A Further Note on the Gener al ized Josephus Probl em

著者	UCH YANA Sabur o
j our nal or publ i cat i on titl e	Tsukuba j our nal of nat hemat i cs
vol une	31
nunber	2
page r ange	$253-259$
year	2007
URL	ht t $: / /$ hdl. handl e. net $/ 2241 / 00143966$

A FURTHER NOTE ON THE GENERALIZED JOSEPHUS PROBLEM

By

Saburô Uchiyama

1. In our previous papers [1] and [2] we have observed several interesting and significant aspects of the generalized Josephus problem. In the present article we shall again concern ourselves with this problem. Thus, given a total number $n \geq 1$ and certain n objects numbered from 1 to n, and another integer $m \geq 1$, called the reduction coefficient, we arrange these n objects in a circle and, starting with the object numbered 1, and counting each object in turn around the circle, we eliminate every m th object until all of them are removed. By $a_{m}(k, n) \quad(1 \leq k \leq n)$ we denote as before the k th Josephus number, that is, the object number to be removed in the k th step of elimination. It is evident that we have

$$
\begin{equation*}
1 \leq a_{m}(k, n) \leq n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{m}(1, n) \equiv m \quad(\bmod n), \tag{2}
\end{equation*}
$$

and that

$$
a_{m}(k+1, n+1) \equiv a_{m}(1, n+1)+a_{m}(k, n) \quad(\bmod n+1),
$$

from which follows at once

$$
\begin{equation*}
a_{m}(k+1, n+1) \equiv m+a_{m}(k, n) \quad(\bmod n+1) \tag{3}
\end{equation*}
$$

in view of (2); (3) is the fundamental relation due to P. G. Tait for the Josephus numbers $a_{m}(k, n)$ (cf. [1; §§1-2]). In effect, the Josephus numbers $a_{m}(k, n) \quad(1 \leq k \leq n)$ are completely determined by the conditions (1), (2) and (3).

In what follows we devote ourselves to the study of the special case of $k=n$ and write for simplicity's sake $d_{m}(n)=a_{m}(n, n)$ as in [1]. We have then $d_{m}(1)=1$ for any $m \geq 1$, and the fundamental relation (3) becomes

$$
\begin{equation*}
d_{m}(n+1) \equiv m+d_{m}(n) \quad(\bmod n+1) . \tag{4}
\end{equation*}
$$

[^0]Now, in connexion with his study of a Japanese version of the Josephus problem, Seki Takakazu (1642?-1708) called any positive integer n for which one has $d_{m}(n+1)=1$, if it exists, a limitative number with respect to the reduction coefficient m; compare $[1 ; \S 8]$. We have formulated there a hypothesis on the infinitude of limitative numbers n for every fixed $m \geq 2$, regarding it as an implicit intention of Seki's. The validity of this hypothesis is easy to prove for $m=2$ and 3 , but for $m \geq 4$ it appears to be difficult to settle it. At present we are able only to show that there are infinitely many integers n satisfying the condition

$$
1 \leq d_{m}(n+1) \leq m-1
$$

for every fixed reduction coefficient $m \geq 2$ (cf. [2; §3]). In this respect it will be of some interest to note that the set of positive integers m for which exist only a bounded number of integers n satisfying $d_{m}(n+1)=1$ has natural density 0 ; in other words, there are unboundedly many limitative numbers n for almost all, so to say, values of the reduction coefficient $m(\geq 4)$ (see §3 below).

In the present note we wish to provide a proof for this metric result as an approach to the original hypothesis mentioned above.

Note. Let S be a set of positive integers m. The upper asymptotic density $\bar{\delta}(S)$ of the set S is defined by

$$
\bar{\delta}(S)=\limsup _{X \rightarrow \infty} \frac{1}{X} \sum_{\substack{m \in S \\ m \leq X}} 1
$$

and the lower asymptotic density $\underline{\delta}(S)$ of S is with liminf in place of lim sup; we always have $\bar{\delta}(S) \geq \underline{\delta}(S)$ and, in case the upper and lower asymptotic densities coincide with each other, say $\bar{\delta}(S)=\delta=\underline{\delta}(S)$, the common value $\delta=\delta(S)$ is the natural density of the set S. If in particular $\bar{\delta}(S)=0$ then we have naturally $\delta(S)=0$.
2. Let n, p and q be given positive integers >1. We denote by $H(n)$ the set of positive integers m for which one has $d_{m}(n)=1$ and by $H(p, q)$ the set of positive integers m such that $d_{m}(p)=d_{m}(q)=1$. If $p=q$ then $H(p, q)=$ $H(p, p)=H(p)$.

We set $M_{1}=1$ and for $n>1$

$$
M_{n}:=\text { L.C.M. }(1,2, \ldots, n)
$$

Lemma 1. For any $\ell(1 \leq \ell \leq n)$ the number $Z(n ; \ell)$ of integers $m\left(1 \leq m \leq M_{n}\right)$ satisfying the condition $d_{m}(n)=\ell$ is given by

$$
Z(n ; \ell)=\frac{M_{n}}{n}
$$

so that, in particular, the natural density $\delta(H(n))$ exists and equals $1 / n$.
This is the special case $k=n$ of Proposition 3 in [2].
Lemma 2. Suppose that p and q be prime numbers, $p<q$. Then, for any $\ell_{p}\left(1 \leq \ell_{p} \leq p\right)$ and any $\ell_{q}\left(1 \leq \ell_{q} \leq q\right)$ the number $Z\left(p, q ; \ell_{p}, \ell_{q}\right)$ of integers $m\left(1 \leq m \leq M_{q}\right)$ fulfilling the conditions $d_{m}(p)=\ell_{p}$ and $d_{m}(q)=\ell_{q}$ is given by

$$
Z\left(p, q ; \ell_{p}, \ell_{q}\right)=\frac{M_{q}}{p q},
$$

so that, in particular, the natural density $\delta(H(p, q))$ exists and is equal to $1 /(p q)$.
Proof. Consider the system of q congruences in m (cf. (4)):

$$
\begin{equation*}
m \equiv h_{i}-h_{i-1}(\bmod i) \quad(i=1,2, \ldots, q) \tag{5}
\end{equation*}
$$

where $h_{0}=0$ and the $h_{i}(1 \leq i \leq q)$ are parameters taking some integer values such that

$$
1 \leq h_{i} \leq i \quad(1 \leq i \leq q)
$$

thus, $h_{1}=1$ and the first congruence in the system (5) is absurd, so that we shall actually deal with (5) only for $2 \leq i \leq q$.

We fix $h_{1}=1, h_{p}=\ell_{p}$ and $h_{q}=\ell_{q}$. For an arbitrary integer $j(2 \leq j \leq q)$ we contemplate the subsystem of (5):

$$
\begin{equation*}
m \equiv h_{i}-h_{i-1}(\bmod i) \quad(i=2, \ldots, j) \tag{6}
\end{equation*}
$$

The system of congruences (6) may admit a solution

$$
m \equiv m_{j} \quad\left(\bmod M_{j}\right)
$$

under certain conditions, in general, to be imposed on the integers h_{i}. Anyway there may be several, mutually incongruent solutions $m_{j}\left(\bmod M_{j}\right)$ of (6), where $m_{j}=m_{j}\left(h_{1}, h_{2}, \ldots, h_{j}\right)$ depends on the ordered j-tuple of integers $\left(h_{1}, h_{2}, \ldots, h_{j}\right)$,
and it is readily seen that if moreover $\left(h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{j}^{\prime}\right)$ is such a j-tuple different from $\left(h_{1}, h_{2}, \ldots, h_{j}\right)$, then we have

$$
m_{j}\left(h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{j}^{\prime}\right) \not \equiv m_{j}\left(h_{1}, h_{2}, \ldots, h_{j}\right) \quad\left(\bmod M_{j}\right)
$$

For $j=2$ we have plainly with $1 \leq h_{2} \leq 2$

$$
m_{2}=m_{2}\left(h_{1}, h_{2}\right) \equiv h_{2}-h_{1}=h_{2}-1 \quad\left(\bmod M_{2}\right) .
$$

For $j \geq 3$ the solvability condition for the system

$$
\begin{cases}m \equiv m_{j-1} & \left(\bmod M_{j-1}\right) \tag{7}\\ m \equiv h_{j}-h_{j-1} & (\bmod j),\end{cases}
$$

which is equivalent to (6), is provided by

$$
\begin{equation*}
m_{j-1} \equiv h_{j}-h_{j-1} \quad\left(\bmod d_{j}\right), \tag{8}
\end{equation*}
$$

where

$$
d_{i}=\text { G.C.D. }\left(M_{i-1}, i\right) \quad(i \geq 2) .
$$

Having determined m_{j-1} modulo M_{j-1} with $\left(h_{1}, \ldots, h_{j-1}\right)$, we fix h_{j} to the modulus d_{j} by $\left(h_{1}, \ldots, h_{j-1}\right)$ according to the congruence (8), so that the number of possible choices for the value of h_{j} turns out to be equal primarily to j / d_{j}.

Setting $Z_{1}=M_{1}=1$, we denote by Z_{j} for $2 \leq j \leq q$ the number of different (i.e. incongruent) solutions $m_{j}\left(\bmod M_{j}\right)$ of the system (6), or of the system (7).

Clearly $Z_{q}=Z\left(p, q ; \ell_{p}, \ell_{q}\right)$.
If $2 \leq j<p$ then we have

$$
Z_{j}=Z_{j-1} \frac{j}{d_{j}}=M_{j} .
$$

For $j=p$, a prime, we have $d_{p}=1$ and may arbitrarily fix the integer $h_{p}=\ell_{p}$ with $1 \leq \ell_{p} \leq p$, so that

$$
Z_{p}=Z_{p-1} \cdot 1=M_{p-1}=\frac{M_{p}}{p}
$$

for $p+1 \leq j \leq q$ we find, as above, that

$$
Z_{j}=Z_{j-1} \frac{j}{d_{j}}=\frac{M_{j}}{p},
$$

and finally for $j=q$, a prime different from p, we have again $d_{q}=1$ and, therefore, with $h_{q}=\ell_{q}, 1 \leq \ell_{q} \leq q$,

$$
Z_{q}=Z_{q-1} \cdot 1=\frac{M_{q-1}}{p}=\frac{M_{q}}{p q}
$$

which was to be proved.
Needless to add, our Lemma 2 can naturally be extended to the case in which three or more distinct primes are involved. Given an arbitrary finite set P of prime numbers p and a set $\left(\ell_{p}\right)$ of prescribed integers ℓ_{p} with $1 \leq \ell_{p} \leq p(p \in P)$, the number $Z\left(P ;\left(\ell_{p}\right)\right)$ of integers $m\left(1 \leq m \leq M_{s}\right)$ such that we have

$$
d_{m}(p)=\ell_{p} \text { for all } p \in P
$$

is found to be equal to M_{s} / D, where s is any integer not less than the maximal prime of the set P and D is the product of all primes $p \in P$.
3. We are now in a position to enunciate and establish our principal result about the hypothesis of Seki, as mentioned in $\S 1$ above. We shall prove the following

Theorem. For all values of the reduction coefficient $m(>1)$, except possibly for a set of integers m of natural density 0 , there exist unboundedly many positive integers n satisfying the condition $d_{m}(n)=1$.

Proof. Let A_{0} (resp. $A_{0}(v), v$ being a natural number) the set of positive integers m such that there are only a bounded number (resp. at most v in number) of integers n satisfying $d_{m}(n)=1$. We have to show that $\delta\left(A_{0}\right)=0$; this can be achieved, if we prove that $\delta\left(A_{0}(v)\right)=0$ however large the bound $v(<+\infty)$ may be, since we have $A_{0}(v) \subseteq A_{0}\left(v^{\prime}\right)$ if $v<v^{\prime}$ so that

$$
A_{0}=\bigcup_{1 \leq v<+\infty} A_{0}(v) \quad \text { and } \quad \delta\left(A_{0}\right)=\sup _{1 \leq v<+\infty} \delta\left(A_{0}(v)\right)=0 .
$$

We define for a fixed positive integer n

$$
c_{m}(n)= \begin{cases}1 & \text { if } d_{m}(n)=1 \\ 0 & \text { otherwise }\end{cases}
$$

this is the characteristic function of the set $H(n)$ of integers m for which holds $d_{m}(n)=1$. Denoting by p and q generic primes, we have, in virtue of Lemmas 1 and 2,

$$
\begin{equation*}
\delta(H(p))=\frac{1}{M_{s}} \sum_{m=1}^{M_{s}} c_{m}(p)=\frac{1}{p} \quad \text { if } p \leq s \tag{9}
\end{equation*}
$$

and

$$
\delta(H(p, q))=\frac{1}{M_{s}} \sum_{m=1}^{M_{s}} c_{m}(p) c_{m}(q)= \begin{cases}\frac{1}{p q} & \text { if } p \neq q, p, q \leq s \tag{10}\\ \frac{1}{p} & \text { if } p=q \leq s\end{cases}
$$

We now calculate, with a positive real number Q, the dispersion

$$
\begin{equation*}
V(Q):=\lim _{X \rightarrow \infty} \frac{1}{X} \sum_{m \leq X}\left(\sum_{p \leq Q}\left(c_{m}(p)-\frac{1}{p}\right)\right)^{2} \tag{11}
\end{equation*}
$$

where $\sum_{p \leq Q}$ indicates the summation over the prime numbers $p \leq Q$.
Let s be any integer not less than the largest prime $\leq Q$. Then it follows from (9) and (10) that

$$
\begin{equation*}
V(Q)=\frac{1}{M_{s}} \sum_{m=1}^{M_{s}}\left(\sum_{p \leq Q}\left(c_{m}(p)-\frac{1}{p}\right)\right)^{2}=\sum_{p \leq Q} \frac{1}{p}\left(1-\frac{1}{p}\right) \tag{12}
\end{equation*}
$$

which ensures the existence of the limit on the right-hand side of (11).
For any natural number v let us denote by $A(v)$ the set of positive integers m for which we have $d_{m}(p)=1$ for at most v primes p in number.

Writing for the sake of brevity

$$
S(Q):=\sum_{p \leq Q} \frac{1}{p},
$$

we have for every $m \in A(v)$

$$
\left|\sum_{p \leq Q}\left(c_{m}(p)-\frac{1}{p}\right)\right| \geq S(Q)-v
$$

Consequently, however large the bound $v(<+\infty)$ may be, we may choose Q so large as to satisfy $S(Q)>2 v$, which is certainly possible, since $S(Q)$ tends to infinity with Q, as is seen from the well-known inequality

$$
S(Q)>\log \log Q-\frac{1}{2} \quad(Q>2)
$$

and we find, by (11),

$$
\begin{aligned}
V(Q) & \geq \limsup _{X \rightarrow \infty} \frac{1}{X} \sum_{\substack{m \leq X \\
m \in A(v)}}\left(\sum_{p \leq Q}\left(c_{m}(p)-\frac{1}{p}\right)\right)^{2} \\
& \geq\left(\frac{1}{2} S(Q)\right)^{2} \limsup _{X \rightarrow \infty} \frac{1}{X} \sum_{\substack{m \leq X \\
m \in A(v)}} 1=\frac{1}{4}(S(Q))^{2} \bar{\delta}(A(v)) .
\end{aligned}
$$

We have $V(Q)<S(Q)$ in view of (12), so that

$$
\bar{\delta}(A(v)) \leq \frac{V(Q)}{\frac{1}{4}(S(Q))^{2}}<\frac{4}{S(Q)},
$$

and we may conclude that $\bar{\delta}(A(v))=0$, on letting $Q \rightarrow+\infty$. We thus have $\delta(A(v))=0$ for all $v<+\infty$ and so $\delta\left(A_{0}\right)=0$, as was noticed above.

This completes our proof of the theorem.

Note that we have actually demonstrated that for almost all values of $m>1$ there are indefinitely many primes p satisfying $d_{m}(p)=1$; here, that the qualifier 'almost' cannot be omitted is clear, as we recall the fact that for $m=2$ the integers n for which holds $d_{2}(n)=1$ are exclusively the powers of 2 (cf. [1; §8]).

Remark. We note also that if the (upper or lower) asymptotic density were a completely additive probability measure over the subsets of the set of positive integers m, then, in our proof of the theorem, we could have directly appealed to the Borel-Cantelli lemma in probability theory; the density is not a completely additive measure, however.

References

[1] Uchiyama, S., On the generalized Josephus problem, Tsukuba J. Math. 27 (2003), 319-339.
[2] -, A note on the generalized Josephus problem, Tsukuba J. Math. 29 (2005), 49-63.
Saburô Uchiyama
Prof. Emer.
University of Tsukuba
(Institute of Mathematics)
and
Okayama University

[^0]: Received March 9, 2006.

