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Abstract: The energy issue has given rise to a prolific research field, which branches into several
strands. One of these strands focuses on the role played by building energy features in shaping
property prices. Indeed, market players are expected to show a higher willingness to pay for
building units characterized by higher energy performance. The study of the so-called price premium
for building energy efficiency has flourished in the last decade or so; plenty of evidence is now
available concerning its occurrence, although its magnitude is still debated. The literature relies on
the methodological frameworks of statistical modeling and multiple regression, primarily employing
hedonic price models. Lately, spatial autoregressive models have also been adopted. Here, we
propose to deal with estimation of the price premium by adopting an innovative perspective. In
particular, we use a methodological framework in which regression models are complemented with
a multi-criteria optimization approach. Using a spatial autoregressive model first, and with D as
the reference energy rating band, we find the following price premiums: 55% for A4, 42% for A3 to
A, 20% for B or C, −14% for F, and −29% for G. The multi-criteria optimization approach proves
efficient in estimating the price premium. The estimates above are essentially confirmed: the results
converge for all the energy rating bands except for G.

Keywords: building energy efficiency; green buildings; real estate market; property price; price
premium; energy rating bands; energy performance certificates; analytic hierarchy process

1. Introduction and Background Literature

Two of the main questions raised by the energy issue in the building industry are as
follows [1]: does a cost premium exist when a green construction is built? And does a price
premium occur when a green building is sold? Both questions have a solid background
rooted in economic theory. Concerning the first, pursuing energy efficiency in buildings
requires using additional building materials and state-of-the-art systems; hence, higher
upfront costs should be expected [2,3]. Regarding the second issue, energy-efficient building
units provide occupants lower management costs and higher comfort levels; thus, a higher
willingness to pay when buying them should also be expected [4]. Although an affirmative
answer should follow the two previous questions—as both an additional cost and a higher-
than-normal price are anticipated for green buildings compared to traditional ones—the
literature shows that the situation is somewhat more complicated, especially when it comes
to the magnitude of those premiums.

Despite the lack of a large corpus of studies on the topic of cost premiums for green
buildings, and even though extensive and conclusive empirical findings are still missing,
reviews of the available works have been published recently [5,6]. Aside from the studies
advocating that the gap in costs is basically nil, or not statistically significant [7,8], the
consensus leans towards the occurrence of a small cost premium, on the order of a few
percentage points [9–13] or slightly more [14–16]. However, from different perspectives,
several works show that the cost premium depends on the expected performance outcome
and increases exponentially with it. Cost-optimal solutions for refurbishing outdated
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residential buildings are found in the range of 58–41 kWh/m2 y as far as the primary
energy need is concerned [17]. Furthermore, pushing the performance far below the
threshold of 50 kWh/m2 y implies incurring ever-higher costs [18,19]. Similar findings are
reported for commercial buildings depending on different certification levels [20].

Early investigations into the price premium for energy-efficient buildings date back
to the late eighties [21,22]. Still, the research strand has flourished in the last decade,
primarily due to the availability of large datasets once energy certification systems have
been implemented and have become established in real estate markets. The Green Mark
(GM) label in Singapore [23–28] and the Energy Performance Certificates (EPCs) in Eu-
rope [29–31] are cases in point. Comprehensive literature reviews of previous studies
have been published looking at both the residential and commercial markets [4,32]. An
up-to-date review—focusing on the green price premium for dwellings only—can be found
in a recent study [19]. The analyses performed so far consider both residential [33–37] and
commercial [38–41] buildings in a variety of geographic and climatic areas, especially in
the US [42–49] and European countries [50–52].

From a perusal of the literature, some intriguing remarks arise regarding methods and
models. While most of the studies employ linear or semi-logarithmic functional forms, a
few others make use of a double-logarithmic function to estimate the price premium in
terms of elasticity, and thus the percentage change in housing price for a percent change
in energy consumption [53–58]. Also, there has been a radical shift in the models used
to estimate the price premium over the years. While early studies were building upon
the hedonic price model [59–61] as derived from the seminal work of Rosen [62], spatial
statistics has made its way into this research strand recently [63–66]. However, even though
there is a large consensus regarding the occurrence of a premium for building energy
efficiency, uncertainty still characterizes the estimated size of that price differential, as can
be seen from the results of the studies focusing on the market effect of EPCs (Figure 1).
Empirical evidence suggests that the price premium is within 10% when comparing the A
and B energy rating bands with the D one. Nonetheless, some works indicate a premium
of up to around 20%, and a couple of studies even find a premium of about 30%.

As can be understood from the above literature review, the analyses on the occurrence
of a price premium—and, notably, the estimation of its magnitude—rely essentially on the
methodological frameworks of statistical modeling and multiple regression. Most studies
employ hedonic price models, sometimes controlling for fixed space and time effects. Other
recent works show the opportunity to exploit spatial data analysis, especially the excellent
properties of the spatial autoregressive model (SAR) and spatial error model (SEM). Even
the few studies using different approaches—such as the hierarchical Bayes model [26],
quantile regression [67], evolutionary polynomial regression [68], and geographically
weighted regression [50]—still fall into the same methodological framework.

The purpose of this study—and its original contribution as well—lies in addressing
the currently-debated topic of price premiums in green buildings from an innovative
perspective. We aim to delve into the following research questions. Is it possible to
address the estimation of the price premium by adopting other methods, especially a
multi-criteria optimization approach? Does it provide equally reliable estimates as those
offered by the spatial regression models? What are the pros and cons of the method we
propose here, and is there room for its wide-scale adoption? The choice of a multi-criteria
optimization approach has its roots in the relationship that can be established between the
hedonic approach and the multi-attribute utility model. This implies that the multi-criteria
optimization approach can be adapted to estimate how the building features—and the
energy performance among them—affect the property price and, hence, the size of the price
premium. The motivation underlying this exploratory study is twofold. On the one hand,
the novel approach may help improve the estimation of the price premium. On the other
hand, we expect that the multi-criteria optimization technique will lend itself to be further
developed and applied, especially as far as the inclusion of energy aspects in property
valuation is concerned.
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To answer the above research questions, the remainder of this paper is structured as
follows. Section 2 focuses on the method and models we propose to adopt to complement the
statistical analysis of the price premium for building energy efficiency. Section 3 presents the
case study—namely, the housing market in a medium-sized city in Northeastern Italy—and
the data-gathering process. Section 4 is devoted to discussing the results, especially as far as
the magnitude of the price premium is concerned, and the limitations of this work. Finally,
Section 5 draws the conclusion and outlines further developments in this research strand.
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2. Method and Models
2.1. Hedonic Price Model and Spatial Regression Approach

What is the monetary effect of a building characteristic on property price, net of the
impact of other significant land and building attributes and potential confounders? The
issue has long since been at the top of real estate research, and thanks to the seminal work
by S. Rosen in 1974 [62] it has been subsequently addressed using the method known as
hedonic pricing and specifically the following model:

y = α+ βkXk + ε, ε ∼ IN
(

0, σ2
)

, (1)

where y is the price of a property, Xk is a set of land and building characteristics while βk
stands for their coefficients (with k = 1, . . . , l), α is the constant, and ε is the error term.

The underlying assumption of Rosen’s model is that product differentiation does
matter in shaping property prices. Hence, narrow price differentials are expected to reflect
minor dissimilarities, just as major differences are supposed to cause significant price gaps.
As argued in the introductory section, the literature finds that energy-related features are
usually among the significant Xk commanding noticeable shifts in prices, be they expressed
as the energy rating bands [19,81], the energy performance index [55,57], or score [50,52].
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Probably due to difficulties in data collection, the energy attributes are seldom defined
based on the actual energy consumption [58].

The linear model of Equation (1) is often turned into semi-linear or nonlinear variants.
A well known and widely used model is the log-linear one. Taking the natural logarithm of
the dependent variable (see Equation (2) below) has the virtue of returning the coefficients
βk as the percentage changes in property price y due to unit changes in the independent
variables Xk, net of a small transformation suggested in Halvorsen and Palmquist [69] for
dummy variables (see Equation (3) below).

ln y = α+ βkXk + ε, ε ∼ IN
(

0, σ2
)

, (2)

∆y = eβk − 1, (3)

where ∆y is the percentage effect of the attribute on the dependent variable.
The introduction of spatial autoregressive terms represents a fascinating improvement

to the traditional hedonic price model, based on the premise that property prices are shaped
by spatial dependence, too. Several ecological, social, and economic phenomena are thought
to be driven—at least partly—by the diffusion of habits among communities, sharing of
information across networks, and emulation between peers. Under this framework, energy
use is no exception [86,87]. Likewise, the price of a property may be affected by the prices
and attributes of neighboring properties [88–90], though the relationship is likely to fade
as distance increases, according to Tobler’s first law of geography [91]. Hence, the model
of Equation (2) can be extended to accommodate for neighborhood effects and spatial
spillover effects, such as in the Spatial Durbin Model (SDM), which is a general Spatial
Autoregressive model (SAR) [92]:

ln y = α+ ρWy + βkXk + γkWXk + ε, ε ∼ IN
(

0, σ2
)

, (4)

where ρ and γk are the coefficients of the spatially lagged dependent variable and the
spatially lagged independent variables, respectively, while W stands for the spatial weights
matrix. W is usually a positive symmetric matrix, each element of which (wi,j with i, j =
1, . . . , n) represents the kind of spatial relationship that is supposed to tie the n units of
analysis. Typical measures of proximity used to build W are shared boundaries and inverse
distances. By standard convention, and assuming self-influence does not matter in the
property market, W has a zero diagonal (wi,i = 0 for all i = 1, . . . , n).

In the analysis we perform here, we introduce two changes as far as the previous Equa-
tion 4 is concerned. In the first place, we adopt the notion of nearest northwestern neighbor
(NNWN) to build the W matrix, as detailed in the study by Copiello and Grillenzoni [93],
which proves helpful in avoiding correlation between the spatially lagged dependent
variable and the error term, as well as biased estimates of the coefficients. Also, as in
similar studies, we use a reduced SAR model. We include the term ρWy on the right-hand
side of the model, which is meant to account for the neighborhood effect—namely, spatial
dependence between neighboring properties. But we omit the term γjWXj, assuming that
the attributes of neighboring properties exert no influence on a property’s price—that is,
that there is no spatial spillover effect.

Where the model assumptions are concerned, independent variables are supposed to
be mostly uncorrelated to each other or only mildly correlated, if you will. Furthermore,
the residuals are expected to be independent, homoscedastic, and normally distributed.
Finally, a share of spatial autocorrelation should not remain hidden within the residuals.
The lack of significant correlation among the predictors is checked using the Variance
Inflation Factor (VIF), a high value of which means that multicollinearity is likely to occur:

VIFk = 1/(1 − R2
k), (5)
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where R2
k is the coefficient of determination resulting from the regression of each inde-

pendent variable on the others. Homoscedasticity and normal distribution assumptions
are checked using Chi-square tests, where the null hypothesis (H0) is that the residuals
are homoscedastic and normally distributed, respectively. Finally, the lack of a share of
unexplained spatial autocorrelation is checked by regressing the residuals on the spatial
lag of the residuals themselves:

ε = α + λWε + u. (6)

2.2. Multi-Criteria Optimization Approach

The first research question we aim to address here—namely, whether or not the price
premium can be estimated using a multi-criteria method—requires laying the ground
for coupling the hedonic approach of the previous section with the structure of multi-
criteria analysis. The model in Equation (1) can be easily read in terms of a linear additive
multi-attribute utility (MAU) model, which is indeed extensively estimated using multiple
regression approaches [94]. It means that the Xk land and building characteristics—the
so-called “utility-bearing attributes” in the words of Rosen [62]—can be interpreted as the
items—or criteria, if you will—of a property that are valued by market players. The per-
ceived utility for the significant items or criteria is thus summarized in the same property’s
market value. Under this premise, it appears straightforward and promising to reframe
the hedonic approaches discussed in the previous section according to a multi-criteria
evaluation technique [95–97], specifically, the Analytic Hierarchy Process (AHP) developed
by T.L. Saaty in the late seventies and early eighties [98–100]. Thus, in a bottom-up reading
of the hierarchical value tree, we can establish the following equivalences. The properties
whose price y is known—that is to say, the n units of analysis—are the alternatives. The
Xk land and building characteristics—including the spatially lagged dependent variable
Wy—are the criteria. The βk coefficients—including the ρ coefficient of the spatial lag—are
proxies of the weights of the criteria. The goals can be defined as follows:

• to rank the n alternatives (namely, properties) according to their price y;
• to rank separately the same n alternatives (namely, properties) according to the criteria

(namely, attributes) Xk and Wy;
• to compare the two rankings and match them so to elicit the weights of the criteria

(namely, attributes).

Below is a description of the methodological steps we take to that end. An early draft of
this multi-criteria optimization approach has been tested on very few properties and discussed
at a recent conference [101]. To the best of the authors’ knowledge, no other use of the approach
to estimating the price premium of energy efficiency can be found in the literature.

As far as the first step is concerned, a pairwise comparison matrix of size n × n is used
to compare the ith and jth properties according to the ratio of their prices yi and yj, so that
the entries mi,j in the upper triangle of the matrix are given as follows:

mi,j = yi/yj. (7)

As customary in the AHP model, all the entries on the main diagonal are equal to one,
while the entries in the lower triangle are given by the reciprocal of the elements in the
upper triangle:

mi,i = yi/yi = 1, (8)

mj,i = 1/(yi/yj) = yj/yi. (9)

Taking the nth root of the product of the values in each row of the above pairwise
comparison matrix and then normalizing it leads to identifying the priority pi associated
with each property and, thus, the ranking of the properties according to their price:

pi =
n
√

∏n
j=1 mi,j/∑n

i=1
n
√

∏n
j=1 mi,j. (10)
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Let us now turn to the second methodological step we take. A set of l + 1 (as stated in
the previous subsection, k = 1, . . . , l) pairwise comparison matrices—each of size n × n—are
built to compare the ith and jth properties according to the kth characteristic—namely,
the utility-bearing attribute—as well as the price Wy of neighboring properties. Just as in
Equations (7)–(9), for each kth attribute, the comparison is made using the ratios between
the values xk i and xk j:

rk i,j = xk i/xk j. (11)

rk i,i = xk i/xk i = 1, (12)

rk i,j = 1/(xk i/xk j) = xk j/xk i. (13)

The local priority zk i for each property i on each attribute k is derived following the
calculation in previous Equation (10); thus, by taking the nth root of the product of the
values in each row of the kth pairwise comparison matrix and then normalizing it:

z = n
√

∏n
j=1 rk i,j/∑n

i=1
n
√

∏n
j=1 rk i,j, (14)

the calculation is repeated for all the l + 1 pairwise comparison matrices and, eventually,
the global priorities p̂i can be elicited as follows:

p̂i= ∑l+1
k=1

(
zki·β̂k

)
, (15)

where β̂k is the weight of the kth attribute.
Let us take a closer look at Equation (15). Each weight β̂k can be interpreted as the

strength by which the local preference zk i for the kth attribute shapes the global preference
p̂i for the ith property: the higher the weight, the stronger the influence exerted by that
land or building characteristic. According to Equations (1)–(4), the price of a property
is assumed to be a function of the same property’s characteristics; in short, y = ƒ(Xk).
Therefore, the priorities pi identified according to the prices yi in Equation (10) and the
priorities p̂i identified according to the attributes Xk and the weights β̂k in Equation (15)
should converge. Also, while mi,j in Equation (10) and zk i in Equation (15) are given
since they are derived from prices and characteristics of the properties, β̂k is the unknown
quantity, which can be varied to get p̂i as close as possible to pi. To that end, we define a
loss function based on the notion of squared distances, which resembles the ordinary least
squares (OLS) estimator used in regression analysis, and solve the following minimization
problem under the constraint that β̂k values are all higher than or equal to zero:

β̂k= min
β̂k

1
n∑n

i=1( p̂i − pi)
2, (16)

β̂k= min
β̂k

1
n∑n

i=1

[
∑l+1

k=1

(
zki·β̂k

)
−
(

n
√

∏n
j=1 mi,j/∑n

i=1
n
√

∏n
j=1 mi,j

)]2
. (17)

The multi-criteria optimization process detailed in this section is meant to be applied
to subsets, each including properties belonging to two energy rating bands: the D rating
band as the reference band and another rating band for comparison purposes.

Concerning the second research question that we aim to address here—whether or
not the multi-criteria method can provide reliable estimates—the weight β̂k resulting from
Equation (17) for any energy rating band compared to the D one is expected to converge to
the coefficient βk for the same rating band resulting from Equation (4).

3. Case Study and Data

The method and models discussed in the previous section are applied to data from
the real estate market of Padua, a medium-sized city in northeastern Italy. The role played
by the energy rating bands in shaping property prices has already been studied there



Buildings 2023, 13, 276 7 of 21

using hedonic price models [76,102] and spatial autoregressive models [19]. The city is
representative of many middle-sized settlements in Northern Italy, especially the Po Valley,
the country’s most inhabited part. Also, it is characterized by a moderately continental
climate, enabling us to compare the results with other European studies.

During the time frame from March to July 2022, 733 advertisements of properties
offered for sale were checked. While preprocessing the data, 286 of them were dropped
due to missing information, especially as far as the construction year and other building
features are concerned. An additional 112 cases were omitted due to unreliable values of
the energy performance index compared to the energy rating bands (when the index is
unavailable, the advertisements usually display conventional average or minimum values,
such as 175.00 or 3.51 kWh/m2 y). Furthermore, 16 cases were omitted since they are
located on the upper left edge of the area of analysis, so they have no nearest northwestern
neighbor. Hence, the analyzed dataset consists of 321 real estate units.

The dependent variable is the asking price in Euros per square meter. A digression
is in order here. We use the asking price rather than the sale price—as other authors
do [56,103–105]—due to the poor transparency of the real estate market in Italy, because of
which the actual prices agreed upon in transactions involving properties are hardly known.
Though asking prices are mostly representative of supply-side players’ behavior, there are
hints that they can be usefully employed in hedonic studies. In the first place, significant
gaps between asking and selling prices only characterize rapidly rising or falling markets;
otherwise, those gaps narrow down and fall to as low as 1% [106]. Furthermore, asking
prices have been shown to play a significant role in shaping sale prices and, ultimately,
market values [107,108].

Along with the dependent variable, the predictors are listed in Table 1. Aside from the
energy rating bands and the energy performance index, they can be roughly clustered into
two groups, as is usual in real estate hedonic modeling [109,110]: building features, on the
one hand, and land characteristics, on the other. For the selection of building and land at-
tributes, we referred to the broad literature on hedonic price modeling [111–114]. However,
data availability is limited because not all the relevant information is included in real estate
advertisements. Building features—which are meant to describe the structure, finishes,
and systems of the building units—include the following: typology; age; maintenance
conditions; the number of rooms, bathrooms, and parking lots; the presence of a garage,
garden, and lift; floor level and the number of stories; whether the unit is a penthouse
or not. Specific attention is paid to the building features related to energy performance,
with variables focusing on: windows and frames; heating system; the presence of an ex-
ternal thermal insulation cladding system, mechanical extraction ventilation, heat pump,
or photovoltaic system. Since all the analyzed properties are geolocated (Figure 2), land
characteristics—which are meant to describe the location and accessibility of the building
units—can be included in the analysis. They are as follows: distance to the city center, to
the nearest mall, and the closest beltway ramp.

Table 1. List of the variables used for the spatial autoregressive model.

Variable Description Scale of Measurement Unit of Measure or Coding System

y Property price Ratio Euros/m2

Sa Saleable area Ratio m2

ERB Energy rating band Ordinal A4; A3 to A; B or C; D (reference); E; F; G
EPI Energy performance index Ratio kWh/m2 y

Bt Building typology Nominal
1 = Flat; 2 = Studio; 3 = Detached house;

4 = Terraced house;
5 = Semi-detached house

Cy Construction year Interval

Mc Maintenance conditions Nominal 1 = New or refurbished; 2 = Fit for
residential use; 3 = To be renovated
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Table 1. Cont.

Variable Description Scale of Measurement Unit of Measure or Coding System

Rm Rooms Interval
Br Bathrooms Interval
Gr Garage Dichotomous 1 = yes

Pl Privately owned parking
lots Interval

Gd Private garden Dichotomous 1 = yes
Lf Lift Dichotomous 1 = yes
Fl Floor level Interval
Ns Number of stories Interval
Ph Penthouse Dichotomous 1 = yes

Etics External thermal insulation
cladding system Dichotomous 1 = yes

Fw Windows and frames Nominal

1 = Single glazed, wood frame; 2 = Single
glazed, other frame; 3 = Double glazed,

wood frame; 4 = Double glazed,
solid metal frame

Hs Heating system Nominal 1 = Floor heating; 2 = Fan coils;
3 = Radiators

Mev Mechanical extract
ventilation Dichotomous 1 = yes

Hp Heat pump Dichotomous 1 = yes
Ps Photovoltaic system Dichotomous 1 = yes

Oe ‘Out of the ordinary’
equipment * Dichotomous 1 = yes

Cc Distance to the city center Ratio km
Ml Distance to the nearest mall Ratio km

Bw Distance to the closest
beltway ramp Ratio km

* e.g., Home alarm security system, livable basement, oversize balcony, whirlpool bath, swimming pool.
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The gathering of data on the energy performance index and energy rating band for
each property for sale is made possible by a recent shift in energy policies, namely, the
mandatory disclosure of building energy performance [115]. Although it is unclear whether



Buildings 2023, 13, 276 9 of 21

or not the outcomes of compulsory disclosure outweigh those to be obtained by voluntary
disclosure [116,117], the former is expected to permit landlords, prospective buyers, and
prospective tenants to include energy aspects in their decisions concerning building units.
As far as Italy is concerned, starting from the implementation of Directive 2010/31/EU (on
the energy performance of buildings, from which the acronym EPBD is derived) by Decree
Law 63/2013, it is mandatory to include the energy label and the energy performance
index in real estate advertisements. The subsequent Ministerial Decree 26 June 2015 defines
a ten-level scale—from G, the worst energy rating band, to A4, the best—and clarifies
the calculation of the energy performance index—in kWh/m2 y—as the sum of indexes
expressing the amount of non-renewable, primary energy required for heating and cooling
purposes, hot water production, mechanical ventilation if present, and lighting. Details
on the EPCs and energy rating bands system concerning the building industry and the
real estate market in Italy can be found in recent studies [118,119]. In the analysis below,
energy rating bands are aggregated as follows (Figure 3); otherwise, some of them would
be underrepresented: A4 alone (13% of cases); all the labels between A3 and A (included)
in a single group (10%); B and C are merged (11%); D (10%); E (15%); F (17%); G (23%).
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4. Results and Discussion
4.1. Results for the Spatial Autoregressive Model
4.1.1. Overview of the Significant Attributes

We run two distinct variants of the model in Equation (4), one featuring the energy
rating bands (ERBs) among the predictors but not the energy performance index (EPI), the
other including EPI and omitting ERBs. The underlying reason is relatively straightforward:
they use different scales of measurement, units of measure, and coding systems, but they
essentially describe the same phenomenon, namely, the energy efficiency level of a building
unit. Both models meet the standard assumptions of regression. The VIFs are steadily
below the threshold of 2.5—while higher values would be a source of concern, as suggested
in the literature [120]—and mostly fall in a range between 1.2 and 1.6. Heteroscedasticity is
absent (H0), with a Chi2(15) statistic of 13.0713 (p-value 0.5968) for the model with ERBs
and a Chi2(14) statistic of 9.3502 (p-value 0.8080) for the model with EPI. Residuals are
normally distributed (H0) with a Chi2(2) statistic of 1.9936 (p-value 0.3691) for the model
with ERBs and a Chi2(2) statistic of 1.7959 (p-value 0.4074) for the model with EPI (Figure 4).
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As far as the overall results are concerned (Table 2), it is worth mentioning that spatial
dependence once again plays a significant role in shaping property prices. The spatial lag
of the dependent variable has a positive sign with similar values in the two variants: 0.0909
in the model for ERBs and 0.1038 in the model for EPI. Both coefficients are statistically
significant at the 0.05 significance level. Furthermore, there is no clue that a share of spatial
dependence remains unexplained and somewhat hidden in the residuals, as shown by the
results of the model in Equation (6) for ERBs and EPI, respectively (t-statistic below the
coefficient and p-value in brackets):

ε = 0.0001 + 0.0226 Wε + u,
0.4140 (0.6792)

(18)

ε = 0.0013 + 0.0531 Wε + u.
0.9636 (0.3360)

(19)

Table 2. Results for the spatial autoregressive model.

Model for ERBs Model for EPI

Coeff. Std. Err. t-Stat + p-Value Coeff. Std. Err. t-Stat + p-VALUE

const 8.8170 0.9004 9.792 *** 0.0000 7.0920 0.3452 20.540 *** 0.0000
ys−1

++ 0.0909 0.0418 2.172 ** 0.0306 0.1038 0.0469 2.214 ** 0.0276
Sa −0.0013 0.0002 −6.069 *** 0.0000 −0.0015 0.0003 −5.139 *** 0.0000

A4 +++ 0.5638 0.0561 10.050 *** 0.0000
A3-A +++ 0.4535 0.0543 8.345 *** 0.0000
B-C +++ 0.1611 0.0495 3.256 *** 0.0013

F +++ −0.1030 0.0413 −2.496 ** 0.0131
G +++ −0.2446 0.0404 −6.054 *** 0.0000
EPI −0.0015 0.0002 −7.871 *** 0.0000
Cy −0.0009 0.0004 −2.201 ** 0.0285

Mc(2) 0.2042 0.0339 6.020 *** 0.0000 0.1105 0.0386 2.864 *** 0.0045
Br 0.0591 0.0283 2.085 ** 0.0379
Fl −0.0442 0.0107 −4.123 *** 0.0000 −0.0504 0.0120 −4.186 *** 0.0000
Ph 0.2751 0.0591 4.657 *** 0.0000 0.3188 0.0617 5.169 *** 0.0000

Fw(1) −0.1397 0.0622 −2.245 ** 0.0255
Fw(2) −0.1373 0.0573 −2.395 ** 0.0172
Fw(4) −0.1160 0.0325 −3.570 *** 0.0004 −0.1138 0.0351 −3.244 *** 0.0013
Mev 0.2140 0.0539 3.970 *** 0.0001
Cc −0.1160 0.0107 −10.85 *** 0.0000 −0.1112 0.0113 −9.870 *** 0.0000
Ml 0.0661 0.0159 4.159 *** 0.0000 0.0742 0.0160 4.635 *** 0.0000
Bw 0.0689 0.0208 3.314 *** 0.0010 0.0813 0.0223 3.638 *** 0.0003

Adj. R2 0.6034 0.5281
AIC ++++ 12.3985 67.2394

+ Significance levels: ** 0.05; *** 0.01; ++ Spatial lag of the dependent variable; +++ Energy rating bands;
++++ Akaike information criterion.
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The minus sign before the coefficient of two significant predictors—saleable area (Sa)
and distance to the city center (Cc)—confirms the reliability of the results. As far as the
former is concerned, the overall price of a property grows as its size increases, but the unit
price—which is the dependent variable here—is known to decline as the size increases.
That is consistent with the law of diminishing marginal utility. Namely, the marginal utility
derived from the availability of each additional square meter declines. Hence, a negative
relationship between the unit price and the saleable area has to be expected [121,122].

Concerning the other predictor with a negative sign, property prices in monocentric
cities such as Padua are expected to diminish when moving from the core area toward the
outskirts. The real estate market monitor of the Italian Revenue Agency confirms this (Figure 5).
Consistently, the coefficient of the predictor distance to the city center (Cc) takes a negative sign
and implies that property prices decrease by 11–12% per each additional kilometer.
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The positive sign for the coefficients of two other predictors—distance to the nearest
mall (Ml) and the closest beltway ramp (Bw)—likely grasps the same phenomenon, though
from a different angle, since malls and beltway ramps are located in suburban areas far
from the central districts. Hence, the farther a property is from a mall or a beltway ramp,
the closer it is to the city center, and the higher its value is.

The negative influence of floor level (Fl) on property price is somewhat unexpected,
although it may depend on the fact that many buildings, especially older ones, are not
provided with a lift. Instead, penthouses (Ph) command a premium of about 32–38%
compared to traditional flats.

A final remark is in order about the variables meant to represent building features
related to energy performance. External thermal insulation cladding systems, heat pumps,
photovoltaic systems, and the type of heating system turn out to be not significant. At the
same time, mechanical extraction ventilation (Mev) is statistically significant and positively
affects the property price, as expected. Concerning windows and frames, you can expect a
price lower by 13% with single-glazed windows in comparison to double-glazed windows,
provided they are set in wood frames.

4.1.2. Energy Rating Bands and Energy Performance Index

The reliability of the results is further confirmed by the values of the coefficients for the
energy rating bands, which are in a monotonic descending order, as well as by the minus
sign before the coefficient of the energy performance index. It is worth mentioning that the
omission of the spatial lag of the dependent variable would have biased the estimation of
the price premium, especially for the A4 and A3-to-A labels (Figure 6), even though the
gap is hardly noticeable.



Buildings 2023, 13, 276 12 of 21Buildings 2023, 13, 276 13 of 23 
 

 
Figure 6. Estimated price premiums for the energy rating bands compared to the D label. 

Nevertheless, there is a reliability issue to address. The price premiums we find here 
are substantial, and they are as follows according to the model with ERBs: 76% for the 
energy rating band A4 (in comparison to the D one); 57% for the energy rating bands A3, 
A2, A1, and A; 17% for the B and C-labeled properties. Instead, F and G-rated building 
units are sold at a discount: −10% and −22%, respectively. Similarly huge price premiums 
are found in a few other works [19,71,81] and seem to indicate that energy-efficient prop-
erties are highly valued in the market. 

However, we cannot rule out a plausible alternative explanation for this finding. The 
price premiums turn out to be much smaller when looking at the model with EPI. Multi-
plying the coefficient of the energy performance index by the average EPI of each energy 
rating band, the price premiums are as follows (Figure 7): 17% for the energy rating band 
A4 (again in comparison to the D one); 14% for the energy rating bands A3, A2, A1, and 
A; 7% for the B and C-labeled properties; −7% and −18% for the F and G-rated building 
units, respectively. The model with EPI accommodates more predictors referring to build-
ing features, such as the number of bathrooms (Br), single-glazed windows both on wood 
and other kinds of frames (Fw), and the presence of a mechanical ventilation system 
(Mev), which are instead not statistically significant in the model with ERBs. That said, it 
seems conceivable that the market appreciation for several building characteristics—as 
can be the case of top-quality construction materials and finishes—is, in a way, subsumed 
into the market appreciation for energy labels. It follows that ERBs’ coefficients may be 
inflated—in part, at least—in the sense that they account for more than the value that 
market players put on the energy performance per se. It would mean that the 76% gap we 
find between a D-rated property and an A4-rated one is partly attributable to the fact that 
the latter is likely more livable than the former and perhaps brings other kinds of benefits 
as far as health and safety are concerned [19,123,124]. 

Figure 6. Estimated price premiums for the energy rating bands compared to the D label.

Nevertheless, there is a reliability issue to address. The price premiums we find here
are substantial, and they are as follows according to the model with ERBs: 76% for the
energy rating band A4 (in comparison to the D one); 57% for the energy rating bands A3,
A2, A1, and A; 17% for the B and C-labeled properties. Instead, F and G-rated building units
are sold at a discount: −10% and −22%, respectively. Similarly huge price premiums are
found in a few other works [19,71,81] and seem to indicate that energy-efficient properties
are highly valued in the market.

However, we cannot rule out a plausible alternative explanation for this finding.
The price premiums turn out to be much smaller when looking at the model with EPI.
Multiplying the coefficient of the energy performance index by the average EPI of each
energy rating band, the price premiums are as follows (Figure 7): 17% for the energy rating
band A4 (again in comparison to the D one); 14% for the energy rating bands A3, A2,
A1, and A; 7% for the B and C-labeled properties; −7% and −18% for the F and G-rated
building units, respectively. The model with EPI accommodates more predictors referring
to building features, such as the number of bathrooms (Br), single-glazed windows both on
wood and other kinds of frames (Fw), and the presence of a mechanical ventilation system
(Mev), which are instead not statistically significant in the model with ERBs. That said,
it seems conceivable that the market appreciation for several building characteristics—as
can be the case of top-quality construction materials and finishes—is, in a way, subsumed
into the market appreciation for energy labels. It follows that ERBs’ coefficients may be
inflated—in part, at least—in the sense that they account for more than the value that
market players put on the energy performance per se. It would mean that the 76% gap we
find between a D-rated property and an A4-rated one is partly attributable to the fact that
the latter is likely more livable than the former and perhaps brings other kinds of benefits
as far as health and safety are concerned [19,123,124].

Another possible reason behind the previous finding should be considered. The
narrow price premiums we find according to the model with EPI may be evidence of
nonlinearity in the relationship between the energy performance index and property prices.
As a matter of fact, by running an auxiliary regression where quadratic terms are added,
both the energy performance index and its square (sqEPI) turn out to be statistically
significant. Aside from the multicollinearity issue (the VIFs of EPI and sqEPI are still
within the threshold suggested by Marquardt [125]), the LM test (H0: the relationship
is linear, Chi2(2) statistic 34.1872, p-value 0.0000) suggests that nonlinearity should be
taken into consideration. This new model meets the standard assumptions of regression:
heteroscedasticity is absent (Chi2(14) statistic 12.6919, p-value 0. 5509); the residuals are
normally distributed (Chi2(2) statistic 2.0396, p-value 0.3607). The inclusion of EPI and
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sqEpi in the model (Table 3) leads to different estimates of the price premiums, which are
as follows (Figure 7):

• 55% for the energy rating band A4 (again in comparison to the D one);
• 42% for the energy rating bands A3, A2, A1, and A;
• 20% for the B and C-labeled properties;
• −14% and −29% for the F and G-rated building units, respectively.
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Table 3. Results for the spatial autoregressive model with the quadratic term of EPI.

Model for EPI and sqEPI

Coeff. Std. Err. t-Stat + p-Value

const 7.2164500 0.3340 21.600 *** 0.0000
ys−1

++ 0.1054310 0.0445 2.367 ** 0.0186
Sa −0.0015717 0.0003 −5.520 *** 0.0000

EPI −0.0037067 0.0004 −9.144 *** 0.0000
sqEPI 0.0000054 0.0000 6.426 *** 0.0000
Mc(2) 0.1832250 0.0364 5.030 *** 0.0000

Br 0.0592567 0.0274 2.161 ** 0.0315
Fl −0.0451867 0.0120 −3.771 *** 0.0002
Ph 0.3210940 0.0619 5.188 *** 0.0000

Fw(2) −0.1011550 0.0532 −1.900 * 0.0584
Fw(4) −0.1184110 0.0327 −3.618 *** 0.0003
Mev 0.1469560 0.0534 2.753 *** 0.0063
Cc −0.1126880 0.0110 −10.250 *** 0.0000
Ml 0.0724747 0.0153 4.726 *** 0.0000
Bw 0.0635119 0.0219 2.901 *** 0.0040

Adj. R2 0.5540
AIC +++ 49.1543

+ Significance levels: * 0.10; ** 0.05; *** 0.01; ++ Spatial lag of the dependent variable; +++ Akaike information criterion.

Though they are closer to the estimates from the model with ERBs, the difference is
still noticeable, which may imply that there are still grounds for looking into the reasoning
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put forward above. In other words, there are still hints that the price premiums derived
from the model with ERBs go beyond the value that market players put into building
energy performance.

4.2. Results for the Multi-Criteria Optimization Model
4.2.1. Role Played by Land and Building Attributes in Shaping Property Prices

The multi-criteria optimization model adopted here is first helpful in identifying the
contribution brought by the most significant attributes in shaping property prices. The
AHP model also turns out to be more selective—and, perhaps, less sensitive—than the
SAR model. Accordingly, a few previously significant building characteristics are found to
play a minor role. They are the construction year (Cy), maintenance conditions (Mc), and
windows and frames (Fw).

On the whole, location attributes are particularly significant in shaping property
prices, as their weight is up to 28.4% in the model with EPI and 40.9% in the model with
ERBs. The distance to the city center (Cc) alone represents between 26.0% and 32.1% of
the price. Incidentally, this result is corroborated by the data published in the technical
journal Consulente Immobiliare, a biweekly publication of the 24 ORE Group [126,127].
This source states that—as of 2016—land leverage [128] for the city of Padua ranges from
23% in suburban and fringe areas to 41% in the core districts.

Other land characteristics, such as the distance to the nearest mall (Ml) and the closest
ramp of the beltway (Bw), are less critical, with weights varying in the range between
2.4% and 5.6%. An additional share of the property prices—between 10.0% and 13.3%—is
affected by the values of neighboring properties, which is a piece of empirical evidence
supporting the role played by spatial dependence in the real estate market.

Building attributes—on the whole—shape between 45.8% and 61.6% of property prices.
More than half of this contribution is brought by building energy performance: 26.6%
considering the rating bands; 46.8% as far as the energy performance index is concerned.
Such a significant influence may again suggest that the weights of ERBs and EPI represent
not only the market appreciation for energy performance and high efficiency. Possibly,
they also act as proxies of the market players’ willingness to pay more for state-of-the-art
building materials, innovative building systems, and high-performance finishes.

Other building attributes explain a share of the property prices that range between
14.8% and 19.2%, the most important being the saleable area. Minor contributions are
brought by attributes such as maintenance conditions (Mc), floor level (Fl), and whether
the unit is a penthouse or not (Ph).

4.2.2. Role Played by Energy Rating Bands in Shaping Property Prices

By segmenting the data and separately comparing the properties belonging to each
energy rating band with the D-rated ones, the multi-criteria optimization model allows us
to identify the weight of each energy rating band in shaping the property price. According
to the model of Equations (7)–(17), that weight is the price premium of each energy rating
band in comparison to the reference one. The results from the multi-criteria optimization
model are expected to converge with those of the spatial autoregressive model. Namely, the
weights of the ERBs identified using the AHP model should align with the price premiums
extrapolated from the SAR model.

That is largely true for several energy rating bands, with just one notable exception
(Figure 8). In fact, the price premiums in the AHP model are found to be as follows:

• 53.4% for the A4 band in comparison to D (54.7% in the SAR model with EPI and
sqEPI, with a gap as low as 1.3%);

• 45.3% for the A to A3 bands compared to D (42.0% in the SAR model with EPI and
sqEPI and a margin of error of 3.3%);

• 19.4% for the B or C band in comparison to D (19.5% in the SAR model with EPI and
sqEPI, which marks the narrowest gap of 0.1%);
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• −10.4% for the F band (−14.1% in the SAR model with EPI and sqEPI and a margin of
error of 3.7%);

• −10.8% for the G band (−29.3% in the SAR model with EPI and sqEPI, which marks
the most significant gap of 18.5%).
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Due to low significance, several variables are often dropped: construction year (Cy)
and maintenance conditions (Mc) concerning the building characteristics, distance to the
nearest mall (Ml) and the closest beltway ramp (Bw) regarding land attributes. Nonetheless,
the weights of the energy rating bands—and thus, their price premiums—are not inflated.
They also are in strictly decreasing order, as expected, and tend to converge to the values
identified as best estimates in the statistical analysis. The only exception is the result of the
comparison between the G-rated and the D-rated properties.

4.3. Limitations

The multi-criteria model adopted here has at least two limitations worth discussing.
First, that model implies the construction of several pairwise comparison matrices, each
of remarkable size. Pairwise comparison matrices in AHP are known to be subject to
consistency issues [129], and inconsistency is more likely to occur as the size of the matrices
increases [130,131]. However, inconsistency also depends on the judgment scale used to
approximate priorities [132], while a ratio scale leads—by definition—to perfectly consistent
matrices [133]. Since ratios are used here to fill all the pairwise comparison matrices,
inconsistency is not an issue, as perfect consistency is always guaranteed. Aside from that,
dealing with several large-size matrices poses considerable computational burdens. Not to
mention that the sample size of this study is small compared to other works in this field,
as thousands of properties are sometimes investigated, meaning much larger pairwise
comparison matrices that are difficult to handle.

The second limitation is even more severe. Contrary to the SAR model—and regression
models in general—the multi-criteria model does not include recognized tests and statistics
to identify the significance of the weight for each attribute, as well as of the same weights on
the whole. A weight that turns out close or equal to zero is the only sign that an attribute
is irrelevant in shaping the property price. Furthermore, the minimum value of the sum of
squared distances in Equations (16) and (17) provides an indication that can be interpreted in
terms of goodness of fit (Figure 9). Other than that, there is no measure of statistical significance.
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5. Conclusions and Further Developments

The novelty of this study lies in the way we address the issue of the price premium
for building energy efficiency. The first research question we try to answer is whether
or not the price premium can be estimated using an optimization process applied to a
multi-criteria technique known as the analytical hierarchy process. Here, we show that
the multi-criteria optimization approach proves effective in dealing with the estimation
problem at hand. The second research question we try to answer concerns the reliability of
the result. Here, we show that the alternative approach provides results that align with
those derived from the spatial autoregressive model.

The research strand focused on the price premium for building energy efficiency has
advanced consistently during the last decade or so, mainly due to studies carried out since
the adoption of certification systems, such as GM in Singapore and EPC in the European
Union. There is increasing evidence of an often substantial price premium.

This study is no exception. The results we have obtained confirm the occurrence of
large price gaps for green buildings compared to traditional ones. Energy-efficient building
units are sold at a premium compared to those characterized by mediocre performance.
Using the D rating band as a reference, significant price premiums are to be expected
for all the A-rated properties (from A to A4) and, to a lesser extent, for the B or C-rated
ones. On the contrary, the properties of the F and G energy rating bands are sold at a two-
digit discount. The estimates with the multi-criteria optimization approach are as follows:
between 45.3% and 53.4% for the A-rated properties, 19.4% for the B or C-rated building
units, and −10.4% for the F-rated properties. The large premiums we find for the best
energy rating bands suggest that mandatory disclosure of building energy performance
plays a major role in energy policies. It is thus essential for the market players as it conveys
information that is otherwise asymmetrically distributed.

The multi-criteria optimization approach we employ here lends itself to further ap-
plications. That especially holds for real estate research into the role played by land and
building features in shaping property prices, including the energy rating bands among
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the most significant building attributes. Property valuation methods are usually clustered
into three groups: the market approach, the cost approach, and the income approach. In
turn, the approaches and the methods branch themselves into several models and tech-
niques. As far as the first is concerned, the sales comparison approach is among the most
widely used. It refers to models and techniques—such as the adjustment grid and the
matched pair adjustment—that compare the appraised property to similar properties—the
so-called comparables. The main feature of the sales comparison approach lies in the fact
that the appraiser is expected to account for each land and building attribute’s effect on
property price. Also, the appraiser is meant to assess each attribute—to weigh it, if you
will—relying on past experience and current knowledge of the market. That leaves enough
room for semi-random and perhaps unreliable valuations. By contrast, the multi-criteria
optimization approach we propose here has the merit of letting attribute weights emerge
from the data and making them fit the property prices. Accordingly, we deem it promising
to conduct further studies on the suitability of multi-criteria optimization to complement
the sales comparison approach. To that end, it is essential to investigate whether the reli-
ability of the results holds when the sample size decreases, given the limited number of
comparables usually employed. This implies the need to address the trade-off between the
computational costs we mentioned in the previous section and the results’ accuracy.
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