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RICCI RECURRENT CR SUBMANIFOLDS

OF A COMPLEX SPACE FORM

By

Mayuko Kon

Abstract. We show that there is no CR submanifold with semi-flat

normal connection and with recurrent Ricci tensor in a complex

space form of nonzero constant holomorphic sectional curvature, if

the dimension of its holomorphic distribution is greater than 2.

1. Introduction

There are many results about real hypersurfaces immersed in a complex space

form with additional conditions for the curvature tensor and the Ricci tensor.

In [7] Kon proved that there are no Einstein real hypersurfaces of a complex

projective space CPm and determined connected complete pseudo-Einstein real

hypersurfaces in CPm (see also Cecil and Ryan [1]). Moreover, Ki [4] proved the

nonexistence of real hypersurfaces with parallel Ricci tensor of a nonflat complex

space form.

If the Ricci tensor S of a Riemannian manifold M satisfies the condition

‘S ¼ Sn a for some 1-form a, then M is said to be Ricci recurrent. In the theory

of Ricci recurrent manifolds, Patterson proved some important formulas in [11]

and [12], which are developed by Roter [13] and Olszak [10] and are useful for

our theory.

Recently, Hamada [3] showed that there are no real hypersurfaces with

recurrent Ricci tensor of CPm under the condition that the structure vector field x

of the real hypersurface is a principal curvature vector field. Moreover, Loo [8]

proved the theorem above without the assumption that the structure vector field x

of the real hypersurface is a principal curvature vector field.

A submanifold M of a Kählerian manifold ~MM is called a CR submanifold of
~MM if there exists a di¤erentiable distribution H : x ! Hx HTxðMÞ on M sat-
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isfying the conditions that H is holomorphic, i.e., JHx ¼ Hx for each x A M,

and the complementary orthogonal distribution H? : x ! H?
x HTxðMÞ is anti-

invariant, i.e. JH?
x HTxðMÞ? for each x A M.

Any real hypersurface of a Kählerian manifold is a CR submanifold.

The main purpose of the present paper is to prove the following theorem.

Theorem. Let M be an n-dimensional CR submanifold of a complex space

form MmðcÞ, c0 0, with semi-flat normal connection. If dim Hx > 2, then M is

never Ricci recurrent.

In section 2, we prepare some definitions and basic formulas for CR sub-

manifolds of a complex space form MmðcÞ. In section 3, we give an equation

about the Ricci tensor of a CR submanifold with semi-flat normal connection of

a complex space form. In section 4, we give a useful proof of a proposition about

a Ricci recurrent manifold in Olszak [10] for our calculation of a Ricci recurrent

CR submanifold with semi-flat normal connection. Combining this with the

equation given in section 3, we prove our main theorem. In the last section, we

give a characterization of pseudo-Einstein real hypersurfaces of complex space

forms using the results of section 3.

2. Preliminaries

Let MmðcÞ denote the complex space form of complex dimension m (real

dimension 2m) with constant holomorphic sectional curvature 4c. We denote by

J the almost complex structure of MmðcÞ. The Hermitian metric of MmðcÞ is

denoted by G.

Let M be a real n-dimensional Riemannian manifold isometrically immersed

in MmðcÞ. We denote by g the Riemannian metric induced on M from G, and by

p the codimension of M, that is, p ¼ 2m� n.

We denote by TxðMÞ and TxðMÞ? the tangent space and the normal space of

M respectively.

Definition. A submanifold M of a Kählerian manifold ~MM is called a CR

submanifold of ~MM if there exists a di¤erentiable distribution H : x ! Hx HTxðMÞ
on M satisfying the following conditions:

(i) H is holomorphic, i.e., JHx ¼ Hx for each x A M, and

(ii) the complementary orthogonal distribution H? : x ! H?
x HTxðMÞ is

anti-invariant, i.e. JH?
x HTxðMÞ? for each x A M.
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If JTxðMÞ? HTxðMÞ for any point x of M, then we call M a generic

submanifold of ~MM. Any real hypersurface of ~MM is obviously a generic sub-

manifold of ~MM.

In the following, we put dim Hx ¼ h, dim H?
x ¼ q and codimension M ¼ p.

If q ¼ 0 (resp. h ¼ 0) for any x A M, then the CR submanifold M is a holo-

morphic submanifold (resp. anti-invariant submanifold or totally real submani-

fold) of ~MM. If p ¼ q for any x A M, then the CR submanifold M is a generic

submanifold of ~MM (see [15]).

We denote by ~‘‘ the covariant di¤erentiation in MmðcÞ, and by ‘ the one in

M determined by the induced metric. Then the Gauss and Weingarten formulas

are given respectively by

~‘‘XY ¼ ‘XY þ BðX ;YÞ; ~‘‘XV ¼ �AVX þDXV ;

for any vector fields X and Y tangent to M and any vector field V normal to M,

where D denotes the covariant di¤erentiation with respect to the linear connection

induced in the normal bundle TðMÞ? of M. We call both A and B the second

fundamental form of M and are related by GðBðX ;Y Þ;VÞ ¼ gðAVX ;YÞ. The

second fundamental form A and B are symmetric. AV can be considered as a

ðn; nÞ-matrix.

The covariant derivative ð‘XAÞVY of A is defined to be

ð‘XAÞVY ¼ ‘X ðAVYÞ � ADXVY � AV‘XY :

If ð‘XAÞVY ¼ 0 for any vector fields X and Y tangent to M, then the second

fundamental form of M is said to be parallel in the direction of the normal vector

V. If the second fundamental form is parallel in any direction, it is said to be

parallel. A vector field V normal to M is said to be parallel if DXV ¼ 0 for any

vector field X tangent to M.

In the sequel, we assume that M is a CR submanifold of MmðcÞ. The tangent

space TxðMÞ of M is decomposed as TxðMÞ ¼ Hx þH?
x at each point x of M,

where H?
x denotes the orthogonal complement of Hx in TxðMÞ. Similarly, we see

that TxðMÞ? ¼ JH?
x þNx, where Nx is the orthogonal complement of JH?

x in

TxðMÞ?.
For any vector field X tangent to M, we put

JX ¼ PX þ FX ;

where PX is the tangential part of JX and FX the normal part of JX . Then P is

an endomorphism on the tangent bundle TðMÞ and F is a normal bundle valued

1-form on the tangent bundle TðMÞ.
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For any vector field V normal to M, we put

JV ¼ tV þ fV ;

where tV is the tangential part of JV and fV the normal part of JV . Then we

see that FP ¼ 0, fF ¼ 0, tF ¼ 0 and Pt ¼ 0.

We define the covariant derivatives of P, F , t and f by ð‘XPÞY ¼ ‘X ðPY Þ�
P‘XY , ð‘XF ÞY ¼ DX ðFY Þ � F‘XY , ð‘X tÞV ¼ ‘X ðtVÞ � tDXV and ð‘X f ÞV ¼
DX ð fVÞ � fDXV respectively. We then have

ð‘XPÞY ¼ AFYX þ tBðX ;YÞ;

ð‘XFÞY ¼ �BðX ;PY Þ þ fBðX ;YÞ;

ð‘X tÞV ¼ �PAVX þ AfVX ;

ð‘X f ÞV ¼ �FAVX � BðX ; tVÞ:

For any vector fields X and Y in H?
x ¼ tTðMÞ? we obtain

AFXY ¼ AFYX :

We notice that P3 þ P ¼ 0, and hence P defines an f -structure on M (see

[14]).

We denote by R the Riemannian curvature tensor field of M. Then the

equation of Gauss is given by

RðX ;YÞZ ¼ cfgðY ;ZÞX � gðX ;ZÞY þ gðPY ;ZÞPX

� gðPX ;ZÞPY � 2gðPX ;Y ÞPZg þ ABðY ;ZÞX � ABðX ;ZÞY ;

for any X , Y and Z tangent to M.

We denote by S the Ricci tensor field of M. Then

gðSX ;Y Þ ¼ ðn� 1ÞcgðX ;YÞ þ 3cgðPX ;PYÞ

þ
X
a

Tr AagðAaX ;YÞ �
X
a

gðA2
aX ;YÞ;

where Aa is the second fundamental form in the direction of va, fv1; . . . ; vpg being

an orthonormal frame for TxðMÞ?, and Tr denotes the trace of an operator.

From this the scalar curvature r of M is given by

r ¼ ðn� 1Þncþ 3ðn� pÞcþ
X
a

ðTr AaÞ2 �
X
a

Tr A2
a ;

where p is the codimension of M, that is, p ¼ 2m� n.
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The equation of Codazzi of M is given by

gðð‘XAÞVY ;ZÞ � gðð‘YAÞVX ;ZÞ

¼ cfgðY ;PZÞgðX ; JVÞ � gðX ;PZÞgðY ; JVÞ � 2gðX ;PY ÞgðZ; JVÞg:

We define the curvature tensor R? of the normal bundle of M by

R?ðX ;YÞV ¼ DXDYV �DYDXV �D½X ;Y �V :

Then we have the equation of Ricci

GðR?ðX ;Y ÞV ;UÞ þ gð½AU ;AV �X ;YÞ

¼ cfgðY ; JVÞgðX ; JUÞ � gðX ; JVÞgðY ; JUÞ � 2gðX ;PY ÞgðV ; JUÞg:

If R? vanishes identically, the normal connection of M is said to be flat. We can

see that the normal connection of M is flat if and only if there exist locally p

mutually orthogonal unit normal vector fields va such that each va is parallel.

If R?ðX ;Y ÞV ¼ 2cgðX ;PY Þ fV , then the normal connection of M is said to be

semi-flat (see [15]). The justification of this definition, see [15]. We notice that, if

M is a generic submanifold of MmðcÞ, then f vanishes identically, and hence

R? ¼ 0.

A nonzero tensor field K of type ðr; sÞ on M is said to be recurrent if there

exists a 1-form a such that ‘K ¼ Kn a. M is said to be Ricci recurrent if the

Ricci tensor S of M is recurrent, that is, S is nonzero and ð‘XSÞY ¼ aðXÞSY for

any vector fields X and Y .

Any real hypersurface M of MmðcÞ (mb 3, c0 0) is not Einstein. Therefore,

the Ricci tensor S of a real hypersurface M of MmðcÞ (mb 3, c0 0) is nonzero

(see [7], [9]).

3. Ricci Tensor of CR Submanifolds

In this section, we give some results about the Ricci tensor of a CR sub-

manifolds of a complex space form MmðcÞ.

Theorem 3.1. Let M be an n-dimensional CR submanifold of a complex

space form MmðcÞ, c0 0, dim Hx > 2, with semi-flat normal connection. Suppose

that the curvature tensor R and the Ricci tensor S satisfy gððRðX ;Y ÞSÞZ;WÞ ¼ 0

for any tangent vectors X ;Y ;Z;W A Hx. Then we have

gðSX ;YÞ ¼ 1

h
r�

Xq
a¼1

gðStva; tvaÞ
 !

gðX ;YÞ
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for any vectors X ;Y A Hx, where r denotes the scalar curvature of M and

fv1; . . . ; vqg is an orthonormal basis of JH?
x .

Proof. Since gððRðX ;YÞSÞZ;WÞ ¼ 0 for any tangent vectors X ;Y ;Z;W A

Hx, the first Bianchi identity gives

gðRðX ;YÞSZ þ RðY ;ZÞSX þ RðZ;XÞSY ;WÞ ¼ 0:

We take an orthonormal basis fe1; . . . ; eh; tv1 :¼ ehþ1; . . . ; tvq :¼ eng of TxðMÞ,
where fe1; . . . ; ehg is an orthonormal basis of Hx and fv1; . . . ; vqg is an ortho-

normal basis of JH?
x . Then we have

g
Xh
i¼1

Rðei;PeiÞSX þ
Xh
i¼1

RðPei;XÞSei þ
Xh
i¼1

RðX ; eiÞSPei;Y
 !

¼ 0:

Since Ptva ¼ 0 for a ¼ 1; . . . ; q, we have

g
Xn
i¼1

Rðei;PeiÞSX þ
Xn
i¼1

RðPei;XÞSei þ
Xn
i¼1

RðX ; eiÞSPei;Y
 !

¼ 0:

Since we have

g
Xn
i¼1

RðPei;XÞSei;Y
 !

¼ �g
Xn
i¼1

Rðei;XÞSPei;Y
 !

;

it follows that

Xn
i¼1

gðRðei;PeiÞSX ;Y Þ ¼ 2
Xn
i¼1

gðRðei;XÞSPei;YÞ:

On the other hand, by the equation of Gauss, we haveX
i

gðRðei;PeiÞSX ;YÞ ¼ ð�2h� 4ÞcgðPSX ;YÞ þ
X
i

gðABðPei ;SX Þei;YÞ

�
X
i

gðABðei ;SXÞPei;YÞ;

2
X
i

gðRðei;X ÞSPei;Y Þ ¼ c

�
�2gðPSX ;YÞ þ 2gðPSPX ;PY Þ

þ 4gðPX ;PSPY Þ � 2
X
i

gðSPei;PeiÞgðPX ;YÞ
�

þ 2
X
i

gðABðX ;SPeiÞei;YÞ � 2
X
i

gðABðei ;SPeiÞX ;YÞ:
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Thus we have

cfð�2h� 2ÞgðPSX ;YÞ � 2gðPSPX ;PY Þ � 4gðPX ;PSPY Þg

¼ �2c
X
i

gðSPei;PeiÞgðPX ;Y Þ þ 2
X
i;a

gðAaei;YÞgðAaX ;SPeiÞ

� 2
X
i;a

gðAaX ;Y ÞgðAaei;SPeiÞ � 2
X
i;a

gðAaei;YÞgðAaPei;SX Þ:

Since the Ricci tensor S of M is given by

SX ¼ ðn� 1ÞcX � 3cP2X þ
X
a

Tr Aa � AaX �
X
a

A2
aX ;

we obtain, for X ;Y A Hx,X
i;a

gðAaei;YÞgðAaX ;SPeiÞ �
X
i;a

gðAaX ;YÞgðAaei;SPeiÞ

�
X
i;a

gðAaei;Y ÞgðAaPei;SX Þ

¼
X
i;a;b

Tr AbgðAaei;YÞgðAaX ;AbPeiÞ �
X
i;a;b

gðAaei;YÞgðAaX ;A2
bPeiÞ

�
X
i;a;b

Tr AbgðAaei;YÞgðAaPei;AbXÞ þ
X
i;a;b

gðAaei;YÞgðAaPei;A
2
bXÞ

�
X
i;a

ðn� 1ÞcgðAaX ;Y ÞgðAaei;PeiÞ þ 3
X
i;a

cgðAaX ;Y ÞgðAaei;PeiÞ

�
X
i;a;b

Tr AbgðAaX ;YÞgðAaei;AbPeiÞ þ
X
i;a;b

gðAaX ;YÞgðAaei;A
2
bPeiÞ

¼ �
X
a;b

Tr AbgðAaY ;PAbAaXÞ þ
X
a;b

gðAaY ;PA2
bAaXÞ

þ
X
a;b

Tr AbgðAaY ;PAaAbX Þ �
X
a;b

gðAaY ;PAaA
2
bXÞ

�
X
i;a;b

Tr AbgðAaX ;YÞgðAaei;AbPeiÞ þ
X
i;a;b

gðAaX ;YÞgðAaei;A
2
bPeiÞ:

Since the normal connection of M is semi-flat, the equation of Ricci gives

AaAbX ¼ AbAaX
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for any X A Hx. Therefore, the equation above vanishes identically. From these

equations and the assumption c0 0, we have

ðhþ 1ÞgðPSX ;Y Þ þ gðPSPX ;PY Þ þ 2gðPX ;PSPY Þ ¼
X
i

gðSPei;PeiÞgðPX ;YÞ;

for any X ;Y A Hx. This implies

ðh� 1ÞgðPSX ;YÞ þ gðSPX ;YÞ ¼
X
i

gðSPei;PeiÞgðPX ;Y Þ:

Since PX ;PY A Hx, we also have

ðh� 1ÞgðPSPX ;PY Þ þ gðSP2X ;PY Þ ¼
X
i

gðSPei;PeiÞgðPX ;YÞ;

and hence

ðh� 1ÞgðSPX ;YÞ þ gðPSX ;YÞ ¼
X
i

gðSPei;PeiÞgðPX ;Y Þ:

From these equations, we obtain

ðh� 2ÞgðSPX ;PY Þ ¼ ðh� 2ÞgðSX ;Y Þ:

Since h > 2, we have gðSPX ;PY Þ ¼ gðSX ;YÞ. Thus, by the definition of the

scalar curvature r of M, we get

hgðSX ;YÞ ¼
X
i

gðPSei;PeiÞgðX ;YÞ

¼ r�
Xq
a¼1

gðStva; tvaÞ
 !

gðX ;Y Þ;

which proves our assertion. r

When M is a generic submanifold, the normal connection of M is flat if M is

semi-flat. Let p be the codimension of submanifold M in MmðcÞ and fv1; . . . ; vpg
be an orthonormal basis of TxðMÞ?. Then we have the following theorem.

Theorem 3.2. Let M be an n-dimensional generic submanifold of a complex

space form MmðcÞ, c0 0, n� p > 2, with flat normal connection. Suppose that the
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curvature tensor R and the Ricci tensor S satisfy gððRðX ;Y ÞSÞZ;WÞ ¼ 0 for any

tangent vectors X ;Y ;Z;W A Hx. Then we have

gðSX ;YÞ ¼ 1

n� p
r�

Xp
a¼1

gðSJva; JvaÞ
 !

gðX ;YÞ;

for any vectors X ;Y A Hx.

Let M be a real ð2m� 1Þ-dimensional hypersurface immersed in MmðcÞ. We

take the unit normal vector field N of M in MmðcÞ and define a tangent vector

field x by x ¼ �JN, which is called the structure vector field. As a corollary of

Theorem 3.1, we have

Corollary 3.3. Let M be a real hypersurface of a complex space form

MmðcÞ, c0 0, mb 3. Suppose that the curvature tensor R and the Ricci tensor S

of M satisfy gððRðX ;YÞSÞZ;WÞ ¼ 0 for any tangent vectors X , Y , Z and W

orthogonal to x. Then we have

gðSX ;Y Þ ¼ 1

2m� 2
ðr� gðSx; xÞÞgðX ;Y Þ;

for any tangent vectors X and Y orthogonal to x, where r denotes the scalar

curvature of M.

4. Ricci Recurrent CR Submanifolds

In this section, we prove our main theorem. First, we give a useful proof of

the proposition given by Olszak [10].

Proposition 4.1. Let M be a Ricci recurrent manifold of dimension n with

a0 0, where a is the recurrent form of the Ricci tensor. Then we have

S2 ¼ r

2
S;

where r denotes the scalar curvature of M.

Proof. By the definition of the Ricci recurrent manifold, the Ricci tensor S

of M satisfies ‘S ¼ Sn a. Then we have
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ð‘X‘YSÞZ ¼ ð‘XaÞðYÞSZ þ aðYÞð‘XSÞZ þ að‘XY ÞSZ

¼ ð‘XaÞðYÞSZ þ aðYÞaðX ÞSZ þ að‘XY ÞSZ;

ð‘Y‘XSÞZ ¼ ð‘YaÞðXÞSZ þ aðXÞaðY ÞSZ þ að‘YX ÞSZ;

ð‘½X ;Y �SÞZ ¼ að½X ;Y �ÞSX :

So we obtain

ðRðX ;Y ÞSÞZ ¼ ð‘XaÞðYÞSZ � ð‘YaÞðX ÞSZ:ð4:1Þ

Since S is symmetric and nonzero, we can choose some nonzero function l and a

vector field Z such that SZ ¼ lZ. Then

ðRðX ;YÞSÞZ ¼ lfð‘XaÞðYÞZ � ð‘YaÞðX ÞZg:

On the other hand, we have

gððRðX ;Y ÞSÞZ;ZÞ ¼ gðRðX ;YÞSZ;ZÞ � gðSRðX ;YÞZ;ZÞ

¼ lfgðRðX ;YÞZ;ZÞ � gðRðX ;YÞZ;ZÞg

¼ 0:

Thus we obtain

ð‘XaÞðYÞ � ð‘YaÞðX Þ ¼ 0:ð4:2Þ

By (4.1) and (4.2), we have RðX ;YÞS ¼ 0. So we obtain, RðX ;Y ÞSZ�
SRðX ;Y ÞZ ¼ 0, and hence

0 ¼ ð‘WRÞðX ;Y ÞSZ þ RðX ;YÞð‘WSÞZ � ð‘WSÞRðX ;YÞZ � Sð‘WRÞðX ;YÞZ

¼ ð‘WRÞðX ;Y ÞSZ þ aðWÞRðX ;Y ÞSZ � aðWÞSRðX ;YÞZ � Sð‘WRÞðX ;YÞZ

¼ ð‘WRÞðX ;Y ÞSZ � Sð‘WRÞðX ;YÞZ:

We take a basis fe1; . . . ; eng of TxðMÞ. Generally we have

X
i

gðð‘eiRÞðei;XÞY ;ZÞ ¼
X
i

gðð‘eiRÞðZ;Y ÞX ; eiÞ

¼ �
X
i

gðð‘ZRÞðY ; eiÞX ; eiÞ �
X
i

gðð‘YRÞðei;ZÞX ; eiÞ

¼ gðð‘ZSÞY ;X Þ � gðð‘YSÞZ;XÞ:
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Using this, we obtain

0 ¼
X
i

fgðð‘eiRÞðei;Y ÞSZ;XÞ � gðSð‘eiRÞðei;YÞZ;XÞg

¼ gðð‘XSÞSZ;YÞ � gðð‘SZSÞX ;YÞ � gðð‘SXSÞZ;YÞ þ gðð‘ZSÞSX ;Y Þ

¼ aðX ÞgðS2Z;Y Þ � aðSX ÞgðSZ;YÞ þ aðZÞgðS2X ;YÞ � aðSZÞgðSX ;YÞ:

On the other hand, we have

aðSX Þ ¼
X
i

aðeiÞgðSei;XÞ ¼
X
i

gðð‘eiSÞei;XÞ

¼ 1

2
Xr ¼ 1

2

X
i

XgðSei; eiÞ ¼
1

2

X
i

gðð‘XSÞei; eiÞ

¼ 1

2
aðXÞr;

where the third equality is given by the second Bianchi identity. That is, we have

the following

aðXÞ gðS2Z;Y Þ � 1

2
rgðSZ;YÞ

� �
þ aðZÞ gðS2X ;Y Þ � 1

2
rgðSX ;Y Þ

� �
¼ 0:

If aðX Þ0 0, setting X ¼ Z, we have S2 ¼ ðr=2ÞS. If aðXÞ ¼ 0, taking Z such that

aðZÞ0 0, S2 ¼ ðr=2ÞS. Consequently we have S2 ¼ ðr=2ÞS. r

In the proof of Proposition 4.1, we have

Lemma 4.2. Let M be a Ricci recurrent manifold of dimension n. Then the

curvature tensor R and the Ricci tensor S satisfy RðX ;Y ÞS ¼ 0 for any vector

fields X and Y.

Lemma 4.2 gives the relation between Ricci recurrent condition and Ricci

semi-symmetry.

Remark 4.3. From Lemma 4.2 and a theorem of [5], we see that there are

no real hypersurfaces with recurrent Ricci tensor of MmðcÞ, mb 3, (Loo [8]).

Theorem 4.4. Let M be an n-dimensional CR submanifold of a complex

space form MmðcÞ, c0 0, with semi-flat normal connection. If dim Hx > 2, then M

is not Ricci recurrent.
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Proof. We suppose that M is a Ricci recurrent CR submanifold of MmðcÞ,
h > 2, with semi-flat normal connection. Since S is symmetric, by Theorem 3.1,

we can choose an orthonormal basis fe1; . . . ; eh; tv1; . . . ; tvqg of TxðMÞ such that

the Ricci tensor S is represented by a matrix form

S ¼

a � � � 0

..

. . .
. ..

.
�

0 � � � a

l1 � � � 0

� ..
. . .

. ..
.

0 � � � lp

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

where we have put

a ¼ 1

h
r�

X
a

gðStva; tvaÞ
 !

:

By Lemma 3.1, we see that eigenvalues of S are r=2 and 0, and that rank S ¼ 2.

Since h > 2, we can assume that S is represented by a matrix form

S ¼

h11 h21

..

. ..
.

0 h1h h2h

0 0

..

. ..
.

0 0

h11 � � � h1h 0 � � � 0 l 0

h21 � � � h2h 0 � � � 0 0 m

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

Thus we have

tr S2 ¼ l2 þ m2 þ
Xh
i¼1

h21i þ
Xh
i¼1

h22i;

tr
r

2
S

� �
¼ 1

2
ðlþ mÞ2:

Since S2 ¼ ðr=2ÞS, we have l ¼ m ¼ r=2, h1i ¼ 0 and h2i ¼ 0 for i ¼ 1; . . . ; h.

Thus we see that fX A TM jSX ¼ ðr=2ÞXgHH?
x . Then there is a vector field

244 Mayuko Kon



v A JH?
x such that Stv ¼ ðr=2Þtv. We notice that Jv ¼ tv A Hx and fv ¼ 0. We

obtain

ð‘XSÞtvþ S‘X tv ¼
1

2
ðXrÞtvþ r

2
‘X tv:

On the other hand, in the proof of Proposition 3.1, we have Xr ¼ aðX Þr. Then

ð‘XSÞtv ¼ aðXÞStv ¼ r

2
aðX Þtv ¼ 1

2
ðXrÞtv:

So we obtain

S‘X tv ¼
r

2
‘X tv:

Thus we see that ‘X tv A H?
x . From the equations ‘X tv� tDXv ¼ ð‘X tÞv ¼

�PAvX þ AfvX and fv ¼ 0, we see that ‘X tv� tDXv ¼ �PAvX . Since the left-

hand side is in H?
x and the right-hand side is in Hx, we have ‘X tv ¼ tDXv. So we

obtain

‘Y‘X tv ¼ ‘Y ðtDXvÞ ¼ tDYDXv;

‘X‘Y tv ¼ ‘X ðtDYvÞ ¼ tDXDYv;

‘½X ;Y �tv ¼ tD½X ;Y �v:

Since the normal connection of M is semi-flat, we have

RðX ;Y Þtv ¼ tR?ðX ;YÞv ¼ 2cgðX ;PY Þtfv ¼ 0:

By the definition of the Ricci tensor S, we see

r

2
¼ gðStv; tvÞ ¼

X
i

gðRðei; tvÞtv; eiÞ ¼ 0:

So we have S ¼ 0. This is a contradiction. r

From Theorem 4.4, we have the following theorem about generic sub-

manifold.

Theorem 4.5. Let M be an n-dimensional generic submanifold of a complex

space form MmðcÞ, c0 0, with flat normal connection. If n� p > 2, then M is not

Ricci recurrent.
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5. A Characterization of Pseudo-Einstein Real Hypersurfaces

In this section, we give a characterization of pseudo-Einstein real hyper-

surfaces of a complex space form by using Corollary 3.3.

Let M be a real ð2m� 1Þ-dimensional hypersurface immersed in a complex

space form MmðcÞ. We take the unit normal vector field N of M in MmðcÞ. For
any vector field X tangent to M, we define P, h and x by

JX ¼ PX þ hðX ÞN; x ¼ �JN;

where PX is the tangential part of JX , P is a tensor field of type ð1; 1Þ, h is a

1-form, and x is the unit vector field on M. Then they satisfy

P2X ¼ �X þ hðXÞx; Px ¼ 0; hðPX Þ ¼ 0

for any vector field X tangent to M. Moreover, we have

gðPX ;Y Þ þ gðX ;PYÞ ¼ 0; hðX Þ ¼ gðX ; xÞ;

gðPX ;PY Þ ¼ gðX ;YÞ � hðXÞhðY Þ:

Thus ðP; x; h; gÞ defines an almost contact metric structure on M.

The Gauss and Weingarten formulas are given respectively by

~‘‘XY ¼ ‘XY þ gðAX ;Y ÞN; ~‘‘XN ¼ �AX ;

for any vector fields X and Y tangent to M. We call A the shape operator (second

fundamental form) of M.

For the contact metric structure on M we have

‘Xx ¼ PAX ; ð‘XPÞY ¼ hðY ÞAX � gðAX ;Y Þx:

The equation of Gauss is given by

RðX ;YÞZ ¼ cfgðY ;ZÞX � gðX ;ZÞY þ gðPY ;ZÞPX
� gðPX ;ZÞPY � 2gðPX ;Y ÞPZg þ gðAY ;ZÞAX � gðAX ;ZÞAY :

By the equation of Gauss, the Ricci tensor S of type ð1; 1Þ of M is given by

SX ¼ ð2nþ 1ÞcX � 3chðX Þxþ hAX � A2X ;

where h denotes the mean curvature of M given by the trace of the shape

operator A. Moreover, the scalar curvature r of M is given by

r ¼ 4ðn2 � 1Þcþ h2 � Tr A2:
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If the Ricci tensor S of M is of the form gðSX ;YÞ ¼ agðX ;Y Þ þ bhðX ÞhðYÞ
for some functions a and b, then M is said to be pseudo-Einstein. Then a and b

are constant when mb 3.

Theorem 5.1. Let M be a real hypersurface of a complex space form MmðcÞ,
c0 0, mb 3. Then the curvature tensor R and the Ricci tensor S of M satisfy

gððRðX ;YÞSÞZ;WÞ ¼ 0 for any tangent vector fields X , Y , Z and W orthogonal

to x if and only if M is pseudo-Einstein.

Proof. We suppose that M satisfies gððRðX ;Y ÞSÞZ;WÞ ¼ 0 for any tan-

gent vector fields X , Y , Z and W orthogonal to x. We can choose an ortho-

normal basis fX1; . . . ;X2m�2; xg of M such that the shape operator A is rep-

resented by a matrix form

A ¼

l1 � � � 0 h1

..

. . .
. ..

. ..
.

0 � � � l2m�2 h2m�2

h1 � � � h2m�2 a

0
BBBB@

1
CCCCA:

Then, we have

SXi ¼ ð2nþ 1ÞcXi � 3chðXiÞxþ hAXi � A2Xi

¼ ðð2nþ 1Þcþ hli � l2i ÞXi þ hiðh� li � aÞx�
X2m�2

k¼1

hihkXk;

Sx ¼ ð2mþ 1Þcx� 3chðxÞxþ hAx� A2x

¼ ð2m� 2Þcxþ h
X2m�2

k¼1

hkXk þ ax

 !
� A

X2m�2

k¼1

hkXk þ ax

 !

¼
X2m�2

k¼1

hkðh� lk � aÞXk þ ð2m� 2Þcþ ah�
X2m�2

k¼1

h2k � a2

 !
x:

By Corollary 3.3, we have

gðSXi;XjÞ ¼ �hihj ¼ 0 ði0 jÞ;ð5:1Þ

gðSXi;XiÞ ¼
1

2n� 2
ðr� gðSx; xÞÞ ði ¼ 1; . . . ; 2m� 2Þ:ð5:2Þ
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Equation (5.1) shows that at most one hi does not vanish. Thus we can assume

that hi ¼ 0 for i ¼ 2; . . . ; 2m� 2. We set a ¼ gðSXi;XiÞ. Then we have

SX1 ¼ aX1 þ h1ðh� l1 � aÞx;

SXi ¼ aXi ði ¼ 2; . . . ; 2n� 2Þ;ð5:3Þ

Sx ¼ h1ðh� l1 � aÞX1 þ ðð2m� 2Þcþ ah� h21 � a2Þx:

Since gððRðX ;YÞSÞZ;WÞ ¼ 0 for any tangent vector fields X , Y , Z and W

orthogonal to x, we have

gðRðX ;Y ÞSZ � SRðX ;YÞZ;WÞ ¼ 0:

By the equation of Gauss, for any jb 2, we obtain

0 ¼ gðRðX1;XjÞSX1;XjÞ � gðSRðX1;XjÞX1;XjÞ

¼ agðRðX1;XjÞX1;XjÞ þ h1ðh� l1 � aÞgðRðX1;XjÞx;XjÞ � agðRðX1;XjÞX1;XjÞ

¼ h1ðh� l1 � aÞgðRðX1;XjÞx;XjÞ:

By the equation of Gauss, we have

gðRðX1;XjÞx;XjÞ ¼ gðAXj; xÞgðAX1;XjÞ � gðAX1; xÞgðAXj;XjÞ

¼ �h1lj:

Thus we see that h21ljðh� l1 � aÞ ¼ 0 for jb 2. If h1ðh� l1 � aÞ0 0, then we

have lj ¼ 0 for jb 2. Since h ¼ Tr A, we have h ¼ l1 þ a. This is a contra-

diction. So we have h1ðh� l1 � aÞ ¼ 0. By (5.3), we see that M is pseudo-

Einstein and that h1 ¼ 0 (see [7]). Thus we see that, if gððRðX ;Y ÞSÞZ;WÞ ¼ 0

for any tangent vector fields X , Y , Z and W orthogonal to x, then M is pseudo-

Einstein.

Conversely, if M is pseudo-Einstein, we have SZ ¼ aZ þ bhðZÞx ¼ aZ and

SW ¼ aW for any tangent vectors Z and W orthogonal to x. Then we have

gððRðX ;YÞSÞZ;WÞ ¼ gðRðX ;YÞSZ;WÞ � gðSRðX ;Y ÞZ;WÞ ¼ 0. r

We need the following two theorems of pseudo-Einstein real hypersurfaces in

a complex projective space CPm with constant holomorphic sectional curvature 4

(Cecil and Ryan [1], Kon [7]) and a complex hyperbolic space CHm with constant

holomorphic sectional curvature �4 (Montiel [9]).
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Theorem A. Let M be a complete and connected real hypersurface in CPm,

mb 3, which is pseudo-Einstein. Then M is congruent to one of the following

spaces:

(a) a geodesic hypersphere,

(b) a tube of radius r over a totally geodesic CPk, 0 < k < m� 1, where

0 < r < p=2 and cot2 r ¼ k=ðm� k � 1Þ,
(c) a tube of radius p=4� y over a complex quadric Qm�1 where 0 < y < p=4

and cot2 2r ¼ m� 2.

Theorem B. Let M be a complete and connected real hypersurface of CHm,

mb 3, which is pseudo-Einstein. Then M is congruent to one of the following

spaces:

(a) a geodesic hypersphere.

(b) a tube of radius r > 0 over a complex hyperbolic hyperplane CHm�1.

(c) a self-tube M �
m.

Using Theorem A and Theorem B, Theorem 5.1 implies the following

theorems.

Theorem 5.2. Let M be a complete and connected real hypersurface of

CPm, mb 3. Suppose that the curvature tensor R and the Ricci tensor S satisfy

gððRðX ;YÞSÞZ;WÞ ¼ 0 for any tangent vector fields X , Y , Z and W orthogonal

to x. Then M is congruent to one of the following spaces:

(a) a geodesic hypersphere,

(b) a tube of radius y over a totally geodesic CPk, 0 < k < m� 1, where

0 < y < p=2 and cot2 y ¼ k=ðm� k � 1Þ,
(c) a tube of radius p=4� y over a complex quadric Qm�1 where 0 < y < p=4

and cot2 2y ¼ m� 2.

Theorem 5.3. Let M be a complete and connected real hypersurface of

CHm, mb 3. Suppose that the curvature tensor R and the Ricci tensor S satisfy

gððRðX ;YÞSÞZ;WÞ ¼ 0 for any tangent vector fields X , Y , Z and W orthogonal

to x. Then M is congruent to one of the following spaces:

(a) a geodesic hypersphere Mh
0;m�1ðtanh

2 yÞ of radius r > 0,

(b) a tube Mh
m�1;0ðtanh

2 yÞ of radius y > 0 over a complex hyperbolic

hyperplane,

(c) a self-tube M �
m.
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As an application of Theorem 5.1, we prove the following theorem (see [5],

[6]).

Theorem 5.4. There are no real hypersurfaces with RðX ;Y ÞS ¼ 0, semi-

symmetric Ricci tensor, of a complex space form MmðcÞ, c0 0, mb 3.

Proof. We suppose that the Ricci tensor S of the real hypersurface M

is semi-symmetric, that is, the curvature tensor and the Ricci tensor satisfy

RðX ;YÞS ¼ 0 for any tangent vector fields X and Y . Then by Theorem 5.1, the

real hypersurface M is pseudo-Einstein. Consequently, the Ricci tensor S satisfies

SXi ¼ aXi for i ¼ 1; . . . ; 2m� 2 and Sx ¼ ðcð2n� 2Þ þ ah� a2Þx :¼ bx. Then, for

any i ¼ 1; . . . ; 2m� 2, we have

0 ¼ Rðx;XiÞSx� SRðx;XiÞx

¼ bRðx;XiÞx� SRðx;XiÞx

¼ bf�cgðx; xÞXi � gðAx; xÞAXig � Sf�cgðx; xÞXi � gðAx; xÞAXig

¼ �bcXi � baliXi þ acXi þ aaliXi

¼ ða� bÞðcþ aliÞXi:

Since b0 a, we have li ¼ �c=a, i ¼ 1; . . . ; 2m� 2. We put l ¼ �c=a. Suppose

that X is a unit vector field orthogonal to x. Then we have

‘X‘xx ¼ ‘XPAx ¼ 0;

‘x‘Xx ¼ ‘xPAX ¼ l‘xPX

¼ lð‘xPÞX þ lP‘xX

¼ lðhðXÞAx� gðAx;XÞxÞ þ lP‘xX

¼ lP‘xX ;

‘½X ;x�x ¼ PA½X ; x�

¼ PA‘Xx� PA‘xX

¼ PAPAX � PA‘xX

¼ l2P2X � PA‘xX

¼ �l2X � PA‘xX :
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Thus we obtain

RðX ; xÞx ¼ ‘X‘xx� ‘x‘Xx� ‘½X ;x�x

¼ �lP‘xX þ l2X þ PA‘xX :

So we have

gðRðX ; xÞx;XÞ ¼ �lgðP‘xX ;XÞ þ l2gðX ;X Þ þ gðPA‘xX ;X Þ

¼ lgð‘xX ;PXÞ þ l2gðX ;XÞ � lgð‘xX ;PXÞ

¼ l2gðX ;XÞ ¼ l2:

By the equation of Gauss, we have gðRðX ; xÞx;X Þ ¼ cþ al ¼ 0. These equations

imply l ¼ 0 and c ¼ 0. This is a contradiction. So we have our theorem. r

Remark 5.5. We can see that the totally h-umbilical pseudo-Einstein real

hypersurfaces of CPm and CHm satisfies cþ al0 0 by a straightforward com-

putation using principal curvatures of examples (see [6]). Here, we proved The-

orem 5.4 by a slight general method.

References

[ 1 ] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans.

Amer. Math. Soc. 269 (1982), 481–499.

[ 2 ] B. Y. Chen, Geometry of submanifolds, Marcel Dekken Inc., New York, 1973.

[ 3 ] T. Hamada, On real hypersurfaces of a complex projective space with recurrent Ricci tensor,

Glasgow Math. J. 41 (1999), 297–302.

[ 4 ] U-Hang Ki, Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukuba J.

Math. 13 (1989), 73–81.

[ 5 ] U-Hang Ki, H. Nakagawa and Y. J. Suh, Real hypersurfaces with harmonic Weyl tensor of a

complex space form, Hiroshima Math. J. 20 (1990), 93–102.

[ 6 ] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space III, Hokkaido

Math. J. 22 (1993), 63–78.

[ 7 ] M. Kon, Pseudo-Einstein real hypersurfaces in complex space forms, J. Di¤erential Geom. 14

(1979), 339–354.

[ 8 ] T-H. Loo, Real hypersurfaces in a complex space form with recurrent Ricci tensor, Glasgow

Math. J. 44 (2002), 547–550.

[ 9 ] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985),

515–535.

[10] Z. Olszak, On Ricci recurrent manifolds, Coll. Math. 52 (1987), 205–211.

[11] E. M. Patterson, On symmetric recurrent tensors of the second order, Quart. J. Math., Oxford

Ser. 2 (1951), 151–158.

[12] E. M. Patterson, Some theorems on Ricci recurrent spaces, J. London. Math. Soc, 27 (1952),

287–295.

[13] W. Roter, Some remarks on infinitesimal projective transformations in recurrent and Ricci

recurrent spaces, Coll. Math. 15 (1966), 121–127.

251Ricci recurrent CR submanifolds



[14] K. Yano, On a structure defined by a tensor field f of type ð1; 1Þ satisfying f 3 þ f ¼ 0, Tensor

N. S. 14 (1963), 99–109.

[15] K. Yano and M. Kon, Structures on manifolds, World Scientific Publishing, Singapore, 1984.

Department of Mathematics

Hokkaido University

Kita 10 Nishi 8

Sapporo 060-0810, Japan

E-mail address: mayuko_k13@math.sci.hokudai.ac.jp

252 Mayuko Kon


