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I. Abstract 

In adult vertebrates, all blood cells originate from hematopoietic stem cells, 

produced from hemangioblasts at the fetal stage. The hemangioblast, located within the 

yolk sac in the embryo, produces hematopoietic stem cells, early erythroblasts, 

macrophages, and vascular endothelial cells by a process called as primary 

hematopoiesis. Subsequently, hematopoietic stem cells are generated in the liver, 

allowing secondary hematopoiesis to continue even after achieving adulthood. During 

primary hematopoiesis in mammals, birds, amphibians, and teleost fishes, major 

transcription factors such as GATA1, GATA2, and SCL are expressed in the 

hemangioblast. Fetal-type globin genes, which are the targets of these transcription 

factors, are expressed during erythroblast differentiation. However, the mechanisms by 

which hemangioblasts specifically differentiate into erythroblasts during primary 

hematopoiesis are unclear. I selected the Xenopus laevis model due to the ease in 

inducing organ formation to identify specific genes whose time-specific expression 

would allow differentiation between hemangioblasts and erythroblasts. I identified a 

heme synthetase, aminolevulinic acid synthase gene (alas2). In this study, I investigated 
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the function of Xenopus alas2 (Xalas2) and showed that Xalas2 mediated erythroblast 

differentiation in primary hematopoiesis by regulating hba3 expression. 
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II. Abbreviations 

ALAS: aminolevulinic acid synthase 

aVBI: anterior VBI 

BB/BA: enzylbenzoate / benzyl alcohol 

BFU-E: erythroid burst-forming units 

BSA: Bovine serum albumin 

DHS: DnaseI hypersensitive site 

DLP: dorsal lateral plate 

CFU-E: erythroid colony-forming units 

DNA: deoxyribonucleotic acid 

EDTA: ethylenediaminetetraacetic acid 

EGFP: enhanced green fluorescent protein 

EGTA: ethylene glycol tetra acetic acid 

FBS: fetal bovine serum 

hba 3: �-globin 3 

HRP: horseradish peroxidase 
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IL: interleukin 

IGF-1: insulin-like growth factor-1 

IRE: iron-responsive element 

IRP: IRE-binding protein 

KLF1: kruppel-like factor 1 

MBSH: 1×high-salt modified Barth's saline 

MEMFA: magnesium sulfate/formaldehyde buffer 

MO: antisense morpholino oligonucleotide 

MT: myc taq 

NF-E2: nuclear factor erythroid-derived 2 

OCD: ornithine decarboxylase 

pVBI: posterior VBI 

PVDF: Polyvinylidene DiFluoride 

RACE: Rapid Amplification of cDNA Ends 

RNA: ribonucleotic acid 

RT-PCR: reverse transcription-polymerase chain reaction 
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SCL: stem cell leukemia 

SDS–PAGE: sodium dodecyl sulfate -polyacrylamide gel electrophoresis 

TBST: Tris-buffered saline with Tween® 20 

UTR: untranslated region 

VBI: ventral blood island 

VMZ: ventral marginal zone 

WISH: whole mount in situ hybridization 

X. laevis: Xenopus laevis 

Xalas2: Xenopus delta-aminolevullnate synthase 2 
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III. Introduction 

III-1. The mechanism of erythrocytosis  

 Vertebrate hematopoietic development consists of two phases: primitive and 

definitive. In mice, progenitors of the primitive erythrocyte lineage arise from the 

mesoderm during gastrulation in the yolk sac region, called the blood island (Palis et al 

2001), (Baron et al 2013). Subsequently, definitive hematopoiesis involving the 

production of primitive erythrocytes occurs first in the aorta-gonad-mesonephros, 

second in the placenta during embryogenesis, and finally in the fetal liver (Tsiftsoglou 

et al 2009). Primitive hematopoiesis results in the formation of erythroblasts, 

megakaryocytes, and macrophages in the yolk sac (Tober et al 2007). The nuclei and 

hemoglobin of these erythroblasts are comprised of a heterotetramer of two α- and 

β-subunits of globin-containing heme (Palis et al 2014). At this stage, the β-subunit 

globin exists in the fetal form, εy-globin (Wilber et al 2011). Enucleated erythrocytes 

are produced at the definitive hematopoiesis stage in the fetal liver. After birth, 

β-subunit hemoglobin of the adult type is produced in enucleated erythrocytes within 

the bone marrow (Tsiftsoglou et al 2009). 
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The developmental mechanism differs between primitive and definitive 

erythrocytes. In the mouse, cytokines including interleukin (IL)-3, stem cell leukemia 

(SCL), and insulin-like growth factor-1 (IGF-1) act on hematopoietic stem cells during 

definitive hematopoiesis. These cells differentiate into erythroid burst-forming units 

(BFU-E), which express transcription factors Pu.1, GATA2, and SCL. Subsequently, 

erythropoietin specifically causes not only differentiation into erythroid colony-forming 

units (CFU-E) but also proliferation. CFU-E, expressing GATA1, GATA2, SCL, Sox6, 

nuclear factor erythroid-derived 2 (NF-E2), and kruppel-like factor 1 (KLF1) 

differentiate into pro-erythrocytes (Baron 2013). In contrast, erythroblast progenitors 

express fetal liver kinase 1 (Flk1), c-kit, Etv2, SCL, vascular endothelial (VE)-cadherin, 

and Tie2 during primitive hematopoiesis (Baron 2013). These cells have the ability to 

differentiate into both, endothelial, or hematopoietic cells. Furthermore, erythroblast 

progenitors also express adhesion proteins on their surface, such as CD44 (hyaluronan 

receptor) and integrins α4, α5, and β1 in the yolk sac (Isern et al 2011). In fact, tight 

associations within erythroblast progenitors have been observed in the yolk sac using 

electron microscopy (Haar and Ackerman 1971). Expression of these adhesion proteins 
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and increase in metalloprotease expression were lost before entering into blood vessel. 

However, the mechanism of hemangioblast differentiation into erythroblasts in terms of 

signal pathways before entering the bloodstream is unclear.  

III-2. The role of ALAS2 in vertebrate erythrocytosis 

 In vertebrates, the main function of the erythrocyte involves transport of 

oxygen via hemoglobin. Hemoglobin consists of a heterotetramer of two α- and 

β-subunits of globin carrying a synthesized heme complex, consisting of divalent iron 

(FeII) and porphyrin. However, heme also regulates several biological processes 

through heme-responsive or heme-sensitive proteins (Sun et al 2004). Heme controls 

erythrocyte differentiation independently as a transcriptional regulator with the 

exception of forming a complex with globin protein. For example, heme-regulated 

eIF2α kinase regulates translational initiation in diverse stress conditions by 

phosphorylation of the α-subunit of eIF2, activation of Atf4 signaling pathway in 

reducing oxidative stress, and in erythropoiesis (Rajeasekhar et al 2012). In addition, 

heme-mediated transcriptional activation of heme oxgenase-1 and globin gene through 

transcription repressor Bach1 in murine erythroleukemia cells (Furuyama et al 2007).  
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The detailed mechanism of hemoglobin synthesis in the mammalian 

erythrocytes has been studied previously. The heme synthesis pathway is evolutionarily 

conserved in vertebrates (Ajioka et al 2006). Two aminolevulinic acid synthase (ALAS) 

isozymes are encoded by ALAS-1 (also known as non-specific ALAS), which is 

nonspecifically expressed in adult mammals, and ALAS-2 (also known as erythroid 

ALAS), which is specifically expressed in erythroid cells (Riddle et al 1989). In the 

mouse, Alas2 transcription is regulated by iron and iron-related proteins. Alas2 

5-untranslated region (UTR) contains an iron-responsive element (IRE; 5-CAGUGX-3) 

(Melefors et al 1993) similar to that found in man, mouse, rat, and chicken. IRE-binding 

protein (IRP) binds to IRE-sequences in ALAS2 (Kim et al 1996). Alas2 translation is 

inhibited by forming of a stem-loop structure with IRE under conditions of low iron 

concentration. In the presence of high iron concentration, iron forms complexes with 

IRP and inactivates it, therefore IRP does not bind to IRE. The translated Alas2 moves 

from the cytosol to mitochondria and the pre-sequence including mitochondria transport 

signal is cleaved by ALAS to release the mature protein enzyme �-ALA, followed by 

a catalytic series that leads to the formation of heme. This catalytic series is mediated by 
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ALA dehydratase, porphobilinogen deaminase, uroporphyrinogen III synthase, 

uroporphyrinogen decarboxylase, coproporphyrinogen oxidase, protoporphyrinogen 

oxidase, and ferrochelatase in the mitochondria and cytosol. ALAS2 is essential for 

heme synthesis in erythrocytes and deletion of the C-terminal of ALAS2 causes 

X-linked dominant protoporphyria in humans.  

 Few in vivo studies have been reported regarding the function of Alas2 in 

developmental biology, especially during primary hematopoiesis, which occurs in the 

yolk sac in vertebrates. Alas2-knockout mice exhibited formation of abnormal 

erythrocytes, accumulation of iron, and decrease in globin protein at embryonic day 

10.5 (E10.5), resulting in death due to anemia at E11.5 caused by defective hemoglobin 

(Nakajima et al 1999). These data demonstrated the role of Alas2 function in 

erythrocyte production during both, primary and definitive hematopoiesis. In a study in 

zebrafish, reduction of hemoglobin was confirmed by staining with o-dianisidine in case 

of mutations in sauternes (sau) gene, orthologue of mouse Alas2. Additionally, 

erythroblasts generated by definitive hematopoiesis were immature (Beownlie et al 
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1998). However, the role of ALAS2 in erythroblast differentiation in vertebrates during 

primary hematopoiesis is unknown. 

 Xenopus (frog), chicken, and quail are frequently used as hematopoiesis 

models because of species-specific advantages. Xenopus laevis is particularly useful for 

large-scale screening and functional analyses. Eggs are available year-round and 

artificial fertilization is easy to perform. In addition, extensive information regarding 

Xenopus cleavage patterns and fate map is available. Moreover, the transparent tadpole 

is suitable for observation of blood cells. Primitive hematopoiesis in X. laevis begins at 

the neurula-stage mesoderm in the ventral blood island (VBI). The primitive VBI 

expresses hematopoietic and endothelial markers, Flk-1, Fli-1, and Gata2 at the neurula 

stage, comparable to the hemangioblast in mammals. The VBI, equivalent to the yolk 

sac blood island of amniotes, produces a primitive erythroblast, which is released for 

circulation into peripheral blood vessels through the vitelline vein. VBIs have 

discernable anterior and posterior regions. Progenitors of the anterior VBI (aVBI) are 

derived from the dorsal marginal zone, while those of posterior VBI (pVBI) are derived 

from the ventral marginal zone (Ciau-Uitz et al 2000). Myeloid genes such as SpiB and 
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Mpo are expressed in aVBI, whereas erythroid genes such as Runx, Lmo2, and Scl (tal1) 

are expressed in pVBI during the neurula stage (Costa et al 2000 and Walmsley et al 

2008). The erythroblast progenitors in pVBI express the mature marker, larval globin. 

However, the mechanism of differentiation into mature erythrocytes with respect to the 

signal pathway, before entering the bloodstream remains unknown. 

In this study, I explored whether ALAS2 has functions other than heme 

synthesis in primitive hematopoiesis based on heme transcription regulation. I showed 

that Xenopus alas2 (Xalas2) is first expressed in primitive erythroblast during primary 

hematopoiesis before transcription of embryonic globin. Moreover, by comparing the 

effect of synthesis inhibitor with Xalas2 translational inhibition, I demonstrate that 

Xalas2 independently controls the differentiation of erythroblast in primitive 

hematopoiesis via a heme-mediated independent mechanism. 
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III-3. Objective of this study 

The mechanism of hemangioblast differentiation into mature erythrocytes 

with respect to the signal pathway, before entering the bloodstream is currently 

unknown. Using Xenopus laevis as model organism, I identified Xalas2, a gene with 

time-specific expression that allows for distinction between hemangioblasts and 

erythroblasts. The purpose of this study was to determine the role of Xalas2 in 

erythroblast differentiation during primary hematopoiesis.  
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IV. Materials and methods 

IV-1. Animals  

This study was conducted in accordance with the Guideline for Proper 

Conduct of Animal Experiments by the Science Council of Japan. All experiments were 

performed at the National Institute of Advanced Industrial Science and Technology 

between 2012 and 2015. 

IV-2. Embryo culture and manipulation 

The adult frogs (X. laevis) of both sexes, were purchased from Watanabe 

Zoushoku and Hamamatsu Seibutsu Kyouzai. Adult female frogs were maintained in an 

incubator (Panasonic) at 21°C-23°C for approximately more than 13 hr after being 

injected with 100 U/ml human chorionic gonadotropin (Gestron; Kyoritsu Seiyaku) to 

obtain eggs. On the same day, adult male frogs were placed in ice-cold water to 

simulate a semi-hibernation state and testes were collected. The testes were stored in 

fetal bovine serum (FBS; Millipore) containing 10% Steinberg's solution (17% NaCl, 

0.5% KCl, 0.5% CaCl2, and 1.025% MgSO4) at 4°C until use. A fresh suspension of 
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sperm was prepared by mincing testes in De Boer's solution (0.11 M NaCl, 0.0013 M 

KCl, 0.00044 M CaCl2 NaHCO3) immediately before fertilization. Eggs were obtained 

from the cloaca of the injected female frog by applying pressure ventrally. The eggs 

were mixed with sperm in a petri dish and left standing for 6 min at RT for fertilization. 

Fertilized eggs were cultured in 0.5% De Boer's solution. Subsequently, the embryos 

were de-jellied using 1% sodium thioglycollate (Tashiro et al 1999) and washed several 

times with 10% Steinberg's solution. The embryos were then injected with each 

nucleotide in 1× high-salt, modified Barth's saline (MBSH)/5% Ficoll. The culture 

medium of the embryos was replaced with 10% Steinberg's solution before gastrulation.  

IV-3. RNA extraction and reverse transcription-polymerase chain reaction (RT-PCR) 

Total RNA was extracted from embryos and adult organs using phenol 

method as previously described (Ito et al 2001). Briefly, embryos or organs frozen 

under liquid nitrogen were crushed in homogenization solution (100 mM Tris-Cl, 50 

mM NaCl, 10 mM ethylenediaminetetraacetic acid [EDTA], and 0.5% sodium dodecyl 

sulfate [SDS]), supplemented with 20 mg/ml Proteinase K (Sigma-Aldrich), followed 

by incubation at 37°C for 1 hr. The solution was extracted with phenol/chloroform 
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(TE-saturated), followed by chloroform and 5 M ammonium acetate was added to the 

aqueous phase. The mixture was stored at 0°C and centrifuged for 20 min. 

Nuclease-free water, 3 M ammonium acetate (pH 5.2), and 100% ethanol was added to 

the RNA extract, centrifuged, and rinsed with 70% ethanol. First-strand cDNA was 

synthesized from extracted total RNA using an oligo-(dT) primer and SuperScript™ III 

RT (Life Technologies). The resulting cDNA was used as a template for reverse 

transcription-polymerase chain reaction (RT-PCR). Ornithine decarboxylase (ODC) 

gene was used as a positive control. For cloning of various globin cDNA, sequence 

information for globin primers were obtained from Xenbase genome database 

(http://www.xenbase.org/entry/). RT-PCR was performed using KOD-plus-neo kit 

(Toyobo) as described in manufacture instructions. The amplified globin cDNA were 

cloned into pBluescript II SK+ vector and sequences were analyzed by 3500 Genetic 

Analyzer (Thermo Fisher) to identify high-homology sequence of each gene. All primer 

sequences used for cloning are listed in Table 1. 

IV-4. RNA synthesis in vitro. 

The clones of Xalas2 mRNA (accession No: BC080015) and RhoBTB mRNA 
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(NM_001092210) were purchased from Thermo Fisher Scientific K.K (Open 

Biosystems). These sequences were sub-cloned in pCS2 vectors. The plasmids PCS2 

dkk1, pCS2 EGFP, and pCS2 Red-gal were obtained from Dr. Asashima. These 

plasmids were digested with Not 1 (Takara), and capped RNA was synthesized using 

mMESSAGE mMACHINE® SP6 Kit (Life Technologies). After synthesis and DNase I 

treatment, 20 μl RNA solution was mixed with 250 �l nuclease-free water and 30 �l 

ammonium acetate (3 M, pH 5.2), and extracted with phenol/chloroform 

(Tris-EDTA-saturated), followed by extraction with chloroform. The aqueous layer of 

the extract was mixed with 1 volume isopropanol and centrifuged. Precipitated RNA 

was rinsed in 70% ethanol and purified by repeating isopropanol precipitation. Quality 

of the synthesized RNA was confirmed by gel electrophoresis and concentration of 

RNA was measured at 260 nm absorbance using a Nano Drop (Thermo Fisher).  

IV-5. Explant culture 

The embryos injected with messenger RNA (mRNA) were cultured up to 

Stage 10. The ventral marginal zone (VMZ) of the embryo was cut using a 

tungsten-needle in MBSH/1% bovine serum albumin (BSA) solution. The VMZ were 
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cultured with MBSH/1% BSA supplemented with 4-Methylumbelliferone until Stage 

23 and then frozen under liquid nitrogen. 

IV-6. DNA microarray 

Total RNA was isolated using the same method from each VMZ as IV-5. 

Complementary cRNA was synthesized from total RNA, labeled with Cy3-dye, and 

microarray analysis was conducted using Xenopus Oligo microarrays (G2514F, 

Agilent). Each sample was hybridized with one-color protocol and florescence signals 

were detected using a G2514F microarray scanner system (Agilent). These data were 

analyzed by GeneSpring GX10 software (Agilent).  

IV-7. MO design and activities 

I identified Xalas2 5’-UTR sequence by 5’rapid amplification of cDNA ends 

using SMARTerTM Rapid Amplification of cDNA Ends (RACE) cDNA Amplification 

Kit (Clontech), Xalas2-morpholino antisense oligonucleotide (xalas2-MO) was 

designed as described by Gene Tools, LLC (https://store.gene-tools.com). MO 

sequences were as follows: Xalas2a-MO, 
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5’-ACGATTAATGAGAGAAGCCATGTTC-3’, and Xalas2b-MO, 

5’-CAACGATTGATGAGAGAAGCCATGT-3’. I amplified Xalas2 coding sequence 

with 5’-UTR or 5 point-mutations in the morpholino binding site by RT-PCR with 

high-fidelity DNA polymerase, Pfu (Promega), using primers listed in Table 2. The 

amplified fragments were digested with BamHI and ClaI, and subcloned into the 

BamHI and ClaI sites of the pCS2+MT vector. Two types of Xalas2 RNA were 

synthesized in vitro using pCS2-5’-UTR-Xalas2-5myc and pCS2-5mis-Xalas2-5myc. 

To confirm the specificities of the MO, 2-cell stage embryos were injected with RNA 

and MOs, embryos were collected at Stage 9, and frozen in liquid nitrogen. The proteins 

of these embryos were extracted and separated by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS–PAGE). The proteins were transferred 

to PVDF membranes using iBlot dry blotting system (Life Technologies), and blocked 

with 10% skim milk (Nacalai Tesque) in Tris-buffered saline with Tween 20 (TBST) 

buffer (20 mM Tris–HCl [pH 7.6], 150 mM NaCl, and 0.05% Tween 20) overnight at 

4°C. The membranes were incubated with SC-40 HRP-conjugated, Myc (19E10), 

mouse monoclonal antibody (Santa Cruz) diluted at 3000-fold in 10% skim milk/TBST 
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for 1 hr at room temperature, the membrane were washed 4 times with TBST and 

incubated with enhanced chemiluminescent assay reagent, SuperSignal West Femto 

(Pierce). The protein bands were visualized using an LAS1500 Analyzer (Fuji Film). 

The antibody was stripped from the membrane using stripping buffer (100 mM 

2-mercaptoethanol, 2% SDS, 62.5 mM Tris-Cl [pH 6.7]). The membranes were 

re-probed with monoclonal anti-actin clone antibody AC-40 (Sigma Aldrich) as loading 

control diluted at 3000-fold in 10% skim milk/TBST for 1 hr at room temperature. The 

membranes were washed three times and probed with horseradish peroxidase 

(HRP)-conjugated anti-mouse IgG (H&L) antibody (Cell Signaling) diluted at 

3000-fold as secondary antibody for 1 hr. The membranes were washed several times, 

visualized as described above. 

IV-8. Whole-mount in situ hybridization (WISH) 

The plasmids, pCMV-Sport6/Xalas2, pCMV-Sport6/RhoBTB, pGEM-T easy 

hba3 (NM_001086328), pGEM-T Gata1 (NM_001085640), pGEM-T Gata2 

(NM_001090574), and pBluescript II Sk-/SCL (Inui et al 2006) (NM_001088277 

NM_001088278) were digested with restriction enzymes, as listed in Table 3. All 
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probes were synthesized using DIG RNA Labeling Mix (Roche), as listed in Table 3. 

The embryos were processed for whole-mount in situ hybridization as previously 

descried (Harland 1991); some embryos were embedded in paraffin, cut into 10-�m 

sections, and stained with eosin. 

IV-9. Hemoglobin staining and transparent clearing 

Whole-embryo staining for heme expression was performed using 

o-dianisidine (Sigma Aldrich) histochemistry as previously described (Detrich et al 

1995). After staining, the embryos were fixed in MOPS/EGTA/MEMFA for 3 hr and 

incubated in BB/BA for a few days. 

IV-10. Collection of peripheral blood from larvae and Giemsa staining  

The larva tails at Stage 42 were cut in 10% Steinberg’s solution containing 

0.5% BSA and 10 IU/ml heparin (Devorah et al 2006). Peripheral blood was collected 

into tubes and centrifuged at 2,000 rpm at room temperature for 10 min. Concentrated 

blood cells were smeared onto a slide, fixed with 100% methanol for a few minutes 

after drying, and stained with Giemsa solution (Wako) as per manufacturer instructions.  
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Table 1: Primer sequence for RT-PCR 

Gene 

name 

Primer sequence 

Xalas2a Fw: 5’-ATCTTCACAACAAGGATGCA-3’ 

 Rv: 5’-GTTATATTGGGAAAGGAGGAC-3’ 

Xalas2b Fw: 5’-GCCTGAAGAAGAAATTTCTAG-3’ 

 Rv: 5’-AAAGCAGGAGGAGAAAAGAAG-3’ 

ODC Fw: 5’-GTCAATGATGGAGTGTATGGATC-3’ 

 

 

 

Rv: 5’-TCCAATCCGCTCTCCTGAGCAC-3’ 
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Table 2: Primer sequence for MO design and activities 

Gene name Primer sequence 

Injected Xalas2a Fw:5’-CCGGATCCAGTGCAGGGCAACAGAAAC-3’ 

 Rv:5’-CCATCGATCAGAGGCATACATAGTAATGTATTTT-3’ 

Injected Xalas2a 

5mis  

Fw:5’-CCGGATCCATGGCATCACTGATAAATCGATGTCCC-3’ 

 Rv:5’-CCATCGATCAGAGGCATACATAGTAATGTATTTT-3’ 

Injected Xalas2b  Fw:5’-CTTGACGTGTGAACATGGCTTCTCTCATCAATCG-3’ 

 Rv:5’-GTGTCTGTTGCCCTGCACTG-3’ 

Injected Xalas2b 

5mis  

Fw:5’-CCGGATCCATGGCATCACTGATAAATCGATGTCCC-3’ 

 Rv:5’-CCATCGATCAGAGGCATACATAGTAATGTATTTT-3’ 

 

Table 3: Details of WISH probes 

Gene name Restriction enzymes RNA polymerase Length (bp) 

Xalas2 NotI T7 2529 

RhoBTB SmaI T7 4499 

hba3 SpeI T7 202 

Gata1 EcoRI T7 1080 

Gata2 XbaI T7 1362 

Scl SacII T3 762 
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V. Results 

V-1. Alignment of Xalas2 

I cloned 5’-UTR sequences by RACE method and determined the coding 

sequence for Xalas2. The amino acid sequence was compared with that of other 

vertebrates. Xalas2 contains 2 heme-regulatory motifs (CP motif: [Arg, Lys, or 

Asn]-Cys-Pro-[Lys or hydrophobic residue]-[Lue or Met]) (Figure 1). CP motifs in the 

mitochondrial pre-sequence of ALAS-1 and ALAS-2 proteins have been reported to 

bind heme (Furuyama et al 2007). Furthermore, pre-sequences contain a signal that 

targets mitochondria in mammalian species (Furuyama et al 2007), but quite different 

from those found in aquatic animals (Figure 1). The green arrowhead indicates the 

processing site of precursor protein by peptidase (Lathrop et al 1993), and the blue 

square shows the catalytic region for synthesis of 5-aminolevulinic acid from glycine 

and succinyl coenzyme A (Figure 1). This region in X. laevis shows homology with 

these of human, mouse, and zebrafish.  

V-2. Xalas2 expression 
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Firstly, Xalas2 expression during early developmental stages was investigated 

using RT-PCR. The Xalas2a mRNA expression was detected from Stage 15, 

continuously induced until Stage 34, and maintained its level until Stage 42. Compared 

with Xalas2a, Xalas2b began to be expressed after Stage 38, when pro-erythrocytes 

entered circulation (Figure 2A). To analyze the spatiotemporal expression of Xalas2, I 

performed whole mount in situ hybridization. Xalas2a was expressed in anterior 

mesoderm at the neurula stage (Figure 2B, C). This expression was very similar to that 

of transcription factor, Scl (Figure 2K). SCL forms a transcriptional complex with E47, 

Lbd/NL1, LMO2, and GATA-1 to regulate hematopoiesis factors (Wadman et al 1997) 

and acts in the early anterior mesoderm to activate hematopoietic stem cells in Xenopus 

laevis (Mead et al 1998). At Stage 23, it was clearly shown that Xalas2a expression 

pattern was similar to that of Scl, two crossing lines for cardiac mesoderm and 

hemangioblast at Stage 23 (Figure 2D, D’, L). Xalas2a was continuously expressed in 

the VBI and disappeared from the anterior cardiac region at approximately the tailbud 

stage (Figure 2E, E’). These expression patterns were similar to those of hba3 (Figure 

2I), one of the globin genes observed in the VBI before the cells entered the circulation. 
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The expression of Xalas2 at Stage 38 was observed in the aortic arc near the cardiac 

region and the liver (Figure 2F, F’). These results suggested that Xalas2 was expressed 

in circulating pro-erythroblasts and erythroblasts within certain blood vessels at the 

tadpole stage. Interestingly,  

V-3. Translational inhibition of Xalas2 leads to loss of hemoglobin 

I inhibited in vivo translation of 2 types Xalas2 using Xalas2-MO as designed 

in Figure 3A and 3B. The blastomere in dorsal vegetal at the 8-cell stage is committed 

to the fate of hemangioblast at Stage 23. In contrast, an erythroblast precursor in the 

aVBI region at Stage 34, will not undergo further development in these tissue cells 

(Figure 3A and 3B). Staining of hemoglobin in the embryos injected with this MO by 

o-dianisidine confirmed the function of Xalas2 during heme synthesis in erythroblast 

precursors and erythroblasts, at Stages 34 and 42, respectively (Figure 5A). Hemoglobin 

was hardly observed in the embryo after Xalas2 MO injection in the 8-cell ventral 

vegetal-side at both 23 and 34 Stages. In particular, very few blood cells were seen 

within the cardiac atrium and ventricle at Stage 42, as in Figure 5B, lower panel. On the 

other hand, in the embryos injected into the dorsal vegetal side, hemoglobin levels 
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within the heart were decreased, compared with the control MO injected embryo 

(Figure 5A, lower panel). I inhibited heme synthesis pathway using an alternate method 

to verify whether biosynthesis of heme itself caused reduction of hemoglobin in vivo. 

Since succinylacetone is structurally similar to aminolevulinic acid, addition of 

succinylacetone competitively inhibits porphobilinogen synthase-dependent conversion 

of heme synthesis (Figure 6A). I found that amount of hemoglobin complex was 

decreased with an increase in dose of succinylacetone (Figure 6B). Particularly, at 0.25 

mM succinylacetone, hemoglobin complexes disappeared altogether, in the erythroblast 

precursors at Stage 34 (Figure 11B) and in the circulating erythroblasts at Stage 42 

(Figure 6B). While the addition of more than 0.25 mM succinylacetone resulted in 

non-specific phenotypes including edema, loss of a few somites, convulsion, and 

embryonic death before gastrulation, the optimal concentration (0.25 mM) of 

succinylacetone also showed similar phenotypes, albeit to a lesser extent, in addition to 

loss of hemoglobin. 

V-4. XAlas2 controls the differentiation of erythroblasts  
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Next, involvement of Xalas2 in erythroblast differentiation was confirmed by 

knockdown of 2 types of Xalas2, MO1 and MO2, which were injected into 2 

blastomeres at the dorsal-vegetal or ventral-vegetal side at the 8-cell stage. The 

expression of Scl in the hemangioblast in Xalas2 MO-injected embryo was not affected, 

as that in the control MO-injected embryos at Stage 23 (Figure 7A and 7B, left panel), 

By contrast, the expression of Scl was decreased in the aortic arch in the embryo 

injected with Xalas2 MO at the dorsal vegetal region at Stage 34 (Figure 7A). 

Additionally, Scl expression disappeared in pVBI in the ventral vegetal region (red 

arrow in Figure 7B). Regarding hba3, V-shaped expression was somewhat diminished 

at Stage 34 in the aVBI in the embryos injected with Xalas2 MO on the dorsal side 

(Figure 8A and 9A). However, in the aVBI, there was no difference in hba3 expression 

between the embryos injected with the control MO and Xalas2 MO (Figure 9A). By 

contrast, after ventral vegetal injection, expression was greatly decreased in pVBI 

(Figure 8B and 9B), and the embryo with decreased in pVBI was observed at high 

frequency from 62% to 82% compared with the control MO injected-embryos from 0 to 

17% (Figure 9B and 9C). Injection of Xalas2 MO with Xalas2/5mis mRNA containing 
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5 point-mutations in the MO binding site, rescued the expression of hba3 approximately 

by 44% (Figure 10). The expression of Gata1 and Gata2, which are transcription 

factors responsible for globin genes (Deconinck et al 2000), was not affected by Xalas2 

MO injection at Stages 23 and 34 (Figure 7B). In summary, inhibition of Xalas2 

translation did not affect development of hemangioblast at Stage 23 but impeded 

differentiation of erythroblast precursors (Figure 7, 8, and 10). Inhibition of Xalas2 

caused down-regulation of hba3 expression (Figure 8 and 10). These data suggest that 

Xalas2 functions in erythrocyte precursors of pVBI to regulate expression of hba3.  

V-5. Xalas2-regulated hba3 expression 

Next, I asked whether heme synthesized by Xalas2 causes downregulation of 

hba3 genes, I investigated the hba3 expression pattern in embryos treated with 

succinylacetone at Stage 34 (Figure 11A). The results showed that hba3 expression was 

not down regulated in embryos treated with succinylacetone (Figure 11B, right panel). 

By contrast, Xalas2-knockdown embryos showed significant down-regulation of hba3 

gene (Figure 11B, middle panel). Additionally, Scl, Gata1, and Gata2 were expressed at 

normal levels in the succinylacetone-treated embryo (Figure 12). Although, hemoglobin 
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was not detected in both condition (Figure 5B, 6B and 11B). These data suggest that 

hba3 expression may not be affected by heme synthesized by Xalas2. Abnormal 

function of heme as a transcription factor has been reported previously (Suragani et al 

2012); however, in this study heme does not regulate a-globin expression in vivo 

(Figure 11A).  

V-6. Xalas2 is required for the proliferation or/and differentiation of erythroblasts  

Translational inhibition of Xalas2 gene affected hba3 and Scl expression at 

Stage 34 in erythroblast precursors located on VBI as I showed (Figure 7B and 8B). 

Finally, in order to visualize circulating erythroblasts, GFP mRNA was injected in the 

ventral vegetal side at the 8-cell stage and a portion of erythroblast precursors in VBI 

were labeled by GFP. Circulation of the enhanced green fluorescent protein 

(EGFP)-labeled blood cells in each conditional embryo was analyzed (Figure 13A). The 

number of labeled erythrocytes was low in Xalas2 MO-injected and 

succinylacetone-treated embryos as compared with the control MO injected embryo.  

To examine the abilities of erythroblast precursors to differentiate into mature 

erythrocytes, circulating erythroblasts in the tadpoles were collected and their 
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morphology was analyzed by Giemsa staining (Figure 13B and 13C). In the control 

MO-injected tadpoles, characteristic small cells with nuclei were observed, similar to 

normal erythroblasts or basoerythrocytes. In contrast, in Xalas2 MO-injected tadpoles 

showed erythroblast precursor-like morphology including trachychromatic cytoplasm 

and enlarged nuclei. In the tadpoles treated with succinylacetone, characteristic small 

cells with nuclei were observed, similar to the control MO-injected tadpoles. However, 

the number of blood cells was dramatically decreased, and there was no leucosytes 

observed in the succinylacetone-treated embryos. Additionally, the rate of immature 

erythroblast was about 65.5% in Xalas2 MO-injected embryo. The value showed higher 

than in control MO-injected embryo and succinylacetone–treated (Figure 14). In 

contrast, the rate of mature erythroblast was respectively more than 63% in untreated 

embryo, control MO-injected and succinylacetone–treated. These data suggest that 

erythroblasts of Xalas2 MO-injected and succinylacetone–treated tadpoles show 

characteristic differences. Thus, I concluded that heme synthesized by Xalas2 does not 

regulate differentiation into erythroblast, rather Xalas2 may independently be 

responsible.   
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VI. Discussion  

Mammalian ALAS2 have been reported to be expressed specifically in 

erythrocytes that synthesize aminolevulinic acid as a heme mediator. Firstly, results 

from Xalas2 cloning and alignment show that Xalas2 contains 2 heme-regulatory motifs. 

The CP motif (Figure 1) on the pre-sequence protein, processed in the mitochondria, is 

widely conserved in vertebrates. These CP motifs bind to heme and prevent alas1 

processing within the mitochondria (Fukuyama et al 2007). Mitochondrial transport of 

mouse pre-alas2 protein has been shown to be inhibited by addition of exogenous 

hemin (Lathrop and Timko 1993). Xalas2 is thought to function similarly as mammal.  

Furthermore, 5’-UTR of alas2 contains an IRE sequence (5’-CAGUGX-3’) 

similar to that in human, mouse, rat, and chicken (Cox et al 1991). IRE found in the 

transcripts that encode iron metabolism proteins is recognized by IRP (Rouault and 

Klausner 1997), ALAS2 is also one of the iron metabolism proteins (Cox et al 1991 and 

Melefors et al 1993). The 5’-UTR of the IRE transcripts form a stem-loop structure, and 

translation of alas2 mRNA is inhibited in absence of iron. In contrast, in the presence of 

high concentration of iron, IRP does not bind to IRE, therefore alas2 mRNA can be 
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translated (Hentze et al 2004). Xalas2 is possibly regulated by iron and IRP in the 

embryos.  

The purpose of this study was to investigate the role of Xalas2 in erythroblast 

differentiation during primary hematopoiesis. Xalas2 was specifically expressed in the 

anterior mesoderm, hemangioblast, and erythroblast. Xalas2 expression during early 

development shows that other genes are involved in heme biosynthesis in Xenopus 

laevis. For example, it has been reported that Alad, Pbgd, Uro3s, and Urod have 

expressed in the egg stage (Shi et al 2008). Thus, these data suggest that Xalas2 is a 

rate-limiting enzyme for heme synthesis in other vertebrates (Shi et al 2008), however 

Xalas2 might have some function in hemangioblasts and pro-erythroblasts. Therefore, it 

is considered that Xalas2 could be involved in the differentiation from mesoderm to 

hemangioblast. In Xenopus embryos, Gata2 is required for hemangioblast formation by 

controlling Lmo and Scl (Liu et al 2008). However, Xalas2 inhibition did not affect 

expression of hematopoietic transcription factor, Scl and Gata2 in the hemangioblast. In 

contrast, Scl expression in VBI decreased and hba3 expression was inhibited with 

injection of Xalas2 MO in the erythroblast precursor region (Figure 7), which was not 



 34 

observed with SA treatment (Figure 12). Scl is required for generation of erythrocyte 

and endothelial cells in not only hemangioblasts during primary hematopoiesis, but also 

in the dorsal lateral plate during definitive hematopoiesis (Mead et al 1998).  

Hba3 is an α-globin gene and Hba3 protein consists of hemoglobin α subunit 

in the Xenopus larva. It is reported that α-globin transcription is regulated by heme 

concentration (Tahara et al 2004 and Chiabrando et al 2014). When heme biosynthesis 

is inactive, the transcription of α-globin is inhibited by the repressor complex of Bach1 

and small Maf proteins that bind MAREs (Maf recognition elements) in the regulatory 

region of �-globin genes. On the other hand, when heme biosynthesis is active, heme 

binds Bach1 in the nucleus and mediates its export to the cytosol. Then, erythroid 

transcription factor, NF-E2 p45 associates with small Maf proteins and activates the 

transcription of globin in K562 cells (Tahara et al 2004). In this study, hba3 expression 

was downregulated in Xalas2-knockdown embryos (Figure 11B, middle panel) but not 

in embryos treated with succinylacetone (Figure 11B, right panel). It is unclear why the 

in vitro and in vivo results differed; probably since K562, a chronic myelocytic 

leukemia cell line represents definitive hematopoiesis, whereas the data were obtained 
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with primary hematopoiesis in Xenopus embryos. The role of alas2 in cytosol and the 

nucleus is also unknown. Thus, my data suggest a larval regulatory pathway of hba3 

transcription by Xalas2, which is independent of heme, Bach1 pathway, and Gata-Scl 

transcription pathway.  

 In zebrafish and mouse, loss of ALAS2 function caused immature 

erythroblast formation and the differentiation of erythroblast was delay (Beownlie et al 

1998, Takahashi et al 1999). Especially, in the ALAS2 knockout mice, the present study 

demonstrated that low endogenous heme by loss of ALAS2 caused maturation arrest of 

primitive erythroid cells (Takahashi et al 1999). In this study, the Xalas2 MO-injected 

tadpoles also showed characteristic erythroblast precursor-like morphology including 

trachychromatic cytoplasm and enlarged nuclei (Figure 13C). By contrast, in the 

tadpoles treated with succinylacetone, an inhibitor of heme biosynthesis, characteristic 

small nuclei and cells were observed, similar to the control MO-injected tadpoles. 

Additionally, the inhibition of heme synthesis on both of conditions caused the number 

of cell to decrease.  Treatment of succinylacetone  These data suggest that heme 

synthesized by Xalas2 does not regulate differentiation into erythroblasts, rather Xalas2 
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may independently be responsible. Generally, while heme is reported to function as a 

transcription factor (Suragani et al 2012), it is no reports that alas2 makes 

transcriptional control. In recent years, it is suggested that the C-terminal region of the 

mature human ALAS2 can be modified by small ubiquitin-like modifier (SUMO) 

molecules (Kadirvel et al 2012). SUMO protein is highly conserved from yeast to 

mammalians (Chen et al 1998). In vertebrates, there are three major SUMO isoform 

(SUMO-1, SUMO-2, SUMO-3), which expressed in all tissues (Huang et al 2004). 

C-terminus in Glycine residue of SUMO has the region of isopeptide bond to the side 

chain of a particular Lys residue of the target protein (Hay 2005). In vitro, modification 

by SUMO2 and SUMO3 of actin is involved in nuclear translocation (Rosas-Acosta et 

al 2005). Various SUMO binding targets are reported in the cytoskeletal proteins, such 

as Rho family GTPase, actin and tubulin (Rosas-Acosta et al 2005 and Vertegaal AC et 

al 2004). Erythroblast progenitors in mouse also express adhesion proteins related 

cytoskeletal protein on their surface, CD44, integrins α4, α5, and β1 in the yolk sac 

(Isern et al 2011). Expressions of those were lost before entering into blood vessel. 

Additionally, Mouse with deletion of mDia2, a form in isoform and Rho effectors, fall 
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to form actin filaments in erythroblasts (Watanabe et al 2013 and Kalfa et al 2014). 

There are no reports that these two molecules are modified by SUMO in erythroblasts. 

However, from above reports, ALAS2 with cytoskeletal proteins might regulate 

erythroblast differentiation by the modification with SUMO in primary hematopoiesis. 

In view of some possible mechanisms on mammalian, I think that XAlas2 protein might 

be located in cytoplasm by inhibition of transporting to mitochondria and subjected to 

some posttranslational modification, for example, by SUMO in this study. It might be 

possible that XAlas2 protein could regulate transcription of hba3, cell division and 

differentiation of erythroblast thereby.  

 The specific mechanism of transcriptional control by Xalas2 is not clear. 

However, in my study, the presence of a novel control mechanism of erythroid 

differentiation through the Xalas2 was suggested. These results are considered to be an 

important finding from the view point of evolutionary diversity of the hematopoietic 

system. 
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IX. Figures and Legends 

 

Figure 1. Alignment of Alas2 protein sequences of Xenopus (type A accession no. 

NP_001087499; type B accession no. AAH84616), human (accession no. NP_000023), 

mouse (accession no NP_033783), and zebrafish (accession no NP_571757). The 

yellow box indicates the heme regulatory motif (CP motif [Arg, Lys or 

Asn]-Cys-Pro-[Lys or hydrophobic residue]-[Lue or Met]). The blue box indicates the 

catalytic core domain. The green arrowhead indicates the site of precursor protein 

processing by mitochondrial peptidase. Amino acids indicated in red are conserved 

amino acid in Xenopus, human, mouse, and zebrafish. 

 

Figure 2. Xalas2 and erythrocyte-related gene expression in X. laevis embryos. (A) 

RT-PCR analysis of Xalas2 type a and b expression during Xenopus development. 

Ornithine decarboxylase (odc) served as an internal control. Whole-mount in situ 

hybridization analysis using Xalas2 antisense probe (B–F, D'–F', E', F''), hba3 (G–J, I', 

J'), and Scl (K–N). (B) Stage 15: ventral view shows weak Xalas2 expression in the 
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anterior mesoderm (arrowhead). (C) Stage 18: expression in the anterior mesoderm 

(arrowhead) is extensive, as viewed from the ventral side. (D, D’) Stage 23, (E, E’) 

stage 34: ventral, lateral views of the same embryo show extensive staining in the 

hemangioblast and ventral blood island (VBI) (arrows). (F, F’) Stage 38: expression of 

alas2 is distinct in the circulatory system (ventral and lateral views). Eosin-stained 

sections showing Xalas2 expression in stage 34 (E'') and stage 38 (F'') and hba3 in the 

same stages (I', J'). Transverse sections of embryos on the red lines in panels E'', F'', I', J’ 

are shown in panels E', F', I', J'. Scale bars in stages 15, 18, and 23 represent 0.5 mm; in 

Stages 34 and 38, 0.1 mm. 

 

Figure 4. (A) Xalas2-MO was designed to target the sequence around the translational 

start codon of both Xalas2 alleles (Xalas2a and Xalas2b). Xalas2a-MO/5mis and 

Xalas2b-MO/5mis have five mutations and serve as the negative control. Identical 

residues are indicated in red. (B) Western blot analysis of c-Myc-tagged XAlas2 

proteins in the embryos co-injected with the indicated mRNAs and MO. Actin was used 

as the internal control. Both alleles were targeted by Xalas2a MO and Xalas2b MO 
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(lane 2, 8). Xalas2a MO and Xalas2b MO/5mis failed to target these genes (lanes 5, 11).  

 

Figure 3. Region-specific translational inhibition of Xalas2 gene by the injection of 

red-gal and Xalas2 MO. Whole-mount in situ hybridization of Xalas2 and Red-gal 

staining were performed. (A) Upon dorsal vegetal injection, Xalas2 translation was 

inhibited in hemangioblasts at St23 (upper). (B) Upon ventral vegetal injection, Xalas2 

translation was inhibited in the ventral blood island at St34 (lower panel). 

 

Figure 5. Hemoglobin staining in Xalas2 MO-injected embryos and the control 

MO-injected embryos at Stage 42. (A) Schematic pathway of heme synthesis and 

inhibition of Xalas2 translation. These MOs were injected into (B) dorsal vegetal and 

(C) ventral vegetal in 8-cell stage. The red regions in the cartoon indicate the tissue 

where translation of Xalas2 was inhibited at Stage 23 and Stage 34. The figures on the 

lower line are enlarged pictures around the heart. Scale bars on upper line and lower 

line were 0.5 mm and 0.25 mm, respectively. 
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Figure 6. (A) Schematic of the heme synthesis pathway and inhibition of ALAD with 

succinylacetone. (B) Staining of hemoglobin in the embryos treated with 

succinylacetone at the indicated concentrations from the 8-cell-stage to Stage 42. 

Figures on upper panel show the picture of the head and body. The enlarged figure of 

the heart is shown on the lower panel. Scale bars in upper and lower figures are 0.5 mm 

and 0.25 mm, respectively. 

 

Figure 7. Expression of hematopoietic transcription factor in Xalas2 MO injected 

embryo. Embryos were microinjected with 40 ng of Xalas2 MO in the dorsal-vegetal 

side (A) and the ventral-vegetal side (B). Red colored region indicates the location of 

Xalas2 MO injected with either dorsal-vegetal side or ventral-vegetal side at 8-cel Stage. 

Whole-mount in situ hybridization of scl in Stages 23 and 34 (A and B), of Gata2 in 

Stage 23, and of Gata1 in Stage 34 (B) are shown. The block arrow indicates two 

crossing line in scl expression in control MO-injected embryo. The red arrow indicates 

decrease in scl expression in Xalas2 MO-injected embryo. The number of representative 

phenotypes among total number of injected embryos is shown at the left bottom corner 
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of each figure. The experiments were performed independently at least twice. Scale bars 

represent 0.5 mm.  

 

Figure 8. The expression of hba3 in Xalas2 MO-injected embryos. Embryos were 

microinjected with 40 ng Xalas2-MO in the dorsal-vegetal side (A) or the vegetal side 

(B). Whole-mount in situ hybridization of hba3 at Stages 23 and 34 are shown. The 

arrows indicate the loss of hba3 expression. The number of phenotypes among total 

number of injected embryos is shown at the lower left bottom corner of each figure. The 

experiments were performed independently more than three times. Scale bars represent 

0.5 mm.  

 

Figure 9. The hba3 expression was semi-quantitated in the embryo injected with 

control MO- or Xalas2 into dorsal vegetal side (A), ventral vegetal side (B). (A) 

Embryos expressing hba3 maintained the V-shape region (arrow) in VBI, designated as 

(+), and reduced embryos were counted as (-); “Other” represents an abnormal 

phenotype with hba3 expression. (B) Maintained expression of hba3 in the control 
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embryo in the whole posterior region was counted as (+). The expression observed in 

the posterior-and-midline VBI was counted as (+/-), and the expression in the anterior 

VBI was counted as (-). (C) Hba3 expression was semi-quantitated in the control MO- 

and Xalas2 MO-injected embryos into ventral vegetal side. The experiments were 

performed in three independent replicates. Student’s t-test was used to determine 

significant differences. P < 0.05 was taken as statistically significant. Scale bars 

represent 0.5 mm.  

 

 

Figure 10. Rescue of hba3 in Xalas2 MO-injected embryos by co-injecting 

MO-insensitive Xalas2a/5mis mRNA. (A) Xalas2a/5mis was designed with 5 point 

mutations. (B) Knockdown of Xalas2 caused low-level hba3 expression on VBI; this 

effect was reversed by co-expression of 1 ng of Xalas2a/5mis mRNA. Hba3 expression 

was rescued in the posterior (+) and midline VBI (+/-); (-), not rescued. Scale bars 

represent 0.5 mm.  
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Figure 11. Regulation of �-globin transcription by heme biosynthesis. (A) Inhibition 

of ALAD by competitive substrate, succinylacetone. Heme-dependent�-globin 

transcription reported by Tahara et al 2004 and Ogawa et al 2001. (B) Hemoglobin 

staining and hba3 expression in Xalas2 knock-down or succinylacetone treatment at 

Stage 34. The arrowhead indicates hemoglobin staining. All scale bars indicate 0.5 mm.  

 

Figure 12. Expression of hematopoietic transcription factor in the embryos treated with 

succinylacetone (SA) of 0.25 mM from the 8-cell-stage to Stage 34. Whole-mount in 

situ hybridization of scl and Gata2 in Stage 23 and of Gata1, hba3, and Scl in Stage 34 

are shown. Scale bars represent 0.5 mm.  

Figure 13. Xalas2 is essential for the development of mature erythroblasts. (A) 

Circulating EGFP-labeled erythroblasts in the embryos either injected with the 

control-MO or Xalas2-MO or treated by succinylacetone. (B) Representative 

morphology of blood cells stained by Giemsa. The blood cells were harvested from 

embryos at Stage 42. The arrowheads indicate circulating erythroblasts. (C) Enlarged 

views in each condition.  
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Figure 14. The morphological difference in erythroblast after inhibition of heme 

biosynthesis. The representative morphology of blood cells stained by Giemsa. The 

blood cells were harvested from embryos at Stage 42. The cells are represented as cells 

observed in 58mm2. Scale bars represent 0.5 μm. 
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Xalas2b          LLIEVQSSLKKKFLAPSPKKVNLGTGAPLIPTHLIKENMTGKT-FGYDDFFSRRIEEKKSDHTYRVFKTVNRRADAYPFAEDYSDLHGEKKEVSVWCSNDYLGMSQHPKVLKAILEALQE    230
ALAS2(human)     SLVSV--SLRKPF--SGPQEQEQISGK---VTHLIQNNMPGNYVFSYDQFFRDKIMEKKQDHTYRVFKTVNRWADAYPFAQHFSEASVASKDVSVWCSNDYLGMSRHPQVLQATQETLQR    218
ALAS2(mouse)     TMDST--TRSHSF--PSFQEPEQTEGA---VPHLIQNNMTGSQAFGYDQFFRDKIMEKKQDHTYRVFKTVNRWANAYPFAQHFSEASMASKDVSVWCSNDYLGISRHPRVLQAIEETLKN    218
ALAS2(zebrafish) EDVQPNLENQDTSGLISSLFSGLQSHQSTGPTHLLQDNFN-RPTFSYDEFFTQKIVEKKKDHTYRIFKTVNRFAEVFPFAEDYSIAGRLGSQVSVWCSNDYLGMSRHPRVVKAIGDALKK    213
             
            
Xalas2a          HGAGAGGTRNISGTSKYHVDLECELADLHNKDAALLFSSCFVANDSALFTLAKMLPGCEIYSDAGNHASMIQGIRNSGVTKFVFRHNDPAHLEELLQKADPKTPKIVAFETVHSMDGAIC    360
Xalas2b          HGAGAGGTRNISGTSKYHVDLECELADLHNKDAALLFSSCFVANDSALFTLAKMLPGCEIYSDAGNHASMIQGIRNSGVTKFVFRHNDPAHLEELLQKADPKTPKIVAFETVHSMDGAIC    350
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Xalas2b          PLEEMCDVAHKYGALTFVDEVHAVGLYGTHGAGVGERDGVMHKMDIISGTLGKAFGCVGGYIASTASLIDTVRSYAAGFIFTTSLPPMVLAGAVESVRVLKSEEGQALRRAHQRNVKHMR    470
ALAS2(human)     PLEELCDVSHQYGALTFVDEVHAVGLYGSRGAGIGERDGIMHKIDIISGTLGKAFGCVGGYIASTRDLVDMVRSYAAGFIFTTSLPPMVLSGALESVRLLKGEEGQALRRAHQRNVKHMR    458
ALAS2(mouse)     PLEELCDVAHQYGALTFVDEVHAVGLYGARGAGIGERDGIMHKLDIISGTLGKAFGCVGGYIASTRDLVDMVRSYAAGFIFTTSLPPMVLSGALESVRLLKGEEGQALRRAHQRNVKHMR    458
ALAS2(zebrafish) PLEELCDVAHKYGALTFVDEVHAVGLYGAHGAGVGERDNVMHKIDIVSGTLGKAFGCVGGYIASTAALVDTVRSFAAGFIFTTSLPPMVLAGALESVRVLKSDEGQALRRAHQRNVKHMR    453
     
                    
Xalas2a          QLLMDAGLPVINCPSHIIPIRVGNAAINSRICDVLLSQYNIYVQAINYPTVPRGEELLRLAPSPHHTPDMMTYFVESVVSAWKEVGMPLHTPSAAECNFCHRPLHFDLMSEWERTYFGNM    600
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ALAS2(human)     QLLMDRGLPVIPCPSHIIPIRVGNAALNSKLCDLLLSKHGIYVQAINYPTVPRGEELLRLAPSPHHSPQMMEDFVEKLLLAWTAVGLPLQDVSVAACNFCRRPVHFELMSEWERSYFGNM    578
ALAS2(mouse)     QLLMDRGFPVIPCPSHIIPIRVGNAALNSKICDLLLSKHSIYVQAINYPTVPRGEELLRLAPSPHHSPQMMENFVEKLLLAWTEVGLPLQDVSVAACNFCHRPVHFELMSEWERSYFGNM    578
ALAS2(zebrafish) QLLLDAGLPVVNCPSHIIPIRVGNAAKNSEVCDILLEKHNIYVQAINYPTVPRGEELLRLAPSPFHNPIMMNYFAEKLLDVWQEVGLPLNGPAQASCTFCDRPLHFDLMSEWEKSYFGNM    573
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