumental 

artefacts. In particular, Rayleigh scatter, normally present in this kind of data [10], was 

removed using a first and a second order Rayleigh filters (half-width: 20 nm) and 

replaced with interpolated data. Zeros were assigned to sub-Rayleigh wavelengths [5]. 

Then, filtering in the second mode (eleven points window) and despiking were applied. 

In order to select the proper number of PARAFAC factors, different parameters have 

been considered: the total variance explained by the model (fit), the core consistency; 

the similarity of fit and core consistency for replicate runs, i.e. PARAFAC has been 

restarted 5 times for each model dimensionality explored (from 1 to 6);  the congruence 

of mode 2 and mode 3 loadings profiles obtained by split half analysis, i.e. obtained 

by dividing the data set in two parts with respect to samples mode and calculating a 

distinct PARAFAC model on each sub-set. The congruence is estimated as the 

covariance between corresponding loadings of the two halves. These criteria are 

implemented in the PLS toolbox, namely nvalidate function. 

 

Linear Discriminant Analysis (LDA) 

Linear discriminant analysis (LDA) [35] was carried out by using the scores of 

PARAFAC model as class descriptors. 

 

Partial Least Square Discriminant Analysis 

Partial least squares discriminant analysis (PLS-DA) [36], was applied in order to 

discriminate cancer patients from healthy donors using as independent variables the 

first mode scores (relative concentrations) of PARAFAC model. The number of PLS-
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DA components was chosen according to minimum root mean squares error in Leave 

One Out cross validation. 

Data were imported to MATLAB v. R2019a (The MathWorks, Inc., Natick, MA, US). 

PARAFAC was performed using PLS Toolbox v. 8.9 (Eigenvector Research, Inc., 

Manson, WA, US). Linear discriminant analysis was performed by using the functions 

of the Statistical and Machine Learning Toolbox of MATLAB. 

 

Research outcomes 

The analysis of EEM data shows that interesting differences in urine fluorescence 

excitation/emission spectra from patients with prostate cancer in comparison to 

healthy subjects can be already appreciated starting from the collected data, after a 

pre-processing step applied to remove the interference from Rayleigh scattering. As 

an example, two of the fluorescence excitation-emission landscapes of urine matrices 

coming from a healthy person (H16 sample) and a prostate cancer patient (P03) are 

presented in Figure 1a and 1b, as contour plots. 

 

 

From Figure 1, it is quite evident the presence of strongly overlapping fluorescence 

bands in both EEM spectra; however, some differences in the landscape of the two 

samples could be highlighted. Firstly, in the healthy spectrum, two main bands could 

Figure 1: (a) contour plot related to a patient affected by prostate cancer. (b) Contour 
plot related to a healthy subject 
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be visualized at 390 (excitation)/490 (emission) nm and at 470/510 nm with a shoulder 

at 490/520. These characteristics were observed in almost all the urine samples 

coming from healthy controls.  Conversely, there is a fading of the peak at 490/520 nm 

in cancer urine sample, coupled with the emergence of the band at 350/420 nm. 

Furthermore, the reported cancer urine spectrum is characterized by a depression of 

fluorescence at 390/490 nm with respect to the one of healthy sample. However, not 

all the urine spectra from the 46 cancer patients showed the same trend;  in general, 

among cancer patients, two different behaviours seem to be present: one 

characterized by one main high intensity band at around 350/420nm and another 

characterized by a low intensity of the whole excitation/emission landscape. However, 

it is very hard to decipher the different emission bands due to the complexity of the 

matrix and the presence of overlapping bands.  Thus, a multiway resolution method, 

i.e. PARAFAC, has been applied, benefiting from the second order advantage, in this 

way a clearer interpretation of the highlighted bands could be achieved. 

 

PARAFAC analysis 

The EEM data were arranged in a three-way data array of dimensions I x J x K, where 

I is the number of investigated samples (97 human urines samples in total), J the 

number of emission wavelengths (761 points) and K the number of excitation 

wavelengths (29 points). Before decomposition by PARAFAC, the data were 

appropriately pre-treated in order to minimize the non-relevant instrumental artifacts . 

A four-factors PARAFAC model was selected in according to criteria based on 

residuals, core consistency and split-half analysis [5], indeed four different 

fluorophores were detected in the investigated urine samples.  

The results from the PARAFAC model are reported in Figures 2a and 2b. In particular, 

Figure 2a shows the emission (mode 2 loadings) and Figure 2b the excitation (mode 

3 loadings) profiles of the four resolved factors in urine samples. These two modes 

represent the underlying pure spectra of characteristic fluorophores present in the 

investigated urine samples and which can be putatively identified based on literature. 
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The excitation/emission wavelengths corresponding to the maximum fluorescent 

intensity of the first factor (blue) is 360/440 nm. According to several authors, the band 

at around 370/440 nm could be ascribed to one or more chemical species, such as 

pteridines [33]. These compounds could play important roles in the synthesis of some 

vitamins, as well as they are important intermediates in anabolic and catabolic 

reactions. Furthermore, Masilamani et al. [32] reported that the 444 nm band in 

emission could be due to NADH bound to a protein, even if it could be difficult to 

envisage the presence of this molecule in healthy urine samples [33].  Although shifts 

are present with respect to the reference for both NADH and pteridines, they could be 

acceptable since it is well known that the fluorescent emission signal from a 

fluorophore can be strongly dependent on the surrounding environment [37].  

The second (red) factor has excitation and emission maxima at 330 and 420 nm, 

respectively, and could be attributed to several fluorophores such as pyridoxic acid 

and uric acid [33]. In particular, pyridoxic acid is excreted in the urine as a catabolic 

product of vitamin B6 and it is involved in many enzymatic reactions as pyridoxal-

phosphate active form of vitamin B6. The excitation/emission maxima positioned at 

390/470 nm characterizes the third factor. Free NADH has an excitation/emission 

maximum at around 400/485 nm [32], hence, considering a potential shift of the 

a b

Figure 2: (a) Emission loading vectors from four factors PARAFAC model. (b) Excitation loading vectors from four 
factors PARAFAC model 
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emission when the polarity of the microenvironment changes, this band could be 

tentatively associated with the third PARAFAC factor. Furthermore, from a closer 

inspection of the shape of this factor, it is worth noticing a little, hardly visible ‘‘bump’’ 

with emission maximum at 620 which is in agreement with literature values for 

porphyrins [32].  

Finally, excitation/emission loadings (450/530 nm) of the fourth factor could fit well with 

excitation/emission of flavins and their metabolites [33]. In particular, riboflavin 

presents an excitation/emission maximum at around 450/550 nm [38]. Furthermore, 

Masilamani et al. [32] reported that bilirubin could also contribute to the fluorescence 

band at these wavelengths and its band could overlap in this region. However, flavin 

is more fluorescent than bilirubin, therefore, the latter could not apport a different and 

prominent contribution. The role of the four PARAFAC factors to distinguish healthy 

and prostate cancer samples can be inspected by first loading mode plots shown in 

Figure 3a and Figure 3b.  

 

 

 

 

 

ba

Figure 3: Mode 1 PARAFAC loadings plot of (a) first vs. second PARAFAC factors and (b) third vs. fourth ones. 
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Figure 3a displays the first PARAFAC loading mode plot for the first vs. the second 

factors: first, a good reproducibility within the different replicates (same number in the 

label) is observed along both the factors, on the other hand the samples spread in the 

scores is not related to a clear cancer/non cancer distinction. Rather a differentiation 

into two groups arises: one heterogeneous, includes almost all cancer samples that, 

together with H14, H15, H17 and H18 healthy controls, and lies at high score values 

for both factors, i.e., pteridines and pyridoxic acid; the second one, is formed by 

several samples positioned at factor 2 (pyridoxic acid) scores value, close to zero.  

Pteridines have been already shown to be an interesting neoplasia marker in human 

urine since their biosynthesis could be altered by the presence of malignant tumors 

which lead to a change of their concentration [33, 39]. As regards pyridoxic acid, it is 

one of the catabolic products of vitamin B6 thus, its higher amount in cancer samples 

could reflect a decrease of the vitamin B6, whose concentration has been 

hypothesized to reduce cancer risk [40]. Although no prior information about the 

healthy status of the patients has been used for building the PARAFAC model (i.e., it 

is an unsupervised method), it was possible to highlight a partial separation between 

healthy and diseased individuals (Figure 3b) considering the third and fourth factors. 

In particular, it is worth noting an increase of both the third (putative free form of NADH) 

and the fourth (flavins) factors passing from urine samples of cancer patients to 

healthy donors. Four samples (H11, H14, H15 and H17) of healthy donors, 

nonetheless present an ‘anomalous’ trend and further investigation are ongoing to 

better understand their behaviour. 

 

LDA and PLS-DA results 

The PARAFAC results discussed above showed that factors 3 and 4 are the most 

significative in differentiating between healthy volunteers and prostate cancer patients. 

Thus, linear discriminant analysis was applied to factors 3 and 4 to obtain a 

classification model. The results are shown in Figure 4.  
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As concern the calibration set, four healthy samples are misclassified, three of these, 

H11, H15 and H17, have been already noticed in the exploratory analysis and 

discussed above; on the other hand, all the prostate cancer samples are correctly 

classified. For the test set, one healthy (H14, the fourth previously discussed) and one 

cancer (M33) are respectively misclassified. The overall performance of the LDA 

model is reported in Table 1. 

 

Table 1: LDA classification results 

 Calibration 
set 

Validation 
set 

Sensitivity 
training 

Specificity 
training 

Sensitivity 
test 

Specificity 
test 

 

Cancer 
class 

47 19 100% 80% 94,7% 88,9%  

Healthy 
class 

20 9 80% 100% 88,9% 94,7%  

 

 

Figure 4: Plot of mode 1 PARAFAC loadings: factor 3 vs. factor 4; filled signs 
indicate calibration set and empty markers validation set. The asterisks and 
crosses indicate samples misclassified by LDA for calibration and validation 

set, respectively. 
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These results are extremely encouraging, since only one cancer sample in prediction 

was misclassified, and the same for healthy ones. The four healthy samples as already 

discussed show rather different EEM landscapes with respect to the others and should 

be further investigated. For comparative purposes, a PLS-DA analysis has been also 

performed by considering all the four PARAFAC factors. The model was cross-

validated using a venetian blind procedure with five splits, two latent variables were 

selected and the results in terms of sensitivity and specificity are reported in Table 2. 

 

 

Table 2: Results from PLS-DA model for classification of cancer and healthy classes based on 

PARAFAC scores 

  
Calibration 

set 
Validation 

set 
LVs 

AUC 
(CV) 

Sensitivity 
CV 

Specificity 
CV 

Sensitivity 
predict 

Specificity 
predict 

Cancer 
class 

47 19 

2 0,92 

91,5% 85% 94,7% 88,9% 

Healthy 
class 

20 9 85% 91,5% 88,9% 94,7% 

 

 

 

The area under the ROC curve (AUC in CV) is rather high (Table 2), however three of 

the healthy samples were wrongly assigned to cancer class and four of the latter were 

incorrectly predicted as healthy ones, both in fit and cross-validation. It has to be 

noticed that the three healthy samples accepted by the cancer class are the same 

H11, H15 and H17, misclassified by the linear discriminant model. The prediction 

capability improved in validation where only one sample per class was misclassified; 

finally, the healthy misclassified sample is H14 and the cancer one is the same one 

misclassified by LDA (M33). More trustworthy results could be surely obtained by 

enlarging the number of samples, anyhow the results are very consistent.  

A biplot for the PLSDA model of cancer vs. healthy findings based on the PARAFAC 

scores is reported in Figure 5. As expected from the sensitivity and specificity values, 

there is an almost good separation between the two classes (except for four healthy 

samples).  
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Figure 5: PLS-DA biplot of the first vs. second PLS-DA components. Cancer patients (red diamonds); healthy 
persons (green circles). Variables, i.e. mode 1 PARAFAC loadings (gray circles), F1, F2, F3 and F4 stand for 

first, second, third and fourth components. 

 

 

In particular, there is a tendency towards differentiation along the first PLS-DA 

component, whilst on the second it is possible to note a difference in the intra cancer 

class which is split into two groups, the first one with positive second component 

scores and the second group with negative ones. In the biplot, it is also possible to 

see which variables are important for this separation. In particular, the samples that 

are positively correlated to the ‘‘cancer direction’’ present a lower amount for both 3 

and 4 variables (i.e. free-NADH and flavins) with respect to the control samples. 

Finally, variables 1 and 2, pteridines and pyridoxic acid respectively, contribute to 

differentiate the two groups among cancer samples, showing that almost all cancer 

samples, with both LVs negative scores, generally present a lower amount of the 

intensity bands for all the four fluorophores.  
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Conclusion and scientific impacts 

In this study, Excitation-Emission fluorescence measurements on human urine 

combined with multivariate data analysis were proposed as a potential fast routine 

analysis to screen potential prostate cancer patients. Previous studies with 

fluorescence spectroscopy have shown optimal results of EEM in the investigation of 

cancer patients of different aetiology, but this work, to the best of author’s knowledge, 

represents the first attempt in the discrimination of prostate cancer patients. 

On interpretative ground, four fluorophores, corresponding to the four PARAFAC 

factors, were resolved and could act as potential markers in the differentiation between 

urine samples from healthy donors and cancer patients By a comparison with the 

results of previous studies performed on urine, these could be putatively assigned as: 

pteridines and/or bounded NADH at 360/460 nm (excitation/emission); pyridoxic acid 

at 330/420 nm; and, free-NADH and flavins, in the regions at 390/470 nm and 450/530 

nm, respectively. The first two compounds seem to be characteristic only of a 

subgroup of cancer samples with higher concentrations, while the latter two 

contributed to some extent in the differentiation of healthy from cancer samples, which 

present lower values of concentration of both the fluorophores.  

PARAFAC allowed enhanced interpretation of the results, thanks to its capability to 

furnish resolved factors chemically interpretable. The analysis can be further improved 

by using standard addition of putative analytes (species) identified in the 

characterization phase. Moreover, PARAFAC scores, which represent the relative 

concentrations of the resolved species, when fed to LDA and to PLS-DA model, 

furnished a first evaluation of the capability to achieve healthy/cancer discrimination. 

The relatively low number of samples prevent to be conclusive about the robustness 

of the obtained results. However, the obtained results could serve as a first basis to 

the development of a simple and non-invasive protocol for prostate cancer detection 

to be used as a screening tool able to support the different techniques used in this 

issue. 
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CHAPTER 2: NEAR INFRARED SPECTROSCOPY, 

BENCHTOP APPLICATIONS.   

The discovery of near-infrared radiation was ascribed to William Herschel, astronomer 

and scientist, in the 1800s [1]. Only much later, around 1950s, the Near Infrared 

Spectroscopy (NIRs) was applied for industrial applications. A scientist named Karl 

Norris, who was working for US Department of Agriculture tested for a first time, an 

innovative analytical approach based on NIRs for analysing grain samples in a fast 

and non-destructive way. This delay in the use of this technique was because of the 

difficulty in extracting the information from the broad and overlapped bands that 

characterize NIR spectra. Thanks to the introduction of the first single-unit, stand-alone 

NIRS system in 1980s, light-fiber optics in mid1980s, and the development of 

monochromator detector in 1990s, NIRS became a more powerful tool for scientific 

research [2]. Moreover, the progresses in terms of computational power and the wider 

application of multivariate data analysis have proven the advantages in using NIRS in 

different fields as pharmaceutical [3], agriculture [4], chemical [5] and food industry [6]. 

The versatility of this technique is related to the possibility of acquiring, in few seconds 

and without sampling preparation, a lot of interesting chemical and physical 

information about a sample of interest.  

When the absorption of the NIR radiation is equal to the difference between two 

vibrational energy levels, the molecules of the sample interact with the frequencies of 

the light. Some frequencies of the incident light are absorbed by the sample, while the 

others can be partially absorbed or not absorbed at all. In general, the absorption takes 

place only if the vibrational movement of the atoms that form the molecular bond or 

the atoms forming a local group of vibrating atoms, creates a change in the dipole 

moment. 

For this reason, absorptions in the NIR region (780–2526 nm) are primarily due to 

overtones and combination bands of the fundamental molecular vibrations that occur 

when transitions to excited states involve two vibrational modes at the same time. 
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Overtone absorption bands originate from the functional groups that contain C-H, N-

H, O-H or S-H atomic bonds. Overtone vibrations that originate from the covalent 

bonds are combined with lower-frequency fundamental bands such as C=O and C-C 

to generate overtone-combination bands. The intensity of the absorption bands 

depends on the degree of the dipole change during the vibration of the bonds. In 

according to the nature of the sample, NIR spectra can be obtained in three different 

modes: transmission, diffuse reflection or transflection. In this work, benchtop 

instruments working both in transmission and in diffuse reflectance mode have been 

used for acquiring respectively liquid and solid samples. In diffuse reflectance 

spectroscopy, the light source and detector are located on the same side of the 

sample. The detector measures the radiation reflected from the sample surface, which 

contains a specular component and a diffuse component. Transmission mode is 

usually applied for analysing transparent liquid samples. In this case the light source 

is located on the opposite side from the sensor which records the light transmitted 

through the sample.  

Based on the wavelength selection, it’s possible to classify the modern NIR 

instrumentation in 4 categories:  

1) Filter based instruments 

2) LED based instruments 

3) Acousto-Optical Tunable Filters (AOTF) based instruments 

4) Fourier-transform (FT) based instruments 

In this second chapter, two different applications in which a FT-NIR benchtop 

spectrophotometer has been used to perform the analysis have been proposed. In 

respect to the other categories of instruments, FT-NIR spectrometers offer several 

advantages in terms of wavelength precision and accuracy, high signal to-noise ratio, 

scan speed and versatility in the sample presentation.  

The first paragraph of this second chapter reports a food application in which a Buchi 

NIRFlex N-500 benchtop spectrophotometer has been used for analysing extra virgin 

olive oil (EVOO) samples. Nowadays, laboratories that perform ‘highly frequent’ 

analysis on EVOO by NIRS usually employ quartz cuvettes. This results in time-
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consuming measurements, especially in the cleaning phase, and an increased cost 

for non-green cleaning solvents. The use of disposable glass vials may reduce time 

and costs significantly, but their analytical performances in EVOO analysis, have not 

yet been investigated. In order to reach this goal, a set of 106 EVOO samples from 

different Italian olive-growing areas were collected and analysed using both quartz 

cuvette and mono-use glass vials. The analytical performances of the cuvettes have 

been tested in terms of multivariate calibration models were developed to estimate 

quality parameters of extra virgin olive oil. The quantitative models have been 

developed by the application of Partial Least Square (PLS) regression algorithm [7]. 

PLS works maximizing the covariance between the original data matrix 𝐗  (NIR 

spectra) and the matrix of reference parameters to be predicted 𝐘. This covariance 

information is expressed summarized in few successive abstract factors, called latent 

variables. The PLS algorithm decomposes the matrices X and Y in factor scores T and 

U related to samples included in X and Y, respectively, and factor loadings P and Q 

related to variables in X  and Y , respectively. The factor decomposition can be 

expressed by the equations below:  

X =  TPT + E 

Y =  UQT + F 

 

where E  and F are the residuals in X and Y, respectively, that corresponds to the 

information not taken into account by the model. The regression model is obtained by 

the eq. using T and U. 

U =  TB𝑃𝐿𝑆 + H  

where B𝑃𝐿𝑆 is a matrix that contains the PLS coefficients relating the information of X 

and Y, expressed by their respective scores.  

The predictive ability of each PLS model was evaluated on an independent test set. 

The Passing-Bablok linear regression [8] was lastly used to statistically compare the 

performances of the two different types of cuvettes. 
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The second study reported in this Chapter was focused in finding the relationship 

between the water activity and the water molecular structure of the rice germ, based 

on its spectral pattern which can be measured using non-destructive technology. 

Aquaphotomics [9] near-infrared spectroscopy was used to study rice germ stored at 

different levels of water activity and atmosphere. Aquaphotomics is a new “omics” 

discipline introduced by Professor Roumiana Tsenkova at the Laboratory of Bio 

Measurement Technology at Faculty of Agriculture, Kobe University, Japan. This 

approach is based on the key role of the water in biological and aqueous systems. The 

use of the NIR radiation allows to measure specific regions of the spectrum of the light 

that comes back out of the water getting in this way information about changes of 

water molecular vibrations in relation to other molecular vibrations present in the 

system. All 12 water absorbance bands called Water Matrix Coordinates (WAMACS) 

have been used to define the water absorption spectral pattern (WASP), which 

describes the condition of the whole aqueous system and allows the representation of 

the specific absorption pattern in dedicated radar plots, called aquagrams.   
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2.1 A CHEMOMETRIC STRATEGY TO EVALUATE THE 

COMPARABILITY OF PLS MODELS OBTAINED FROM 

QUARTZ CUVETTES AND DISPOSABLE GLASS VIALS IN 

THE DETERMINATION OF EXTRA VIRGIN OLIVE OIL 

QUALITY PARAMETERS BY NIR SPECTROSCOPY. 

 

Scientific Background and aim of the work   

The International Olive Oil Council (IOOC) fixed purity and quality criteria in order to 

recognize four commercial olive oil categories (or grades): “extra-virgin” olive oil, 

“virgin” olive oil, “refined” olive oil and “pomace” oil [10]. Extra-virgin olive oil (EVOO) 

is considered the highest quality grade and the adulteration with edible oil of inferior 

quality is becoming a type of commercial fraud more and more frequent. The quality 

criteria established by the IOOC for EVOO include measurements related to sensory 

characteristics (odour, taste and colour), free acidity, peroxide value, absorbance in 

the ultra-violet spectral region at 232 and 270 nm (K 232, K 270, ΔK), moisture and 

volatile matter. In addition to these main physicochemical parameters, the content of 

methyl esters of fatty acids (FAMEs) and triacylglycerols (TAGs) represent important 

parameters for characterizing olive oil samples [11]. These compounds are considered 

particularly interesting for their physiological effects [12] and suitable for authenticity 

assessment of EVOO [13]. In this context, to ensure the highest quality of the Italian 

EVOO and to counter fraudulent trade, the Violin project (Valorisation of Italian Olive 

Products Through Innovative Analytical Tools), promoted by Ager foundation, 

designed innovative analytical protocols, including approaches based on near infrared 

spectroscopy (NIRS) and multivariate data analysis. 

It is well known, in fact, that NIRS nowadays represents a valid and recognized 

alternative method, compared to traditional techniques, to determine qualitative and 

quantitative parameters of several food matrices, including olive oil, in a rapid and non-

destructive way, requiring no or limited sample preparation, with a reduction of costs 

and time of analysis. In the literature, in fact, there are several studies that proved the 
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potential of NIRS technology for determining the quality of olive oil, both in terms of 

chemical composition [14] and product authentication [15]. Regarding chemical 

composition, NIRS has been demonstrated to be useful for quantifying important 

control parameters, including peroxide value, free fatty acid content, and specific 

extinction coefficients (e.g. K232 and K270) [16]. Regarding food frauds, NIRS has 

proven to be an effective analytical method to detect and estimate adulteration of olive 

oils with vegetable oils of inferior quality [17]. Moreover, in the last decades, NIR 

spectroscopy has been recognized as an excellent tool for the verification of 

authenticity of EVOO samples concerning geographical origin [18] or olive cultivar.  

The main advantage of the NIR technique, is that it is a quick and low-cost method, 

but the speed of spectra acquisition can be limited by the employment of quartz 

cuvettes, especially due to the cleaning phase, which often includes the use of organic 

solvents, such as acetone, resulting in a non-green methodology. In addition, an 

improper use of these chemicals also can leave residues in cuvettes, leading to 

possible signal alterations.  

The introduction on the market of disposable optical glass vials (DGV) may reduce 

acquisition time and costs both in industry and in research laboratories; these vials are 

much cheaper but can have slightly different geometries and the thickness of the glass 

differ between one vial and the other and even inside the same cuvette. Furthermore, 

due to differences between optical glass and quartz in terms of transmission range, 

thermal properties and chemical compatibility, a critical comparison between these 

two types of cuvettes is required and it has not yet been investigated, in particular for 

the analysis of olive oil. To this aim, the development of a suitable chemometric 

strategy is a fundamental step. 

Given these premises, the present comparative study was aimed at understanding if 

the use of DGV for the NIRS analysis could significantly affect the prediction of quality 

parameters in EVOO samples. To reach this goal, a total of 106 EVOO samples were 

acquired with the same NIRS device, using both quartz cuvettes (QC) and DGV. On 

the spectra obtained, an optimization step of data pre-processing was carried out and, 

then, Partial Least Squares (PLS) regression [19] was applied on a calibration set of 

the NIRS data to develop quantitative models for FAMEs and TAGs content. The 
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prediction ability of these models was estimated on a separate test set. The values 

predicted by these models obtained from spectra recorded using QC and DGV were 

used to compare, for the first time, the analytical performances of these two types of 

cuvettes. To do this, the symmetrical and non-parametric Passing-Bablok regression 

method – applicable also when the x variable has substantial uncertainties – was 

applied on the regression models obtained; a joint statistical test on slope and intercept 

was performed considering the null hypothesis (H0) verified when the slope was not 

significantly different from 1 and, simultaneously, the intercept was not significantly 

different from 0. 

 

Experimental Plan: Sampling and Spectroscopic analysis 

Sampling of EVOOs was performed in the context of the Violin Project (project code: 

2016-0169, founded by the Ager Foundation); all the collected EVOOs were produced 

with olives harvested in the season 2017-2018. Sampling was planned with the aim of 

fully representing the whole Italian production; to this purpose, 106 samples were 

collected from the ten most productive Italian regions: Apulia, Tuscany, Sicily, 

Trentino-South Tyrol, Umbria, Veneto, Calabria, Latium, Sardinia and Liguria. The 

number of samples analyzed for each region is proportional to the importance of their 

production (in terms of quantity). This set included 28 PDO (Protected Designation of 

Origin) and 10 PGI (Protected Geographical Indication) EVOO samples.  

In order to avoid any sample degradation, fresh olive oil samples were stored at 4 °C 

under dark conditions (in amber bottles) till analysis.  

For determining the quality parameters of the EVOO samples, destructive analyses 

were performed on the whole set of EVOOs. In more detail, FAMEs were quantified 

using a fast-GC approach while TAGs were obtained thanks to a UHPLC system.  

For FAMEs determination, samples were prepared as follows: 25 mg of EVOO sample 

were weighted in a 5 mL screw-top test tube. The lipid fraction was trans-esterified 

adding 100 µL of methanolic potassium hydroxide solution (KOH/MeOH, 2M). 

Thereafter, FAMEs were extracted using 1 mL of n-heptane; the reaction mixture was 

shaken vigorously for 30 s. After 5 min, the upper FAMEs layer became clear and 
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ready to be injected into the GC system. FAMEs quantification was carried out on a 

GC-2010 (Shimadzu, Milan, Italy) equipped with a split-splitless injector (280°C), an 

AOC-20i+s autosampler, and a FID detector. SLB-IL60, [1,12-

di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide], 15 m × 0.10 μm 

df × 0.08 mm ID (Merck Life Science, Darmstadt, Germany) was operated under 

programmed temperature: 180°C to 230°C at 15.0°C/min. The injector was held at a 

temperature of 280°C; injection volume: 0.2 µL; injection mode: split 1:250. The FID 

temperature was set at 280°C (sampling rate 40 ms) and gas flows were 40 mL/min 

for hydrogen, 40 mL/min for make up (nitrogen) and 400 mL/min for air, respectively. 

Carrier gas was hydrogen, at a constant linear rate of 90.0 cm/s and a pressure of 

606.4 kPa. 

Regarding TAGs, samples were analyzed using a Nexera X2 system (Shimadzu, 

Kyoto, Japan), consisting of a CBM-20A controller, two LC-30AD dual-plunger parallel-

flow pumps (120.0 MPa maximum pressure), a DGU-20A5R degasser, a CTO-20AC 

column oven, a SIL-30AC autosampler, and a SPD-M30A PDA detector (1.8 µL 

detector flow cell volume). The UHPLC system was coupled to an ELSD (Evaporative 

Light Scattering Detector) detector (Shimadzu, Kyoto, Japan). Separations were 

carried out on two serially coupled Titan C18 100 × 2.1 mm (L × ID), 1.9 µm dp columns 

(MilliporeSigma, Bellefonte, PA, USA). Mobile phases were (A) acetonitrile and (B) 2-

propanol under gradient conditions: 0-105 min, 0-50% B (held for 20 min). The flow 

rate was set at 400 µL/min with oven temperature of 35 °C; injection volume was 5 µL. 

The following ELSD parameters were applied: evaporative temperature 60° C, 

nebulizing gas (N2) pressure 270 kPa, detector gain < 1 mV; sampling frequency: 10 

Hz. NIR spectra were acquired in the transmission mode with an FT-NIR 

spectrophotometer (Buchi NIRFlex N-500, Flawil, Switzerland), in a module for liquid 

analysis equipped with six positions for sample vials. The spectral profiles were 

acquired in the whole NIR region, from 4000 cm-1 to 10,000 cm-1, with a resolution of 

4 cm-1 and 8 scans for each sample.  All measurements were performed at 

temperature controlled directly by the instrument (35 ± 0.5 °C). Two types of cells for 

liquid samples were used in the present study: quartz cuvettes (QC) and disposable 

glass vials (DGV). QC were 100-5-40 SUPRASIL® 300 (Hellma Mullheim, Germany) 

rectangular-section cells, with a 5-mm optical path length, height of 45.0 mm and 
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volume capacity of 1.75 mL. DGV were 548-0042 transparent glass vials (VWR 

International BVBA/SPRL, Leuven, Belgium), with a 3-mm optical path length, height 

of 40.0 mm and volume capacity of 1 mL.  

Samples were acquired randomly in duplicate, and the average spectrum was used 

for data analysis, in order to minimize unwanted spectral variability. 

In more detail, EVOO samples were put into QC without any physical or chemical pre-

treatment. After the analysis, to prepare the cuvette for further acquisitions, each QC 

was washed with a surfactant detergent in warm water, followed by acetone, and then 

dried.  Another aliquot of the same samples was placed in the DGV and the NIR 

spectra were directly recorded using the same method as for QC. 

 

Chemometric approach purposed  

The whole data analysis was performed in the Matlab environment (The MathWorks, 

Inc., Natick, MA, USA, Version 2016b) using both the PLSToolbox package 

(Eigenvector Research, Inc. Manson, Washington) and in-house functions.  

First, NIR transmittance spectra were converted into the absorbance scale (Log(1/T)) 

for a direct interpretability of the outcomes [20]. Then, a noisy region at the end of the 

signal and without significant absorption was removed, and the spectral range reduced 

from 10,000 to 4528 cm-1. Subsequently, spectra were organized in two matrices 

containing 106 rows and 1369 columns, samples and spectral variables, respectively. 

The first matrix was related to the acquisitions performed with QC, while the second 

one contained the signals obtained with DGV.  

For model development, the two data matrices obtained with QC and DGV were 

divided into a calibration set (including 80% of samples) and a test set (including 20% 

of samples) thanks to the application of the Kennard and Stone algorithm [21]. 

Before model computation, a comparison between eight different combinations of data 

pre-treatments was performed in order to select the most suitable pre-processing 

strategy and to improve the subsequent calibration models. The application of 4 data 

transformations (two column and two row pre-processing algorithms) was evaluated, 

considering also their combinations:  
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• Column mean centering 

• Column autoscaling 

• Standard Normal Variate (SNV) transform + column mean centering  

• Orthogonal Signal Correction (OSC) + column mean centering  

• SNV + OSC + column mean centering  

• SNV + column autoscaling  

• OSC + column autoscaling  

• SNV + OSC + column autoscaling.  

SNV was tested, as it allowed to correct for baseline vertical shifts and global intensity 

effects, typically arising from light scattering phenomena in vibrational spectroscopy 

[20]. OSC was evaluated in order to remove some of the information embodied in 

spectral data that is unrelated (orthogonal) to the quantitative variable to be modelled 

(Y-vector); in this way, ideally, just the useful information related to the response is 

maintained in the X-block [22]. Both strategies for column pre-processing (mean 

centering and autoscaling) were considered, alone and in combination with row 

transforms.  

The best pre-processing combination was chosen, for each model, evaluating the root 

mean square error in cross-validation (RMSECV), within a cross-validation cycle with 

5 deletion groups, using the venetian blind scheme. 

After performing the pre-treatments optimisation, Principal Component Analysis (PCA) 

was applied as an exploratory tool useful to identify the presence of possible outliers 

in the dataset and they were not found [data not shown].  

To reach the final aim of statistically comparing the prediction ability of the models built 

using spectra measured with QC and DGV, the Passing-Bablok regression method 

[23] was applied on the pairs of Y values predicted by the models developed for each 

quality parameter separately. This regression method is particularly suitable for 

method comparison, since it is a symmetrical non-parametric technique, which is able 

to build regression models also when the independent variable is affected by a 

significant uncertainty. The estimation of a linear regression equation between the two 
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data vectors, obtained with two different methods or devices, both measured with an 

error associated, allows one to statistically evaluate the similarity/diversity between 

the two independent estimations.  To do this, slope and intercept of the fitted line were 

calculated, and a significance test was conducted at 95% confidence level. The null 

hypothesis (H0) was verified when the slope was not significantly different from 1 and, 

simultaneously, the intercept was not significantly different from 0. 

 

Research outcomes 

Among the variables describing EVOO quality measured with the reference methods 

within the Violin project (see previous paragraph 2.2), six of them, whose range of 

variability was less reduced than for the other quality parameters, were considered for 

the comparison between QC and DGV. The other FAMEs and TAGs showed a so 

small variability – comparable with the magnitude of the measurement error – as to 

hinder their use for the development of reliable multivariate calibration models. In more 

detail, the selected TAGs were: dioleoyllinoleoyl-glycerol (OOL), oleoyl-linoleoyl-

palmitoylglycerol (OLP) and triolein (OOO), while the selected FAMEs were:  palmitic 

(C16:0), oleic (C18:1n9) and linoleic (C18:2) acids.  

A subset of 80 EVOO samples was chosen by the Kennard and Stone algorithm for 

constituting the calibration set, and the remaining 26 samples were used as the test 

set, to validate the quality of the regression models in prediction.  

In order to select the most suitable strategy to pre-process the NIR spectral profiles 

and the optimal complexity of PLS models, for both QC and DGV data, an optimization 

procedure was performed. It is important to underline that independent optimizations 

were performed for QC and DGV data; for each variable considered (three FAMEs 

and three TAGs), a PLS regression model was computed. In more detail, PLS models 

were calculated retaining an increasing number of LVs, from 1 to 10, and applying 

different spectra pre-treatments, according to the list presented above.  Figures 1 and 

2 show the RMSECV for each of the 96 calculated models (48 on QC data and 48 on 

DGV data) as a function of the number of LVs; different colours are used to identify 

the spectral pre-processing applied. This straightforward representation allows to 

easily individuate the type of pre-processing and the number of LVs that, in 
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combination, minimizes the error of each PLS model in cross-validation (optimal 

complexity). Figure 1 resumes the model computation on the spectral data acquired 

using the traditional QC, while Figure 2 refers to the model developed for spectra 

coming from the DGV data. 

 

 

  

 

For all the quality parameters modelled using the QC spectra, SNV + OSC + mean 

centering (represented in green in Figure 1) turned out to be the best combination, as 

it led to a minimum RMSECV with less complex models (lower number of LVs), if 

compared with other pre-processing strategies. From a global evaluation of the QC 

models, a LV number ranging from 4 to 6 was considered as the best compromise 

between model complexity and associated error (data not shown).  

 

Figure 1: RMESCV of PLS regression models of NIR spectra acquired with quartz cuvettes (QC) for 
evaluating eight combinations of data pre-processing 
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The same considerations can be drawn when considering the results obtained by the 

modelling of DGV spectra: for these models, the combination of SNV + OSC + mean 

centering (represented in green in Figure 2) has proved to be the most suitable 

strategy for minimizing RMSECV. To better highlight the effect of the selected 

combination of pre-processing on the data acquired, in Figure 3, original spectral 

profiles and spectra after pre-treatment, are shown: Figure 3a shows the raw signals 

acquired using QC, while Fig. 3b represents the QC spectral profiles transformed by 

SNV + OSC for variable C18:1n9. Similarly, Fig. 3c shows the original signals acquired 

using GDV and Fig. 3d the data transformed, for the same variable, using SNV+OSC. 

Using two different row pre-treatments such as SNV and OSC, it was possible not only 

to remove the unwanted effects caused by interferences of scattering, but also to 

emphasize the information embodied within the spectra according to the feature that 

was modelled. This approach permitted to decrease the number of LVs to retain and, 

therefore, the complexity of the models. For a better comparison of raw and 

transformed profiles, mean centering was not included in this representation. 

 

Figure 2: RMSECV of PLS regression models of NIR spectra acquired with disposable glass vials (DGV) 
for evaluating eight combinations of data pre-processing. 
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After choosing the proper data pre-treatment, PLS models were validated on samples 

belonging to the test set. The model parameters, calculated on pre-processed spectra, 

are presented in Table 1 for both QC and DGV data. For each quality parameter, a 

direct comparison between QC and DGV model can be performed in terms of number 

of LVs selected, error in cross-validation and in prediction. In more detail, the root-

mean square error in cross validation (RMSECV) and in prediction (RMSEP) are 

reported both in the corresponding variable unit (area %) and also as percentage 

calculated in respect to the mean (PCRMSE). The percentage value allows a direct 

understanding of the model goodness. 

 

 

Figure 3: NIR spectra of EVOO samples before and after row pre-processing 
measured in QC (a-b) and DGV (c-d). 

a b

c d
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Table 1: Calibration and prediction outcomes of PLS models for quartz cuvettes (QC) and disposable 
glass vials (DGV) 

 

The standard errors of the reference analyses expressed in the corresponding variable 

unit (area %) range between 0.40 and 1.30 and between 0.02 to 0.10 for FAMEs and 

TAGs, respectively; thus, for some of the models presented, the results obtained, in 

terms of predictive capability, cannot be considered completely satisfactory.   This was 

verified and especially for OOL and OLP, it is mainly due to the reduced variability for 

these response (Y) variables in the EVOO samples of the calibration set. This did not 

allow to obtain PLS regression models with high predictive performances.  

Looking at the results, it is possible to notice that the prediction errors are slightly – 

but not significantly – lower for models calculated using QC. Indeed, a numerical 

comparison between RMSECV% and RMSEP% of the PLS models is not the most 

appropriate way to understand if the predictive performances of the two types of 

cuvettes are effectively comparable. Therefore, to verify if the differences among the 

QC and DGV were statistically significant, Passing-Bablok regression was applied on 

the Y values predicted on test set data with both QC and DGV models. The null 

hypothesis (H0) of the joint significance test was that the slope is not significantly 

different from 1 and that the intercept is not significantly different from 0, at a 95% 

confidence level; the results of these tests are presented in Table 2. For the sake of 

completeness, for both slope and intercept, both the limits of acceptability (LL = lower 

limit and UL = upper limit) and the calculated value (CAL) are reported. 

Quality parameter predicted 
(Y) 

Type of 
cuvettes 

Mean Y 
Y range 

(min-max) 
Number 
of LVs 

RMSECV PCRMSECV RMSEP PCRMSEC 

OOL 
QC 

13.04 1.53-14.29 
4 0.99 7.59% 0.75 5.75% 

DGV 4 0.96 7.36% 0.91 6.98% 

OLP 
QC 

6.99 4.20-12.92 
4 0.69 9.87% 0.68 9.73% 

DGV 6 0.76 10.87% 1.09 15.56% 

OOO 
QC 

38.36 23.13-50.22 
4 2 5.21% 1.62 4.22% 

DGV 6 2.46 6.41% 2.1 5.47% 

C16:0 
QC 

12.86 9.53-16.40 
4 0.61 4.74% 0.58 4.51% 

DGV 6 0.71 5.56% 0.77 5.97% 

C18:1n9 
QC 

72.48 58.55-79.32 
5 1.17 1.61% 1.2 1.66% 

DGV 5 1.19 1.64% 1.29 1.79% 

C18:2n6 
QC 

7.49 4.78 -16.38 
5 0.28 3.74% 0.28 3.74% 

DGV 6 0.44 5.87% 0.48 6.41% 
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Table 3: Results of joint test on slope and intercept values of the regression lines (from Passing-
Bablok regression), at a 95% confidence level. 

 

 

Outcomes of the tests indicated that there were not statistical differences between 

FAMEs and TAGs Y values predicted from spectra measured with QC and from 

spectra measured with DGV; the null hypothesis (H0) was, in fact accepted, for all the 

six parameters (OOL, OLP, OOO, C16:0, C18:1n9, C18:2n6) considered, at the 95% 

confidence level. Considering these results, it was possible to state that comparable 

results were obtained for the prediction of the EVOO quality parameters considered, 

with both quartz cuvettes and disposable glass vials.  

                            

Conclusion and scientific impacts  

In this study, with the final aim of reducing the time of NIRS acquisition for olive oil 

‘highly frequent’ analysis, a critical comparison between analytical performances of 

QC and DGV, based on the determination of parameters which affect olive oils quality 

(FAMEs and TAGs), was performed.   

In more details, a large set of EVOO samples was analysed by NIRS using both QC 

and DGV, and the spectra were used to build PLS calibration models for predicting 

some EVOO quality parameters.  

Optimisation of pre-processing showed that a joint application of SNV + OSC + mean 

centering led to the best models in terms of prediction error in cross-validation and 

model complexity (lowest number of LVs). 

Quality 
parameters 

Slope 
LB 

Slope 
UB  

Slope 
CAL 

Intercept 
LB  

Intercept 
UB 

Intercept 
CAL 

H0 

OOL 1.09 2.26 1.58 -16.39 -1.22 -7.52 H0 accepted 

OLP 1.08 1.82 1.40 -5.30 -0.41 -2.53 H0 accepted 

OOO 1.17 1.80 1.48 -30.60 -5.92 -17.83 H0 accepted 

C16:0 0.72 1.17 0.89 -2.18 3.41 1.38 H0 accepted 

C18:1n9 0.81 1.32 0.99 -23.06 14.57 1.42 H0 accepted 

dC18:2n6 1.02 2.55 1.55 -11.09 -0.28 -3.97 H0 accepted 
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Thanks to a significance test based on Passing-Bablok regression, it was possible to 

highlight that there are not statistical differences between models calculated with QC 

and those obtained with DGV; this statement was demonstrated for all six the 

parameters (OOL, OLP, OOO, C16:0, C18:1n9, C18:2n6) considered.  

The present study demonstrated that the employment of DGV instead of quartz vials 

reduces time and costs for the acquisition of NIR spectra, representing a key point for 

the automation in the olive mill industry. The challenge of implementation of NIR 

equipment in the production chain is, in fact, of great concern to the olive oil industry, 

and it depends on the availability of dedicated analytical solutions able to provide an 

accurate multicomponent analysis in a short time and with little effort and, in this 

context, the use of DGV allows to eliminate the washing and drying times necessary 

for the QC. 

In order to understand if DGV can replace QC also for different analyses, this study 

should be extended, applying the same scheme to data coming from the prediction of 

other parameters of interest. 
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2.2 ANALYSING THE WATER SPECTRAL PATTERN BY 

NEAR-INFRARED SPECTROSCOPY AND CHEMOMETRICS 

AS A DYNAMIC MULTIDIMENSIONAL BIOMARKER IN 

PRESERVATION: RICE GERM STORAGE MONITORING 

 

Scientific Background and aim of the work   

Water activity is one of the fundamental concepts on which food processing and food 

storage are based, extensively investigated since the beginning of the eighties and 

accepted in many national and international food legislations. Water activity is defined 

as the partial vapor pressure of water in the food matrix under study in respect to the 

standard state partial vapor pressure of pure water; it is a measurement of the energy 

status of water in a system. Thanks to this definition, it is possible to understand the 

importance of such parameter - it represents the amount of water in a food product 

available for biochemical reactions and it is an indicator of food stability with respect 

to microbial growth. Moisture content is another important parameter for stability of 

food during storage – it is a measure of the quantity of water in the product, but water 

activity provides information about which part of this water is available for chemical 

reactions. Nowadays, the non-linear relationship between water activity and moisture 

is accepted worldwide and schematized in the moisture sorption isotherm curves [24]. 

These isotherms are substance and temperature specific, and they are useful in 

predicting product stability over time in different storage conditions. Although, water 

activity in low-moisture foods depends on the storage conditions such as relative 

humidity and temperature, it is generally accepted that at values of water activity below 

0.60 threshold microbial spoilage is not likely to occur [25], [26]. Control of the water 

activity and moisture content is the basic principle of food preservation and prevention 

of microbial and chemical deterioration – both are aimed at actually manipulating the 

water, either by removing or binding [26]. Water content and water molecular structure 

are therefore the crucial factors determining the stability and modifications of products 

during storage. Despite being microbially stable, the food during storage may undergo 
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changes due to the chemical and enzymatic reactions [26], which are dependent on 

the water activity and can influence the properties of interest for consumers such as 

taste or texture. Several methods have been proposed for measuring water activity, 

from resistive electrolytic or capacitance hygrometers to dew cells and others. With 

both methods, vapor–liquid equilibrium must occur in a sample chamber in which the 

temperature is continuously measured. There are also attempts of developing novel 

type water activity meters based on electromagnetic spectroscopy which could provide 

faster, no contact and non-destructive measurements [27], [28]. 

The role of water activity in determining the reaction rate is demonstrated to be crucial, 

in particular, for low-moisture food. Labuza in 1970 [29] proposed a global food stability 

map in which the evolution of crucial reactions that occur in food products is described, 

in respect to the water activity level. In particular, in food matrices with a moisture 

content lower than 25%, lipid oxidation is the major cause of quality degradation in 

food [30]. This is the case for rice germ, a by-product of the milling industry, nowadays 

considered as a novel food because of its interesting nutritional value. Rice germ is 

the embryo part of rice and represents 1–3% of rice kernel (depending on the variety), 

but it contains all the nutritional elements needed for the growing of a new plant [31]. 

In commercial products, it is completely removed during the milling process in the 

whitening phase. The reason is the high content of unsaturated fatty acids in rice germ, 

which are very susceptible to oxidative rancidity, strongly limiting the storage stability 

and shelf life [32]. 

In light of these considerations, in the present study, the storage of rice germ at 

different water activity levels was chosen as a case study for understanding the water 

molecular structure within the rice germ and how it is related to the water activity and 

the changes during storage. Indeed, despite its importance and its practical 

implications in food storage, in-depth studies of how the water activity is related to the 

water molecular structure are scarce and many phenomena are still left unexplained. 

For example, it is still unclear why at the same water activity level some foods are 

stable, but others are not. To understand the mechanism of food 

preservation/degradation, the knowledge of the water structure is necessary, because 

its mobility and availability for biochemical reactions depend on the type of interactions 

with other food components [33]. 
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In order to fulfil the objective of this study, the aquaphotomics approach was chosen 

– an approach to study water by focusing on its interaction with electromagnetic 

radiation. Aquaphotomics is an “omics” discipline, established by Roumiana Tsenkova 

[34] and thoroughly presented in recent review [35], [36]. The main subject of this new 

approach is to understand the integrative role of water in biological and aqueous 

systems by monitoring how the water spectrum changes under various perturbations. 

The near infrared (NIR) wavelength region of the electromagnetic spectrum, in 

particular, the first overtone of the OH stretching vibrations (1300 – 1600 nm) was 

shown to be an excellent window for the observation of the water molecular structure 

and, in addition, enables non-destructive measurements. In contrast to the traditional 

NIR spectroscopy studies, in which the water absorption band is considered as 

masking the real information, aquaphotomics considers the water spectral pattern as 

the main source of information, like a sensor or a mirror of what is happening in the 

samples under study. This principle of indirect measurements is described as a “water 

mirror approach [34], [35]. In more detail, aquaphotomics studies have been done in 

specific spectral regions when a certain perturbation of interest is applied on samples 

under study; in these regions, specific water absorptions can be found with the highest 

probability, defining the water matrix coordinates (WAMACS) [34], each one imputable 

to a specific water molecular formation (water molecular species). The bands showing 

highest spectral variations considered as “activated”, within the well-established 

WAMACS, are monitored for a comprehensive understanding of the system. The 

combination of these activated bands defines the water absorbance spectral pattern 

(WASP), which describes the condition of the whole aqueous system related to its 

functionality (i.e., how the system behaves under the specific perturbation or its 

properties). The representation of the WASP is done by using special radar charts, 

called aquagrams [37]. This rigorous multivariate approach allows to standardise the 

data processing procedure, fundamental for performing any type of comparison or 

generalisation of the aquaphotomics results. 

Thanks to this novel approach, the dynamics of various water molecular structures 

related to different initial water activities in rice germ along the storage were 

investigated, laying the first stone for understanding the water molecular structures 

responsible for the phenomenon of water activity in general. The present work adds a 
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fundamental knowledge to the understanding of the complex nature of the processes 

that biological matrices undergo during storage and the role of water molecular 

structure in it. 

 

Experimental Plan: Sampling and Spectroscopic analysis 

The experimental plan was designed in collaboration with Società Agricola 

Cooperativa Rondolino (Livorno Ferraris, Vercelli, Italy) which also provided rice germ 

samples, separated from the bran through sifting to a purity degree of about 85%. Rice 

germ samples were stored at 27 °C, at three different levels of water activity (aw) and 

three different storage atmospheres (SAP) (with the exception of aw = 0.55 sample, 

which was only stored in air atmosphere), for a total of 7 combinations, as shown in 

Malegori et al. 2020 [45] and summarized in Table 1. 

 

Table 1: Experimental material and conditions. Sample identification, reporting: sample code, water activity, 

moisture degree and storage atmosphere (SAP) (at 27 °C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 
ID 

aw Moisture 
content 
(g/100 g) 

SAP 

A1 0.55 9.71 ± 0.11 Air 

B1 0.45 7.82 ± 0.15 Air 

B2 0.45 7.82 ± 0.15 Vacuum 

B3 0.45 7.82 ± 0.15 Argon 

C1 0.36 6.86 ± 0.08 Air 

C2 0.36 6.86 ± 0.08 Vacuum 

C3 0.36 6.86 ± 0.08 Argon 
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Rice germ samples were packaged in cans (210 mL, filled with 130 g of sample) and 

then stored for 320 days. Samples at three levels of aw were first analyzed before 

packaging (time t0). Then, during the 320-day storage period, packaged rice germs 

were sampled and analyzed seven times. The aw levels were monitored for each 

sample along the whole storage period and did not show any significant modifications 

during the entire observation period, as it was detailed in a previous study [45]. 

To investigate chemical modifications of rice germ during storage according to the 

level of aw, a robust rice germ NIR spectral data analysis procedure, based on an 

aquaphotomics approach [36], was developed and the workflow is schematically 

presented in Fig 1 

 

 

 

 

Aquaphotomics analysis was performed using only the first overtone of the O-

H stretching vibrations, focusing on the water absorption pattern in the NIR region from 

1300 to 1600 nm. 

Rice germ samples were analyzed by near-infrared (NIR) spectroscopy in the 

reflection mode (data recorded as Log (1/R) or pseudo-absorbance), using a Fourier 

Transform (FT) NIR spectrometer (MPA – Bruker Optics, Milan, Italy) equipped with a 

rotating sample holder; spectra were acquired in the range 12,000 – 4000 cm−1 (800 

Figure 1: Spectral data analysis workflow. To investigate chemical modifications of rice germ during 
storage according to the level of aw, a robust rice germ NIR spectral data analysis procedure, based on 

an aquaphotomics approach, was developed and executed according to the present workflow 

https://www.sciencedirect.com/topics/chemistry/stretching-vibration
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– 2780 nm), with a 4 cm−1 resolution, and 64 scans for both samples and background. 

To obtain a representative spectrum of each sample, the whole content of rice germ 

coming from each can was placed in a glass Petri dish at room temperature (20 – 22 

°C) before performing the rotational acquisition. To perform the data processing 

according to the aquaphotomics approach, it is fundamental to standardise accurately 

the acquisition step, in order to minimise the experimental noise and the influence of 

unwanted perturbations on the spectral profile. 

 

Chemometric approach purposed 

The first step in data evaluation was the pre-processing, aimed at smoothing 

differences between samples stored at the three different atmospheres, in order to 

focus on spectral features, characteristic for variations in aw. As the row data pre-

processing, a multiplicative scatter correction (MSC) was applied, according to the 

aquaphotomics procedure, allowing us to properly address the absorption bands 

without taking into account global intensity effects [20]. A block-wise centering was 

performed by subtracting the average profile of spectra recorded on samples stored 

at each modified atmosphere (considered as a block) from spectra of samples at the 

same condition. This set of pre-processed spectra will be from now on referred to as 

BW-centered (block-wise) spectra. To account for another important factor of the data 

set under study – the time trend – another specific data pre-treatment was developed, 

trying to decompose the variability related to aw and the one related to storage time. 

To do this, spectra were also centered with respect to the time 0, by subtracting the 

spectrum obtained at t0 (before packaging) from all of the spectra subsequently 

recorded for the samples at the corresponding aw. This pre-treatment procedure 

minimised original differences among batches, and from now on will be referred to as 

t0-centering. 

 

Data pre-treated by these two strategies were submitted to the subsequent exploratory 

processing step (Principal Component Analysis – PCA), with the aim of understanding 

the contribution of the two factors, aw and storage time on rice germ modifications. 

PCA is a well-recognised and informative method that explores data structures without 
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using a priori information [92]. This exploratory step was performed on both data sets, 

in order to understand which variables are more accountable for sample groupings, 

according to aw level and time trend. This approach was possible thanks to the joint 

interpretation of the score and loading plots, graphical outcomes of PCA analysis. 

To emphasise the information related to aw and to test the consistency of the PCA 

outcomes, a supervised method was applied on pre-processed data. Partial Least 

Squares (PLS) regression analysis [19] was performed, using aw level as the response 

variable (y variable). Evaluation of PLS coefficients allows insight into which variables 

of the predictors (x matrix) have the highest contribution for successful differentiation 

between samples in terms of the water activity. 

To confirm the consistency between the two approaches, highlighted variables are 

expected to be the same as those identified by the exploratory and the supervised 

method. Both steps aimed at highlighting the most informative NIR wavelengths 

representing respective water molecular structures, the ones that are activated by the 

variations in aw and storage time. Getting to the heart of the aquaphotomics approach, 

the wavelengths selected with the previous steps, are used to define the Water 

Spectral Pattern (WASP) [34] for the study of the rice germ evolution during storage. 

The variations of the absorption at these selected wavelengths were graphically 

presented using aquagrams [36], [38] allowing an integrative interpretation of the 

phenomena under study. Two types of aquagrams are presented in the current study: 

the first one is aimed at enhancing the differences between rice germ samples stored 

at different aw levels; the second one is focused on variations of samples along time, 

split according to the levels of aw. In both cases, information related to different SAPs 

was minimised by application of BW-centering. It is important to underline that the 

pseudo-absorbance (Log(1/R)) values were range scaled (between the minimum and 

the maximum values of the subplots within each figure) for a direct comparison of all 

the aquagrams presented on each figure. What becomes evident from the procedure 

described is that there is a strong interaction between aw levels and a time trend, which 

is very difficult to decompose. For this reason, the last step of the data processing is 

focused on understanding such a pattern of correlation, thanks to a three-way data 

analysis [95]. Data were submitted to Tucker3 decomposition after j-scaling 

(autoscaling performed along variables) [96]. Performing Tucker3 PCA on the t0-
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centered data, in fact, allows to represent, in a unique orthogonal space (triplot): aw 

levels, sampling times and the selected wavelengths. 

 

Exploratory analysis: spectral averaging and principal component analysis (PCA) 

The results of the first steps of the analysis, presented in Fig. 2a, show the average 

spectra of the samples at different water activity levels after the pre-processing steps 

(multiplicative scatter correction, BW and t0-centering). The role of pre-processing was 

two-fold: by BW-centering the differences among different storage atmospheres, 

(SAP, codified by numbers: 1, 2 and 3) were minimized, while the t0-centering 

minimises, in addition, the differences among aw batches (A, B and C) before 

packaging, at time t0. As a result of this, a clear difference between the spectral profiles 

can be observed for spectra of rice germs stored at different aw levels. 

 

 

 

 

Fig. 2b and 2c show the score and loading plots of PCA for the pre-processed data, 

respectively; the two lowest-order principal components (PC1 and PC2) account for a 

total of about 97.2% of the total information. The scores plot (Fig. 2b) shows that PC1 

(explaining the 92.1% of variance) is associated with aw levels and the separation 

among the three levels (A, B and C) is well-defined. A, B and C samples are distributed 

Figure 2: Results of exploratory analysis. (a) Spectral profiles after preprocessing using MSC, block-centering and t0-centering; 
(b) PCA score plot of the preprocessed spectra, (c) loading plot of the preprocessed spectra. All the figures presented are 

codified by the same color, according to the water activity level: light blue for the highest level of aw = 0.55; pink for the 
intermediate level of aw = 0.45, and grey for the lowest level of aw = 0.36. 
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along PC1 with the highest level of aw (A) located at the negative score values, and 

the lower levels located at higher scores. Looking at the loading plot of the PC1 (Fig. 

2c) it shows that different aw values of rice germ influence the absorbances at 1343 

nm, 1375 nm, 1388 nm, 1425 nm and 1455 nm, the last two bands having higher 

absorbance for lower aw values, while the first three listed bands characterize high aw 

sample. The PC2 component (accounting for the remaining 5.1% of the variance) is 

separating the A and C scores from B scores, and in addition, it is possible to observe 

that PC2 scores are associated with the time trend. For each A, B and C group of 

scores, a time trend is detectable along PC2: the first sampling points (t0 and t1) are 

located at the highest PC2 scores, while the last ones (t5 and t6) at the lowest PC2 

scores for each of aw level score groups (trend is represented by arrows in Fig. 2b). 

The loading of the PC2 shows the following important wavelengths: at 1330 nm, 1392 

nm, 1410 nm, 1425 nm, 1436 nm, 1452 nm and 1478 nm. While it is not clear at this 

point why the B scores are separated from A and C scores along the PC2, the time 

trend is clearly associated with the changes in absorbance at the mentioned 

wavelengths, most probably it indicates that time-dependent changes in water 

molecular structure of rice germ are not in linear relationship with the initial aw of the 

samples, which obviously dictates the position of the scores at the beginning of 

storage period. This further means that PC2 also explains a small part of the total 

variance due to aw, which translates into non-linear changes in absorbance at the 

bands found in loading of the PC2. Similarly, a fluctuation of scores corresponding to 

the sampling period within the last three months can be observed, indicating also a 

not completely linear relationship with time. 

 

Supervised analysis – partial least squares (PLS) regression 

 To further the investigation of which absorbance bands are related to the phenomena 

under study and how, a supervised methodology based on PLS regression was 

applied. Using pre-processed spectra as the predictors, the regression modelling was 

performed firstly, using aw as the response variable, and secondly, using the time as 

a response variable. In the case of the regression using time, the models were built 
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independently for each of the different aw levels sample groups, since the previously 

performed PCA analysis clearly revealed differences depending on the initial aw levels. 

These models were not built for predictive purposes, but for a supervised exploration 

and a better understanding of the most informative spectral bands concerning aw and 

the time trend. The results of PLS regression are presented in Figures 3 and 4. Fig. 

3 presents PLS analysis results obtained using aw as the response variable while Fig. 

4a, b and c show agreement between values measured and predicted by PLS 

regression for time, at aw = 0.55, aw = 0.45 and aw = 0.36 levels, respectively. 

Lastly Fig. 4d shows the regression vector coefficients for the three time regression 

models, together. 

  

 

 

 

Figure 3: PLS regression analysis using aw. PLS regression analysis on pre-processed spectra using aw levels as 
dependent variable: (a) predicted vs. experimental aw, (b) PLS coefficients using different levels of aw as 

dependent variable. 

https://www.sciencedirect.com/science/article/pii/S1386142521009732?casa_token=ieAaCDZvzQQAAAAA:ESEext5BU7lNXPS-sAnZZtKRsHYLNm6vMqcUJsHop5O1tPe3vuEU4Cp0SKTtxv4uYgqm3OE#f0020
https://www.sciencedirect.com/science/article/pii/S1386142521009732?casa_token=ieAaCDZvzQQAAAAA:ESEext5BU7lNXPS-sAnZZtKRsHYLNm6vMqcUJsHop5O1tPe3vuEU4Cp0SKTtxv4uYgqm3OE#f0020
https://www.sciencedirect.com/science/article/pii/S1386142521009732?casa_token=ieAaCDZvzQQAAAAA:ESEext5BU7lNXPS-sAnZZtKRsHYLNm6vMqcUJsHop5O1tPe3vuEU4Cp0SKTtxv4uYgqm3OE#f0025
https://www.sciencedirect.com/science/article/pii/S1386142521009732?casa_token=ieAaCDZvzQQAAAAA:ESEext5BU7lNXPS-sAnZZtKRsHYLNm6vMqcUJsHop5O1tPe3vuEU4Cp0SKTtxv4uYgqm3OE#f0025
https://www.sciencedirect.com/science/article/pii/S1386142521009732?casa_token=ieAaCDZvzQQAAAAA:ESEext5BU7lNXPS-sAnZZtKRsHYLNm6vMqcUJsHop5O1tPe3vuEU4Cp0SKTtxv4uYgqm3OE#f0025
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Fig. 3a shows the predicted vs. experimental values in cross-validation: due to the fact 

that aw levels are discrete, the vertical dispersion of scores along the same aw value 

is related to model error. Although a noticeable dispersion is evident at each level, it 

is important to underline that no overlap is detectable between the different levels of 

aw. The most important outcome of this step is reported in Fig. 3b that represents PLS 

regression coefficients of each spectral variable (wavelength). These values indicate 

the contribution of absorbance bands at each wavelength in the modelling of aw 

response: the larger the absolute value, the higher the contribution of the absorbance 

at this wavelength (positive or negative). Some of the wavelengths highlighted (1330 

nm, 1392 nm, 1410 nm, 1425 nm, 1436 nm, 1455 nm and ∼ 1478 nm) are consistent 

with the ones observed in loadings of the PCA analysis, strongly confirming their 

Figure 4: PLS regression using time. PLS regression analysis on pre-processed spectra using time as the 
dependent variable: (a) predicted vs. experimental time at aw = 0.55, (b) predicted vs. experimental time 

at aw = 0.45, (c) predicted vs. experimental time at aw = 0.36, (d) PLS coefficients at three aw levels. 
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importance. PLS regression also revealed other important bands at: 1364 nm 

(negative contribution) and contribution of a broad band around 1475–1518 nm 

(positive contribution) which is a result of several absorbance bands whose small 

peaks can be observed. From the Fig. 3a it can also be observed that the modelling 

of aw values slightly deviate from linearity, a finding also seen from the PCA analysis 

(Fig. 2b, the trend along PC2 axis). In the regression vectors of PLSR models 

developed for the time, for each level of water activity separately, it can be seen that 

the differences in regression coefficients occur in the following spectral regions 1340 

– 1360 nm, 1390 – 1415 nm, 1445 – 1500 nm and in particular at one absorbance 

band − 1436 nm. This finding indicates that changes in the water structure during 

storage are different depending on the initial aw of the rice germ when it was stored, 

and it dictates which water molecular species are going to reorganize. In other words, 

the initial aw level upon storage defines the initial water molecular structure, i.e. the 

representation of particular water molecular species, which further governs possible 

structural changes during storage. In all the regression vectors from both time models 

and aw model, common bands can be observed: 1364 nm, 1390–92 nm, 1405–14 nm, 

1436 nm, 1453–57 nm and 1575–1580 nm. 

 

Aquaphotomics analysis 

Based on the analysis so far, it became evident that the bands found important for the 

description of the influence of initial aw, as well as the progression of time on the rice 

germ samples, belong to previously well-defined water matrix coordinates (WAMACS) 

– absorbance bands of water found within the spectral region of the first overtone of 

the O-H stretching vibrations, corresponding to absorbance of different water 

molecular species [34]. This region has been thoroughly investigated leading to the 

experimental findings, theoretical confirmation and finally, definition and 

systematization of the mentioned 12 WAMACS into discrete intervals, each one with 

a specific assignment in the terms of the water molecular structure [34]. In this study, 

the wavelengths, revealed as important by the multivariate analysis described above, 

represent activated water absorbance bands [36] and majority fits within the 12 

WAMACS intervals. The phrase “activated water absorbance bands” means that water 
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molecular species which absorb light of this wavelength are particularly affected by 

differences in aw and/or duration of storage (time). The activated water absorbance 

bands, according to the aquaphotomics analysis protocol, can be used to visually 

represent the water spectral pattern (WASP) of the studied samples in special charts 

– aquagrams [36], [38] which allow easy insight into the molecular composition of 

water within the rice germ and how it changes in respect to the studied perturbation 

(aw, time).  In addition to the bands repeatedly found in the analysis, in order to take 

into account also water structures not revealed by the previous steps, the 

complementary wavelengths from other WAMACS intervals were also included in the 

aquagram representation (1343 nm, 1382 nm, 1474 nm and 1518 nm) resulting in the 

definition of the following WASP for studying the evolution of rice germ samples during 

storage: 1343 nm, 1364 nm, 1375 nm, 1382 nm, 1392 nm, 1410 nm, 1425 nm, 1436 

nm, 1455 nm, 1474 nm, 1492 nm, and 1518 nm. Absorbance values recorded at these 

12 wavelengths were used, after a global normalization, to build two types of 

aquagrams: Fig. 5 shows the profiles of each rice germ sample, colored according to 

the corresponding aw level, for different sampling times, while Fig. 6 shows the profiles 

of rice germ samples, colored according to the different sampling times, for different 

aw levels. 

 

 

Figure 5: Aquagrams grouped according to the sampling times. The aquagrams show the differences of 
the samples stored at different initial aw levels at each sampling time (sampling times from t1 to t6). The 

profiles of rice germ samples are colored according to the corresponding aw level. 
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First, let us consider the aquagrams in Fig. 5 which represent water spectral patterns 

(WASP) of the rice germ stored initially at different aw levels and how they compare 

at each measurement time point. The sample stored at the highest aw = 0.55 level, 

compared to the others, throughout the storage period, shows highest absorbance at 

1518 nm, and lowest at 1410 nm, 1425 nm and 1455 nm. 

For this sample, the absorbance at 1436 nm increases steadily over the storage 

period. Also, the absorbance at three wavelengths 1364 nm, 1375 nm and 1382 nm 

increases, and it is especially higher when compared to the other samples. On the 

other hand, the samples stored at the lower levels of aw = 0.36 and aw = 0.45 show 

higher absorbance at wavelengths from 1392 to 1492 nm (with the exception of 1436 

nm). Then, during the storage, as the time progresses, the absorbance in this region 

decreases, leaving only high intensity at 1436 nm. At the end of the storage period, 

samples stored at the lowest initial aw levels show the lowest value of absorbance at 

this band. However, despite the decrease in absorbance, the values at 1410 nm and 

1425 nm remain high and higher in comparison to the sample stored at the highest aw 

level. One more interesting feature for WASPs of all samples is that, despite the 

changes as a function of time, the absorbance at 1492 nm is where all the samples 

are the least different. It is the only absorbance band where WASPs of all samples, 

regardless of aw or storage atmosphere, almost coincide at each measurement point 

along time. Among the observed absorbance bands, the 1410 nm and 1518 nm are 

the most well-known absorbance bands of water in the scientific literature and can be 

Figure 6: Aquagrams grouped according to the aw level. The aquagrams show how each sample group, depending on the 
initial water activity, is changing over time (the profiles of averaged rice germ sample are colored according to the sampling 

time). Each aquagram is an integrative biomarker for rice germ samples at the specific water activity level. 
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assigned to free water molecules and strongly bound water, respectively (11). 

Analyzing the aquagrams in Fig. 6, which show differences in WASPs for each aw level 

separately, over time, a certain trend can be detected in agreement with what was 

observed from the earlier aquagrams: samples at all aw levels present a strong 

absorption at 1518 nm, and a weak one at 1410 nm and 1425 nm. This interesting 

feature is preserved along time, indicating that the ratio of these water structures is 

important during storage. On the other hand, for each aw level, the major variations 

during storage time, and the highest absorbance can be noticed at 1436 nm, indicating 

the importance of the water species absorbing at this wavelength and that they vary 

during storage. It can also be seen from these aquagrams that the variations happen 

along time at the water bands 1392 nm, 1364 nm, 1375 nm and 1382 nm, and that 

they follow the time trend in the case of the samples with the highest aw. The first out 

of these four absorbance bands can be assigned to the water confined in the local 

field of ions, also called trapped water or dehydration band [34], [35], [39], [40], while 

the latter three correspond to proton hydrates [41], [42], [43] and/or water solvation 

[11], while together they can be attributed to water vapour [21]. From these aquagrams 

also, it can be observed that absorbance at 1492 nm only decreases with time, and 

that during the third month of storage (t3) all the samples show substantial change in 

spectral pattern at 1410 nm, 1425 nm and 1436 nm. Previous study using NIR 

spectroscopy and electronic nose, also indicated differences between the first three 

(considered still fresh) and the last three months of storage in rice germ (long time of 

storage). 

In summary, from Fig. 6. one can notice that a certain, specific water spectral pattern 

(WASP) is associated with the particular aw level of rice germ. This means that an 

aquagram as a graphical representation of WASP can serve as an integrated 

biomarker of rice germ state and as it will become clear later on, it provides much more 

information about not just water activity but other properties of the samples related to 

water structure as well. 
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Comprehensive evaluation - Tucker3 Principal Component Analysis (PCA) 

From the previous analysis, the interdependence of aw levels and the time trend 

became evident, but although certain absorbance bands that can be attributed to 

particular water species were recognized, how they relate to each other is still not 

easily decomposable. For this reason, a 3-way exploratory analysis was performed by 

the Tucker3 algorithm, as a tool for a comprehensive evaluation of these interactions. 

Tucker3 PCA was performed on the data matrix organized as a 3D data cube, in which 

rice germ samples, selected water absorbance bands and storage time were 

considered as objects, variables and conditions, respectively. The results are reported 

in a triplot in Fig. 7. The two lowest-order components are shown using two Cartesian 

axes, explaining 62% of total variance (information). Axis 1 shows that it is mainly 

associated with aw variations showing a progression from lower values (left sector) to 

higher values (right sector). Additionally, it can be noticed that all the samples which 

are stored in the air atmosphere, independently of the initial aw are located on the 

positive side of the Axis 1, while samples stored in modified atmosphere (vacuum and 

argon) are on the negative. It also becomes clear from the graph that Axis 2 explains 

time evolution: shorter storage times are located at the negative values of Axis 2, while 

longer storage times (t4, t5 and t6) at positive values. Regarding the NIR variables 

(wavelengths corresponding to activated water absorbance bands), this approach 

confirms once more the importance of already found wavelengths in the previous steps 

of the analysis. 
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In particular, it is possible to clearly detect the importance of absorbance at 1410 nm 

and 1518 nm in defining the two extreme aw levels; as a confirmation of the aquagrams 

outcomes is it possible to notice that 1410 nm band is associated with samples at low 

aw level while 1518 nm with the highest level. The two other bands at 1425 nm and 

1455 nm, in agreement with the PCA results, show negative correlation with the aw, 

with high importance for the samples stored at lower aw levels. Regarding the time 

trend, the key role of absorptions at 1392 nm and 1436 nm is evident thanks to their 

position in the triplot at high values along Axis 2: the “older” the rice germ (t4, t5 and t6) 

the higher the absorption at 1392 nm and 1436 nm. The graph also shows the 

existence of difference between the first three and last three months of storage, where 

in the last three months there is a fluctuation along time, whereas t1, t2 and t3 show 

regular increase. On the opposite end of Axis 2 is 1492 nm absorbance band, showing 

higher value for samples at the beginning of the storage life (t1, t2) while its contribution 

decreases along time. Moreover, 1492 nm is not related to aw because it is located 

very near zero point at Axis 1, in agreement with the observations based on the 

aquagrams. The next important wavelengths, very influential for both storage time and 

aw are 1364 nm, 1375 nm and 1382 nm, located in the right-upper corner of the triplot. 

 

Figure 7: Tucker3 PCA triplot on pre-processed spectra. Decomposing patterns of 

correlation: aw levels, sampling times and the selected wavelengths. 
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As already mentioned, absorbance at these wavelengths can be attributed to solvation 

and protonated water, which either hydrates protons or other ions, while together they 

were found to represent spectral pattern of water vapour [44]. From the Tucker3 plot, 

it can be seen that absorbance at these bands is positively related to the time trend 

and aw, and also characterizes the samples stored in the air atmosphere. The 

presence of water vapour, in addition to strongly bound water (1518 nm) and trapped 

water (1392 nm) is important for samples stored at higher initial aw and in air. Thanks 

to the 3-way data processing, it was possible to confirm the outcomes of the previous 

data analysis in a very consistent way, highlighting correlation patterns between 

variables and decomposing the contribution of each mode in explaining the system 

under study. 

 

Research outcomes 

The presented results showed clearly that during storage, and depending on the initial 

aw level and storage atmosphere rice germ undergoes changes, reflected in the 

changes in intensity of NIR absorbance spectra at several absorbance bands, all of 

which can be assigned to vibrations of particular water molecular species [34], [35], 

[39], [41], [42], [43], [44], [46], [47], [48] (Table 2). Some of the absorbance bands 

found important, correspond to water molecular species whose functionality and the 

role they have in food preservation is quite well-known and understood. Table 2 shows 

that the absorbance bands found in this work, were also found to be important for the 

prediction of parameters like moisture content, water activity, hardness and others. 

They also featured in the water spectral patterns found to be related to the certain 

attributes of the examined systems like mechanical and textural properties, as well as 

functionality (infection, stress response, viability, etc.) 
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Table 2: Assignments of water absorbance bands. Description of the main WASP and their importance in the 
understanding of the influence of initial water activity on modifications of rice germ during storage. Concordance 
(positive or negative) with aw and time trend. Assignments of the water absorbance bands are based on several 

sources. 

 

Wavelen
gth (nm) 

Sour
ce 

aw  
tren

d 

tim
e 

tren
d 

Assignment Related functionality 

1364 PLS
, 3-
WA
Y 

↑ ↑ water 
solvation 

shell [24], [25]
, [26] 

ion 
hydrationpr

oton 
hydrationw
ater vapour 

Low firmness (mealiness) of apples 
(1364 nm, 1372 nm, 1382 nm) [71], 

wheat kernel hardness (1366 
nm) [84], seed viability (1366 nm) [97] 

1375 3-
WA
Y 

combination 
of symmetric 

and 
asymmetric 
stretch of 

H2O ν1 + ν3 

1382 3-
WA
Y 

water 
solvation 

shell [24], [27] 

1392 PCA
, 

PLS
, 3-
WA
Y 

∼ ↑ trapped water Drying, dehydration, expulsion of 
cellular water, damage, stress, 

infection [39], [50], [89], [97], [98], [99]
, [100], [101] 

1410 PLS
, 3-
WA
Y 

↓ ∼ free water Moisture content, water activity, seed 
viability [102], [103], [104] 

1425 PCA
, 

PLS
, 3-
WA
Y 

↓ ∼ hydration band Hydration of proteins, water activity, 
damage and defects 
[41], [76], [105], [106] 

1436 PCA
, 

PLS 

∼ ↑ non-bonded O–H stretching 
first overtoneovertone of the 
OH bending mode of H5O2+ 

Phase transition, sugar-water 
interaction, hardness, seed 
viability [83], [84], [85], [97] 

1455 PCA
, 

PLS 

↓ ↓ water solvation shell (4, 5) Water activity [53], viral infection in 
plants [107], damage [89] 

1492 3-
WA
Y 

∼ 
con
st 

↓ water molecules with 4 
hydrogen bonds 

Damage/preservation (1496 nm) 
[51], [89] 

1518 PLS
, 3-
WA
Y 

↑ ∼ strongly bonded water Preservation/ damage of materials, 
seed viability 

[98], [97], [99], [100], [105] 
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This work uncovered a very complex picture of water molecular structure in the stored 

rice germ, which, depending on the initial storage conditions – water activity and 

storage atmosphere is shaped differently and dictates modifications during storage. 

The water molecular species which strongly characterized extreme levels of water 

activity levels were water solvation, proton hydration, strongly bound water and free 

water. Free water molecules are usually explained as the part of water that is able to 

participate in chemical reactions, the part which can act as a solvent, with the 

properties and reactivity more similar to the pure water [49] and which results in 

microbial spoilage when aw greater than 0.6 [26], [50]. Massive decrease of free water 

molecules was found also to have an important role in preservation of living plant 

tissues upon extreme desiccation [51]. The strongly bound water is the water directly 

bound to other biological structures and cannot be easily removed from the food, for 

example by drying or squeezing; this part of water is not available for chemical 

reactions. The finding that samples stored at highest water activity level show highest 

absorbance of bound water and the lowest of free water, might be considered as 

unexpected. However, it should be noted that all levels of water activity in this study 

are below the 0.6 threshold, under which the food is considered stable towards 

microbial growth, however chemical and enzymatic reactions can occur even below 

this level. 

Results reported in the present study indicate that – differently from what might have 

been expected – the water molecular species commonly referred to as free water 

(single water molecules, not involved in hydrogen bonds, and absorbing at 1410 nm) 

are not the water molecular structures that characterize high water activity for rice 

germ, under the conditions investigated. Throughout the study, during the entire 

observation period, and as documented in a previous study [45], the aw levels of 

samples were monitored using a high-precision, high-accuracy instrument, and none 

of the samples showed any significant modifications in aw, which testifies to the fact 

that single parameter like water activity is not descriptive enough to capture all the 

relevant factors contributing to the modifications during storage and that the 

phenomena of food modifications during storage is much more complex than 
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previously thought. This is also evident from the variety of water species that were 

found during aquaphotomics analysis and the observed complex dynamics of water 

molecular restructuring during storage. Further studies in this direction may help 

resolve the conflicting reports about the water activation energy because our results 

surely confirm the existence of highly complex water structure related to water activity 

and storage that cannot be explained by the simple model as suggested long time ago 

[26]. In addition to the bound water, the type of water which was associated with high 

water activity samples (and samples stored in air) was water represented by three 

wavelengths: 1364 nm (solvation shell with 1, 2 or 4 H2O molecules), 1375 nm (proton 

hydrates) and 1382 nm (solvation shell with 1 or 4 H2O molecules) [34]. This type of 

water is involved with hydration of charges. The entire spectral region from 1360 to 

1385 nm was found to be rich in the absorbance bands attributed to hydration of small 

proton hydrates (up to 8 molecules in a water cluster): H+(H2O) (1360 nm [52], 1369 

nm [53], 1371 nm [54]), H+(H2O)3 (1363 nm and 1380 nm [42], 1377 nm [42], [54]), 

H+(H2O)4 (1359 nm [42], 1370 nm [42], [54], 1371 nm [43], [55], 1376 nm [56], 1385 

nm and 1386 nm [42], [43]), H+(H2O)5 (1381 nm [41], [54], 1371 nm [54]), H+(H2O)6 

(1370 nm [54], 1371 nm[56]), H+(H2O)7 (1359 nm [54], [57], 1369.5 nm [56]), H+(H2O)8 

(1358 nm [57], 1369.5 nm [56], [57]), and at the end of this region larger clusters with 

more than 10 water molecules (1389 nm [54], [58]). As it was shown in aquagrams 

(Fig. 5) the absorbance at the entire region is higher for samples with highest water 

activity, so it is not possible to easily decompose and pinpoint the absorbance to only 

one particular water formation, nor it is likely the case. Rather, it seems to be a 

distribution of water species belonging to not-hydrogen bonded water with the higher-

energy level states compared to the free water molecules (wavelengths lower than 

1410 nm: lower wavelengths → higher frequency → higher energy). This indicates the 

possibility of joint influence of all three structures together – solvation shells around 

ions, proton hydrates and water vapour on proton mobility and proton transfer 

reactions. 

A central place in proton transfer reactions is a dissociation step, occurring on a 

picosecond time scale, well after the rearrangement of hydrogen bonds [59]. The rate 

of proton dissociation was found to be decreasing with the increasing concentrations 

of salt in salt solutions, and to show a linear correlation with the water activity of 
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solutions, enabling estimation of aw of electrolyte solutions based on the 

measurements of proton dissociation rate using fluorometric technique [60]. The 

dissociation rate parameter strongly depends on the water concentration and 

temperature, while proton transfer step itself, occurring in picoseconds, crucially 

depends on the solvent [58]. The proton transfer rate (mobility) was found to increase 

with the increasing temperature, while transfer kinetics is determined by availability of 

hydrating units (solvation water) in the surrounding aqueous media that can act as 

proton acceptors, as well as their specific structure (cluster) and size (critical size 

being 4 ± 1 water molecules in water cluster) [61]. 

Hence, our results suggest that water activity is a parameter describing the proton 

mobility within the food matrix. The measured single parameter, aw, probably doesn’t 

consider the influence of food matrix on the structure of water within. However, this 

water does interact with the rest of the aqueous media of food, creating channels and 

pores – a confined environment, thereby influencing the proton mobility (influence of 

space charge and boundary effects [39]). The interaction between the different food 

matrices and aqueous phase leads to different preservation/degradation occurrences 

during storage because the structure of food determines different possible proton 

transport mechanisms. This bound water takes into account this influence, and in our 

results, it is represented by the absorption at 1518 nm. In support of this observation, 

numerous studies have connected the absorbance of water species at this wavelength 

to the damage and preservation, as indicated in Table 2. It is important to emphasize 

here, that water activity by definition is the ratio of the water vapor pressure of the 

substance (food) to the water vapor pressure of pure water. At this point, we will 

temporarily leave out other solvation structures (solvated ions, solvated protons) from 

the discussion. The spectral results obtained here clearly connected the samples 

stored at higher aw levels with the spectral pattern of water vapor, meaning - samples 

with higher water activity levels have more water in gaseous phase compared to the 

lower water activity samples. This gives rise to the higher vapor pressure which is an 

indication of evaporation rate, or the tendency of water to “escape” from the germ 

matrix (fugacity). The parameter aw measured using dew point principal instruments is 

a measure of this tendency. 
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The water vapor spectral pattern also showed difference between the samples stored 

in the air from the samples stored in the modified atmosphere, where the air was 

removed (vacuum) or replaced by argon in order to prevent oxidation due to the 

oxygen from air. In both cases, modifying the atmosphere affected the evaporation 

rate of water. In the case of vacuum, the pressure inside the container was reduced 

through a vacuum pump, and the resulting pressure difference caused more rapid 

evaporation compared to the air conditions; this phenomenon is well-known and is 

used as a basic working principle of vacuum cooling techniques. On the other hand, 

studies have shown that not only reducing the pressure increases the diffusion 

coefficient of water vapor and consequently increases the evaporation rate, the nature 

of the ambient gas also has effects on diffusion coefficient and hence, the evaporation 

rate [63]. In fact, it was found that gases (except for helium and hydrogen) increase 

the evaporation rate of water, and out of eleven examined gases the largest rate was 

recorded for argon [64], [65]. This would mean that this part of water is simply 

eliminated from the samples with lower water activity, upon initial drying to that value 

and subsequently due to the influence of storage atmosphere. For the same water 

activity level, it seems that storage in vacuum or argon affects somewhat modifications 

in the first months of storage, but in an opposite way for samples stored at 0.36 and 

0.45 aw. However, while water vapour is most probably contributing to the observed 

absorbance pattern, it is important to take into account the role of hydrated protons, 

i.e. the connection between the water vapour evaporation/sorption and the proton 

mobility. As several studies found, the solvated protons display a marked preference 

for liquid/vapour interface i.e. the surface preference [66], [67], [68], [69], and even at 

low bulk water concentrations, the hydrated protons are the ones adsorbing at the 

water–air interface, showing substantially higher surface activity compared to that of 

the hydroxide ion, and strongly influencing the evaporation and condensation rates of 

water (reactivity, activity)[70]. 

Taking all these into account, we can summarize our observations, and propose the 

following interpretation. The spectral pattern at 1364 nm, 1375 nm, 1382 nm and 1518 

nm, i.e. the higher absorbance at these wavelengths, being a dominant spectral 

feature of the sample with the highest water activity (aw = 0.55), describes the proton 

mobility within the food matrix, taking into account the influence of food matrix itself on 
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the rate of dissociation and proton transfer, and more accurately describes the 

possibility of chemical reactions, or “real” water activity, compared to a single number 

measured by current measurement devices. On the other hand, the samples stored at 

lower activity levels, and in the modified atmosphere are strongly characterized by the 

following four water absorbance bands – 1410 nm, 1425 nm, 1455 nm and 1474 nm. 

In a previous aquaphotomics study, which aimed to relate water molecular structure 

with the textural properties of the apples, the high values at the water vapour bands 

were found to be a common characteristic of a mealy (porous, dry) texture, while the 

crispy and juicy texture of the apples was characterized by high absorbance in the 

region of free, medium and hydrogen bonded water (1410 – 1492 nm) [71]. The 

similarity between the patterns found in that work and in our study, implies the 

existence of differences in the rice germ from the aspect of texture. It is well-known 

that texture of the food depends on the mechanical and structural properties of the 

food, and that it can change during the storage or depending on the storage conditions 

[72]. The uptake or release of water to the environment, as well as mechanical 

properties of the samples are dependent on the macromolecular interactions within 

the sample matrix. When the manipulation of water activity before storage is 

performed, by removal or binding of the water, it also alters these properties, resulting 

in different internal space and levels of water confinement. The texture is closely 

related to the structure of the sample tissue [73]. The differences in texture, in this 

work, were revealed based on differences in water spectral pattern of three rice germ 

samples. The spectral pattern of high water activity samples showed strongly bound 

water and water vapor features in the respective water spectral pattern. These water 

molecular species indicated that while the sample appears solid (preserved tightly 

bound water to the undamaged cell wells), there is more space between the individual 

cells filled with the air and water vapor. As opposed to this, the samples stored at lower 

water activity levels, show preservation of cells packed with liquid with more variations 

in water species, as evidenced by the spectral pattern of free water (1410 nm), protein 

hydration water (1425 nm), bulk water (1455 nm) and water molecules with three 

hydrogen bonds (1474 nm), all of which can be released upon cell rupture producing 

the “juicy” feeling. In a study which examined the water vapour diffusivity in vitreous 

and mealy wheat endosperm, it was found that mealy endosperm due to the 
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intracellular air spaces allowed much higher water vapor diffusivity (from 1.8 to 4.6 

times higher), compared to the vitreous endosperm which has extremely small air 

spaces, if any, and hence much higher density [74]. Together, these results indicate 

that the higher water activity in rice germ samples is associated with the texture which 

allows easier diffusion of water vapor through the sample matrix, i.e. higher rate of 

moisture absorption/desorption (similar to the sponge), while samples stored at a 

lower water activity may have undergone glassy transition, which resulted in 

preservation of biological structures and the water species associated. 

The differences in texture properties would result in different behavior during 

processing of the rice germ, which is very important from the aspect of predicting 

particular behavior and outcomes depending on the initial water activity and storage 

conditions. However, while it is well-recognized that water activity affects the textural 

properties of the food [75], the relationship between the water structure and resulting 

textural properties of food is not clear, and our study showed that spectral pattern of 

water can be used as a descriptor of the texture, providing the clues to which type of 

processing (frying, baking etc.) would be a better choice. Further, it clearly showed 

that the water activity is related not to the simply called “free water”, but to the richness 

of energy states of water which provides diffusivity/mobility of water within the food 

matrix and consequently exchange with the storage environment (moisture 

desorption/absorption). These processes showed a clear relation to the textural 

properties. 

The last two absorbance bands which are found to be important for water activity are 

1425 nm and 1455 nm. These bands can be assigned to intermediate water structures 

(not free, not interconnected water molecules), specifically 1425 nm is associated with 

hydration water [34], [40], [76], while 1455 nm is ascribable to so called, bulk water or 

also adsorbed water [77] (physically adsorbed at the pores of the food microstructure). 

Previous works reported that interplay between these two bands is strongly related to 

the water activity [76]. Whether the intensity of the bands at 1425 nm and 1455 nm is 

going to change in the same or opposite direction upon the increase/decrease of water 

content seems to be different for different systems [76], [78]. In another words, it is 

dependent on the nature of the sample matrix (the pore sizes of the sample matrix, 

the evaporation rate during drying etc. [79]). Over time, intensity at 1455 nm somewhat 
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decreases, showing decrease in bulk water, while a less marked behaviour is 

detectable for intensity at 1425 nm. There is another possible interpretation of these 

two bands. The band 1425 nm is very close to the band 1428 nm reported to increase 

in the intensity upon drying of agricultural materials, which may be related to the 

glucose molecules, the basis of starch and cellulose in those materials, which can 

become more visible upon drying [80]. The band at 1455 nm can also be assigned to 

the first overtone of O–H stretching of histidine that is a well-known degradation 

product developed during long storage of food products containing proteins, such as 

rice germ [80]. Another interesting finding is that irrespective of water activity levels, 

when the samples’ water matrix changes over time, the intensity of band at 1492 nm 

changes in the same way for all the samples. This band can be assigned to water 

molecules with 4 hydrogen bonds [57]. The overtone of this band (located around 996 

nm) was proposed to be due to the OH stretching of water interacting with protein or 

OH stretching vibration of proteins [82]. Either way, for our results, this indicates that 

in the rice germ during storage, some proteins undergo changes in a very similar way, 

despite initial modulation of water activity in the samples – the water activity does not 

affect this feature of rice germ.  

The changes in rice germ also showed restructuring of water matrix as a function of 

storage time, also. In fact, the difference between samples with different water activity 

was limited to specific regions of the spectra, i.e. only involved certain water molecular 

species. The absorbance bands which showed the largest changes were located at 

1436 nm and 1392 nm. The contribution of absorbance at 1436 nm wavelength 

increases with time. This band was reported to be important for transition of 

amorphous to crystalline states of sugars – lactose [61], raffinose and sucrose [84]. In 

the latter study, 1436 nm absorption was assigned to non-bonded O–H stretching first 

overtone band, which had different shape for amorphous samples compared to the 

crystalline samples. A very close band, located at 1440 nm and ascribed to a water 

dimer, was found of critical importance for preservation of plant tissues upon extreme 

desiccation. The plants which can survive desiccation, showed massive accumulation 

of water dimers, which was connected to the influence of reducing sugars – sucrose 

and raffinose on the formation of glassy, vitreous state [51]. Another literature source 

reports close band (1430 nm) to increase in intensity upon drying of agricultural 
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materials, revealing carbohydrate units of starch and cellulose upon drying [80]. 

Further, this exact band was found to be positively correlated with wheat kernel 

hardness in a study of wheat kernel water extracts [85]. All these studies suggest that, 

most probably this is not a carbohydrate band, but water-carbohydrate interaction 

band related to the phase transition of water. Since it is very well known that water 

works as an effective plasticizer in food matrices, decreasing glass transition 

temperature and mechanical resistance [86], taking together the interpretations of 

mentioned studies, we can suggest that 1436 nm water band in our results is indicative 

of changes in plasticity/hardness of the germ matrix happening during storage as a 

result of phase transition of water. Considering that rice germs are rich in 

carbohydrates, it can be deduced that, during storage time the process of phase 

transition happens which leads to changes in hardness of the germ. The 

monosaccharides, in fact, have a glass transition in the vicinity of room temperature, 

which can be a relevant aspect in rice germ modifications along the time, when the 

product is microbially stable due to the low aw level [87]. When the regression vectors 

of PLSR analysis using time as the dependent variable are examined (Fig. 4d), the 

highest coefficient at the 1436 nm can be found for the samples stored at the lowest 

water activity level, suggesting that they are prone to the strongest changes during 

time with the respect to the phase transition and hardness. 

The band at 1392 nm is a trapped water band [39] and it shows positive correlation 

with the time of storage, indicating that water molecules become more confined upon 

the depletion of bulk and free water. This band is found to be strongly associated with 

dehydration in several works [88], [89]. This points out the process of dehydration over 

time. The importance of water vapor bands for storage process (1364, 1375 and 1382 

nm) supports this interpretation, suggesting evaporation of water from the rice germ 

takes place. 

 

Conclusion and scientific impacts  

In the light of the results presented, it is possible to outline some comprehensive 

conclusions. Samples stored at higher aw level are characterized by high intensities of 

NIR spectral bands associated with strongly bonded water, solvation water, proton 
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hydrates and water vapor, and lower quantity of free, hydration and bulk water. The 

same is true for the samples stored in air, compared to the samples stored in vacuum 

and argon. The higher water activity was strongly associated with the presence of 

water vapor phase and highly surface-active proton hydrates, while this part of water 

was already removed from the rice germ samples stored at lower water activity owing 

to the drying. Similarly, the storage in vacuum and argon caused higher evaporation 

rate and loss of this water type. The water activity, hence, was strongly related to the 

presence of water in gaseous phase and proton hydrates at the surface, i.e. the water 

species which provide fast proton mobility water, in other words, species which with 

easiness can leave the surface or diffuse through the sample matrix, and also to 

interact with the environment through sorption. 

The levels of initial water activity and storage atmosphere also resulted in different 

textural properties, where soft and mealy texture was associated with high water 

activity and storage in air, while lower water activity and storage in modified 

atmosphere resulted in restructuring water in rice germ towards amorphous state, in 

which the hydration of the biological structures, and much more variety of the water 

molecular structure was preserved in the cells, including free, bulk and hydrogen 

bonded water. 

While it may seem surprising, it must be emphasized that the range of water activity 

we examined was between 0.36 and 0.55 and, under these conditions, deterioration 

and microbial spoilage cannot occur. The water activity within this range was 

associated with the mobility of water/easiness of water to move within the food matrix 

and evaporate, as witnessed by monitoring changes over time. On the other hand, this 

probably also means that samples with higher water activity, if stored under 

atmosphere with higher relative humidity, would undergo an opposite process – they 

would absorb the moisture from the air more easily. In terms of storage atmosphere, 

storage in air has the same effects. 

Regarding the modifications along time, they involve restructuring of different water 

molecular conformations to water vapour, solvation water and proton hydrates 

(1364 nm, 1375 nm and 1382 nm), in the samples stored at lower water activity, while 

in the samples with high water activity it happens directly. The restructuring and 
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evaporation are producing changes at the trapped water/dehydration band (1392 nm) 

and changes at the carbohydrate-water interaction band (1436 nm) related to the 

hardness of the germ.  

Taken together, these results explain that storage of rice germ with respect to water 

activity can be described as a process of dehydration and decrease of bulk water, free 

water and changes in hydration of biological structures, then evaporation and changes 

in hardness. All these processes are dependent upon the initial conditions – initial 

water activity and storage atmosphere, which determine how fast the dynamics of 

water restructuring can occur. These changes, while not affecting the microbial 

stability, do affect physical properties such as structure and texture, which 

consequently have substantial influence on consumers’ perception of quality and food 

processing. While today it is generally accepted that water activity is more closely 

related to the microbial, chemical and physical properties of the food and not its mere 

moisture content [75], this study for the first time revealed that what defines water 

activity and governs how the food will be modified during storage is the water 

molecular structure of the specific food matrix. While the water activity is one number, 

a single parameter related to only water vapour, this study revealed far more complex 

picture, showing very detailed, fine water molecular structure dynamics and how it is 

related to the expressed properties of the samples as well as their modifications 

depending on the storage atmosphere and initial water activity. This study shows that 

there is more complexity, even compared to the studies of water in food using NMR 

that detects only three types of water (structural, multilayer-surface adsorbed water 

and bulk water) [90]. Understanding the role of water molecular structure dynamics 

behind the water activity is demonstrated to be a fundamental step for explaining the 

nature of the processes that occur during storage in one complex biological matrix – 

rice germ. The studies such as this one, performed on other biological matrices can 

help elucidate the complex relationship between the degradation or preservation and 

water activity and also help explaining the differences in degradation of materials 

stored at the same water activity but achieved through different processes – 

desorption and adsorption [91] and thus bridge the gap between the fundamental 

research and practical applications. Monitoring the functionality of water molecular 

formations during storage also provided once more the evidence for the 
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aquaphotomics concept of water being a molecular mirror and an immense source of 

information. And it may in the future provide the predictions of shelf-life depending on 

the storage conditions based on non-destructive aquaphotomics near infrared spectral 

monitoring, something which is still unresolved problem in science [26]. 
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CHAPTER 3: NIR SPECTROSCOPY, PORTABLE 

DEVICE APPLICATIONS 

In the last decades, near-infrared (NIR) spectroscopy (800–2500 nm) proved to be 

one of the most efficient analytical methods for quality control and process monitoring 

in the pharmaceutical and food fields. The increasing interest in developing NIR-based 

applications has led to a rapid technical progress in terms of instruments [1]. In more 

detail, the need to have flexible devices that ensure good analytical performances 

directly for field measurements or for the monitoring of complex manufacturing 

processes allowed to move from traditional benchtop spectrophotometers to more and 

more portable ones, until reaching miniaturized NIR sensors [2] 

Thanks to a long-term collaboration with Viavi Solutions, an American company leader 

in designing and producing portable NIR devices (MicroNIR), I had the possibility to 

develop ad-hoc solutions based on the implementation of MicroNIR sensors and 

chemometrics for two industrial case-studies with the aim to define strategies for 

process monitoring. 

Nowadays, NIRS is in fact considered one of the most powerful Process Analytical 

Technologies for the real-time process monitoring in manufacturing companies, 

especially in the pharmaceutical industry. PAT was formally introduced through the 

FDA guidance document in 2004, which allowed to build the new science-oriented and 

risk-based approach for quality control, together with the cGMP [3]. Thanks to the 

online implementation of a PAT system, it is possible to obtain a global understanding 

about the process with the aim of achieving a predefined quality product, even before 

testing it. A process can be considered well understood if all the variability sources are 

well known, well controlled, and if the quality attributes of the product can be efficiently 

predicted over the design space.  

This third chapter deals with two industrial projects in which a miniaturized NIR sensor 

has been tested for the monitoring of blending processes in pharmaceutical and food 
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fields, respectively. Blending is a critical unit operation in manufacturing, as it is a 

prerequisite for obtaining the homogeneous distribution of mixture components. NIR 

spectra, properly acquired along the mixing process, can be used for the detection of 

the endpoint of the blending and for performing a continuous real-time verification of 

the process [4]. In the first paragraph of this chapter, a chemometric qualitative 

strategy for assessing the homogeneity of the powder blending of a zootechnical 

formulation has been reported. The present approach was based on the alternative 

application of the Moving Block Standard Deviation (MBSD) [5] method and the 

following development of a Multivariate Statistical Process Control (MSPC) model [6] 

based on Principal Component Analysis for building multivariate control charts. MBSD 

is one of the most applied methods for endpoint detection in blending processes; it 

works summarizing the variance in contiguous blocks of spectra for evaluating the 

variability of the blend over time. In this case, MBSD has been used in the direction of 

the samples for obtaining Standard Deviation (SD) spectra, to minimize the 

contribution of systematic effects. On the SD spectra, an MSPC model has been 

calculated for defining the space of information related to endpoint observations. 

Consequently, two MSPC control charts have been built, in which observations of new 

batches are represented [6]:  

- Hoteling’s T2 chart, which allows to measure the in-model variation of the sample, for 

evaluating the stability of the process over time. 

 

- Q-statistics (Q) chart, which represents the variance unaccounted for by the model, 

for testing whether any perturbations of the system break the correlations observed 

for the endpoint observations.  

 

A multi-step qualitative approach for the real-time blending monitoring of a food 

powder formulation has been reported in the second paragraph of this chapter. 

Qualitative approaches have the advantages of not requiring mechanical external 

sampling and reference analysis for calculating the calibration model (typical for 

quantitative approaches). In this project, three different qualitative chemometric 

strategies have been tested in order to define pros and cons of each technique. In 

more detail, a critical comparison among MBSD, a PCA-MSPC based model and 
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Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) [7] have been 

proposed. MCR-ALS is a powerful tool to extract qualitative and quantitative 

information from a set of NIR spectra. This approach can provide the concentration 

profiles and pure spectral fingerprints for all compounds involved in the mixing by using 

only the spectral information acquired along the process.  

MCR-ALS assumes that the original set of process observations behaves following a 

bilinear model, which is the multiwavelength extension of Lambert-Beer's law and is 

described by the following expression8: 

 

𝐗 = 𝐂𝐒𝐓 + 𝐄 

 

where 𝐗 is the matrix of original spectra collected for a single or multiple batches. 𝐒𝐓 

contains the pure spectra signatures of the components needed to describe the 

process and 𝐂 the related concentration profiles. E is the matrix with the residual 

information not explained by the model, related to the experimental error. 
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3.1 A MOVING BLOCK- PCA BASED APPROACH FOR THE 

NIR REAL – TIME MONITORING AND VERIFICATION OF A 

BLENDING PROCESS.  

 

Scientific background and aim of the work   

The concept of quality by design (QbD), adopted in the pharmaceutical field through 

recent quality regulatory initiatives such as FDA’s Process Analytical Technology 

(PAT) [8]. Initiative, ICH Guidance Q8 [9] and Q9 [10], is based on the identification of 

predefined objectives with the aim to improve the product and process understanding. 

The application of QbD starts with the definition of the requirements of the final 

product: pharmaceutical form, delivery system, pharmacodynamic and 

pharmacokinetic properties [11]. In this context, to obtain the desired finished product, 

it is crucial to evaluate the critical characteristics of the raw materials (active 

ingredients, excipients, process materials) in terms of physical, chemical, biological 

and microbiological properties. These properties must respect well-defined ranges for 

ensuring the safety and efficiency of the final formulation. In parallel, a critical study of 

the key process parameters that could have an influence on the appearance, impurity, 

and yield of the finished product must be performed. In order to apply properly QbD in 

process design, it is essential to collect reliable and accurate data for monitoring all 

possible sources of variability and this is possible thanks to the implementation of 

Process Analytical Technology (PAT) which ensures the continuous online control of 

the process itself. FDA has categorized PAT tools into four categories (FDA 2004): 

a) Multivariate tools for process design, data acquisition and analysis (Design of 

Experiments, response surface methodologies, process simulation, and pattern 

recognition tools) 

b) Process analyzers (analytical tools for measuring biological, chemical, and 

physical attributes at-line, in-line or on-line)  

c) Process control tools (complex analytical and statistical strategies developed 

for defining the attributes of input materials, the ability and reliability of process 
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analyzers in measuring critical attributes, and the achievement of process end points 

to ensure consistent quality of the output materials and the final product). 

d) Continuous improvement and knowledge management tools (Continuous 

learning through data collection and analysis over the life cycle of a product for 

developing approaches and information technology systems that support knowledge 

acquisition from such databases) 

When some or all these tools are appropriately combined, they may be applied to a 

single-unit operation or to a whole manufacturing process to ensure quality (FDA, 

2004). Recent PAT applications involve process monitoring by several advanced 

process analyzers, such as spectroscopic sensors (e.g., UV-Vis, Near-Infrared and 

Raman spectroscopic probes) that can acquire a lot of interesting information related 

to a manufacturing process in a non-destructive way.  These techniques generate a 

large volume of data, requiring the application of chemometrics tools based on 

multivariate analysis for process monitoring, modeling, and control. Within this 

scenario, near-infrared (NIR) spectroscopy is considered as a more robust, consistent, 

and rapid method for the real-time monitoring of complex manufacturing processes, 

such as granulation [12], drying [13], tablet coating [14] and powder blending [15].  

Powder blending is, in fact, one of the key processing steps for ensuring the uniformity 

and the efficacy of biotechnological products as human and veterinary drugs. In a 

typical manufacturing process, powder blends of masses anywhere from a few 

hundred kilograms to tons must be mixed to the point where each unit (typically a few 

hundred milligrams to a few grams) can be declared to be uniform. The use of NIR 

sensors allows to collect both chemical and physical information to identify the time at 

which a mixture is homogeneous and stopping the process. In this way it is possible 

to perform a real-time control and verification of the whole process, avoiding the need 

to stop the blender for withdrawing predefined samples for performing off-line chemical 

analysis. An external mechanical sampling can introduce significant perturbances 

inside the blender, affecting the quality of a powder formulation and creating unwanted 

segregation. This is very well explained in a paper published by Esbensen in 2015 

[16].  



Chapter 3 

 

105 
 

NIR spectra collected along a blending process can be used for developing 

quantitative and qualitative strategies for the assessment of the blend homogeneity. 

But before getting into the specific approaches, it is crucial to highlight that the present 

strategies can only detect when the product is as more homogeneous as possible, 

according to the blender specifications. In fact, the achievement of the requested 

mixing level is only related to the design of the blending plant itself that can only be 

monitored by the PAT. 

Quantitative approaches are based on the calculation of a regression model for 

predicting the amount(s) of an API (Active Pharmaceutical Ingredient) and/or an 

excipient present in the mixture and considered as a target ingredient. These methods 

ensure high selectivity to the parameter of interest that can be difficult to assess with 

qualitative methods. Traditionally, linear methods such as Partial Least Squares 

regression (PLSr) [17] are applied for maximizing the covariance between the data 

matrix X of sensor measurements and the matrix Y of parameters to be predicted. 

However, end-point criteria based on the quantification of a single compound, usually 

the API, could be not sufficient to assess the uniformity of the whole formulation. 

Moreover, the external sampling required for the development of the model can 

dramatically affect the efficiency of the mixing process including in the calculation the 

significant error caused by the unwanted segregation effect. Moreover, from a more 

theoretical perspective, the amount of the target ingredient monitored does not change 

along the process; so, this ingredient is used only as an indicator light for detecting the 

mixing endpoint. But, adding the numerical value of the predicted quantity can be 

considered only as mathematical stretch for visualizing, as final outcome of the 

process, the expected concentration of the key ingredient. 

In contrast, qualitative approaches evaluate the evolution of the process as a whole 

using theNIR fingerprint and its changes, in terms of both shape and intensity over 

time, as an indicator of the heterogeneity/uniformity of the product itself. The more the 

NIR signal is stable, the more the product is uniform because is uniform the mixture 

presented to the sensor at every rotation of the blender. A critical step that needs to 

be taken into account in the development of such a strategy is the reliability of the 

outcomes achieved by the NIR sensor due to the possible lack of representativeness 

of the amount of powder presented to the sensor in respect to the total mass of the 
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mixture. For considering this key point, is essential to balance the number of 

acquisitions over time (the faster the process the more frequent the acquisitions) and 

the number of consecutive acquisitions in specification (the bigger the blender the 

higher the number of consecutive acquisitions that have to confirm the homogeneity). 

Qualitative approaches for assessing the uniformity of a blending process can be 

based on univariate or multivariate statistics according to degree of specificity 

required. Moving Block methods (MBM) [18] are hugely applied in blending monitoring 

due to their simplicity and effectiveness. MBM are based on the calculation of key 

statistics as standard deviation or mean through a moving window on consecutive 

blocks of spectra for determining an overall mean or standard deviation plotted against 

the time. These approaches require a minimum of calibration work and do not suffer 

from the sampling restrictions imposed when trying to develop quantitative models. 

More specifically, the Moving Block Standard Deviation (MBSD) allows to summarize 

the variance contained in a block of spectra down to a single value, which is an 

indication of the variability of the blend over the time period in which the block of 

spectra was collected. This is a moving average method, meaning that information of 

one block is not totally independent of information of the next blocks. In the present 

study, an alternative application of the Moving Block Standard Deviation MBSD has 

been proposed for developing a Multivariate Statistical Process Control (MSPC) [6] 

model in order to monitor the large-scale blending process of a semen extender 

formulation. This work has carried out thanks to the collaboration of Medi Nova S.a.s., 

Italian leader company in animal artificial insemination, with the aim to implement 

directly in the manufacturing plant, a user-friendly platform for real-time process 

verification and for detecting the endpoint of the mixing. Semen extenders preserve 

sperm by stabilizing its properties, including sperm morphology, and motility. They 

must also provide a favorable pH, adenosine triphosphate, anti-cooling and anti-freeze 

shock, and antioxidant activity to improve semen quality for fertilization [19]. For 

ensuring all of these properties it is crucial that the active ingredients are present in 

the right proportion into the formulation and, so, a proper homogeneity needs to be 

reached.  

In the present work, the development of a comprehensive and straightforward strategy 

for monitoring the blending process of the semen extender is proposed, combining a 
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NIR miniaturized sensor with a multivariate control chart based on the combination 

between moving-block standard deviation (MBSD) and principal component analysis 

(PCA). For a direct interpretation of the multivariate outcomes, a dedicated software 

was developed, so that process monitoring, and adjustments can be carried out in 

real-time. 

 

Experimental Plan: Sampling and Spectroscopic Analysis 

Semen extender: 

Semen extender is a diluent powder formulation which is added to semen to preserve 

its fertilizing ability. The formulation of the diluter produced by Medi Nova has been 

designed and developed at the Biopharmanet-Tec Center, a technopole in Parma. The 

raw materials contained in the diluter are 90% sugars, used as a source of energy for 

spermatozoa, and the remaining 10% consists of compounds (not declared for 

industrial secrecy) with high anti-bacterial power and able to adjust the pH in order to 

preserve the optimal motility and vitality parameters of seminal material.  

For a proper development of the process monitoring strategy, a total of 26 independent 

batches were monitored, in the time range between February 2019 and October 2020. 

The 26 batches have been divided randomly in two sub-sets: 20 batches have been 

used for calibration purposes, while the remaining 6 runs have been used to perform 

validation. In each subset both the years of sampling have been represented in order 

to avoid possible effects due to time of production and analysis. 

 

Blending details: 

After weighting the components, a preliminary sieving has been performed using a 

circular vibrating screen (Erimaki snc, Italy) for obtaining the optimal particle size. For 

all the runs, the ingredients have been introduced mechanically through the top 

following the same filling order, according to a geometric dilution scheme. Mixing has 

been performed using a powder blender with a fix tank, “four way” model (VIANI snc, 

Italy) with a capacity of 500 L that was operated at 27 rpm for 20 minutes powder 

blending Fig 1.   
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Miniaturized NIR device as PAT: 

A portable NIR spectrometer, MicroNIR PAT-U (Viavi solutions, Santa Rosa, California 

USA), which operates in the spectral region 900–1650 nm, was used to acquire the 

NIR spectra. This instrument, powered (5 V) and controlled via USB port of a 

computer, originally employs two tungsten light bulbs as the radiation source, a Linear 

Variable Filter (LVF) as the dispersing element and an uncooled 128-element detector 

(InGaAs). Spectral resolution is 6.3 nm at 1000 nm. The signals have been obtained 

by averaging 200 scans and a spectrum has been recorded every 5 seconds. Before 

starting the measurements, the 0% reference value was taken by leaving the tungsten 

Lampson with an empty support (known as dark Scan) and an external white reference 

(Spectralon®) was also scanned to calibrate the device. The instrument has been 

mounted on the lid of the bin via a sanitary flange with sapphire process window, 

avoiding direct contact with the product.  

 

 

 

Figure 1: Viani Blender seen from above 
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Chemometric approach proposed  

The data processing strategy can be divided into two steps: the first part was focused 

on the calculation of standard deviation spectra (SDS) using the Moving Block 

Standard Deviation method (MBSD) [5]. The final aim of this first step was to remove 

the contribution of systematic variations that occurred during the mixing, and in 

particular between different baches, allowing to take into account only the spectral 

variance related to the process over time. The calculation of a SDS is the crucial step 

of the proposed strategy because it allows to include the spectral information in the 

process monitoring, instead of summarizing the variability just with an index (as 

reported for MBSD). The advantage of considering spectral information, in addition to 

being more sensitive to changes, lies in the possible interpretation of the signals and 

so of the reasons why a batch is detected as out of specification. 

The second step was the development of a MSPC model based on the application of 

Principal Component Analysis [6]. For using PCA as a diagnostic tool for process 

verification, it is necessary to develop the model on data ascribable to the product 

within specification. So, in the present work, PCA model has been calculated on the 

calibration batches taking into account only the spectra of the product considered as 

more homogeneous as possible. These spectra were selected as the last 10% of 

spectra, time wise, acquired in the last minutes of the process and so, as a good 

approximation, considered as homogeneous. Thanks to the selection of a suitable 

number of principal components, statistical boundaries were computed allowing to 

define a multivariate space describing the mixed product. Calculation of statistical 

indices based on Hotelling T2 and Q residuals concluded the strategy with the 

development of a multivariate control charts to assess whether the mixing is still 

occurring, or the product can be considered blended. The process can be stopped, 

and consequently the product can be considered mixed, when 15 consecutive 

sampling points i.e., spectra acquired at each predefined time interval, fall in the 

acceptance area of the influence plot. This area is defined by the statistical limits of T2 

and Q residual, chosen according to the predefined confidence level (95% in the 

present work).   
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An independent validation set, composed of six independent batches, was used to test 

the robustness of the strategy. In this case the whole process was taken into account 

so that the process trajectory in the multivariate space defined by the selected PCs 

was visualized. 

Multivariate data analysis was performed in the Matlab® environment, version 2020a 

(The MathWorks, Inc., Natick, MA, USA) using in-house functions. 

 

App NIRNova  

The final outcome of the present project was the online implementation of a dedicated 

application developed in MATLAB for the real-time monitoring of the blending process. 

To make easier the interpretation of the results, the model has been integrated in a 

user-friendly interface which is shown in Figure 2.   

 

 

Figure 2: User Interface NIR Nova MATLAB application 
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Each spectrum measured by the MicroNIR along the blending process is pretreated in 

according to the preprocessing strategy selected and the MBSD is applied point to 

point for generating SD spectra using a block size equal to 5. The SD spectra are 

projected in the space of the PCA global model calculated including all the 26 batches 

available and applying mean centering as column pretreatment. The projected scores 

obtained are used to calculate the values of T2 and Q in order to provide an influence 

plot as graphical output of the analysis. After the first 5 spectra required for calculating 

the firs SD profile, a red or green dot appears in the influence plot for each acquisition. 

The red dots fall outside the limits modeled by the PCA (i.e. with higher values of the 

T2 and Q limits) and are related to the moment in which the process is occurring and 

the product is still “unmixed"; in this situation, in the "Realtime Monitoring" box there 

is a red light by the wording "unmixed". When the points projected in the influence plot 

fall inside the limits of the model, the product can be considered mixed, and the blender 

can be stopped. Trough empirical tests, it was possible to set an endpoint criterion of 

15 consecutive spectra that must fall inside the statistical limits in T2 and Q for 

considering the mixing completed. At the same time, a green light with the wording 

"mixed" appears in the "Realtime Monitoring" box. Using the NIR Nova interface, it’s 

possible to define in a straightforward way the endpoint of the mixing process by 

performing a real-time process verification of the whole batch.  

 

 

Moving Block Standard Deviation (MBSD) method 

In order to optimize the quality of the raw NIR spectra, six different combinations of 

row pretreatments have been tested:  

1. No row preprocessing 

2. Standard Normal Variate (SNV) 

3. Savitzky-Golay first derivative (II, 5) 

4. SNV + Savitzky-Golay first derivative (II, 5) 

5. Savitzky-Golay second derivative (II, 5) 

6. SNV + Savitzky-Golay second derivative (II, 5) 
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The Savitzky and Golay first derivative (Der 1), with a second-degree polynomial order 

and a window size equal to 5 datapoints, has been used to correct the baseline vertical 

shifts (offsets) due to temperature variations occurred during the blending process 

[20]. On the pre-processed data, an alternative application of MBSD has been 

performed. In this case the standard deviation of the spectra has been calculated over 

the samples n = 1, ..., N in a selected block. The result is a vector containing the 

standard deviation calculated at each wavelength according to the formula: 

𝜎 = √
∑ (𝑥𝑟 − 𝜇)2𝑁

𝑛=1

𝑁 − 1
 

 

This step generates new profiles that summarize the informative spectral variation 

without being influenced by unwanted systematic variations between the batches, 

such as changes in particle size/humidity of the ingredients or variations of the 

environmental conditions. In order to obtain standard deviation spectra, the MBSD has 

been applied using the whole spectral region available (125 points) and a block size 

of 5 which corresponds to the amplitude of the moving window used for the calculation.  
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Research outcomes 

 On the calibration set, different row spectral pre-processing techniques have been 

tested to optimize the quality of the NIR signals (Fig3). 

 

 

 

 

On the pre-treated spectra, the Moving Block Standard Deviation (MBSD) has been 

applied along the sample direction selecting a block size of 5 to obtain SD spectra; in 

more detail, the standard deviation was calculated at each wavelength for contiguous 

blocks of 5 spectra. This approach allowed to minimize systematic differences that 

might be present between batches, due to external factors, focusing on the blending 

degree. In figure 4 the SD spectra for a calibration batch have been reported  

 

 

 

 

 

 

RR

Wavelengths (nm) Wavelengths (nm)

Figure 3: Raw NIR spectra (3a) and pretreated spectra (3b) 
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Finally, the SD spectra related to the calibration set were mean-centered column-wise, 

before performing a preliminary PCA to study the trajectory of the process and 

evaluate the consistency among the batches. In Figure 5, the score plot related to the 

global PCA performed on the calibration set is reported.  

Figure 4: Standard deviation spectra 
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                    Figure 5: Score plot PC1 vs PC2 related to the global model 

 

The first and the second PCs explained around 98% of the total variance, proving to 

be the sufficient for describing the system. Along PC1, it is possible to identify, for all 

the batches included in the calibration set, a clear trajectory related to the mixing 

process from positive to negative scores values, where the variability among the 

spectra is minimized. According to these outcomes, it was possible to select a 

representative calibration set for characterizing the process at the endpoint, including 

only the last 10 % of the spectra recorded during the blending. A second PCA model 

was calculated only on the last 10% of the SD spectra, which correspond to the mixed 

product, in order to define the space related to the moment in which the product can 

be considered homogenous. The 6 independent validation batches were, then, 

projected into the space defined by the two lowest-order principal components, 

accounting for more than 95% of the explained variance. The number of components 

was decided thanks to a dedicated cross-validation strategy. The influence plot 

(Hotelling’s T2 vs. Q residuals) and its statistical boundaries at a 95% confidence level 

were implemented, as a multivariate control chart, in an in-house app developed under 

MATLAB environment, for the real time monitoring of the behavior of new batches in 

the orthogonal space defined by PCA. In Figure 6, the influence plots related to the 6 

validation batches are shown.  
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The spectra have been numbered in the plots according to the order of acquisition and 

it is possible to identify a clear trend from the right upper corner to the lower left 

rectangle, where the limits calculated for both T2, and Q statistics defined the space 

related to the homogenous product. For all validation batches, regardless of the 

production year, the product reached this area of the influence plot after about twenty 

acquisitions, proving the reliability of the approach over the time. The outcomes 

obtained for the validation set have been confirmed by reference chemical analyses 

Figure 6: Multivariate control charts on T2 and Q statistic of six validation batches 
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based on titration methods, allowing to set the endpoint criterion after acceptance of 

15 consecutive spectra recognized as compliant by the multivariate control chart.  

 

Conclusion and scientific impacts 

The present work, done in collaboration with Medi Nova s.a.s, demonstrated the 

implementation of a miniaturized NIR sensor, directly online, to be a suitable and 

powerful tool to perform the real time monitoring of a zootechnical formulation blending 

and to define the endpoint of the process without requiring invasive sampling, or time-

consuming analyses. A deep understanding of the system allowed to account for 

systematic effects that occur during the mixing process.  An ad-hoc 2-step 

chemometric strategy based on the application of the Moving Block Standard 

Deviation and the development of a MSPC model allowed to minimize the contribution 

of these unwanted systematic effects and to build multivariate control charts for a 

straightforward endpoint detection. Thanks to the present approach, the average time 

of the process was dramatically reduced from 20 min to 5 min. Moreover, due to the 

satisfying results obtained, the following chemometric strategy has been implemented 

in plant thanks to the design of a user-friendly MATLAB interface used for performing 

the real time endpoint detection of the blending process.  
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3.2. POWDER BLENDING MONITORING BY MINIATURIZED 

NIR SENSOR: A CRITICAL COMPARISON OF 

MULTIVARIATE QUALITATIVE APPROACHES FOR 

UNIFORMITY ASSETMENT  

Scientific background and aim of the work  

Powder blending is a unit operation that represents one of the key processing steps 

for ensuring uniformity of a final formulation. In a food or pharmaceutical 

manufacturing process, powder blends of masses anywhere from a few hundred 

kilograms to tons must be mixed to the point where each unit (typically a few hundred 

milligrams to a few grams) can be declared to be uniform.  

To reach this goal, it is crucial to optimize the particle size, texture and cohesiveness 

of both major and minor components of a mixture, the parameters of the process as 

bin filling, temperature, rotation speed and mixing time in order to achieve the desired 

endpoint of uniformity avoiding unwanted effects as powder segregation [21]. The 

traditional approach for blending monitoring is carried out discontinuously, i.e., 

stopping the blender after a certain time, usually defined from experience, and 

verifying the process by withdrawing 10 samples in a predefined position (specified by 

current ICH). The samples extracted from the bin are then analyzed by reference 

methods as UV\VIS or HPLC off-line in the quality laboratory. However, interruption of 

the process and withdrawing of samples for evaluating blend uniformity may cause big 

perturbances to the system, leading to powder segregation and, thus, affecting the 

efficiency of the mixing process [16]. 

In this scenario, there is a great deal of interest in applying emerging process analytical 

technologies (PATs) for improving understanding of blending processes with the aim 

to perform a real-time monitoring. Near Infrared Spectroscopy (NIRS) proved to be a 

very accurate and efficient tool for acquiring in a no-destructive way every step of 

every batch during the production phase [3]. From a practical point of view, an NIR 

sensor is usually mounted to the surface of a blender, typically on the lid and collects 

a single spectrum of an essentially static sample during each rotation of the blender. 
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It possible to identify an effective scanning zone (Field-of-View, FoV) associated with 

the instrument, which is a function of [22]: 

 

- Blender rotation speed. 

- Instrument integration time. 

- Number of scans to coadd to generate a single spectrum. 

- The signal-to-noise (S/N) of the instrument is a function of the number of coadded 

scans, therefore it is important to maximize this number based on the rotation 

speed of the blender. 

 

All these parameters have been considered for defining the experimental plan and the 

acquisition setting of a real industrial case-study. In this work, thanks to a long-term 

collaboration with Viavi Solutions, it was possible to implement a MicroNIR PAT 

solution on a large-scale blender for the monitoring of the mixing process of the 

multicomponent solid fraction of a commercial energy drink. On the spectroscopic 

information collected along seven independent batches, three unsupervised 

qualitative chemometric methods have been tested and compared for assessing the 

homogeneity of the mixture and evaluating the conformity of the process according to 

HPLC results. The data processing was carried out in collaboration with the University 

of Barcelona during my internship abroad.  

 

 

Experimental plan, sampling, and spectroscopic analysis 

The formulation investigated included six different ingredients: caffeine, sugars, 

nicotinamide, taurine and vitamin B6 (NDA does not allow to report all the formulation 

details). In according to the company guidelines, nicotinamide is considered the target 

ingredient to be monitored in the blend, due to the fact it was one of the minor 

components constituting 2.2% of the product.  

At the end of each run, the reference analysis based on the HPLC method was 

performed in the quality laboratory of the company for quantifying the content of 
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nicotinamide. The samples were taken during blend discharge. For each top, middle 

and bottom sections of the blender, four samples were taken (12 samples in total) and 

the HPLC results certified that batches 1-2-3-4-5-7 were compliant, with the only 

exception of the sixth run which could not be considered compliant according to the 

final amount of nicotinamide.  

The experiments have been conducted in two consecutive days, varying the fill level 

and the loading mode in order to evaluate possible effects of these parameters. In 

Table 1, the experimental plan has been reported. 

 

Table 4: Experimental plan 

 

 

 

 

 

 

 

 

 

 

The tumble blender (Cyclops Maxi, IMA, U.S.A) used for the analysis had a capacity 

of 2000 L and the mixing process was performed for all the batches with a rotation 

speed of 8 rpm for 15 minutes, according to the protocol of the company.  

The spectral information recorded in real-time for each batch has been collected by a 

miniaturized NIR sensor (MicroNIR© PAT-W, Viavi Solutions, Santa Rosa, U.S.A) 

implemented on the lid of the blender trough a triclamp flange. During the mixing, NIR 

spectra have been collected through a sapphire window, thus avoiding any contact 

with the sample. The signals have been recorded in diffuse reflection mode with an 

Batch Compliance Day Fill Level Loading 

Batch 1 YES 30-07-2021 65% Manually 

Batch 2 YES 30-07-2021 65% Manually 

Batch 3 YES 30-07-2021 65% Automatically 

Batch 4 YES 1/8/2021 45% Automatically 

Batch 5 YES 1/8/2021 45% Automatically 

Batch 6 NO 1/8/2021 45% Manually 

Batch 7 YES 1/8/2021 45% Manually 
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integration time of 12.3 milliseconds, this means that a single NIR spectrum can be 

potentially measured every 1.23 seconds, considering the whole spectral range 

available (900-1700 nm). In order to increase the quality of the signals, a scan count 

of 100 has been applied for calculating each signal as the averaging of one hundred 

independent scans. For this application, a NIR spectrum has been recorded every 

blender rotation on the gravity sensor of the wireless device ensuring the 

measurement of a representative sample.  

 

 

 

 

 

 

 

 

 

 

 

Chemometric Approach proposed  

The NIR spectra have been collected by using the MicroNIR Pro Software and the 

data processing was performed in Matlab environment (The MathWorks, Inc., Natick, 

MA, USA, Version 2020b) using both the PLSToolbox package (Eigenvector 

Research, Inc. Manson, Washington) and in-house functions. In order to assess the 

uniformity of the formulation, three qualitative methods have been tested:  

- Moving Block F-Test [23] 

- Multivariate Statistical Process Control (MSPC) based on Principal Component 

Analysis (PCA) [6] 

- Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) [7] 

Figure 8: Raw spectra (left) and MicroNIR PAT-W implemented on the 
blender (right) 
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Each method has been applied separately on the preprocessed NIR spectra acquired 

along the seven independent batches considered in the present case-study. The 

results obtained, in terms of endpoint detection and evaluation of the conformity of 

each run, have been discussed to provide a critical comparison about the selected 

chemometric strategies. 

 

Moving Block F-test  

Moving block methods are used for end-point detection where the purpose is to find 

when the process has stabilized (i.e., is stationary). The Moving F-Test is based on 

Fishers F-Test where a 95% confidence limit can be used to statistically compare the 

variances calculated within contiguous blocks of spectra that are independent from 

each other; the process is considered stabilized when the F-test does not show a 

significant difference in variances of contiguous blocks. The variance for the two 

blocks of spectra is calculated by performing an F-test using N-1 degrees of freedom 

both at the numerator and at the denominator, according to the formula:  

𝐹𝐵𝑥 𝐵𝑥−1,0.05⁄ =
𝑠𝐵𝑥

2

𝑠𝐵𝑥−1

2  

 

The F-plot obtained against the time can be used for end-point detection as the 

moment in which the variance decreases, and the curve becomes smooth [23].  

 

 

- Multivariate Statistical Process Control (MSPC) based on Principal Component 

Analysis (PCA)  

 

Multivariate statistical process control (MSPC) models aim at providing statistical 

boundaries that allow to build multivariate control charts to assess whether a process 

is on- or off-specification based on a set of continuous measurements. MSPC models 

based on PCA can be applied for different goals, such as batch endpoint detection or 
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checking process evolution. In this work, a PCA-MSPC based model has been 

developed for the endpoint detection of the blending process. Other details about this 

approach are reported in the previous paragraph (3.1).  

 

Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) 

Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) provides the 

concentration profiles and pure spectral fingerprints for all compounds involved in a 

mixture by using only the spectra acquired during the process evolution. By the 

calculation of a bilinear model represented by the following equation, MCR-ALS 

provides physically and chemically meaningful concentration and spectral profiles of 

the pure components of the system: 

 

 

where  𝐗  is the original data matrix with spectroscopic process observations; 𝐒𝐓 

contains the pure spectral signatures of the components needed to describe the 

process and 𝐂 the related concentration profiles. 𝐄 is the matrix with the residual part 

not explained by the model related to the experimental error.   

MCR-ALS obtains 𝐂  and 𝐒𝐓  matrices using an alternating iterative optimization 

method. First, an initial estimate of 𝐂  or 𝐒𝐓  should be used to start the iterative 

procedure. Then, in each iterative cycle, the 𝐂  and 𝐒𝐓 matrices are calculated 

according to preselected constraints, applied to reduce the rotational ambiguity of the 

final solutions and to give physicochemical meaning to the profiles retrieved (Tauler et 

al., 1995). The optimization continues until a predefined convergency criterion is met.  

In this work, the concentration profiles calculated by MCR-ALS have been used to 

identify the endpoint of the blending process. This approach allowed us to evaluate 

the evolution of the mixing process ingredient by ingredient, with a focus on 

nicotinamide, which was considered as the target compound of the mixture. According 

to the nominal concentration of nicotinamide (2.2%) a scale factor for converting the 

arbitrary unit of the concentration profile to the real concentration unit (%) has been 

calculated, providing a semi-quantitative solution.   

𝐗 = 𝐂𝐒𝐓 + 𝐄 
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Research outcomes 

In order to optimize the quality of information provided by NIR spectra, a preprocessing 

optimization has been performed. Three different combinations of pretreatments have 

been tested: Standard Normal Variate (SNV) transform, Savitzky–Golay first derivative 

(5 datapoint window, second polynomial order) and normalization (using 2-norm, i.e., 

the Euclidean norm), Savitzky–Golay second derivative (5 datapoint window, second 

polynomial order). The second strategy, which included SavGol first derivative and 

normalization, proved to be the best one according to interpretability of the 

concentration profiles obtained by the following MCR-ALS analysis.  

On the pretreated signals, the Moving Block F-Test was applied on a calibration set 

which included the first five batches resulting compliant according to the HPCL 

reference analysis. The model obtained with a block size of 10 has been validated 

using the data related to the other two runs, the sixth (non-compliant) and the seventh 

(compliant).  

 

 

Figure 3: Results of validation of the Moving Block F-Test 
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Figure 3 shows the sixth (red profile) and seventh (ligh blue) batches projected in the 

space of the MB model calculated on the calibration set. Thanks to the golden batch 

visualization it is possible to define the limits of the experimental domain: the red 

dashed profile indicates the upper limit and the blue one corresponds to the lower limit. 

The golden batch profile is obtained by averaging the Moving Block profiles calculated 

on the compliant batches included in the calibration set; the golden batch can be 

considered as the optimal standard. Moreover, the algorithm automatically determines 

the limit based on the Fisher statistics, which corresponds to the endpoint of the 

blending process. In accordance with HPLC results, batch 6 falls outside the limits of 

the domain at the beginning of the mixing process and it reaches an earlier endpoint, 

in respect to the golden batch, around block 11. This run shows a different evolution 

in respect to the compliant batches, but the differences can be appreciated only 

partially at the first rotations of the mixing process. Batch 7, considered compliant for 

HPLC analysis, is within the limits of the experimental domain from the beginning to 

the end, achieving the endpoint around block 15, according to the evolution of the 

golden batch profile. These outcomes demonstrated the suitability of the Moving Block 

F-Test in the monitoring of the spectral variability in order to detect the endpoint of 

blending process. However, this approach does not allow to perform a real diagnostic 

for assessing the conformity of a further run and does not provide any specific 

information about the target ingredient (Nicotinamide) proving to be less sensitive to 

low dosage formulations. 

Following the previous strategy, the MSPC model based on the PCA is developed on 

a calibration set which included only the first five compliant batches. The PCA model 

is calculated selecting only the last 10% of the spectra acquired along the process, 

which correspond to the endpoint. In this way it is possible to define the space of the 

model related to the blended and homogenous product. This approach allows to build 

multivariate control charts based on Hotelling’s T2 and Q residuals, which provide 

statistical limits for the identification of the endpoint. In order to summarize the overall 

variability of the process in a single control chart, in Figure 4a T2–MSPC chart is 

shown. The seventh compliant batch (in green) shows higher T2 values at the 

beginning of the process that decrease according to the evolution of the mixing until 

reaching the endpoint at spectrum 180, after around 15 minutes.  
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However, the non-compliant batch, represented in red, stands at higher T2 values 

throughout the duration of the blending without reaching the endpoint. Figure 4b shows 

the influence plot built on both Hotelling’s T2 and Q residuals, which confirms the 

previous outcomes. At the end point, batch 7 is inside the limits of the model proving 

to follow the same behavior of the compliant calibration batches. However, batch 6 

seems to follow a similar evolution achieving a sort of stabilization but it falls outside 

the limits of the model. In light of these results, the MSPC approach can be considered 

a more powerful diagnostic tool in respect to MB F-Test method, allowing at the same 

time to define objective statistic limit for the endpoint detection. 

The last method applied on this data set is based on the application of the MCR-ALS 

method. The model has been calculated on preprocessed data after application of 

non-negativity constraints in concentration profiles. For each batch, it was possible to 

obtain the concentration profiles of the six ingredients inside the formulation in order 

to study the evolution of each single ingredient along the mixing process (Figure 5 a). 

Moreover, to evaluate the consistency of these results in respect to the HPLC analysis, 

the concentration profiles of nicotinamide, obtained in an arbitrary unit, have been 

Figure 4: (4a) shows the values of T2 along the mixing for the validation set. (4b) shows the 
influence plot (Q-residuals vs. T2) related the same validation batches 

a b
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scaled to the real concentration unit (%). In this way, according to the acceptance 

limits of the company (RDS ≤ 5%), it was possible to evaluate the evolution of the only 

nicotinamide, obtaining a semi-quantitative answer for the target compound. (Figure 

5b). 

 

 

 

 

In respect to the ideal amount of nicotinamide, equal to 2.2%, the company considers 

acceptable a relative standard deviation ≤ 5% and these limits have been plotted in 

Figure 5 b. As it is possible to see in the graph, the concentration profile of 

nicotinamide related to batch 6 does not reach the desired amount at the endpoint, 

confirming the HPLC outcomes.  MCR proved to be a very powerful technique allowing 

to monitor low dosage formulations and providing specific information about single 

ingredients of the formulation. Moreover, some variation of this algorithm, such as 

MCR-ALS (Multivariate Curve Resolution Alternative Least Square), can provide a 

quantification of one or more target compounds. 

 

 

Figure 5: (5a) shows the concentration profiles obtained by MCR analysis for a compliant batch. (5b) shows the 
Nicotinamide profiles scaled in real unit 

No-compliant

Batch 1 Batch 7

a b
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Conclusion and scientific impacts 

In this work, a real industrial case-study has been used to evaluate the pros and cons 

of three qualitative methods for the real-time monitoring of a powder blending process. 

MB F-test allowed to identify the endpoint of the process through the global evaluation 

of the spectral variability over time, providing an objective limit based on Fisher 

statistics and ensuring a straightforward interpretation of the outcomes. This method 

did not give information about specific ingredients inside the mixture and was not able 

to perform a real diagnostic for assessing the compliance of production batches. 

MSPC model based on the application of PCA proved to be a stronger diagnostic tool, 

which allowed to build multivariate control charts useful for obtaining a comprehensive 

understanding of the mixing process, for identifying the endpoint according to statistics 

parameters (Hotelling’s T2 and Q residuals) and for evaluating the compliance of 

further batches in a more reliable way. However, also this approach proved to be less 

sensitive to low dosage formulations due to the fact that it is not possible to extract the 

information related to specific ingredients. MCR-ALS is the only approach that allowed 

to characterize the evolution of each single component of the mixture through the 

calculation of concentration profiles. Although this technique has the higher sensitive 

to low dosage formulations, it does not automatically calculate any statistical limit for 

detecting the endpoint of the blending process. Moreover, the implementation of the 

model can be complicated because of the need to optimize many parameters 

(constraints) for obtaining qualitative or quantitative answers. In general, the results 

obtained for this specific case-study, demonstrated as each technique can provide a 

complementary information useful for understanding and modelling different aspects 

of the blending process. A multistep chemometric strategy based on the consecutive 

applications of MB F-test, MSPC and MCR-ALS can be considered as a very 

promising strategy for the real-time and online monitoring of a process.  
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CHAPTER 4: NIR HYPERSPECTRAL IMAGING 

Hyperspectral imaging (HSI) in the near infrared (NIR) spectral region is an innovative 

analytical tool which allows to acquire the spectral information for a large number of 

contiguous spatial portions (pixels) related to the surface of the sample analyzed. The 

real advantage, in respect to the traditional NIR spectroscopy, is the possibility to 

obtain a spatial representation of the distribution of chemical components (chemical 

imaging) for qualitative and quantitative purposes [1]. A hyperspectral imaging system 

produces a two-dimensional spatial array of vectors, which represent the spectrum at 

each pixel location; the resulting three-dimensional matrix (the so-called hypercube) 

includes two spatial and one spectral dimension. For reducing the dimensionality of 

the data and extracting both chemical and spatial information, the application of 

chemometric techniques is needed. Before starting data modeling, it is crucial to 

perform some preliminary steps for properly handling hyperspectral images [2]:  

1) Removal of noisy spectral data: in correspondence of the extremes of the 

spectral range, it is possible to find noisy parts that can affect the effectiveness 

of data analysis. 

 

2) Removal of image background: in most of the cases, hyperspectral images 

include a lot of not interesting information related to the background that is 

usually removed choosing the best strategy according to its specific features.  

 

3) Removal of “dead pixels” and spikes: isolated bad pixels placed randomly can 

generate black pixels, called “dead pixels”, and false intensity peaks known as 

“spikes”, which should be removed before applying any chemometric strategy.  

 

4) Spectral preprocessing: mathematical pretreatments are applied for optimizing 

the quality of the spectral information and for avoiding global intensity effects 

due to light scattering.  
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Once clean images are obtained, it is possible to apply unsupervised techniques as 

PCA for summarizing and exploring the information contained in hypercubes. 

According to the specific aim of the study, PCA can be applied on whole images, 

selected objects or pixels. In the first case, the analysis is performed considering the 

whole image as a sample and comparing images to each other’s for pattern 

recognition purposes. The object-based approach considers specific objects of 

interest inside the image, while the pixel-based approach is focused on individual 

pixels for emphasizing differences among pixels [3].  

A pixel-based level approach has been used in the study described in this last chapter 

for mapping the evolution of dehydration, proteolysis, and lipolysis during the ripening 

of a semi-hard cheese.  
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4.1 AN IN-DEPTH STUDY OF CHEESE RIPENING BY MEANS OF NIR 

HYPERSPECTRAL IMAGING: SPATIAL MAPPING OF DEHYDRATION, 

PROTEOLYSIS AND LIPOLYSIS 

Scientific background and aim of the work 

In the last 20 years, with the development of technology and chemometric tools, near-

infrared spectroscopy (NIRS) established itself as an accurate non-destructive 

technique for compositional analysis and quality evaluation for a wide range of dairy 

products including: liquid or dried milk, cream and traditional and processed cheese 

[4]. Among all dairy products, cheese represents one of the most complex milk 

derivatives for the high number of factors contributing to its chemical composition and 

technological characteristics. Despite cheese complexity, NIR spectroscopy has 

proven to be a suitable analytical method to verify the authenticity of certified products 

[5] to evaluate cheese chemical composition to follow the shelf-life [6], to determine 

sensorial parameters [7] and to characterise cheese ripening [8,9]. Indeed, traditional 

bench-top instrumentation, equipped with point-based scan systems, does not provide 

information regarding the spatial evolution of phenomena that occur in the product – 

a crucial aspect that has to be taken into account for inhomogeneous matrices such 

as many dairy products, cheese above all.  

Recent advances are focused on the development of efficient analytical approaches 

based on the employment of NIR hyperspectral imaging (NIR-HSI) for food analysis, 

in order to merge the spectral and spatial information and to evaluate, simultaneously, 

both chemical composition and physical features of the sample [10]. In a hyperspectral 

image, in fact, each pixel corresponds to a spectrum in the whole NIR range; in this 

way it is possible to combine the information about chemical composition and the one 

related to analyte spatial distribution [11]. The advantages of NIR-HSI, compared to 

conventional NIR spectroscopy, were demonstrated for the prediction of macronutrient 

content (proteins, fat and carbohydrates) in different cheese varieties [12]. 

Furthermore, in recent studies, the employment of this technique, combined with 

chemometric strategies, provided a satisfactory estimation of the rind percentage in 
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hard Italian ground-cheese [13] and for the prediction of grade ripening of long-

ripening cheeses [14]. 

In the present study, NIR-HSI was tested as an efficient non-destructive tool to follow 

the biochemical evolutions that occur in the cheese wheel during the 

ripening/maturation phase. For the first time, the contribution of each of the three most 

important processes that are involved – lipolysis, proteolysis and surface dehydration 

– was deconvolved. Thanks to this deconvolution strategy, it was possible to map and 

study over time the changes ascribable separately to proteins, lipids and moisture. 

Ripening, in fact, represents a crucial step in cheese making, which involves a 

balanced series of consecutive microbiological and biochemical events that lead to the 

characteristic taste, aroma and texture of each cheese variety. In more detail, lipolysis 

is responsible for the catabolism of triacylglycerol (TAG), catalysed by the action of 

indigenous, endogenous and/or exogenous lipases. This process leads to the 

formation of volatile aromatic compounds, contributing significantly to the flavour of 

many cheese varieties [15]. Proteolysis is the most complex biochemical event that 

occurs during ripening, with a major impact on flavour and texture; it can be divided 

into three phases: proteolysis in milk before cheese manufacture, the enzymatically 

induced coagulation of milk, and proteolysis during cheese ripening [16].  

To achieve the objective of an in-depth understanding of cheese ripening, the present 

study is organised in two consecutive steps.  

The first one, aimed at a fundamental understanding of the NIR spectral bands 

ascribable to each biochemical change, was carried out acquiring HSI data from 

different cheese varieties, in which proteolytic, lipolytic and dehydration changes occur 

at a different relative intensity.  

Secondly, the maturation of a typical Italian cheese, from the Liguria region, 

commercially named Formaggetta and provided by Caseificio Val D’Aveto 

(Rezzoaglio, GE, Italy), was followed. Formaggetta is a semi-hard cheese 

characterised by a short maturation time; therefore, visualisation of the spatial 

changes that occur during ripening becomes crucial for a reliable understanding of the 

phenomenon.  Nowadays, indeed, it is of great interest, both for cheese manufacturing 

and associations involved in the protection of the certified products (consortia) to 
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dispose of a fast, non-destructive and sensitive method to monitor dynamic 

transformations during maturation, in relation to the quality of cheese. 

In order to manage the high amount of information embodied in HSI-NIR data, a 

chemometric approach is required. The present study proposes the application of 

principal component analysis (PCA) for both understanding the predominant NIR 

spectral bands involved in cheese ripening and creating distinct chemical maps of the 

main three biochemical events [17]. 

  

Experimental Plan: Sampling and Spectroscopic analysis 

The experimental plan can be summarized in the following two steps: 

STEP A – biochemical process understanding: this step, aimed at identifying the NIR 

spectral bands that characterize lipolysis, proteolysis and dehydration, involved 

analysis by means of HSI-NIR of different cheese types. In more detail, a sample set 

including 12 commercial varieties of cheese, was considered:  

• Asiago, Casera, Parmigiano Reggiano 20 months-aged and 30 months-aged were 

selected for being characterised by proteolytic maturation (Atlante sensoriale dei 

prodotti alimentari, 2012), at different intensities.  

• Avetino, Camoscio d’Oro, President, Gorgonzola and Roquefort were collected in 

order to investigate lipolytic reactions, which are predominant during their ripening 

(Atlante sensoriale dei prodotti alimentari, 2012).  

• Morbidezza, Formaggetta and Bel Paese, were included in the sample set for their 

intermediate biochemical behaviour (Atlante sensoriale dei prodotti alimentari, 2012).  

Formaggetta and Morbidezza samples were provided by Caseificio Val d’Aveto 

(Rezzoaglio, GE, Italy), while the other commercial samples were purchased at a local 

market. All the samples were sliced by the cheese seller (2 cm thick), few hours before 

analysis. Samples were let equilibrating at room temperature for one hour, prior to 

image acquisitions, to avoid temperature interferences in the NIR signals. All samples 

were measured without any chemical pre-treatment/preparation.  
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STEP B – biochemical mapping over time: in the second phase, the ripening of 

Formaggetta cheese was studied from a chemical point of view, mapping lipolysis, 

proteolysis and dehydration during the last 10 days before market release. For this 

step, a total of twenty samples (completely independent from the ones used in STEP 

A) were produced in a single batch and delivered by Caseificio Val d’Aveto, two for 

each of the ten sampling dates, to the Department of Pharmacy (DIFAR) of the 

University of Genova for the analyses. To better represent the spatial evolution of 

cheese ripening, every day one Formaggetta wheel was sectioned longitudinally, while 

the other one transversally, with a thickness of 2 cm in both of the cases. In this way, 

a total of twenty hyperspectral images of independent samples were acquired over the 

whole ripening process. Hyperspectral images were acquired using a line scanning 

system (Specim Ltd, Finland) composed by a SWIR3 hyperspectral camera, working 

in the 1000-2500 nm spectral range at 5.6 nm resolution. The camera is equipped with 

three halogen lamps (35 W, 430 lm, 2900 K, each) at a 45° incident angle as the 

illumination source, and a horizontal line scanner (Lab Scanner, 40 × 20 cm moving 

stage). The system was controlled by the Lumo Scanner v. 2.6 software (Specim Ltd, 

Finland). Prior to each measurement, dark (closed shutter) and white (99% reflectance 

Spectralon® rod) images were automatically recorded and stored.  

A total of 32 images were acquired: one image for each of the 12 commercial cheeses 

and two images/day, for a total of 10 days representing the Formaggetta ripening 

process. 

 

Chemometric approach proposed  

The first step of the hyperspectral images processing was an internal calibration to 

normalise the reflection intensity values recorded (I) in the raw images according to 

the white (W) and the dark (D) intensities, for each pixel p and at each wavelength λ, 

independently, obtaining reflectance values (R) according to the following equation: 

 

       𝑅𝑝,𝜆 =
𝐼𝑝,𝜆−𝐷𝑝,𝜆

𝑊𝑝,𝜆−𝐷𝑝,𝜆
   Eq 1 
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In this way unwanted variations due to possible changes in lighting over the time can 

be minimised. The reflectance data obtained were stored in three-dimensional arrays, 

usually called hypercubes, where the rows and columns are the image dimensions 

(expressed in pixels), while the third dimension describes the spectral wavelengths 

along the whole NIR range (a total of 270 variables). 

In order to process the hypercubes by means of multivariate data analysis, it was 

necessary to preliminarily unfold each 3D array to obtain a 2D matrix where the rows 

are the pixels of the image (row times columns of the hypercubes) and the columns 

are the spectral channels [18]. Subsequently, the pixels related to the background 

(area of the image not covered by the sample) and to the cheese holes were removed 

thorough a two-step masking process based on the wavelength ratio (WR) approach. 

In more detail, the ratio between the reflectance at two selected pairs of wavelengths 

was calculated, for enhancing the spectral differences – and the contrast in the 

resulting image – between the cheese and the background (WR1) and, consecutively, 

between the cheese and the cheese holes (WR2). The value of the total intensity after 

ratio calculation was used for setting a threshold that defines the pixels belonging to 

the cheese in respect to the ones belonging to background or holes. Equation 2 reports 

the calculation of the first wavelength ratio (WR1). The corresponding threshold for 

excluding background pixels was chosen by evaluating the image histogram at WR1 

(not shown): if the intensity of WR1 was higher than 0.3, the pixel was excluded from 

the sample (and from the subsequent data analysis). 

 

                                                         𝑊𝑅1 =
𝑅1455 𝑛𝑚

 𝑅1305 𝑛𝑚
                                       Eq 2 

 

Equation 3 reports the calculation of the second wavelength ratio (WR2). In this case, 

the corresponding threshold for excluding hole pixels, evaluated as described above, 

was set as follows: if the intensity of WR2 was lower than 0.45, the pixel was excluded 

from the sample (and from the subsequent data analysis). 
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𝑊𝑅2 =
𝑅1260 𝑛𝑚

𝑅1050 𝑛𝑚
                            Eq 3 

 

 

In each image, the intensities of the spectra retained after background and holes 

elimination were normalised by a range-scaling between 0 and 1 (Malegori et al., 

2020). This normalization permitted to compare, in a reliable way, images acquired in 

different analytical sessions. 

From a spectral point of view, the unfolded hypercubes were pre-treated using, as the 

row pre-processing, the standard normal variate (SNV) transform, effective to correct 

both the baseline shift and the global intensity changes in the set of signals [19]. 

After the image preparation described, which was in common for all the cheeses 

investigated, a different data processing strategy was followed according to the two 

steps presented. This separation will be maintained in the following sections, for the 

sake of clarity. 

 

STEP A – biochemical process understanding: from the hyperspectral images 

acquired for each of the twelve cheese typologies considered, two square regions of 

interest (ROIs) of 20x20 pixels were selected. All the pixels belonging to the ROIs and 

related to the same cheese were considered as a representative characterisation of 

sample heterogeneity. The ROIs were selected avoiding the inclusion of unwanted 

interferences such as cheese crust, big holes and evident moulds on the surface, with 

the aim of focusing on cheese bulk. With the aim of understanding the spectral 

differences between the cheese typologies, a global matrix was built through the 

combination of the ROIs – after the spectral pre-processing and image normalization 

described – and submitted to an exploratory PCA with column mean centering. A joint 

interpretation of scores and loadings was performed, aimed at identifying the spectral 

bands ascribable to variations in water, protein and lipid content. 
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STEP B – biochemical mapping over time: for the twenty hyperspectral images of 

independent Formaggetta cheeses, a pixel-based approach was followed (Malegori, 

Grassi, Marques, Freitas, & Casiraghi, 2016), with the aim of visualising the spatial 

extent of the biochemical phenomena in false-colour maps. According to this aim, 

three separated PCA (with column mean centering) were carried out on the three NIR 

regions selected in STEP A (one for each biochemical phenomenon under 

investigation), after the concatenation of the 10 images acquired over time for both 

transversal and longitudinal sections. The scores of the lowest-order principal 

component (PC1) calculated for each single pixel were then represented as an image, 

thanks to the refolding strategy; the images were coloured according to a colour scale 

ranging between blue (lowest value of PC1) and red (highest value of PC1). 

 

 

Reasearch outcomes  

 

STEP A – biochemical process understanding 

For an easier reading of the figures, a colour code was used: in grey, the cheeses 

characterised by a reduced maturation; in pink, those with a marked proteolytic 

maturation and, in blue, those with a typical lipolytic ripening (Atlante sensoriale dei 

prodotti alimentari, 2012). Moreover, each of the 12 commercial cheese samples was 

coded with a number: 1 = Avetino; 2 = Morbidezza; 3 = Bel Paese; 4 = Formaggetta; 

5 = Asiago; 6 = Casera; 7 = Camoscio D’Oro; 8 = President; 9 = Gorgonzola; 10 = 

Roquefort; 11 = Parmigiano Reggiano 22 months; 12 = Parmigiano Reggiano 30 

months. 



Chapter 4 

 

140 
 

 

 

The spatial concatenation of the ROIs (one for each cheese, as an example) is 

represented in Fig.1a; the grey lightness, which differs visually from ROI to ROI after 

normalization, is proportional to the sum of the reflectance (R) values along the whole 

NIR range (total-intensity image, or integral image). Fig.1b shows the mean 

normalised spectrum along the NIR spectral range for each commercial cheese, 

obtained as the mean of the reflectance values for all the pixels belonging to the same 

sample. Strong differences can be highlighted between the mean spectra along the 

whole spectral range and, in particular, between the three cheese typologies. In more 

detail, the proteolytic cheeses (in pink) are characterised by a higher absorption 

between 1600-1800 nm; a more confused and not stable spectral profile can be 

highlighted from 1900 nm until the end of the recorded NIR region. Conversely, for the 

light blue spectra (lipolytic cheeses), this ending region (around 2200 nm) seems to 

be more characteristic, exhibiting a similar behaviour in the whole set of lipolytic 

cheeses.  On the full set of spectra (one spectrum for each pixel), PCA was performed 

in order to understand which spectral variables are more accountable for sample 

groupings, according to the typical ripening process. In Figure 2, the outcomes of PCA 

for the two lowest-order principal components (PCs), which globally explain about 92% 

of the total variance, are presented.  

20 pixels
2

0
 p

ix
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Figure 1: Mean reflectance spectrum from ROIs of cheese samples. 
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In the score scatter plot (Fig.2a), where each ROI pixel is represented by a single dot, 

it is possible to highlight a cloud of objects, centered in the axes origin and distributed 

along PC1. In more detail, samples characterised by a higher proteolytic activity, 

corresponding to numbers 5, 6, 11 and 12, are placed at negative values of PC1 

scores while, at higher score values, samples 1, 7, 8, 9 and 10 – which correspond to 

the cheese varieties with a marked lipolytic activity – are found. Around the zero values 

for PC1 scores, at the origin of the axes, samples 2, 3 and 4 are located, which present 

a lower extent of maturation and an intermediate behaviour for the two biochemical 

phenomena of interest. From these considerations, it is possible to conclude that PC1 

is explaining the different ripeness type, but without the possibility of deconvolving the 

contribution of proteolysis and lipolysis phenomena.  

In the loading line plot (Fig. 2b), the variable contribution for PC1 and PC2 is reported 

as a function of the wavelength. From a joint interpretation of sample groupings and 

variable importance, it is possible to highlight three significant bands: 1360-1500 nm 

(highlighted in grey), with a modest contribution for both PC1 and PC2; the second 

one, between 1650-1780 nm (in pink), characterised by a negative correlation with 

PC1 and a positive correlation with PC2; the last one, around 1920-2205 nm (in light 

blue), with an opposite behaviour with respect to the previous one, characterised by a 

positive correlation with PC1 and a negative one with PC2. Based on these outcomes, 
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Fig. 2 – Risultati e Discussione

b
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Figure 2:(a) PC1-PC2 score plot of the concatenated 12 ROIs, one for each cheese (20*20 pixels). In 
(b) PC1-PC2 loading line plot. 
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it is possible to relate the band around 1690 nm to the proteolytic phenomenon, 

ascribable to the samples located at negative values of PC1; conversely, samples 

located at positive PC1 have a positive contribution of the band around 2140 nm and, 

consequently, they are ascribable to the lipolytic phenomenon. 

For proceeding with spectral band imputation, as a confirmation of what PCA is 

highlighting, it is crucial to underline that the data were analysed in the reflectance 

mode; consequently, relationships between scores and loadings must be interpreted 

in a reverse way, considering that an increasing in reflectance values corresponds to 

a decrease in the absorption due to a peculiar chemical bond [20]. Specifically, the 

spectral region around 1690 nm can be assigned to the CONH2 group, characteristic 

for a specific secondary structure of proteins (β-sheet): this band – presenting negative 

loading values on PC1 – is directly linked, in PCA, to the proteolytic cheeses, which 

are found at negative scores along PC1. This indicates, for these samples, a decrease 

in the intensity of the NIR absorption by the peptide bond, due to the degradation of 

proteins that occurs in cheeses characterised by a strong proteolytic ripening. 

Regarding the lipolysis process, the band around 2140 nm is related to the second 

overtone of C=O stretching, which is located in the centre of the spectral range 

between 1920 nm ad 2205 nm and it may be ascribable to the ester bond of lipids.  

This spectral region – showing positive loadings on PC1 – is directly related with 

lipolytic cheeses, which are found at positive PC1 scores. This indicates that, in these 

samples, the NIR absorption due to the ester bonds is lower than in the other samples. 

Such an outcome can be attributed to the hydrolysis of ester bonds and to a partial 

oxidation of C=C double bonds. Finally, loadings of PC1 and PC2 close to zero in the 

region between 1360–1500 nm – related to combination bands of symmetric and 

antisymmetric O–H stretching [21] – indicate that the contribution of water is negligible 

in the PCA outcomes reported and studied in Figure 2. 

 

STEP B – biochemical mapping over time: 

For visualising the spatial and temporal extent of the three biochemical phenomena in 

Formaggetta cheese, independent PCA were performed on the three spectral regions 

identified in STEP A (one for each biochemical process under investigation). 
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According to the pixel-based approach [17], false colour images were then refolded 

for representing the score value of PC1 at each pixel. Below, the three maps are 

reported, organised as follows: on the left part of the figure (identified with A) the score 

images for the cheeses cut along the longitudinal section are reported, while the 

transversal cut is reported in the right part (identified with B). For both of the sections, 

10 sub-images are presented, one for each independent Formaggetta cheese 

analysed daily for the whole ripening process, from t1 (first day of analysis) until t10 

(last day of analysis). The colour bar ranges from pure blue, minimum value of PC1 

score, to pure red, maximum value of PC1 score, passing through green, which 

represents an intermediate value. 

In Figure 3, the chemical map for the dehydration process is reported as a result for 

the PCA performed on the reduced spectral range 1360-1500 nm.  

 

 

Figure 3: PC1 score map for dehydration 

 

It is possible to notice the profound changes related to the water content in the first 

five sampling times (from t1 to t5): gradually, the green-yellowish color, associated 

with lower values of PC1 scores, changes to orange; not an evident spatial pattern is 

highlightable, except for the transversal cut, where a ring pattern is detectable in t1 

and t2. The process tends to reach a plateau at t6, corresponding to the sixth day of 

ripening, when it is possible to detect the formation of the cheese rind. So, it is possible 

to conclude that the dehydration process is predominant in the first stage of the 
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ripening but, after few days, the protection that the rind gives to the product, is 

counteracting the loss of water.  

In Figure 4, the chemical map for the proteolysis process is reported as a result for the 

PCA performed on the reduced spectral range from 1650 to 1780 nm.  

 

 

With respect to Figure 3, an opposite situation can be highlighted. In fact, the 

orange/red colour, limited to the cheese surface in the early sampling time, becomes 

more pronounced for the last sampling point and, in particular, starting from t5. 

Moreover, a yellow halo close to the border becomes more and more evident over the 

ripening stages, suggesting a radial path of the proteolytic phenomena, from the rind 

to the centre of the cheese.  

In Figure 5, the chemical map for the lipolysis process is reported as a result for the 

PCA performed on the reduced spectral range 1920–2205 nm.  
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Figure 4: PC1 score maps for proteolysis. 
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Figure 5: PC1 score map for lipolysis. 

 

Compared to the other two processes investigated, this phenomenon is less evident, 

starting from blueish pixels in the first sampling time and reaching an intermediate 

level (predominance of green pixels) at t7/t8. It is possible to appreciate modifications 

related to the lipolysis process just at the last two sampling times (t9 and t10) with a 

yellow area and a red border similar to the proteolysis maps. Although in 10 days a 

reduced lipolytic ripening is highlighted, it is possible to confirm that lipolysis follows a 

radial path, proceeding from the rind to the centre.  

Thanks to the normalisation strategy followed during image pre-processing, the 

chemical maps are fully comparable; in this way, a direct comparison of the relative 

importance of the biochemical phenomena in the ripening of the cheese under study 

can be done. On these bases, Formaggetta can be defined as a semi-hard cheese 

mainly interested by a proteolytic ripening, which is the most evident phenomenon 

after rind formation. 

Eventually, for all the biochemical processes, no significant differences were 

highlighted in the spatial extent of the phenomena between longitudinal and 

transversal sections.     

 

Conclusion and scientific impacts 

In light of the presented results, it is possible to confirm the successful applicability of 

HSI-NIR for understanding the spatial and temporal extent of the three most important 

biochemical processes that occur during cheese ripening. In more detail, the pixel-
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based approach applied for the image processing permitted to visualise, in a 

straightforward way, the chemical modifications inside the samples, thanks to the 

representation of the PCA scores as false colour images. This information is of the 

upmost interest, both for cheese manufacturers and associations involved in the 

protection of the certified products (consortia) to dispose of a fast, non-invasive and 

sensitive method to monitor dynamic transformations during maturation in relation to 

cheese quality. From a general perspective, the present work demonstrated the 

potential of HSI-NIR, coupled with a chemometric strategy of pattern recognition, as a 

powerful analytical tool for providing a global understanding of biochemical 

phenomena involved in heterogeneous matrices. In more detail, the advantage of 

chemical mapping is demonstrated to be crucial in extracting the information of the 

spatial extent of chemical changes.  

Thanks to this case study, a reliable analytical approach for deeply understanding 

biochemical changes in food matrices in general is proposed. It is well known, in fact, 

how the biochemical processes (from ripening to fermentation) can be considered as 

a primary aspect, to guarantee quality and safety of a food product, together with the 

development of desired sensorial properties. As a future perspective, given the non-

destructive nature of HSI-NIR measurement, a potential application of the method 

developed in the present study can be foreseen in the early identification of defects 

related to abnormal ripening processes. 
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5. OVERALL CONCLUSION 

The vibrational spectroscopic techniques investigated in this Doctoral Thesis have 

proved to be one of the most efficient and advanced tools for developing innovative 

analytical protocols for quality control in food and pharmaceutical industries. 

To meet the emerging analytical challenges in these fields, it is crucial to define 

alternative methods for performing fast, non-destructive and accurate analysis for 

monitoring manufacturing processes and verifying the quality of final products. In 

respect to traditional absorption spectroscopic techniques, Excitation-Emission 

Fluorescence spectroscopy coupled with three-way decomposition methods such as 

PARAFAC, proved to have higher sensitivity and specificity for the measurements of 

low concentrated targets compounds in aqueous solutions. The potential of this 

approach allowed to obtain satisfying results for characterizing antioxidant compounds 

in green tea samples with the aim to provide an alternative analytical tool for the 

authentication of the tea samples according to the geographical origin. The high 

performance ensured by fluorescence spectroscopy also open the possibility to 

develop innovative diagnostic protocols based on the analysis of biological fluids for 

the early detection of prostate cancer. The preliminary study reported in this thesis has 

shown the potential of Excitation-Emission fluorescence spectroscopy coupled with 

multivariate data analysis for discriminating patients affected by prostate cancer and 

healthy donors through the analysis of urine samples with a great improvement of the 

patient compliance.  

In the present thesis, the second vibrational spectroscopic technique tested was Near 

Infrared Spectroscopy which proved to be a very powerful tool for both lab and 

industrial applications. NIR benchtop instruments have been used for the analysis of 

finished food products as olive oil and rice germ. These systems provided very 

accurate results for the development of predictive regression models for the 

quantification of key quality parameters and for understanding complex processes that 

occur in biological matrices during storage. The availability of more sophisticated 

techniques, such as hyperspectral imaging, which evaluate also the spatial information 
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related to the sample, allowed to map, and visualize the evolution of these dynamic 

chemical processes over the time. In this thesis, a combined approach of HSI and 

pattern recognition techniques proved to be an efficient tool for following the 

hydrolysis, lipolysis and proteolysis during cheese ripening demonstrating as the 

contribution of the spatial information can be crucial to obtain a comprehensive 

knowledge about complex phenomena as the biochemical ones. The same strategy 

could be applied to study the shelf-life or ripening processes of many different food 

matrices in which multiple reactions can affect the sensorial and nutritional properties 

occur at the same time of the product.  

In the last years, due to the introduction of new Quality by Design (QbD) approaches 

for providing statistical, analytical and risk-management methodologies in the design, 

development and manufacturing of food and pharmaceutical formulations, the interest 

in applying NIR sensors directly online for monitoring the evolution of manufacturing 

processes is significatively grew up. In this thesis, real industrial case-studies allowed 

to develop and compare different chemometric strategies for a comprehensive 

understanding of a powder blending process by NIRS. Miniaturized NIR sensors 

proved to be able to obtain satisfactory analytical performances in acquiring spectral 

information during the mixing process of multicomponent formulations. The 

collaboration with Medi Nova, a leader Italian company in animal artificial insemination, 

allowed to test an ad-hoc qualitative solution for the endpoint detection of the blending 

of semen extender. The good results obtained through the calculation of a Multivariate 

Statistical Process Control (MSPC) model have been implemented in a dedicated 

interface developed in the MATLAB environment and currently used in the plant for 

controlling the efficiency of the production. Moreover, I had the possibility to deepen 

this topic during my internship abroad in Barcelona where I investigated and compared 

different qualitative approaches for defining a promising multi-step strategy for the 

global understanding of an industrial blending process.  
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