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Abstract. The Inner Mongolia grassland, one of the most im-

portant grazing regions in China, has long been threatened by

land degradation and desertification, mainly due to overgraz-

ing. To understand vegetation responses over the last decade,

this study evaluated trends in vegetation cover and phenol-

ogy dynamics in the Inner Mongolia grassland by applying

a normalized difference vegetation index (NDVI) time series

obtained by the Terra Moderate Resolution Imaging Spectro-

radiometer (MODIS) during 2002–2014. The results showed

that the cumulative annual NDVI increased to over 77.10 %

in the permanent grassland region (2002–2014). The mean

value of the total change showed that the start of season

(SOS) date and the peak vegetation productivity date of the

season (POS) had advanced by 5.79 and 2.43 days, respec-

tively. The end of season (EOS) was delayed by 5.07 days.

These changes lengthened the season by 10.86 days. Our re-

sults also confirmed that grassland changes are closely re-

lated to spring precipitation and increasing temperature at

the early growing period because of global warming. Over-

all, productivity in the Inner Mongolia Autonomous Region

tends to increase, but in some grassland areas with grazing,

land degradation is ongoing.

1 Introduction

Land degradation in arid and semiarid regions, such as the

Sahel in Africa and temperate grasslands in Australia, has be-

come a critical threat (Gisladottir and Stocking, 2005; Prober

and Thiele, 2005; Sop and Oldeland, 2013). China’s vast

grassland has also suffered from land degradation, mainly in

the northern and western cold areas over long periods (Chen

and Tang, 2005; Li et al., 2014; Wang et al., 2013). The In-

ner Mongolia Autonomous Region (IMAR), which is located

along the northern border of China, is 68 % grassland (Kawa-

mura et al., 2005a). Typical and meadow steppes, which are

mainly used for grazing and animal husbandry, are the pri-

mary grassland ecosystems found in the IMAR (Kang et al.,

2007). In recent decades, the Chinese government has imple-

mented a “return-farmland-to-grassland” strategy to reverse

the land degradation in pastures (Shang et al., 2014; Wang et

al., 2010). Vegetation restoration has been used to protect di-

verse degraded landscapes. A considerable number of studies

suggest that vegetation cover helps mitigate soil erosion by

stabilizing soil aggregation, reducing wind speeds and water

erosion, improving soil porosity and increasing biological ac-
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tivities in the soil (Fattet et al., 2011; Florentine et al., 2013;

Lee et al., 2002; Lieskovský and Kenderessy, 2014).

To evaluate the vegetation restoration effect, anthro-

pogenic and climatic impacts should be considered. Vege-

tation cover change represents the most direct response of

vegetation to climate changes and human activities (Zhao et

al., 2012). Akiyama and Kawamura (2003) analyzed the land

cover change over 1979–1997 and indicated that the areas

with productive grasslands decreased while low-productivity

grasslands increased. The seasonal change in vegetation

(phenology) is a key parameter for studying and analyzing

climate change and vegetation responses (the feedback be-

tween the land surface and the atmosphere), which can im-

prove the simulation quality of carbon, water, and energy ex-

changes between the atmosphere and the land surface (Ma et

al., 2013). The vegetation productivity and phenology in the

temperate region of China has already changed in response

to the dramatic climatic changes (Jeong et al., 2011; Piao et

al., 2006, 2010; Peng et al., 2011). Earlier studies indicated

that the recovery of vegetation from long-term degradation

is related to the increase in precipitation (Eklundh and Ols-

son, 2003; Sop and Oldeland, 2013). The growing body of

evidence suggests that climate warming has advanced the bi-

ological spring in temperate China (Chen et al., 2005; Piao et

al., 2006; Zheng et al., 2002). Additionally, longer growing

seasons, particularly earlier spring vegetation green-up, may

significantly enhance the vegetation productivity in temper-

ate and boreal regions (Cong et al., 2013; Hu et al., 2010;

Kimball et al., 2004).

As traditional fieldwork is time-consuming and costly, re-

mote sensing methods have been utilized as cost-effective ap-

proaches to detect vegetation changes at large spatial scales.

Monitoring landscapes through satellite-derived vegetation

indices (VIs), such as the normalized difference vegetation

index (NDVI) and enhanced vegetation index (EVI), is a suc-

cessful method for assessing vegetation conditions and phe-

nology (Glenn et al., 2008; Zucca et al., 2015). Previous stud-

ies suggested that time series satellite data can reliably detect

the phenology, forage quantity, and quality of grassland areas

using the VIs derived from Advanced Very High Resolution

Radiometer (AVHRR) data and Moderate Resolution Imag-

ing Spectroradiometer (MODIS) satellite images (Kawamura

et al., 2003, 2005a, b, c). Significant delays in the vegeta-

tion green-up during 1982–1991 in the desert steppe and in

part of the typical steppe of Inner Mongolia were detected

using AVHRR NDVI (Yu et al., 2003). Moreover, although

the signs of the trends in the vegetation green-up dates de-

tected by various methods were broadly consistent spatially

and for different vegetation types, large differences occurred

in the magnitudes of the observed trends. The large variance

obtained using different methods is particularly apparent for

arid and semiarid vegetation types (Cong et al., 2012, 2013;

Zhao et al., 2012).

Because of the complex vegetative species, diverse vege-

tation coverage and vast observational areas in semiarid con-

tinental areas, limited research has been conducted in the

IMAR to analyze the phenology shift using Terra MODIS

NDVI time series. In this study, the objectives are to (1) eval-

uate the changes in land use and land cover, including vege-

tation cover and NDVI trends; (2) detect the vegetation phe-

nology (the start/end dates, the maximum vegetation produc-

tivity dates and the length of the growing season) using Terra

MODIS NDVI data; and (3) relate the trends of the NDVI and

phenology to changes in the climate (precipitation and tem-

perature) at 18 meteorological stations throughout the per-

manent grassland between 2002 and 2014.

2 Materials and methods

2.1 Study area

The IMAR (Fig. 1), the third-largest province and au-

tonomous region with plateaus in the country, occupies a

total area of 1.18 million km2, or 12.3 % of the country’s

territory (Han et al., 2009). This area has a yearly average

temperature of 0–8 ◦C, while the mean annual precipitation,

which is concentrated in June and July, varies from less than

100 mm in the western Gobi Desert to more than 400 mm in

the northeast forests and meadow steppes (Han et al., 2009;

John et al., 2008; Yu et al., 2003; Zhou et al., 2006). The

growing season for perennial species typically starts in April

and ends in September. Annuals germinate from April to July

due to the available soil moisture and subsequent rain events

(Bai et al., 2004; John et al., 2008). Typical and meadow

steppes are the major types of grassland ecosystems in the

IMAR; these areas are often used for grazing and animal

husbandry (John et al., 2008; Kang et al., 2007). Within

the semiarid typical steppe, which has an annual precipita-

tion of less than 350 mm, the dominant vegetation species

are Stipa grandis, Leymus chinensis, and multiple species of

Artemisia spp. and Festuca spp. (Kang et al., 2007; Yu et

al., 2003). In comparison, meadow steppes develop in areas

with a higher productivity, with an annual precipitation of ap-

proximately 450 mm; the primary plants are S. baicalensis,

L. chinensis, and Cleistogenes mucronata (John et al., 2008;

Kang et al., 2007). Moreover, the desert steppe is in an arid

ecosystem, in which the annual precipitation is 150–200 mm;

this steppe has the lowest biomass production, but it is also

important to the grassland area in the IMAR. S. krylovii, S.

bungeana and A. ordosica are dominant (Cheng et al., 2001;

John et al., 2008; Kang et al., 2007; Yu et al., 2003). In the

present study, 18 sampling sites throughout the permanent

grassland area, according to the MODIS Land Cover Type

Yearly product (MCD12Q1, 500 m) for 2002–2014, were se-

lected to represent the major steppe areas in the IMAR.

Solid Earth, 6, 1185–1194, 2015 www.solid-earth.net/6/1185/2015/
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Table 1. Information on the meteorological stations.

Station number Name Elevation (m) Mean annual precipitation (mm) Mean temperature (◦C)

1 Hailar 610.2 346.36 −0.41

2 Dongwuzhumuqin 838.7 234.23 2.48

3 Erlianhaote 964.7 126.71 5.35

4 Abagaqi 1126.1 236.07 2.64

5 Zhurihe 1150.8 201.04 5.84

6 Wulatezhongqi 1288.0 223.49 6.33

7 Daerhanlianheqi 1376.6 264.65 5.07

8 Huade 1482.7 307.03 3.60

9 Huhhot 1063.0 411.28 7.81

10 Etuokeqi 1380.3 265.70 7.79

11 Xiwuzhumuqin 1000.6 299.32 2.28

12 Zhaluteqi 265.0 341.62 7.49

13 Balinzuoqi 484.4 333.48 6.58

14 Xilinhot 989.5 260.44 3.24

15 Linxi 799.0 328.92 5.43

16 Tongliao 178.5 334.22 7.48

17 Duolun 1245.4 357.48 3.11

18 Chifeng 568.0 348.87 7.78

Figure 1. The Inner Mongolia Autonomous Region (IMAR). The

gray part represents the permanent grassland area, whereas the

black dots represent the selected meteorology stations.

2.2 Data

The meteorological data, including monthly precipitation

and temperature, were acquired from the China Meteorolog-

ical Data Sharing Service System (http://www.escience.gov.

cn/metdata/page/index.html). Eighteen meteorological sta-

tions (Fig. 1 and Table 1) throughout the permanent grassland

were selected to represent the diverse steppes in the IMAR.

Two types of products derived from Terra MODIS satel-

lite data were employed. The 500 m spatial resolution

MCD12Q1 product (MODIS Land Cover Type Yearly L3

Global 500 m, Version 5 – which is generated by the Interna-

tional Geosphere–Biosphere Programme (IGBP) global veg-

etation classification scheme from 2002 to the latest available

year, 2012 – was used to detect the land use/cover change

and to extract the permanent grassland area in the IMAR.

MOD13Q1 (Vegetation Indices 16-Day L3 Global 250 m,

Version 5) data from 2002 to 2014 were used to extract the

NDVI for estimating trends in vegetation cover and phenol-

ogy changes over the 11 years. The NDVI, which is a nonlin-

ear combination of red and near-infrared (NIR) spectral ra-

diances (NIR− red)/(NIR+ red), exhibits a strong relation-

ship with vegetation activity and green biomass. The index is

usually employed for predicting vegetation phenology from

space (Glenn et al., 2008; Hmimina et al., 2013; Karlsen et

al., 2008). The NDVI time series were calculated as mean

values over 6× 6 pixels (1.5 km× 1.5 km) centered on each

of the 18 meteorological stations to avoid land cover hetero-

geneity (Karlsen et al., 2008).

2.3 Reconstruction of NDVI time series data

After the preprocessing procedures (mosaic and reprojec-

tion), the data quality of the NDVI data was assessed using

the corresponding quality assessment (QA) information that

describes the utility of the VI values. When the VI useful-

ness= 1101, the quality of the pixel is low and not useful. If

the VI usefulness= 1110, the data also cannot be used due

to the faultiness in the original level data. And VI useful-

ness= 1111 means useless for other reasons. The invalid data

(VI usefulness= 1101, 1110, 1111) were eliminated and in-

terpolated linearly.

Then the NDVI time series were temporally smoothed by

a Savitzky–Golay filter (Chen et al., 2004), which provides

a simplified least-squares-fit convolution for smoothing and

computing derivatives of a set of consecutive values (such as

www.solid-earth.net/6/1185/2015/ Solid Earth, 6, 1185–1194, 2015
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Figure 2. The original and smoothed MODIS NDVI time series from the Chifeng meteorology station from 2002 to 2014 (42◦16′ N,

118◦56′ E).

a spectrum) (Fig. 2). The S–G filter performs best in most sit-

uations when smoothing different vegetation types using var-

ious satellite data (Geng et al., 2014). The Savitzky–Golay

filter is computed as follows:

Y ∗j =

i=m∑
i=−m

CiYj+i,

N
(1)

where Y is the original NDVI value, Y ∗ is the resultant

NDVI value, and Ci is the coefficient for the ith NDVI of the

smoothing window. N is the number of convoluting integers

and is equal to the smoothing window size (2 m+ 1). j rep-

resents the running index of the ordinate data in the original

data table, and m represents the half width of the smooth-

ing window (Savitzky and Golay, 1964). Two assumptions

must be confirmed: the time series follows an annual cycle of

growth and decline, and clouds and poor atmospheric condi-

tions decrease the NDVI values. Therefore, sudden decreases

in the NDVI, which are not compatible with the gradual pro-

cess of vegetation change, should be regarded as noise and

removed. Two key parameters, i.e., the half-size of the filter-

ing window (m) and the degree of the filtering polynomial

(d), determine the final effect. In this study, the m was set

at 4 and the d was set at 2 to achieve the best-fitting result.

Through using the smoothed NDVI time series data (299 val-

ues/pixel from 2002 through 2014), linear models were de-

veloped. The trends in the NDVI changes were quantified by

the slope of the regression line derived from the linear models

of the cumulated NDVI time series against time. The slopes

were tested for significance with a significance level of 0.05.

2.4 Detecting phenological stages from the NDVI time

series

The start and end dates of a growing season are usually se-

lected as the indicators of phenology shifts. The globally con-

stant NDVI threshold may be suitable for forested ecosys-

tems but may also surpass the peak value of the NDVI in

semiarid grasslands (White et al., 2003; White and Nemani,

2006). Thus, we determined the start/end dates (SOS/EOS),

peak vegetation productivity date of growing season (POS),

and the length of growing season (LOS) from the MODIS

NDVI time series data by modifying the method applied by

Butt et al. (2011): (i) the inflection point (the maxima of the

second derivative) during the spring (from March to May)

was identified as the SOS, while another inflection point (the

maxima of the second derivative) during the autumn (from

August to October) was identified as the EOS; (ii) the POS

was defined as the date of the maximum NDVI during the

growing season (Ma et al., 2013); and (iii) the LOS was de-

fined as the difference between the EOS and SOS (Fig. 3).

The trends of the phenological stages were estimated by re-

gressing the SOS, POS, EOS and LOS against years over the

study period.

2.5 Correlation between meteorology and the

phenology

Previous research indicated that only the precipitation and

temperature in the spring and early summer determine veg-

etation growth (Bai et al., 2004). In the present study, the

relationships between climate data (monthly and cumulative

precipitation and mean monthly temperature) and the phe-

nology dates (SOS, EOS, POS, LOS) were assessed using

the population regression function.

The data-processing procedures were conducted using In-

terface Data Language (IDL) ver. 8.3 (Exelis Visual Informa-

tion Solutions, Colorado, USA) and MATLAB software ver.

7.12 (MathWorks Inc., Sherborn, USA). The thematic maps

were created using ArcGIS ver. 9.3 (ESRI, California, USA).

3 Results

3.1 Vegetation cover change

The primary land use and land cover change from 2002

to 2012 according to the latest MODIS land cover data

are shown in Table 2. Furthermore, the standard deviation

(SD) and coefficient of variance (CV=SD/mean× 100 %)

were calculated to monitor the fluctuations of the land cover

changes over these years.

Grassland was the most extensive land cover type in

the IMAR, occupying 49.67× 104 km2 (53.36 %) in 2002

and 50.24× 104 km2 (53.97 %) in 2012. These values are

Solid Earth, 6, 1185–1194, 2015 www.solid-earth.net/6/1185/2015/
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Table 2. Land cover changes in the Inner Mongolia Autonomous Region (2002–2012). The area unit is× 104 km2; SD is standard deviation

and CV is coefficient of variance (=SD/mean× 100 %) of the land cover change between 2002 and 2012.

Land cover type Area (2002) Area (2012) Changed area SD (2002–2012) CV (2002–2012)

× 104 km2
× 104 km2

× 104 km2
× 104 km2 %

Grassland 49.67 50.24 0.57 1.30 0.25

Barren land 23.08 21.17 −1.91 0.55 0.25

Forest 7.92 10.30 2.38 0.78 0.82

Crop/urban 12.16 11.16 −0.99 1.31 1.30

Water/wetland 0.26 0.22 −0.04 0.02 0.77

Figure 3. The extraction of phenology dates from NDVI. SOS is the

start of growing season; POS is the maximum NDVI date during the

growing season; EOS is the date of the end of season; LOS is the

length of growing season.

smaller than the previous data, but a slight increase oc-

curred during the study period. The forest area also ex-

panded by 2.38× 104 km2 within this period. In con-

trast, the barren land, artificial land (crop land and urban

area) and water bodies declined. Following grassland, the

second-most-extensive cover of barren land decreased from

23.08× 104 km2 (24.79 %) to 21.17× 104 km2 (22.74 %) by

2012. Based on the SD and CV values during 2002–2012,

the artificially controlled area (crop land and urban area) de-

creased the most (SD= 1.31× 104 km2; CV= 1.30 %), re-

flecting the effect of the return-farmland-to-grassland strat-

egy of the Chinese government. Grassland and barren land

had the smallest fluctuations. Water bodies were relatively

stable among the land cover types. The changes in the land

use dynamics indicated a positive trend in the total vegetation

coverage.

Figure 4. The cumulated NDVI trend in permanent grassland from

2002 to 2014. The green parts represent the increasing area, while

the red parts represent the decreasing area.

The permanent grassland (2002–2012) was then extracted,

yielding an area of 37.57× 104 km2 (40.36 % of the total

IMAR area) (Fig. 1). The cumulative annual NDVI trend

was analyzed within the study area (Fig. 4). A positive

trend occurred over 28.97× 104 km2 (77.10 % of the perma-

nent grassland), whereas a negative trend was observed over

8.60× 104 km2 (22.90 %). A significant heterogeneous spa-

tial distribution was observed in the cumulative annual NDVI

change. The negatively changing area was mainly located in

the center and east of the IMAR, where typical steppes are

dominant.

3.2 Yearly change in precipitation and temperature

Yearly changes in the annual precipitation and mean temper-

ature at 18 stations are shown in Fig. 5. The mean annual

precipitation ranged from 221.90 to 404.38 mm year−1, with

a minimum value in 2007 and a peak value in 2012. Among

the 18 stations, large variances of the precipitation SD were

observed (56.47–143.67 mm year−1). The annual mean tem-

perature ranged between 3.58 and 6.10 ◦C, with a minimum

value in 2012 and a peak value in 2007. Meanwhile, the SD

of the monthly temperature at the stations ranged from 2.23

to 2.67 ◦C over the study period. An upward trend in the

www.solid-earth.net/6/1185/2015/ Solid Earth, 6, 1185–1194, 2015



1190 Z. Gong et al.: MODIS NDVI and vegetation phenology dynamics in the Inner Mongolia grassland

Figure 5. The annual total precipitation and mean temperature of

18 meteorology stations.

mean annual precipitation and a slight downward trend in the

mean monthly temperature occurred at the selected stations.

3.3 Phenology trends

The statistical results of the average phenology dates (SOS,

POS, EOS, LOS) at all 18 meteorological stations in various

years are shown in Table 3. Overall, the SOS at the 18 sta-

tions varied from mid-March to May, with a mean annual

value of 122.21± 20.81 day of year (DOY), where 20.81 was

the annual SD of the 18 stations (SDstations). The POS oc-

curred between July and August, with a mean annual value

of 214.54± 9.33 DOY. The EOS varied between late August

and October, with a mean annual value of 285.24± 17.67

DOY. The mean annual LOS was 164.03± 26.63 days. The

SDstations in the vast region indicated significant spatial het-

erogeneity of the phenology across the IMAR grassland. The

SD of the mean annual phenology dates was also computed

as SDyear. The SDyear for the SOS was 5.89 days, while the

SDyear for the EOS and LOS equaled 4.47 and 9.03 days, re-

spectively. The SDyear for the POS (3.48 days) indicated the

smallest yearly fluctuation of all of the phenological param-

eters.

After applying a linear analysis procedure, the average

SOS and POS of the 18 stations advanced by 5.79 and

2.43 days, respectively, from 2002 to 2014. The average EOS

of the stations was delayed by 5.07 days. Finally, the average

LOS of the stations was extended by 10.86 days from 2002

to 2014 (Fig. 6).

3.4 Linkages between the phenology and

meteorological data

The selected regression models at different phenological

stages (SOS, POS, EOS, and LOS) between precipitation

(monthly and accumulated value during different periods)

and temperature (monthly and mean value during different

periods) are presented in Table 4. The delayed effect from

climate in SOS was obviously detected. Generally, the SOS

negatively correlated with the cumulative precipitation, es-

pecially during the growing season in the last year (March–

Figure 6. The trend of phenology dates from 2002 to 2014. SOS is

the start of growing season; POS is the maximum NDVI date during

the growing season; EOS is the date of the end of season; LOS is

the length of growing season.

September, R2
= 0.95, P < 0.001). Furthermore, the temper-

ature in the last May also negatively correlated with SOS

strongly (R2
= 0.73, P < 0.05). Therefore, the increasing cu-

mulated precipitation and the temperature in May in the

last year could advance the SOS. The POS negatively cor-

related with the cumulative precipitation from May to June

(R2
= 0.62, P < 0.001) and positively correlated with the

mean monthly temperature from June to July (R2
= 0.52,

P < 0.001). The increasing precipitation and colder weather

can advance the peak vegetation activity date. The EOS pos-

itively correlated with the precipitation in the last August

(R2
= 0.68, P < 0.05) but correlated with the temperature in

March with lower significance (R2
= 64, P = 0.06). Thus

the delay in the senescence of vegetation was considered be-

cause of the wetter autumn in the last year and the warmer

spring in the current year. Overall, the LOS positively cor-

related with the cumulative precipitation from April to May

(R2
= 0.49, P < 0.05) and mean temperature from January to

March (R2
= 0.72 P < 0.001), indicating that the wetter and

warmer weather during the early vegetation growing period

could extend the LOS.

4 Discussion

This study investigated the change in the cumulative annual

NDVI and phenology during the growing season of the per-

manent grassland in the IMAR. The phenological dynamics

were correlated with the local meteorological variations.

Our results indicated that the cumulative annual NDVI had

a positive trend mainly in the northern and western regions

(Fig. 4). In the west, desert steppes are dominant. Previous

research has reported a close relationship between vegeta-

tion changes and climate factors, particularly precipitation

and temperature (Cao et al., 2013). The upward trend in the

annual precipitation is considered the main meteorological

factor that led to the cumulative annual NDVI increase in the

Solid Earth, 6, 1185–1194, 2015 www.solid-earth.net/6/1185/2015/
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Table 3. Annual mean and standard deviation (SD) of phenological stages at 18 meteorological stations during 2002–2014. The units are day

of year (DOY); SOS, POS, EOS and LOS are the start, peak, end and length of the growing season; Mean is the mean value of the phenology

dates; SDy is the standard deviation of the mean annual phenology dates.

Year SOS POS EOS LOS

Mean SD Mean SD Mean SD Mean SD

2002 118.28 22.54 212.44 7.12 280.72 13.22 163.44 28.63

2003 127.39 19.90 209.67 10.70 282.22 25.53 155.83 34.27

2004 127.50 21.97 220.00 10.41 286.78 11.66 160.28 25.82

2005 119.89 21.08 214.39 9.05 286.22 13.60 167.33 23.78

2006 129.72 16.78 215.22 7.89 277.61 17.29 148.89 20.12

2007 124.28 26.69 218.39 6.31 286.39 16.44 163.11 34.69

2008 125.28 21.12 218.44 7.43 289.61 16.41 165.33 29.33

2009 115.39 24.53 217.61 9.95 288.72 16.93 174.33 28.30

2010 112.94 15.86 212.67 13.46 286.72 19.07 174.78 19.98

2011 130.94 19.15 215.06 9.06 278.44 21.17 148.50 27.17

2012 122.50 19.70 213.83 7.66 291.39 21.06 169.89 23.40

2013 120.00 20.63 213.22 10.46 283.06 21.66 164.06 23.53

2014 114.67 20.63 208.11 11.74 290.22 15.66 176.56 27.13

Mean 122.21 20.81 214.54 9.33 285.24 17.67 164.03 26.63

SDy 5.89 3.48 4.47 8.82

Table 4. The climate variables most strongly correlated with phenology, and the corresponding parameters of its linear model. SOS is the

start of growing season; POS is the maximum NDVI date during the growing season; EOS is the date of the end of season; LOS is the length

of growing season. Prec and Temp represent the precipitation and temperature, respectively.

Phenology Variable Slope Intercept R2 P

SOS Prec March–September (last year) −0.77 310.15 0.95 < 0.001

Temp May (last year) −49.68 861.99 0.73 0.03

EOS Prec August (last year) 0.13 151.96 0.68 0.04

Temp March 20.70 326.81 0.64 0.06

POS Prec May–June −0.35 243.54 0.62 < 0.001

Temp June–July 7.69 49.75 0.52 < 0.001

LOS Prec April–May 2.59 54.13 0.49 0.02

Temp January–March 12.25 281.26 0.72 < 0.001

desert steppes. However, the area with a negative trend was

mainly found in the central and east IMAR, where typical

steppes dominate. Similar trends have been reported by Cao

et al. (2013): in the central IMAR, the annual NDVI trend

reverses when applying NDVI data from 1998 to 2008 such

that significant relationships with temperature and precipita-

tion exist. Chuai et al. (2013) used the annual mean NDVI

during the growing season (April to October) and found a

moderate decrease in the steppes of the IMAR from 1998 to

2007.

Regarding the phenology changes (Table 3) and trends

(Fig. 6), the extension of the growing season was detected,

as also revealed by other recent research in temperate China

(Bai et al., 2004; Cong et al., 2013). An earlier onset of

the start is most prominent (Linderholm, 2006). Referring

to previous studies, the SOS was obviously earlier in the

present study period (from mid-March to May). As Lee et

al. (2002) reported that the onset of green-up for typical and

desert steppes occurred from early May to early June (1982

to 1990), the SOS since 2002 had advanced by approximately

1 month compared with the previous 20 years. This finding

was consistent with the previous suggestion that the SOS ad-

vanced between the 1980s and the 2000s in major biomes in

China, according to various approaches (Cong et al., 2013;

Ma and Zhou, 2012). However, limited research had investi-

gated the senescence date of the growing season. Our results

have provided the valuable finding that, besides of the ad-

vance in SOS, the delay in EOS (5.07 days) also contributed

the extension of the growing season.

Some researchers have indicated that the phenology could

be influenced by the climate several months before (Estrella

and Menzel, 2006; Miller-Rushing and Primack, 2008). In

www.solid-earth.net/6/1185/2015/ Solid Earth, 6, 1185–1194, 2015
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our results, this delayed effect has been found. Our results

were in agreement: global warming could promote the vege-

tation growth and extend the growing season (Linderholm,

2006). The temperature has increased significantly, partic-

ularly since the 1980s (Ding and Chen, 2008; Gao et al.,

2009). However, from 2002 to 2014, the IMAR grassland

tended to be slightly colder in the spring (from January to

May). We speculated that the increasing precipitation might

be the main driving factor of the advance in SOS and the

delay in EOS. Nevertheless, previous work revealed that pre-

cipitation decreased slightly over the last 50 years compared

with the obvious interannual change. Thus, the precipitation

appeared to increase over the recent decade. Rather than the

change in temperature, the wetter weather conditions were

considered the main reason for the phenology change in the

IMAR.

Our results indicated that plant productivity in the IMAR

increased, but in some areas with grazing, land degradation is

ongoing. As different vegetation types have various response

to the climate change (Yuan et al., 2007), the spatial het-

erogeneity of the phenology dynamics needs to be detected.

Meanwhile, the present study period only covered the last 13

years, limiting its conclusiveness regarding the change in the

IMAR grassland ecosystem during a longer period. Thus fur-

ther research should be conducted to identify the correlation

between changes in phenology and meteorology.

5 Conclusions

In this study, we examined recent trends in the NDVI and

phenology changes in the Inner Mongolia grassland using

Terra MODIS time series data. The relationships between

phenology change (SOS, EOS, POS and LOS) and climate

data (precipitation and temperature) were also evaluated. The

following conclusions can be drawn from the study:

1. The positive trends of the cumulative annual NDVI

(77.10 %) could be interpreted as an increase in plant

productivity in the Inner Mongolia permanent grass-

land.

2. The advance in the SOS and the delay in the EOS ex-

tended the LOS in Inner Mongolia between 2002 and

2014.

3. The increase in precipitation is the main factor for the

extension of the growing season.

Overall, the results reveal recent trends in the Inner Mon-

golia grassland and their correlation with climate data. Fur-

ther analysis using long-term satellite data and climate data

should be conducted.
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