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We derive the exact mass-coupling relation of the simplest multiscale quantum integrable model, i.e.,
the homogeneous sine-Gordon model with two mass scales. The relation is obtained by comparing the
perturbed conformal field theory description of the model valid at short distances to the large distance
bootstrap description based on the model’s integrability. In particular, we find a differential equation for the
relation by constructing conserved tensor currents, which satisfy a generalization of the ® sum rule Ward
identity. The mass-coupling relation is written in terms of hypergeometric functions.
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Introduction.—One of the most difficult problems in a
quantum field theory is to determine the mass-coupling
relation, i.e., the relation between the renormalized cou-
plings related to the Lagrangian definition of the theory and
the physical masses. Such an exact relation would express,
for example, the dynamically generated nucleon mass in
the chiral limit of quantum chromodynamics in units of
the perturbative Lambda-parameter A which is defined in,
say, the MS scheme. The difficulty lies in the fact that the
Lagrangian is defined at short distances (or ultraviolet—
UV—scale), while the masses are the parameters at large
distances (or infrared—IR—scale).

There is one family of models where such a relation
can be found exactly, namely, two dimensional integrable
models. The mass/A ratio was indeed exactly determined
[1,2] in the nonlinear sigma (NLS) model. To this end,
one adds an external field coupled to one of the conserved
charges, calculates the free energy perturbatively on the
UV side, and compares it to the large field expansion from
the Bethe Ansatz integral equation or the thermodynamic
Bethe Ansatz (TBA) equation [3] on the IR side. Later this
method was applied to many other models [4—-10].

In contrast to the NLS model with marginally relevant
perturbations, there is also a large class of integrable models
which can be defined as perturbations of their UV-limiting
conformal field theories (CFTs) by strictly relevant scaling
operators. In this case, coupling constants are dimensionful,
and one can show [11,12] that they are not renormalized in
the perturbative CFT scheme and hence, are physical them-
selves. When a model in this class has only one perturbing
operator, the relation between the coupling constant and the
(lowest) physical mass boils down to a single proportionality
constant. This nontrivial constant was determined as well by
the method described above for the sine-Gordon and affine-
Toda field theories and their reductions [13,14].

A common feature of all these models is that they have
only one mass scale. In some of these models, the particles
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have a nontrivial spectrum but all mass ratios are encoded
in the S matrix: the UV/IR relation is complete once the
lowest mass is expressed by A, the coupling, or some other
physical dimensionful parameter related to the Lagrangian.
However, when the models have several independent
perturbing operators, the particle spectrum continuously
depends on the couplings and not fixed by the § matrix. In
this sense, such models can be called multiscale, to which
the method in the single-scale case is not applicable, and
hence, there are no results for multiscale mass-coupling
relations in the literature.

The aim of this Letter is therefore to provide a novel
method which can fill this gap. Though our method
is conceptually more general, we focus on a class of
multiscale quantum integrable models with strictly relevant
perturbations, i.e., the homogenous sine-Gordon (HSG)
model [15-20]. We present our ideas in particular for its
simplest case with two scales. The mass-coupling relation
gives the one-point functions of the perturbing operators,
encoding all the nonperturbative information which is not
captured by the CFT perturbation. Via the gauge-string
duality, it is applied to the four-dimensional maximally
supersymmetric gauge theory at strong coupling, which is
one of the recent main subjects in field and string theories:
it provides the missing link to derive an analytic expansion
[21-24] of the strong-coupling amplitudes [25]. These are
also our main motivations. Below, we analyze the model
both from the UV and IR side, and compare the results to
obtain the mass-coupling relation.

UV: perturbed CFT.—The simplest multiscale HSG
model is the perturbation of the su(3),/u(1)? coset CFT
by its weight-0 adjoint primary fields. Fortunately, the coset
allows an equivalent representation in terms of the projected
product [26] of the Ising and the tricritical Ising (TCI)
minimal models, providing a handy calculational basis:
su(3)y/u(1)* ~ Ms 4 ® My s, where M, , stands for the

minimal model with central charge ¢ = 1 — 6(p — q)*/pq.
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The coset chiral algebra is larger than the Virasoro algebra;
thus, its diagonal modular invariant partition function
representing the spectrum decomposes into the product

of Virasoro characters nondiagonally as Z = 2)(1 L3 Lot

2 7)(Ll+()(oo+)(”)()(00+)('*)4‘()(4)4‘)(0 )(ZIO‘HKO )+

16 167716 16
(or+x12) o +Zlé)+()(03+)(1 1)()(0% ‘H(%]LO) where

10 10

Xy = )(El ) )(51,) refers to the characters in the tensor product
with h, A’ being the dimension of primaries. The chiral
algebra can be taken to be the product of the free fermion
algebra generated by w(z) of dimension 1/2 on the
Ising side and the superconformal algebra generated by
L (z), G(z) on the TCI part. The full Virasoro field is the
sum L(z) LW (z) 4+ L) (z), where the Ising contribution
is L(z) = —(1/2)w(z)0y(z). There are four fields of
dimension (3/5, 3/5), which can be obtained from ®(z,7) =
®,/10.1/10(z.Z) by acting with the left and right chiral
generators:

®;j(z.2) = vl 0,2 (2.2). (1)

where, to streamline the notations, we introduced 1//(11) =

w_y/» and 1;/ i /2 =5G_, 2. This ensures the proper
normalization of the operators (®;;|®) = §;5;. The
Lagrangian of the HSG theory is defined to be

L= ﬁCFI‘ )* ’1 q)lj(z Z) (2)

where summation is understood for i =1, 2 and j = 1, 2.
Since the transformations 4; — $; and 4; — !4, with
being constant do not change the perturbation, we have
effectively three parameters. We also have further discrete
symmetries: The remnant of the S; Weyl symmetry in the
coset translates into the 1; — w;;4; invariance of the pertur-
bation, where w;; stands for the rotation by 4+27/3 or the
reflection 1; — —4;. We have similar independent trans-
formations for the right chiral half.

IR: scattering theory.—The Hilbert space on the IR side
contains the scattering states |0y, ...,0,), . of two types
of particles with masses m; and m, which can take arbitrary
values. Here, 6 is the rapidity of the jth particle of type a;
whose energy is E = mg, cosh @;. The theory is integrable,
and the two particle scattering matrix contains one reso-
nance parameter o [18]:

Sp@—0)==8,(0+0) = tanh% <9 - z%) (3)
These fermionic particles scatter on themselves trivially:
S11(0) = S$2,(0) = —1. Our aim is to express the three IR
parameters, 1, m,, and o in terms of the UV parameters 4,
and /_1 Since the UV parameters depend on the choice of
the bas1s for @;;, we have to map these operators to their IR
counterparts. On the IR side, operators are characterized
by their form factors. For a local operator X, they are
denoted by

(O1X01.-...00)0, .., = Fa,....a, {0:}). (4)

These form factors have the structure

0, (16:) = O o, ({(xi D) [F e (05,60, (5)
j<k

where x; = ¢, and the two particle form factors are

sinh #

Fi1(0,.6) 2200 + 155

=Fx(0,,6,) =—

and F,(0,,0,) =
ution of the equation f(6 )

f(6, —6,), which is the minimal sol-
S12(0)f (6 + 2ir); see [27] for
the details. F,;(0;,6,) is then F,(0,,0,) = (6, —6,)/
S12(6, — 6,). The factors QF , ({x;}) are polynomials in
x; and 1/x;. For the trace of the stress tensor, ©, they were
calculated explicitly in [27,28] and have the structure

o, ({xi}) = P({xi})qa,...a,({x:}). (7)

where P> = P*P~ and P* = Pﬁ) + PE) contain the con-
tributions of each particle type to the light cone momenta:
P<ia) = Mg jetypea® ] . We can easily define four local

operators X, by their form factors:

5{'?..01,, P( )P( y4a,...q, (8)
We analyzed numerically the UV expansion of their two
point functions by including six particles in the form factor
expansion and confirmed that they all have dimensions
(3/5, 3/5). Note that these operators depend on the masses
only through the prefactors P(j;>. As a consequence, their
vacuum expectation values and matrix elements inherit the
same mass dependence. The IR X, operators are the linear
combinations of the perturbing UV operators ®;;, and in the
following, we relate the two bases to each other.

UV- IR operator relation.—In relating the UV and IR
bases, note that ® can be written in both languages,

2> Ay = Y X )
i,j a,b

and its vacuum expectation value is related to the free
energy density as F = —limy_(1/V)InZ = }(©). From
the definition of the partition function, we can write
O, F = —(¥,), U, = /1 D,
O, F ==(¥)), ¥, =-49,

ijo

(10)

ijs

where 0; is the shorthand for 9/04; and similarly, 5j for
8/8/_1j. Form factor perturbation theory expresses the
change in the particle masses in terms of the diagonal
one particle form factors, F%X, = FX, (in,0), of the per-
turbing operator as [29]

181601-2
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Oim2 = —AxFui,  O;m2 = —4zFa. (1)

The change in the scattering matrix is related to
the diagonal two particle form factors F.i  (6)=
lim,_oF i, (0 + im, in, 0 + €, €) as [29]

87%iF 5, (0) = 2m m,, sinh 09,8, (0)
— [0img + O;m,
+ 2 cosh Gai(mamb)]agSab(H). (12)

TBA analyses relate the bulk energy density to the mass
and resonance parameters as J = %ml m, cosh o (see [22]).

On the IR basis, taking into account the mass dependence
of the operators X, it implies for the vacuum expectation
values that (X,,) = 0 and (X, + X,;) = 2F. The diagonal
one particle matrix element of ® is normalized with respect
to the masses as F9,(iz,0) = m2/2z, which implies

2Fabe = §,,8,.m2. (13)

From the explicitformof g, _ , in[27,28], one can calculate
that

472iF50, (0) = mam,eP=99,8,(0). (14)

Expanding V; by X ,;, and comparing (11) with (13) and
(12) with (14), we arrive at the relation

\IJ[' = —XH@[ In my — Xlzai ln(mlmze_")l/z
—X225,» lnm2 —lea[ ln(mlm266>l/2. (15)

A similar relation for ¥, is obtained by replacing 9; with ;.
The consistency of (¥;) from (10) and (15) gives (X,) =
Imymye™ and (Xy) = 2mym,e°. Together with these
results, we restrict the mass-coupling relation from con-
servation laws in the following.

UV conserved charges.—In the UV CFT, any element of
the chiral algebra, A(z), is a component of a conserved
current: OA(z) = 0. Once we switch on the perturbation,
this is no longer true, but we can systematically calculate

the corrections. The leading order formula is

IA(.2) = —4], ]f VAR 2. (16)

Z

Comparing the dimensions on the two sides, one can show
that higher order terms cannot contribute, and the first order
formula is actually exact.

Given (16), conserved currents are found by the counting
argument [30,31]. For example, at the second level, we
have three operators: the Ising stress tensor L(!)(z), the TCI
one L®(z), and the product L®)(z) =w(z)G(z). By
analyzing carefully their operator product expansion

(OPE) with the perturbing fields, ®;;, we find two

conservation laws. The first combination is the conserva-
tion of the energy L = L(1) + L),

OL = n(1 — h)4,0¥;, (17)

where h :% is the chiral conformal dimension of
the perturbing operators. The conservation of the other
combination,

L0 e g Y3h (18)
4

follows from the singular part of the OPE J~ (2)4;®;;(w.w) =
%[”iq)ij(w’w)/@_w)z} +%[”iaq)ij(wvw)/(z_w)] as

0J~ = 0J" = ;0 (19)
where v; = (z/2)4, and v, = (x/6)(43/1,). We denote
the corresponding conserved charge by Q. Clearly, we
have similar equations for the antichiral half, J~ and J*.
We can also calculate how the charge Q acts on J:
[0,J7(2.2)) = = $(dw/2mi)J~(w)D,;¥;(z.Z). Using the
short distance OPEs, we obtain

- 5

IR conserved charges.—From the two conservation laws
for L and for J7, itis clear that they have linear combinations
7; such that U, satisfies 0%; = Or; fori = 1,2, and similarly,
for U;. As a consequence, F¥ o« Pt and F Vi & P~, which
together with (8) and (15) give the relations

9, 1n <ﬂ e“’) =0, 9 (ﬂ e") —0. (21
my my

Now it is advantageous to introduce the parameters

m m
7“ e, fy = 7“ e %, (22)
All physical combinations depend only on the difference of
o,, namely, 6 = o, — 6,. The equations above imply that
11/ 1> depends only on 7 = A;/A, and i, /i, on ij = Ay /4.
In this nOtatiOIl, <X|2> = 2ﬂ2ﬂ] and <X2]> = 2/11/7!2.

The action of the conserved currents and charges on
multiparticle states are found using their forms such as (15),
(19) with (21), and the relevant form factors given above.
The commutator [Q, J~| is thus expressed in terms of the IR
basis X,;,. Comparing the resulting expression to the UV
result (20), we can derive the relation

Ha =

4 -
D, = _g(a,. Inm,)(0;Inm,)X,,. (23)

Master formula.—Our final ingredient for the mass-
coupling relation is the master formula, which is a
generalization of the ® sum rule of [32] for a conserved
spin two current. Let us assume that Y* satisfies
0,Y" =0 and that ¥ is some scalar operator, such
that the leading term of their conformal OPE is

181601-3
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(Y= (2)¥(0)) = C(0)/z*> + - --. By following the calcu-
lation that leads to the ® sum rule, we obtain

/aax(Y*‘(x)\I/(O))c = —nC(0), (24)

where (-).. stands for the connected part. For this, we used
relativistic invariance to parametrize the two point function
as (Y*(x)¥(0)). = —x*x*r*C(r?) + " A(r?) + e B(r?).
The conservation law then leads to G/r’>=
(d/dr*)(C + G), where G = C +2A +2B. In massive
theories C(o0) = G(o0) =0 and a relevant conformal
dimension, A < 1, for ¥ implies G(0) = 0.

Applying these formulas to the stress tensor, we recover
the © sum rule: [ d*x(®(x)¥(0)), = —2A(¥). Since the
second tensor index of Y** can be regarded as a label of
the current, the formula can be applied to the other
conserved current J# ~ Y#~. This leads to a differential
equation for the mass-coupling relation.

Mass-coupling relation.—To see this, first note that the
master formula (24) enables us to calculate the free energy
Ward identity,

5

00,7 ==y~ [ PxW0T0), =3 (®;). 29

5§
Together with F = pji, + ppjiy, this implies complete
factorization; i.e., y, depends on 4; as u,(4;,4,), and
similarly, g, as ji,(4;,4,). This means that the original
three-variable mass-coupling relation is reduced to two
identical copies of the chiral two-variable mass-coupling
relation. On dimensional grounds, we can thus write
/ﬁ/z 25/2

_ = _/11 =
Ha =5 q4(1), fa =5 q4(7), (26)

so as to maintain the left-right symmetry of the problem,
where as before n = 1, /4,.
The master formula implies also that

00u( ) = [ Pl 00B) = M), (27)

where from the OPEs, we obtain M =1,
M, =M, = %77, and M,, = 0. Through (23), this actually
translates into the following differential equation for g,:

2 2 5
n2<1—%>q2+n<4—%)q;+—qa =0, (28)

which is a hypergeometric differential equation whose
solutions need to be fixed from the boundary conditions.
One special case can be obtained by sending 4, = 4, to 0. In
this case, only the TCI model is perturbed with 1,1, ®,,,
and the masses are explicitly known as m; =0 and
my = K(17a)¥ with k= [56(217)"/*/52{[M(~Dr(})]/
[C(3)I(2)]} [13,22]. The solution of (28) for such vanishing
(1 is unique up to normalization, giving

gl

=

FIG. 1. Plots of (uy, #») versus (4;, 4,). On the left, the red and
blue surfaces represent p(4;) and uy(4;) in (29) and (30),
respectively. The red and blue points represent the numerical
data [A;(ug), A2 (pa), pp) (b =1,2) from the TBA equations,
which are solved for given yu, = ji,. Each sequence from the
bottom to the top corresponds to (u,)*> = 1/2,1,3/2,2, with p;
varied. A; are determined by comparing the TBA free energy
with the CFT perturbation. On the right, the diamonds (¢)
represent the projections of the left points to the (4;, 4,) plane.
The solid lines are the contours in the fundamental domain for
[ (A)]?° = 1/2,1,3/2,2 from (30).

2
Hi(A1. 20) = BA (A + \/§12)1/2F< 4 ) (29)

A+ V32,
z). The S5 symmetry then yields

where F(z) = ,F,(—1.,3;3

B (V3h-4) V3 — 4
4 (A1 +V32)712 F(/ﬁ + \/5/12) 0

(29) and (30) hold in the fundamental domain
0 < 4, <V/34,, which are continued outside by the S,
symmetry. The normalization is fixed by the above
single-mass result: B = x(57/16+/3). This is our main
result, which we have checked numerically from the
TBA equations [19]. Figure 1 shows the agreement of
(29), (30), and samples of numerical data. Furthermore,
at (A.4,) = (4/2,4/31/2), we confirm that p, = y, =
(B/2v/2)F(1/2)23/?, which exactly reproduces the mass-
coupling relation in the equal-mass case [14,22]. The
mass-coupling relation enables us to express the free energy
density F in terms of (4;, 4;), which then can be used via (25)
to obtain the one-point functions of ®;;.

Conclusions.—In this Letter, we developed a new
method to calculate the exact mass-coupling relation for
multiscale quantum integrable models. We combined form
factor perturbation theory with the construction of con-
served tensor currents. The generalization of the ® sum rule
Ward identity of these currents provided a differential
equation for the mass-coupling relations, leading to sol-
utions in terms of hypergeometric functions. This is the first
result for multiscale mass-coupling relations. Our work
provides the missing link to develop an analytic expansion
of ten-particle scattering amplitudes of the four-
dimensional maximally supersymmetric gauge theory at
strong coupling around a Zp-symmetric kinematic point

(A1, 4y) =

181601-4
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[33]. Although we analyzed here the simplest multiscale
HSG model, the methods can be extended for other
multiscale perturbed CFTs. More details and related results
will be reported elsewhere [34].
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